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Abstract

The flourishing Internet-scale cloud services are revolutionizing the land-

scape of human activity. The rapid growth of such services has triggered

an increasing deployment of massive energy-hungry geo-distributed data-

centers worldwide. In this thesis, we consider the scenario where a cloud

service provider (CSP) operates multiple geo-distributed datacenters to

provide Internet-scale service. Our objective is to minimize the total elec-

tricity cost and bandwidth cost by dynamically routing workloads to dat-

acenters with cheaper electricity, i.e., geographic load balancing (GLB).

Most existing studies on GLB assume that the use of GLB has no impact

on electricity prices, even though GLB increases local electricity demand

variation. In practice, however, electricity retail prices are determined by

how supply and demand are dynamically balanced by local electricity utili-

ties. Firstly, in order to understand GLS’s economic potential and impact,

we carry out a comprehensive study on how GLB interacts with electricity

supply chains. In particular, we show that a separate GLB solution, which

relies on utility companies for electricity procurement (EP), will make the

electricity supply chains less efficient. Then, utility companies have to

increase electricity retail prices to ensure certain profit margin. Conse-

quently, CSP doing GLB may end up getting minor cost reduction or even

paying higher electricity cost than not doing GLB, as shown in our case

study based on real-world traces.

Secondly, motivated by the recent practice of large CSPs moving into

electricity markets, we allow CSPs to join the deregulated market directly

and propose a joint GLB and EP solution. By considering the real-world

market mechanisms and exploring the full design space of strategic bidding,
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we formulate a stochastic optimization problem to minimize the total cost

expectation. Under the ideal setting where exact values of market prices

and workloads are given, this problem reduces to a simple linear program-

ming and is easy to solve. However, under the realistic setting where only

distributional information of these variables is available when making de-

cisions, the problem unfolds into a non-convex infinite-dimensional one

and is challenging. One of our main contributions is to develop a nested-

loop algorithm that is proven to solve the challenging problem optimally.

Our study also highlights the intriguing role of uncertainty in demands

and prices, measured by their variances. While uncertainty in electricity

demands deteriorates the cost-saving performance of joint GLB and EP,

counter-intuitively, uncertainty in market prices can be exploited to achieve

a cost reduction even larger than the setting without price uncertainty.

Finally, our trace-driven evaluations corroborate our theoretical results,

demonstrate fast convergence of our algorithm, and show that it can reduce

the cost for the CSP by up to 20% as compared to baseline alternatives.

This thesis demonstrates the necessity and benefit of the joint optimiza-

tion framework when performing GLB. We believe that our study provides

an important guideline for the CSP to cut its electricity bills by taking

advantage of its presence in multiple deregulated markets.

ii



������

�������������������������������

�������������������������������

�������������������������������

�������������������������������

�������������������������������

����

������������������������������

�������������������������������

�������������	�����������������

��������������������	������	���

�������������������������������

�������������������������	�����

����	�����������
��

�����	��������
����	���������

�������������������������������


�
�����
����������������������

�������������������������������

�
��	�
������������������������

��������������������������		���

�	�����������������
	���		���

	����������	�������������������

�������������������������������

����������.

��������
���������������������

�
�
�	���������
����	���������

iii



����20%������

������������������������������

�������������������������������

�������������������������������

����������������������

iv



Acknowledgement

First of all, I would like to thank my advisor Minghua Chen for his su-

pervision. From the beginning when I knew little about this filed till the

end of my PhD study to complete this thesis, he guided me and helped me

at each step. From him, I learned how to select interesting topics, how to

come up with a model and formulate research problems, how to evaluate

the results and possibly gain further improvement, and finally how to write

papers to present the findings professionally. Although Professor Minghua

Chen has a very busy schedule, he does spend a lot of time and effort to

make sure that I am on the track to finish my PhD study on time. His

substantial support, attitude on research and enthusiasm towards life have

influenced me a lot and will continue to benefit my future career for sure.

Besides my advisor, I would like to express my gratitude to my research

collaborators: Lei Deng, Mohammad H. Hajiesmaili, Jose Camacho, Pro-

fessor Peijian Wang, Professor Dahming Chiu, and Professor Qi Zhu. Their

broad knowledge and deep insights significantly improved my research re-

sults and it is really a pleasure to work with them.

My friends and labmates at CUHK make my PhD life a really enjoy-

able journey. They are Xin Tao, Shaoquan Zhang, Lei Deng, Hanling Yi,

Jincheng Zhang, Hanxu Hou, Yang Yang, Qiulin Li, Lin Yang and many

others whose names are too long to list. I enjoy the numerous time of play-

ing and studying with them and have been inspired by their hard-working

spirits. They make CUHK a home away from home.

Last but not least, I am profoundly grateful to my parents for making

me who I am and enabling me to do what I am doing, and to Jenny for

her accompany in the past several years. Although they could not be

v



here with me or fully understand my research, they always cheer for every

achievement during my PhD process and pay great attention to every little

aspect of my life. Their warm encouragement and endless love help me to

go through a lot of difficulties and keep me strong forever. This thesis is

dedicated to them.

vi



To My Parents

vii



Contents

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions and Organization . . . . . . . . . . . 5

2 Related Work 9

3 Background 13

3.1 The Electricity Supply Chain . . . . . . . . . . . . . . . . 13

3.1.1 Components of Supply Chain . . . . . . . . . . . . 14

3.1.2 Supply Chain Evolutions with GLB . . . . . . . . . 16

3.2 Deregulated Electricity Market . . . . . . . . . . . . . . . 17

4 A Subtle yet Important Issue of Doing GLB and EP Sep-

arately 23

4.1 A Separate GLB and EP Solution . . . . . . . . . . . . . . 23

4.2 GLB increases Prediction Error of Utilities’ Demand . . . 24

4.2.1 Dataset Characterization . . . . . . . . . . . . . . . 24

4.2.2 Prediction Method . . . . . . . . . . . . . . . . . . 27

4.2.3 Utilities’ Demand Prediction Error . . . . . . . . . 28

4.3 Prediction Error Increases Retail Price for CSPs . . . . . . 30

4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 A Joint GLB and EP Solution: Problem Formulation 34

5.1 Workload and Geographical Load Balancing . . . . . . . . 35

5.2 Electricity Market Price and Bidding Curve . . . . . . . . 38

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 43

viii



5.4 An Alternative Two-stage Formulation . . . . . . . . . . . 44

6 A Joint GLB and EP Solution: Algorithm Design 45

6.1 Reducing P1 to a Convex Problem and Approach Sketch . 45

6.2 Inner Loop: Optimal Bidding Given GLB Decision . . . . 48

6.2.1 Connections with Newsvendor Problem . . . . . . . 50

6.3 Outer Loop: Optimal GLB with Optimal Bidding Curve as

a Function of GLB Decision . . . . . . . . . . . . . . . . . 52

6.4 Complexity and Practical Considerations . . . . . . . . . . 54

6.4.1 Computational Complexity . . . . . . . . . . . . . . 54

6.4.2 Imperfect Knowledge of Probability Distributions. . 55

7 Impacts of Demand and Price Uncertainty 57

7.1 Impact of Demand Uncertainty . . . . . . . . . . . . . . . 57

7.1.1 q∗j (p;α) is Robust to Demand Uncertainty . . . . . 58

7.2 Impact of Price Uncertainty . . . . . . . . . . . . . . . . . 60

7.3 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Bidding with Finite Bids 64

8.1 Performance Loss Characterization . . . . . . . . . . . . . 64

8.2 Step-wise Bidding Curve Design . . . . . . . . . . . . . . . 66

8.2.1 To Optimize the Bidding Quantities . . . . . . . . . 67

8.2.2 To Optimize the Bidding Prices . . . . . . . . . . . 68

9 Extensions to Other Pricing Models 71

9.1 Real-time Pricing Model Two . . . . . . . . . . . . . . . . 71

9.1.1 Single Datacenter Case . . . . . . . . . . . . . . . . 72

9.1.2 Multiple Datacenter Case . . . . . . . . . . . . . . 73

9.2 Real-time Pricing Model Three . . . . . . . . . . . . . . . 73

ix



9.2.1 Single Datacenter Case . . . . . . . . . . . . . . . . 75

9.2.2 Multiple Datacenter Case . . . . . . . . . . . . . . 76

10 Empirical Evaluations 78

10.1 Dataset and Settings . . . . . . . . . . . . . . . . . . . . . 78

10.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . 81

10.2.1 Performance Comparison and Impact of Finite Bids 81

10.2.2 Impact of Market Price Uncertainty and Demand

Uncertainty . . . . . . . . . . . . . . . . . . . . . . 83

10.2.3 Convergence Rate of the Joint Bidding and GLB Al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . 84

10.2.4 Impact of Demand Uncertainty and Distribution Es-

timation . . . . . . . . . . . . . . . . . . . . . . . . 85

10.2.5 Impact of Market Price Uncertainty and Distribution

Estimation . . . . . . . . . . . . . . . . . . . . . . . 88

10.2.6 Impact of Local Service Requirement . . . . . . . . 90

10.2.7 Impact of Bandwidth Cost . . . . . . . . . . . . . . 91

10.3 Reflections on Experimental Results . . . . . . . . . . . . . 92

11 An Alternative Formulation 94

11.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 94

11.2 Problem Properties and Challenges . . . . . . . . . . . . . 95

12 Conclusion and Future Work 99

13 Appendix 101

13.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . 101

13.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . 102

13.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . 105

x



13.4 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . 106

13.5 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . 108

13.6 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . 110

13.7 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . 110

13.8 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . 111

13.9 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . 113

13.10Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . 115

13.11Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . 116

13.12Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . 117

13.13Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . 117

13.14Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography 122

xi



List of Figures

1.1 (a) We fix market prices to their means and increase stan-

dard deviations of workloads. Cost reductions of our so-

lution and baseline decrease as the standard deviations in-

crease. (b) We fix workloads to their means and increase

standard deviations of prices. Cost reduction of our solution

increases as the standard deviations increase, while that of

baseline stays constant. More details are in Chapter 7 and

Chapter 10.2.2. . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 An Overview of the Electricity Supply Chain. . . . . . . . 13

3.2 Three electricity ecosystems related to this thesis. [17] . . 17

3.3 Operation of day-ahead market and real-time market. . . . 18

3.4 An illustrating example for the CSP to participate in markets. 20

4.1 Evolution of the (aggregated) electricity demand and web

workload between April 12th and May 6th 2013. . . . . . . 25

4.2 (a) Statistics of demand prediction error without GLB; (b)

Statistics of demand prediction error with GLB at 10% (i.e.,

the allowed demand variation caused by the CSP performing

GLB is 10%). . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 The scenario that we consider in this work. . . . . . . . . . 36

5.2 An illustrating example for the (step-wise) bidding curve

constructed from the submitted three bids in Fig. 3.4. . . . 41

10.1 Empirical distributions of MCPs, 2pm. . . . . . . . . . . 79

10.2 Empirical distributions of electricity demands, 2pm. . . . 79

xii



10.3 Optimal bidding curves for three day-ahead markets, 4pm. 86

10.4 Objective values in each iteration of our Algorithm 1. . . . 86

10.5 Statistics of convergence information for 24 hours . . . . . 86

10.6 Comparisons with gradient-based algorithm . . . . . . . . 87

10.7 Cost reductions with different levels of demand uncertainty

and different estimated distributions. . . . . . . . . . . . . 90

10.8 Cost reductions with different levels of price uncertainty. . 90

10.9 Cost reductions when more workloads must be locally served,

under different bandwidth cost. . . . . . . . . . . . . . . . 91

10.10Cost reduction ratios with different levels of network cost . 91

xiii



List of Tables

2.1 Summary and comparison of related works and this thesis.

N/A: the papers do not consider day-ahead market. ��:

the solutions are optimal. . . . . . . . . . . . . . . . . . . . 12

4.1 MAPE and Prices vs. Balanced Load . . . . . . . . . . . . 28

6.1 Comparisons with Literatures on Newsvendor Problem . . 52

10.1 Hourly Electricity Demand and Price Statistics in the Ex-

periments . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10.2 Cost-saving performance of different schemes. . . . . . . . 81

xiv



Chapter 1

Introduction

1.1 Motivations

As cloud computing services become prevalent, the electricity cost of world-

wide datacenters hosting these services has skyrocketed, reaching $16B in

2010 [37]. Electricity cost represents a large fraction of the datacenter

operating expense [78], and it is increasing at an alarming rate of 12%

annually [14]. Consequently, reducing electricity cost has become a critical

concern for datacenter operators [60, 2].

There have been substantial research on reducing power consumption

and related cost of datacenters [72, 69, 29, 32]. Among them, geographical

load balancing (GLB) is a promising technique [60, 61, 67]. By dynami-

cally routing workloads to locations with cheaper electricity, GLB has been

shown to be effective in reducing electricity cost (e.g., by 2–13% [60]) of

geo-distributed datacenters operated by a cloud service providers (CSP).

Many existing works explore price diversity across geographical locations

to reduce electricity cost [60, 61, 81]. Some recent studies also advocate

additional price diversity across time at a location, by for example using

electricity storage system and demand response for arbitrage [69] or oppor-

tunistically optimizing various electricity procurement options [17, 28, 80].

1



CHAPTER 1. INTRODUCTION 2

Nevertheless, most existing works related GLB focus on addressing tech-

nical feasibility and revealing the abundant benefits of GLB, assuming the

electricity prices are not affected by GLB. In practice, however, the elec-

tricity prices are determined by how supply and demand are dynamically

balanced by local utilities, and thus may as well be affected by GLB. In par-

ticular, the fact that the electricity is a non-storable commodity forces the

utility to predict the demand and schedule its supply in advance. Since

GLB increases demand variation, it may incur extra errors in demand

prediction. As we will show in Chapter 4, prediction errors will lead to

over-/under- supply and consequently economic loss for utilities and util-

ities may have to increase electricity retail prices to ensure certain profit

margin in face of such extra economic loss caused by GLB.

As one of the contributions in this thesis, we note that GLB can cause

non-negligible demand variation for a utility. For example, Facebook,

Apple, Google and Amazon have built or will build large datacenters in

Prineville (Oregon, US) to leverage the chilly outdoor air for datacenter

cooling at low cost. A fully-operated datacenter (e.g., Google’s datacenter

in Oregon) is estimated to consume 90 MW power [7]. Power Pacific, a

large utility serving Oregon including Prineville, sells 35 GWh daily [1].

Hence, these datacenters once all in full operation could consume 8.6 GWh

daily or 22% of Power Pacific sales today, and 33% in 4 years if we ag-

gressively consider datacenter electricity demand grows 15% annually as

estimated in [38] while conventional demand remains steady. If datacen-

ters can shift 30% electricity demand away by doing GLB according to the
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estimate in [60], then GLB could lead to 10% demand variation for Power

Pacific. Therefore, in order to understand and unleash GLB’s economic po-

tential, it is critical to understand the interaction between the GLB ability

to alter electricity demand patterns, and the impact of its uncertainty on

the electricity prices.

Motivated by the above observations, we develop relevant models and

carry out a comprehensive study of the impact of GLB on the electricity

supply chain. Particularly, we show that as the simple-designed GLB in-

troduces extra local demand uncertainty, which will force utility companies

to increase electricity retail prices to ensure certain profit margin. Conse-

quently, CSP doing GLB may end up getting minor cost reduction or even

paying higher electricity bills than not doing GLB, as shown in our case

study based on real-world traces.

Inspired by recent practices that CSPs moving into electricity markets,

we consider the scenario where a CSP jointly performing GLB and electric-

ity procurement from deregulated markets. In this new model, the market

prices are set by running auction mechanisms among the electricity suppli-

ers and consumers, cf, [89]. The goal is to minimize the total electricity and

bandwidth cost, by exploiting price diversity in both geographical locations

(by GLB) and time (by procurement in local sequential markets).

Under the ideal setting where, where exact values of market prices and

workloads are given, the optimization problem reduces to a simple lin-

ear programming (LP) and is easy to solve, by for an example solution

in [60]. In practice, however, the actual values of these variables are re-



CHAPTER 1. INTRODUCTION 4

0 0.6 1.2 1.8 2.4 3 3.6 4.20

2

4

6

8

10

Workload Standard Deviation

C
os

t R
ed

uc
tio

n 
(%

)

Our Solution
Baseline, only using mean info

(a)

0 5 10 15 20 25 30 350

5

10

15

20

25

Market Price Standard Deviation
C

os
t R

ed
uc

tio
n 

(%
)

Our Solution
Baseline, only using mean info

(b)

Figure 1.1: (a) We fix market prices to their means and increase standard deviations

of workloads. Cost reductions of our solution and baseline decrease as the standard

deviations increase. (b) We fix workloads to their means and increase standard deviations

of prices. Cost reduction of our solution increases as the standard deviations increase,

while that of baseline stays constant. More details are in Chapter 7 and Chapter 10.2.2.

vealed only at the operating time, and only their distributions are available

when procuring electricity by submitting bids to markets (bidding). Such

obstacles make it challenging to exploit the benefit of GLB under realistic

settings. We show that, to fully exploit the design space, we need to solve a

non-convex stochastic optimization problem with infinite dimensions. One

of our contributions in this thesis is to develop an algorithm to solve the

problem optimally.

The results of our study highlights the intriguing role of uncertainty

in the deregulated electricity with a sequential structure. On one hand,

workload uncertainty undermines the efficiency of balancing supply and
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demand (proportional to workload) on electricity markets. 1 As a result,

the cost-saving performance of joint bidding and GLB deteriorates as work-

load uncertainty increases, as illustrated in Fig. 1.1(a). On the other hand,

counter-intuitively, higher uncertainty in market prices allows us to extract

larger coordination gain in sequential procurement in day-ahead and real-

time markets [46, 26, 12]. As shown in Fig. 1.1(b), capitalizing such gain

leads to a cost reduction even larger than the setting without price uncer-

tainty. In our solution, we explore the full design space of strategic bidding

to simultaneously exploit the price uncertainty and combat the workload

uncertainty, so as to maximize the cost saving.

1.2 Thesis Contributions and Organization

The organization and main contributions of this thesis are summarized as

follows.

� We discuss some related works in Chapter 2 and provide some neces-

sary preliminaries about electricity supply chain and deregulated electricity

market in Chapter 3 to bring the readers to the same page. We introduce

CSPs doing GLB as a new type of customers – they can make their local

demand more elastic to prices by “shifting” electricity demand among geo-

locations. They are very different from conventional electricity customers

whose demands are localized and inelastic.

� By analysis and case study using real-world traces, we investigate

1In this thesis, we assume that the datacenters are power-proportional [45] and we will use electricity

demands interchangeably with workloads.
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the impact of GLB on the supply chain and its economic consequence in

Chapter 4. We show that electricity utilities rely on accurate demand pre-

diction to efficiently balance supply and demand. As GLB will incorporate

the price and demand information of remote areas into local demand and

make accurate demand prediction harder, it causes trading inefficiency be-

tween utilities and CSPs and subsequent economic loss to the utilities. In

face of such economic loss, utilities will have to increase retail prices to

ensure certain profit margin. Consequently, CSPs doing GLB may end up

getting poor cost reduction or even paying higher electricity bills than not

doing GLB – 1% higher in our case study.

� Then in Chapter. 5, we formulate the problem of cost minimization by

joint bidding and GLB, under the realistic setting where only distributions

of market prices and workloads are available. The problem is a non-convex

infinite-dimensional one and is in general challenging to solve. To address

the non-convexity challenge, in Chapter 6, we leverage problem structures

to characterize a subregion of the feasible set so that (i) it contains the

optimal solution, and (ii) the problem over this subregion becomes a convex

one. We then solve the reduced problem by a nested-loop solution.

� In the inner loop, we fix the GLB decision and optimize bidding strate-

gies for local sequential markets. We derive an easy-to-compute closed-form

optimal solution in Chapter 6.2. The optimal bidding strategies not only

address the infinite-dimension challenge, but also allow the CSP to simul-

taneously exploit price uncertainty and combat workload uncertainty. In

the outer loop, we solve the remaining GLB problem given optimal bidding



CHAPTER 1. INTRODUCTION 7

strategies. While the problem is convex and of finite dimension, its objec-

tive function does not admit an explicit-form expression. Consequently, its

gradient cannot be computed explicitly, and gradient/subgradient-based

algorithms cannot be directly applied. In Chapter 6.3, we tackle this issue

by adapting a zero-order optimization algorithm, named General Pattern

Search (GPS) [43], to solve the problem without knowing the explicit-form

expression of the objective function. Finally, we prove that our nested-loop

algorithm solves the joint bidding and GLB problem optimally. We discuss

the computational complexity and issues related to practical implementa-

tion in Chapter 6.4

� We analyze the impact of demand and price uncertainties on the

cost-saving performance in Chapter 7. Realizing our optimal bidding curve

may require CSP to place an infinite number of bids in each deregulated

electricity market. In practice, however, market operator may only accept

a finite number of bids from the CSP. In Chapter 8, we carefully quantize

the optimal bidding curve so that it can be realized by using a finite number

of bids. We also bound the performance loss due to such quantization.

� We also discuss how to extend our joint optimization framework when

other market pricing models are used to handle the real-time mismatch in

Chapter 9.

� By evaluations based on real-world traces in Chapter 10, we show

that our solution converges fast and achieve satisfactory performance. In

particular, the joint optimization approach reduces the CSP cost by up to

20% as compared to baseline alternatives. We test the performance under
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different system parameter settings and show that the merit of our design

is still remarkable when the distributional information is inexact, or only

a finite number of bids can be submitted.

Our study also adds understanding to electricity cost management for

entities other than datacenters. For example, [55] and [46] considered sim-

ilar problems for utilities and microgrids, without fully exploring the bid-

ding design space or pursing optimal solution. Results of our study thus

can help to optimize the bidding strategy design under such settings. Part

of the results in this thesis have been published in [17, 90] and submitted

for journal publication in [91].

� End of chapter.



Chapter 2

Related Work

As energy consumed by datacenters keeps increasing dramatically, reducing

power and related cost for IDCs is becoming a very important research

topic. A large number of research works can be found in a recent survey

[10], and the references therein. This chapter only discusses the most

relevant work to this thesis.

Benefits of GLB: The seminal works [60, 61] propose the idea of GLB

to effectively reduce electricity cost of datacenter operators. Later on many

works [67, 81, 44, 48] have broadened the landscape of GLB with more

practical considerations and design spaces. Besides economic benefit, Some

other works [48, 42, 71] highlight that GLB can also be applied to efficiently

utilize renewable energy with environmental considerations.

GLB with Demand Response: It has been shown promising for the

datacenters to participate into demand response (DR) programs in different

manners. See [49, 50, 79, 84, 19] and the references therein. Researchers

also propose to combine GLB with DR to realize mutual interest of data-

centers and electricity providers, in the scenario of regulated or deregulated

markets. Particularly, in [77], the authors show that datacenters can help

the smart grid operator to balance the load ratio in different locations to

make the system more reliable; in [73], the authors use game theory to

9
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study the interactions between the datacenters and different utility com-

panies (monopoly providers), which are modelled as independent players

without sharing information; in [48], the authors show that, by properly

setting the pricing signals, we can encourage the datacenters to use more

renewable energy and reduce the carbon footprint; in [29], the authors show

that datacenter can gain economic profits by offering ancillary services to

the deregulated market operator.

Impact of Conventional GLB on Electricity Supply Chain: Re-

garding this optimal procurement, CSPs are completely new players in the

electricity markets. Recently, the impacts of geo-distributed datacenters

on electricity prices have been studied in [79, 49], in the context of demand

response. In particular, [49] analyzed the pricing model only for one data-

center while we consider multiple datacenters instead. [79] showed that the

electricity price will be changed when GLB reroute enough amount of work-

loads so that the energy consumption of individual location is significantly

changed, while in this thesis, we show a subtle observation, that the elec-

tricity price for CSPs can be increased by its larger demand uncertainty,

which is more common in toady’s practice. Different from conventional

utilities, the CSP is able to bid in different regional markets, and this

scenario provides new study cases for the existing literature on strategic

bidding [66, 33, 47].

GLB with Market and Demand Uncertainty: Several works [62,

88, 87, 28, 29, 80] study the GLB strategies in the presence of demand

uncertainty and/or electricity price uncertainty. Both [62] and [88] utilize



CHAPTER 2. RELATED WORK 11

the long-term forward contracts to reduce operation risk. In contrast,

our work considers the bidding-based procurement in day-ahead markets.

Aligned with this direction, [28] and [29] treat the CSP as a price taker and

only optimize the bidding quantity and [17] only considers one bid, which

does not fully exploit the design space of bidding strategies. Camacho

et al. in [17] and Wang et al. in [80] fully exploit the design space but

they only consider the market uncertainty and do not consider demand

uncertainty. Instead, this thesis fully exploits the bidding design space

and simultaneously considers the demand and market uncertainty.

Electricity Trading in One Regional Market: Several papers [11,

46, 33, 26, 12] and [55] consider the electricity procurement strategy of

the electricity consumer in one electricity market, which is a subproblem

considered in this thesis. [55] only optimizes the procurement quantity in

the day-ahead market and does not exploit the full design space of bid-

ding strategy. [26] considers a linear-wise bidding curve with the bidding

prices at the critical points given and model the future demand as a func-

tion of the MCP. [46] and [33] try to optimize the bidding curve but their

solutions rely on existing solvers or genetic algorithms, and thus have no

optimality guarantee. The authors in [11] design the optimal offer strate-

gies for renewable generation company with given day-ahead market prices

but uncertain power output.

A brief summarized comparison is provided in Table 2.1.

� End of chapter.
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Table 2.1: Summary and comparison of related works and this thesis. N/A: the papers

do not consider day-ahead market. ��: the solutions are optimal.

Reference
Day-ahead

market uncertainty

Demand

uncertainty

Full bidding

design space
GLB

Mismatch

cost

Ghamkhari et al.[28] � � � � �

Ghamkhari et al.[29] � � � � �

Rao et al.[62] N/A � � � �

Liu et al.[46] � � � � �

Paganini et al. [55] � � � � �

Yu et al.[88] N/A � � � �

Herranz et al.[33] � � � � �

Bitar et al.[11] � � �� � �

Wang et al.[80] � � �� � �

This thesis � � �� � �



Chapter 3

Background

In this chapter, we provide some necessary preliminaries on electricity sup-

ply chain and deregulated market.

3.1 The Electricity Supply Chain

End Users Wholesale 
Market

Generation 
Company

Demand 
bids

Supply
offers

Long-term
contracts

Utility

Figure 3.1: An Overview of the Electricity Supply Chain.

Firstly, we provide a high-level introduction of the electricity supply

chain, which is in Fig. 3.1. Under the electricity market deregulation,

electricity supply chains consist of four components: Generating Compa-

nies (GENCOs), Electricity Wholesale Market (Market), Utility Compa-

nies (Utilities), Customers (in particular, Cloud Services Providers (CSPs)

that owns multiple geo-distributed datacenters). Different from regulated

markets, the utilities act as Provider of Last Resort and are not respon-

sible for electricity generation and transmission anymore [58]. Electricity

13
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trading happens between Utilities and GENCOs, by strategic behaviors of

two parties, and also between Utilities and Customers, often by long-term

contracts (for example, the time-of-use pricing scheme).

3.1.1 Components of Supply Chain

We firstly describe the roles of the three parties in details.

GENCO. GENCOs run the generating units and sell electricity on

the wholesale Market. Utilities buy from the Market and sell retail to

CSPs. From its generation to its consumption in the data-centers, electric

energy flows the entire supply chain. The trading at each step of the chain

jointly determines the final prices offered to the customers. Consequently,

changes on one side of the chain may propagate to the other extreme. One

well-known example is the extremely high prices experienced by customers

in 2001 due to inefficiencies in the spot markets in California [35]. For our

study, it suffices to consider three components in the supply chain: Market,

Utilities, and CSPs.

Utilities. Similar to the retailers in a generic supply chain, utilities

buy commodity – electricity – from spot markets and sell to end customers

(like CSPs). Utilities make profit by setting a proper retail price, which

may be different from MCPs.

Meanwhile, utilities are unique retailers in two senses:

• utilities are trading a non-storable commodity (electricity) with ex-

tremely short “expiration time”;
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• utilities have to schedule electricity supply one day before the demand

arrives, by bidding in the day-ahead market.

These two facts incentive the utilities to predict precisely both the de-

mand quantity and time-of-arrival, so as to schedule the right amount of

supply to serve the demands at the right time. For example, a utility that

predicts a datacenter needs 30MWh electricity tomorrow at 2-3pm needs

to buy today, from the day-ahead market, the exact amount of electric-

ity for its dispatch tomorrow 2-3pm. If there are errors in the prediction,

utilities will suffer from over-/under- supply. Over-/under- supply leads

to either unused electricity or unmatched demand (to be compensated in

more volatile real-time markets), which immediately translates into eco-

nomic loss for the utility.

Consequently, when setting the retail price, utilities have to take into

account the potential economic loss due to demand prediction error. Larger

demand uncertainty leads to larger prediction error, and thus higher eco-

nomic loss. This observation is crucial in understanding the results in

Chapter 4 and motivates the joint optimization framework design in this

thesis.

Customers (CSPs) In this paper, we consider CSPs that oper-

ate energy-hungry geo-distributed datacenters (e.g., Google and Microsoft)

to provide computing-intensive services (e.g., search) to its users through

the Internet. Depending on whether they perform GLB, CSPs’ roles as

electricity customers differ significantly.
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• Without GLB, a CSP manages its geo-distributed datacenters sep-

arately. Each datacenter only serves its regional workload, and it

purchases electricity from local utilities for its energy needs. In this

case, from the utilities’ point of view, each datacenter is no different

from traditional electricity customers (e.g., commercial buildings).

• However, CSPs can perform GLB for various purposes, including but

not limited to reducing the total electricity cost of its geo-distributed

datacenters. As long as the quality of service does not degrade, rout-

ing service requests to datacenters at locations with cheaper electric-

ity price can provide remarkable cost reduction [60]. According to the

widespread estimate in [52], the workload of a datacenter that can be

geographically load-balanced corresponds to 20-30% of the datacenter

electricity demand. In such a scenario, CSPs represent a completely

new type of electricity customers to the geo-isolated market infrastruc-

ture and to local utilities, in the sense that CSPs’ energy demand at

one location is elastic, caused by CSPs moving their workload around.

3.1.2 Supply Chain Evolutions with GLB

The electricity supply chain will evolve intriguingly under different GLB

and EP models. And we briefly describe 3 variants involved in this thesis.

• No GLB Model : In this scenario (see Fig. 3.2(a)), electricity utilities

purchase electricity from local electricity spot markets. Then, the util-

ities sell electricity like a commodity to datacenter owners to support
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(a) Conventional electricity supply

chain.
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(b) Electricity supply chain with

GLB.
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(c) Geo-Distributed electricity

supply chain.

Figure 3.2: Three electricity ecosystems related to this thesis. [17]

their operation.

• Conventional GLB Model : The scenario evolves to Fig. 3.2(b) if GLB

is conducted. The critical change is that different supply chains, which

are originally separated, interact with each others.

• Joint GLB and EP Model : In this scenario (see Fig. 3.2(c)), data-

center owners directly purchase electricity from local spot markets,

either by obtaining a valid license1 or through a broker (e.g., utilities

are ideal broker candidates).

3.2 Deregulated Electricity Market

In a region, there are two electricity wholesale markets, day-ahead market

and real-time market, to balance the electricity supply and demand in two

timescales. We show the critical operations in Fig. 3.3 and explain the

details in the following.

1As a real-world example, in February 2010 the Federal Energy Regulatory Commission authorized

Google to buy and sell energy at market rates [30].
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Day-ahead (DA) Market
Real-Time (RT) Market

Timeline

 In a particular hour,RT demand comes;
balance the mismatch in real-time

Hour 1 Hour 2 Hour 24...

Buyers submit bids for every hour without 
knowing DA’s MCP, RT price, RT demand

DA market 
opens

DA market 
closes

DA market 
clears at an MCP

RT market 
settles at a RT price

Figure 3.3: Operation of day-ahead market and real-time market.

Day-Ahead Market. The day-ahead market is a forward market to

trade the electricity one day before dispatching. The electricity supply is

auctioned in the day-ahead market. The sellers, i.e., generation compa-

nies, submit (hourly) generation offers, and the buyers, i.e., utilities or

CSPs, submit (hourly) demand bids, all in the format of <marginal price,

quantity>, to the auctioneer, i.e., the Independent System Operator (ISO).

In the offers (resp. bids), the generation companies (resp. utilities and

CSPs) specify the amount of electricity they want to sell (resp. buy) and

at which marginal price. Each seller (resp. buyer) is allowed to submit

multiple offers (resp. bids) [12] in the same auction with different prices

and quantities. The ISO matches the offers with the bids, typically using

a well-established double auction mechanism [89]. The outcome of the

auction is that it determines a market clearing price (MCP) for all the

traded units. The bids with prices higher than MCP and the offers with

prices lower than MCP will be accepted, and the electricity will be traded at

MCP. Upon day-ahead market settlement, the generation companies (resp.
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utilities and CSPs) will be notified the quantity and MCP of electricity that

they commit to generate (resp. consume).

The actual value of MCP is revealed only after the day-ahead market

is settled/cleared, and they are unknown to market participants at the

time of submitting bids/offers. However, the statistical information can be

learned from historical data.

We show an example in Fig. 3.4 from the perspective of our CSP.

Suppose that the CSP submits three bids to the day-ahead market:

<30$/MWh, 3MWh>, <51$/MWh, 4MWh>, <70$/MWh, 5MWh>.

Now if ISO announces that the MCP is 40$/MWh after the auction, then

the second and the third bid will be accepted since their bidding prices

are higher than MCP. Thus the CSP gets 4 + 5 = 9MWh of day-ahead

committed supply at the price of MCP, i.e., 40$/MWh. The day-ahead

trading cost is thus 9× 40 = 360$.

Real-Time Market. The mismatch between day-ahead committed

supply (as discussed above) and real-time demand is balanced on the real-

time market, in a pay-as-you-go fashion. In particular, the system calls the

short-start fast-responding generating units, which is usually more expen-

sive, to standby and meet the instantaneous power shortage if any. The

real-time price is set after the real-time dispatching and are not exactly

known a priori.

• In case that the day-ahead committed supply matches exactly the

actual demand, there is no real-time cost.
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The total cost is 360+50=410$ and the effective price is 410/10=41$/MWh, 
both of which depend on the bidding strategy, MCP, RT price, and demand

The CSP submits three bids 
for Hour 2:

    -Bid 1: (30$/MWh,3MWh)
    -Bid 2: (51$/MWh,4MWh)
    -Bid 3: (70$/MWh,5MWh)

Note: At this moment, DA’s
MCP, RT price and demand 
are unknown

DA market clears with the 
realized  MCP 40$/MWh 
Bid 1 fails, Bids 2&3 
succeed
The DA trading cost is 
(4+5)*40=360$

The CSP’s demand is 
realized as 10 MWh 
The RT market price is 
realized as 50$/MWh
The RT trading cost is 
(10-9)*50=50$

Day-ahead (DA) Market
Real-Time (RT) Market

Timeline

Hour 1 Hour 2 Hour 24...

DA market 
opens

DA market 
closes

DA market 
clears at an MCP

RT market 
settles at a RT price

Figure 3.4: An illustrating example for the CSP to participate in markets.
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• In case of under-supply, (i.e., the committed supply is less than the

real-time demand), the CSP will pay for extra supply at the real-time

price.

• In case of over-supply, the system needs to reduce the power generation

output or pay to schedule elastic load [54] to balance the supply, both

incurring operational overhead and consequently economic loss. In

this case, the CSP will receive a rebate at price β · MCP for the

unused electricity (recall that the planned supply is purchased from

the day-ahead market at price MCP). Here β ∈ [0, 1) is a discounting

factor capturing the overhead-induced cost in handling over-supply

situation.

The overall electricity cost for the CSP is the sum of day-ahead procure-

ment cost and the real-time settlement cost, which can be in the form of

extra payment or rebate. A concrete real-world example fit the above de-

scription could be found in [33] (a Spanish Market). We remark that the

real-world pricing mechanisms to handle the real-time mismatch could be

different in markets and our description here might be a little bit specific

for the purpose of math modelling in Chapter 5. However, the developed

framework can also be extended to different pricing models described in

[55, 54, 26] (see our discussions in Chapter 9).
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Back to our example for the CSP in Fig. 3.4, suppose that the CSP’s real-

time demand is 10MWh. Since the day-ahead committed supply is only

9MWh, i.e., the under-supply case happens, the CSP needs to buy 1MWh

extra electricity from the real-time market. Now if the real time price is

50$/MWh, the real-time trading cost of the CSP will be 1 × 50 = 50$.

The total cost is the sum of day-ahead trading cost and real-time trading

cost, which is 360+50=410$.

Cost Structure. An important observation is that the overall cost

depends on not only the actual demand, the day-ahead MCP and the real-

time price, but also the mismatch between the day-ahead committed supply

and the actual demand. As the day-ahead committed supply depends on

day-ahead market bidding strategy of the CSP, the overall cost is thus also

a function of the bidding strategy. We remark that such cost structure is

unique to electricity procurement in electricity markets and motivates the

bidding strategy design [55].

� End of chapter.



Chapter 4

A Subtle yet Important Issue of Do-

ing GLB and EP Separately

In this chapter we present a model to analyze how GLB will interact with

the electricity supply chain. In particular, we show that utility companies

have to increase retail prices in order to ensure certain profit margin in

face of the economic loss caused by a simple GLB solution. Consequently,

CSPs doing “careless”GLB (as in Fig. 3.2(b)) might end up paying higher

electricity prices than not doing GLB (as in Fig. 3.2(a)).

4.1 A Separate GLB and EP Solution

Here, we briefly describe a simple GLB solution. This seminal work [60]

firstly identifies the geographical electricity price diversity and that this

diversity can be exploited by the special electricity customer CSP. The

basic idea is very simple and intuitive. The CSP owns several datacenters

(or computing clusters) in different locations. Each datacenter is an end

customer and signs a long-term contract with its local utility company.

Naturally, different datacenters will have different retail prices. When some

request comes, which represents some amount of electricity consumption

[45], we can rout this request to the datacenter with cheaper electricity

23
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while respecting the performance guarantees (like delay constraints). With

the electricity prices and demands given as constants, the optimization

problem reduces to a simple LP, which can be efficiently solved by off-the-

shelf solvers, like CVX [31]. The authors of [60] shows this technique is

promising to save millions of US dollars per year even for a relatively small

system like Akamai.

4.2 GLB increases Prediction Error of Utilities’ De-

mand

We begin our arguement by showing that this simple GLB approach will

increase the demand prediction error of utilities. Before presenting our

empirical study, the underlying logic is quite intuitive: with GLB, the

local demands not only depend on the local information, (like the local

temperature,) but also depend on the remote information, (like electricity

consumptions and prices in other locations) and the private information

of the CSPs, (like how much remote workload will be routed to this dat-

acenter), both of which are usually either not taken into account by or

not revealed to the utilities. Then the utilities’ ability to make accurate

predictions are inevitably depressed by GLB.

4.2.1 Dataset Characterization

We firstly describe the dataset we use in our empirical study.

Datacenters’ demand: We use traces from the Akamai CDN as the
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Figure 4.1: Evolution of the (aggregated) electricity demand and web workload between

April 12th and May 6th 2013.

user request workload of the (virtual) CSP in its three datacenters. We

crawl Akamai’s Internet Observatory website [9] to obtain the number of

HTTP requests per minute against the Akamai CDN in North America.

Akamai CDN relies on co-location datacenters that individually do not

represent large electricity consumption. Nevertheless, using the conversion

rate of 1kJ per query (0.28 Watts·h) claimed by Google for its datacenters

[60], the crawled workload aggregately creates a power consumption of

125 MW, which may serve well to approximate the consumption of three

Facebook’s datacenters at full utilization (according to [7, 6]).

Since Akamai does not dissect the information of its workload per loca-

tion, we run a preliminary experiment to make an educated approximation

of the workload splitting for the three locations by the following method.

We aggregate the electricity demand curves from the three locations into

a time series, respecting the time difference between the aggregated time

series of each location. We compare this (normalized) electricity demand

aggregate with the time series of the (normalized) number of web requests

against the Akamai CDN. The two seires are displayed in Fig. 4.1. The
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correlation coefficient of these aggregated curves is 0.92. Most differences

appear during the morning and more noticeably in some weekends, what

we associate with the industrial and commercial activity. Then we split

the number web requests (electricity demand) to three subsets according

to the ratios of electricity demand among the locations. This method

is reasonable assuming that a random sample of the population in these

three areas will provide similar results about the usage of electricity and

web services (and the ratio between these two) and it should provide us a

good estimation.

Utilities’s demand and electricity price: To obtain the total elec-

tricity demand of each of the three local utilities, we crawl the hourly elec-

tricity demand from the spot markets in San Diego [16], CA, Houston [24],

TX, and New York [4], NY for 2009-2012, and choose nodal demand so that

the datacenter demand represents to 30% of the utility’s demand (follow-

ing the back-of-the-envelope computation presented in the introduction).

We also collect the day-ahead MCPs and real-time prices of the three spot

markets for the same period.

Finally, to maximize their prediction accuracy, utilities take into account

the weather conditions and daily activity patterns. We crawl the hourly

weather conditions [5] in the three areas and the official holidays calendar

for 2009 - 2012. We omit the weekends in all our experiments, due to the

seasonality of the workload and electricity demand during these days.
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4.2.2 Prediction Method

In our empirical study, we change the proportion of the allowed GLB work-

load from 0 to 60% of the total workload (the cases beyond 30% aggres-

sively evaluate a futuristic scenario reflecting the datacenter’s increasing

capability to conduct GLB). For each hour, the CSP solves a standard

GLB cost-minimization problem as the one in [60] to allocate its allowed

GLB workload optimally. The evaluation is carried out assuming that util-

ities use commonly adopted neural networks (NN)-based demand forecast

algorithms [74] to predict their electricity demand1. The inputs of the NNs

include the weather forecast, historical demand records, and whether it is

a public holiday/weekend or not, while the output is the hourly electricity

demand. Utilities use NNs as a black-box, which requires training with

training data set. Once they are trained, the NN takes the inputs in the

testing data set to predict the demand for each hour, which results in a

certain estimation error.

We train the NN with data from 2009-2011 and use the trained model

to perform hourly demand prediction during 2012. To this end, we use

different training data sets, one for the case without GLB (original work-

load traces) and one for each GLB eligible ratio that we study (workload

traces ‘optimized’ by GLB). We compare the predicted demand and the

actual demand to record the mean absolute percentage error (MAPE) in

Table 4.1.
1For a real-world practice, the readers are referred to http://www.mathworks.com/matlabcentral/

fileexchange/28684-electricity-load-and-price-forecasting-webinar-case-study.
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Table 4.1: MAPE and Prices vs. Balanced Load

GLB San Diego Houston New York

(%Load) MAPE (%) & Avg. Price ($/MWh)

0 3.0 47.9 2.7 43.9 3.0 70.2

15 6.8 49.3 3.5 45.5 6.4 70.8

30 8.2 49.8 7.3 47.2 7.6 71.0

45 10.7 50.8 10.5 48.7 8.6 71.2

60 14.3 52.2 14.8 50.8 10.7 71.6

MAPE/GLB 0.714 0.921 0.345

4.2.3 Utilities’ Demand Prediction Error

In Table 4.1, each datacenter location has two associated columns. We

report the MAPE with varying GLB load (in percentage, increased at 15%

resolution) in the first column. The last row shows the ratio between

MAPE and proportion of routable workload to other locations. Several

interesting observations can be made from this table.

First, without GLB (corresponding to the third row of 0% GLB load),

the NN algorithm can predict the actual demand pretty accurately – with

a MAPE at most 3%. A closer look into the prediction accuracy of the NN

algorithm for the San Diego site shows the hourly MAPE has a mean of

3% and a standard variation of 6%. These results show that without GLB,

NNs can predict accurately the real-world electricity demand, justifying its

widespread adoption in practice.

Second, as the GLB load percentage increases, MAPE of the NN algo-
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Figure 4.2: (a) Statistics of demand prediction error without GLB; (b) Statistics of de-

mand prediction error with GLB at 10% (i.e., the allowed demand variation caused by

the CSP performing GLB is 10%).

rithm also increases remarkably for all three locations. For example, in

Table 4.1, when the GLB load increases to 30%, the MAPE for San Diego

increases to 8.15%, 2.7 times of that of no GLB. The standard deviation

of MAPE is 11.3%, almost twice of that of no GLB. These results are in

sharp contrast to the case of no GLB, and confirm our intuition that GLB

introduces demand uncertainty and extra errors in the demand prediction.

For a better illustration, we also visualize the hourly forecast error statis-

tics for the case without GLB and the case with 10% GLB in Fig. 4.2(a)

and 4.2(b), respectively. As we can see, both the values and variances of

prediction errors for all hours are increased evidently.
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4.3 Prediction Error Increases Retail Price for CSPs

We proceed to show that larger demand prediction errors will lead to higher

retail prices. Let d be the actual demand for a particular hour in the next

day, d̃ be the utility’s prediction of d, and wb be the average (MCP) price

at which the utility purchased d̃ amount of electricity for that hour from

the day-ahead market.

Without prediction error, i.e., d̃ = d, given a retail price p0
2, the utility

obtains a desired profit for the hour as

(
p0 − wb

)
d. (4.1)

With prediction error, the utility suffers additional economic loss as

compared to the error-free case.

• In case of over-prediction, there is d̃ − d > 0 amount of electricity

surplus (and it cannot be stored). In today’s practice, the utility

can sell them back to a GENCO at an average marginal price de-

noted as ws (usually wb > ws). The economic loss to the utility is(
wb − ws

) (
d̃− d

)
.

• In case of under-prediction, there is d − d̃ > 0 amount of unmatched

demand to be urgently balanced by the utility to avoid power outage.

In today’s practice, the utility can purchase supply in the hour-ahead

2The process of how a utility determines its retail price can be highly involved (consideration factors

include competition from other utilities). A vital requirement that the price has to be high enough to

guarantee the (expected) profit is larger than a minimum for the utility to stay in business.
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or real-time markets to satisfy urgent demand, but at a expected price

higher than in day-ahead markets. Denote the average marginal price

of buying electricity in urgency as wu (usually wu > wb). The eco-

nomic loss to the utility is then
(
wu − wb

) (
d− d̃

)
.

In order to compensate the economic loss of the utility due to prediction

errors, and to obtain the same expected profit in (4.1), the utility needs

to set a retail price p higher than p0 (the price for the error-free case)

according to:

p = p0 +
(
wb − ws

)
E

[(
d̃− d

)+
/d

]
+
(
wu − wb

)
E

[(
d− d̃

)+
/d

]
> p0. (4.2)

Denote MAPE by Δd, i.e.,

Δd = E

[∣∣∣d̃− d
∣∣∣ /d] .

To ensure the expected profit is at least the desired one in (4.1), the

relationship between the retail price and MAPE Δd can be characterized

by

p = p0 + (wu − ws)Δd. (4.3)

We continue our previous empirical study to compute the retail prices

with and without prediction errors according to (4.3) with p0 = wb (mod-

eling an altruistic utility targeting zero expected profit). The numerical

results are reported in the second column of each datacenter location in

Table 4.1. We can observe that the retail prices for all three datacenters
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are increased and different locations have different price increment per %

GLB, depending on their individual market profiles. As an example, the

retail price for San Diego on average increases by 0.7% for every increment

of 1% in the GLB load.

GLB’s Performance Degradation: Next, adding the updated pric-

ing information, we can evaluate how the performance degradation of GLB

will be degraded by the introduced demand uncertainty. We do this for the

cases where the CSP is able to move 0%, 15%, 30%, and 60% of the total

local utility demand, which we denote as NOGLB, GLB@15, GLB@30,

and GLB@60 respectively. We study and compare the total electricity cost

(sum of the three locations for the year 2012) between the baseline case,

NOGLB, and the rest (in percentage).

Results show that in the GLB@15 case the CSP actually ends up paying

a total bill 1% higher than not doing GLB at all. In the GLB@30 case

where the CSP can move up to 30% of its overall workload, the ability of

aggressively moving workload to low-price locations improves the results,

in spite of the increase in the electricity prices due to higher degrees of

uncertainty. However, the savings in the overall electricity bill is still minor,

about 3%, while the CSP is already moving the full allowed GLB workload

of its datacenters. Finally, higher benefits could be achieved with larger

allowed GLB load. For the GLB@60 case, the GLB effect provides 9% cost

reduction, but note that this case requires the CSP to move a workload

that is beyond the feasible percentage in datacenters nowadays (20-30%

according to [60]).
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4.4 Discussions

Based on this (simplified) electricity pricing model, demand predictions are

critical for the operation of the utilities. The good news is that, convention-

ally electricity demand is rather predictable as it follows regular patterns

that repeats daily, with seasonality during weekends and holidays.

Although its impact depends on the amount of routed workload, GLB

may introduce utterly different demand patterns. As we justified by the

previous example, just adapting local demand prediction methods to GLB

may not be enough to yield accurate predictions and extra economic loss by

GLB is inevitable. In the next chapter, we introduce a cooperative model

in which CSPs join the wholesale markets to purchase electricity. In this

way, CSPs doing GLB can exploit their appearance in multiple locations,

while bypassing such trading inefficiency.

� End of chapter.



Chapter 5

A Joint GLB and EP Solution: Prob-

lem Formulation

In this thesis, we consider the scenario of a CSP providing computing-

intensive services (e.g., Internet search) to users in N regions by operat-

ing N geo-distributed datacenters, one in each region, as exemplified in

Fig. 5.1. Service workloads from a region can be served either by the local

datacenter or possibly by datacenters in other regions through GLB. The

CSP directly participates in wholesale electricity markets in each region, to

obtain electricity to serve the local datacenter. Based on (i) distributions of

hourly service workloads and (ii) distributions of market settlement prices,

the CSP aims at minimizing the expected total operating cost by opti-

mizing GLB and bidding strategies in the markets. The hourly timescale

aligns with both the settlement timescale in wholesale markets [67] and

the suggested time granularity for performing GLB[60].

Without loss of generality, we focus on minimizing cost of a particular

operation hour of the CSP, as shown in Fig. 3.4.

34
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5.1 Workload and Geographical Load Balancing

Workload and Electricity Demand. We assume that each datacenter

is power-proportional, which means that its electricity demand is propor-

tional to its workload [60]. For example, Google reports that each search

requires about 0.28Wh electricity for its datacenters [60]. Without loss of

generality, we assume that the workload-to-electricity coefficients are one

for all datacenters and thus use the workload served by a datacenter to

represent its electricity demand. Our results can be easily generalized to

the case where the coefficients are different for different datacenters.

We model the workload originated from region i as a random variable

Ui in the range [ui, ūi], with a probability density function (PDF) fUi
(u)

that can be empirically estimated from historical data. We assume that

all Ui’s are independent.

Geographical Load Balancing. 1 We denote the GLB decision by

1Under the conventional setting where datacenters obtain electricity from utilities, GLB is performed

in CSP’s real-time operation. Under the considered setting, CSP needs to bid for electricity in the day-

ahead market, where the amount of electricity to bid is a function of GLB decisions. As such, we consider

doing joint GLB and electricity bidding in CSP’s day-ahead operation, in order to fully explore the new

design space enabled by the setting considered in this work. It is conceivable to perform GLB in both

day-ahead and real-time operations of CSP to further minimize the energy cost, which we discuss in

Chapter 11.
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Figure 5.1: The scenario that we consider in this work.

α = [αij : i, j = 1, . . . , N ] ∈ RN×N which satisfies∑
j

αij ≥ 1, ∀i = 1, . . . , N, (5.1)

αii ≥ λi, ∀i = 1, . . . , N, (5.2)

v̄j �
N∑
i=1

αijūi ≤ Cj, ∀j = 1, . . . , N. (5.3)

0 ≤ αij ≤ 1, ∀i, j = 1, . . . , N, (5.4)

αij = 0, ∀(i, j) ∈ G, (5.5)

where G � {(i, j)| workloads from region i cannot be routed to datacenter

j} captures the topological constraints.

Here αij represents the fraction of the workload originated from region
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i that will be routed to datacenter j. Constraints in (5.1) mean that all

workloads must be served. Constraints in (5.2) capture that λi fraction

of the workload originated from region i can only be served locally due

to various reasons such as delay requirements. Constraints in (5.3) ensure

that the total workload coming into datacenter j can be served even in

the largest realization of workload. Constraints in (5.5) describe that the

workload cannot be routed to a datacenter that is too far away from its

own region. We define the set of all feasible GLB decisions as

A � {α ∈ R
N×N |α satisfies (5.1)− (5.5)}. (5.6)

Given the GLB decision α, the total workload for datacenter j is given

by Vj =
∑

i αijUi. Since Ui, ∀i are random variables, Vj is also a random

variable with a PDF

fVj
(v) = fU1j

⊗ fU2j
⊗ . . .⊗ fUNj

(v), (5.7)

where ⊗ is the convolution operator and the distribution functions in the

convolution are given by

fUij
(u) =

⎧⎪⎨
⎪⎩

1
αij

fUi

(
u
αij

)
, if αij > 0,

δ(u), if αij = 0,
(5.8)

where δ(·) denotes Dirac delta function.

Bandwidth Cost. To understand and compare the scales of electricity

and bandwidth cost of serving the internet services, we estimate the band-

width cost and electricity cost of one google search.2 We assume that, to
2It should be noted that the electricity price and bandwidth prices may vary enormously in different

places and time, so the estimation is more like a Fermi problem and we only care about the order.
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serve one google search, we need to we need to consume 0.28Wh electricity

[30] and deliver the traffic volume of one webpage, which is roughly 300

KB [82].

• For the electricity cost, the electricity price to the end customer is

about 0.07 $/KWh, so the cost of powering one google search is about

0.07 ∗ 0.00028 = 1.96 ∗ 10−5$.

• For the bandwidth cost, we assume that the pay-by-traffic charging

scheme is used. I check the pricing scheme of ALIYUN, one major

CDN service provider in Mainland China. The cost of delivering one

GB data is close to 0.05 USD [18], so the cost of google search is like

to be 0.05× 300
10242 = 1.4 ∗ 10−5$.

So according to the data and rough calculation, the two types of cost are

of the same order and need to be jointly considered.

Let zij ≥ 0 be the unit bandwidth cost from region i to datacenter j.

The expected network cost of routing the workload to different datacenters

is given by

BCost(α) =
N∑
i=1

N∑
j=1

zij · αij · E(Ui). (5.9)

5.2 Electricity Market Price and Bidding Curve

Day-ahead MCP and Real-time Market Price. At the time of mak-

ing joint bidding and GLB decisions, MCPs of day-ahead markets in N

regions are unknown. We model them as N independent random variables
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Pj (j ∈ [1, N ]), each with probability distribution fPj
(p) that can be em-

pirically estimated from historical data [17]. Here we assume that the CSP

has negligible market power and its bidding and GLB behavior will not

affect the dynamics of electricity markets3.

Similarly, the real-time market prices in N regions are also unknown

when making bidding and GLB decisions. We model the price of real-time

market j as a random variable P RT
j whose probability distribution can also

be empirically estimated from historical data [17]. We define μRT
j � E[P RT

j ]

as the expectation of P RT
j . We assume that all day-ahead MCPs Pj’s and

real-time market prices P RT
j ’s are independent4.

Bidding Curve. We explore the full design space of bidding strategy

via bidding curve, which is a well-accepted concept in the power system

community [26, 46]. Bidding curve, denoted as qj(p), is a function that

maps the (realized) day-ahead market MCP to the amount of electricity

the CSP wishes to obtain from day-ahead market j, by placing multiple

bids. We remark that it is a common practice for one entity (e.g., a utility

company) to submit multiple bids to one electricity market.

Bidding curve is useful in designing bidding strategies in the following

sense. First, any set of bids can be mapped to a bidding curve. Suppose

the CSP submits K bids, namely
〈
bkj , q

k
j

〉
, k = 1, . . . , K, to the day-ahead

3The assumption is reasonable as, e.g., datacenters in the US only consume 2% of total electricity [3],

and it is usually used in the literature such as [67].
4We remark that this independence assumption may not hold in practice. But it significantly simplifies

our analysis and allows us to reveal some important insights. A comprehensive study of considering

correlations between day-ahead MCPs and real-time prices would be an interesting future work.



CHAPTER 5. A JOINT GLB AND EP SOLUTION: PROBLEM FORMULATION 40

market of region j, where bkj is the bidding price and qkj is the bidding

quantity of the k-th bid. The corresponding bidding curve is a step-wise

decreasing function as

qj(p) =
∑
k:bkj≥p

qkj , ∀p ∈ R
+. (5.10)

For example, considering the three bids in Fig. 3.4, we can construct the

corresponding bidding curve as shown in Fig. 5.2.

Recall that if day-ahead market MCP is p, then all bids whose bidding

prices are higher than p will be accepted. Thus, the right hand side of

(5.10) represents the total amount of electricity obtained when the day-

ahead MCP is p. Clearly, the purchased amount will be non-increasing

in MCP p. Thus, a valid bidding curve qj(p) must be a non-increasing

function.

Second, any non-increasing function is a valid bidding curve and can be

realized by placing a set of bids. For example, the bidding curve in (5.10)

can be realized by placing the K bids
〈
bkj , q

k
j

〉
, k = 1, . . . , K stated above.

Based on the above two observations, we design bidding strategy by

choosing a bidding curve from the feasible set

Q �
{
q(p) | q (p1) ≤ q (p2) , ∀p1 ≥ p2, p1,p2 ∈ R

+
}
. (5.11)

Remark. Here, we assume that the CSP is allowed to submit any

number, possibly infinite number, of bids. This assumption allows us to

significantly simplify the derivation of optimal solution to the joint bidding

and GLB problem in Chapter 6. In Chapter 8, we relax this assumption
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Figure 5.2: An illustrating example for the (step-wise) bidding curve constructed from

the submitted three bids in Fig. 3.4.

and discuss how to approximately realize a continuous bidding curve with

a limited number of bids in the practical implementation. Our simulation

results in Chapter 10 (Tab. 10.2) suggest that the performance loss due to

the approximation error is minor.

Electricity Cost. Given the bidding curve qj(p) and the GLB decision

α, we denote the expected electricity procurement cost of the CSP in elec-

tricity market j as ECostj (qj(p),α), which consists of settlement in both

day-ahead trading and real-time trading.

• In day-ahead trading, suppose that the MCP in the day-ahead market

j is p, the committed supply will be qj(p) and the day-ahead trading

cost is p · qj(p).

• In real-time trading, the day-ahead committed supply qj(p) may not
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ECostj (qj(p),α)

=

∫ +∞

0

fPj
(p) [ pqj(p)︸ ︷︷ ︸

Day-ahead
trading cost

− βp

∫ qj(p)

0

(qj(p)− v)fVj
(v)dv︸ ︷︷ ︸

Rebate of over-supply

+μRT
j

∫ v̄j

qj(p)

(v − qj(p))fVj
(v)dv︸ ︷︷ ︸

Cost of under-supply︸ ︷︷ ︸
Real-time trading cost

]

︸ ︷︷ ︸
Expected electricity cost of datacenter j conditioning on day-ahead market j’s MCP Pj = p

dp.

(5.12)

exactly match the real-time demand Vj. If Vj = v and v > qj(p),

under-supply happens and we need to buy v − qj(p) amount of elec-

tricity at expected price μRT
j , so the expected cost due to under-supply

would be μRT
j

∫ v̄j
qj(p)

(v − qj(p)) fVj
(v)dv. Similarly, if over-supply hap-

pens, the unused electricity (qj(p)−v) will be sold back at a discounted

price βp and the expected rebate due to over-supply is βp
∫ qj(p)

0 (qj(p)−
v)fVj

(v)dv. The expected real-time trading cost is simply the under-

supply cost minus the over-supply rebate.

Based on the above analysis, we obtain the expression of ECostj (qj(p),α)

in (5.12) by applying the total expectation theorem. Note that ECostj (qj(p),α)

is related to the GLB decision α through the distribution of Vj (the work-

load of datacenter j), which is computed by (5.7) and (5.8).

We provide the following proposition to reveal an important property

of (5.12).

Proposition 1. The cost function (5.12) is generally non-convex in qj(p).

The proof for Proposition 1 is in Appendix 13.1. Essentially Proposi-
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tion 1 indicates that the optimization problem involving (5.12) is noncon-

vex and requires sophisticated design.

5.3 Problem Formulation

We now formulate the problem of joint bidding and GLB:

P1: min
N∑
j=1

ECostj (qj(p),α) + BCost(α)

var. α ∈ A, qj(p) ∈ Q, j = 1, . . . , N.

where A is the set of all feasible GLB decisions, defined in (5.6) and Q is

the set of all feasible bidding curves, defined in (5.11). It is straightforward

to see both A and Q are convex sets. The objective is to minimize the sum-

mation of electricity cost of N datacenters and network cost, by optimizing

bidding strategies and GLB decisions. The consideration of joint bidding

and GLB as well as the market and demand uncertainty differentiates our

work from existing works, e.g., [60, 61, 78, 17]. We emphasize that it is

important to consider input uncertainty to fully capitalize the economic

benefit of joint bidding and GLB under real-world market mechanisms.

Challenges. There are two challenges in solving problem P1. First,

it can be shown that the objective function of P1 is non-convex with

respective to qj(p) (see Proposition 1). Second, the optimization variable

qj(p) is a functional variable with infinite dimensions. Thus it is highly non-

trivial to solve this non-convex infinite-dimensional problem optimally by

existing solvers, without incurring forbidden complexity.



CHAPTER 5. A JOINT GLB AND EP SOLUTION: PROBLEM FORMULATION 44

5.4 An Alternative Two-stage Formulation

In our previous formulation P1, we assume that we will decide GLB strat-

egy and the EP strategy simultaneously before the day-head markets are

closed. When real-time demands come, we will follow our previous decision

and allocate the demand proportionally to different datacenters. However,

readers may have already realized that, instead of sticking to our day-

ahead decision, we can perform another optimization to optimally route

the demand in real-time, with the exact information of the real-time de-

mand and the electricity procurement amount for each datacenter. Under

this scheme, GLB in real-time is used not only to exploit the price di-

versity across different regions, but also to handle the mismatch between

day-head procurement and real-time demand. So another natural formula-

tion for the joint optimization framework essentially span two stages: the

first stage is day-ahead, when we submit bidding curves to day-ahead mar-

kets; the second stage is real-time, when we allocate demand. Since we

optimize the GLB strategy for different realizations of Ui, Pj, ∀i, j, we can

have a larger gain as compared with optimizing with only their statistical

information. However, as we will show in Chapter 11, the optimization

problem is too complicated and challenging to solve. In the main body of

this thesis, we will focus on solving P1 since it is intellectually interesting

and its empirical performance is satisfactory.

� End of chapter.



Chapter 6

A Joint GLB and EP Solution: Algo-

rithm Design

In this chapter, we design an algorithm to solve the challenging problem

P1 optimally and efficiently.

6.1 Reducing P1 to a Convex Problem and Approach

Sketch

To begin with, we define a sub-region of Q as follows

Q̂j = {qj(p)|qj(p) ∈ Q, and qj(p) = 0, ∀p ≥ μRT
j }. (6.1)

As compared to Q defined in (5.11), the new constraint in the definition

of Q̂j, i.e., qj(p) = 0, ∀p ≥ μRT
j , means that we do not submit any bid to

day-ahead market j with bidding price higher than μRT
j , i.e., the expected

price of real-time market j. It is easy to verify that both Q and Q̂j are

convex sets.

Theorem 1. The following problem P2 is convex and has the same opti-

45
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mal solution as P1:

P2: min
N∑
j=1

ECostj (qj(p),α) + BCost(α)

var. α ∈ A, qj(p) ∈ Q̂j, j = 1, . . . , N.

Remarks. (i) Problems P1 and P2 differ only in the feasible set of

bidding curve qj(p). It is Q in P1 but Q̂j in P2. The objective function is

nonconvex over Q but convex over Q̂j, as shown in the proof of Theorem

1 in Appendix 13.2; hence, P1 is a nonconvex problem but P2 now is a

convex one. (ii) Intuitively, the optimal bidding curve for day-ahead market

j must be in Q̂j. This is because the CSP can always buy electricity from

real-time market j at an expected price μRT
j ; thus it is not economic to

submit bids with bidding price higher than μRT
j to day-ahead market j.

Such bidding strategies must be in set Q̂j, defined in (6.1).

Theorem 1 allows us to solve P1 by solving the convex problem P2.

However, P2 still suffers the infinite-dimension challenge, since optimizing

bidding curves in general requires us to specify the value of qj(p) for every
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p ∈ [0, μRT
j ). To illustrate our design, we first rewrite problem P2,

min
α∈A

min
qj(p)∈Q̂j ,∀j

{
N∑
j=1

ECostj (qj(p),α) + BCost(α)

}

=min
α∈A

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N∑
j=1

[
min

qj(p)∈Q̂j

ECostj (qj(p),α)

]
︸ ︷︷ ︸

Problem EPj(α), solved in Chapter 6.2

+BCost(α)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸

Problem P3, solved in Chapter 6.3

(6.2)

The structure of the expression in (6.2) suggests a nested-loop approach

to solve problem P2.

• Inner Loop: The CSP optimizes its bidding strategies for each regional

day-ahead market with given GLB decision α, by solving the following

problems:

EPj(α) : min
qj(p)∈Q̂j

ECostj (qj(p),α) , j = 1, . . . , N. (6.3)

• Outer Loop: After solving the inner-loop problems EPj(α) and ob-

taining the optimal bidding curves, denoted by q∗j (p;α), ∀j = 1, . . . , N ,

the CSP optimizes the (finite-dimensional) GLB decision α by solving

the following problem:

P3: min
α∈A

N∑
j=1

ECostj
(
q∗j (p;α),α

)
+ BCost(α). (6.4)

According to Theorem 1, P2 is convex and then, the inner-loop problem

EPj(α) and outer-loop problem P3 are both convex, which are perhaps
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not surprising. In the following parts, we solve EPj(α) and P3 to obtain

an optimal joint bidding and GLB solution to P2, which is also optimal

for P1.

6.2 Inner Loop: Optimal Bidding Given GLB Deci-

sion

The inner-loop problem EPj(α) is concerned about designing optimal bid-

ding strategy for day-ahead market in region j (by choosing qj(p) ∈ Q̂j)

with GLB decision α given, in face of demand and price uncertainty. Note

that EPj(α) is closely related to the classic Newsvendor problem [36]. In

the Newsvendor problem, the market prices are given and only the buying

quantity should be optimized under demand uncertainty, while in EPj(α)

we need to optimize both the bidding quantities and bidding prices simul-

taneously under both price and demand uncertainties.

Let the cumulative distribution function (CDF) of Vj, i.e., the demand

of datacenter j, be FVj
(x) �

∫ x

0 fVj
(v)dv, where fVj

(v) is PDF of Vj given

in (5.7). The following theorem shows that EPj(α) admits a closed-form

solution q∗j (p;α), addressing the infinite-dimension challenge.

Theorem 2. Given GLB decision α, we assume that FVj
(x) is strictly

increasing; thus its inverse exists and is denoted as F−1
Vj

(x). The optimal
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bidding curve for solving EPj(α) is given by, for j = 1, . . . , N ,

q∗j (p;α) =

⎧⎪⎨
⎪⎩
F−1
Vj

(
μRT
j −p

μRT
j −βp

)
, if p ∈ [0, μRT

j

)
;

0, otherwise.
(6.5)

The proof of Theorem 2 is delegated in Appendix 13.3.

Extensions. The extension to the case where FVj
(v) is not strictly

increasing should be easy to derive by the proof above. Recall we want to

find a qj(p) to minimize pq−βp
∫ q

0 (q− v)fVj
(v)dv+μRT

j

∫ v̄j
q (v− q)fVj

(v)dv

with derivative p − μRT
j + (μRT

j − βp)FVj
(q). Note that the derivative of

this function is non-decreasing and is negative when q = 0 and positive

when q = v̄j, where v̄j is the upper bound of the demand for datacenter j.

We present a brief discussion here. Other than the case in Theorem 2 (we

can find a unique solution to make the derivative equal to 0), we can have

another two cases: (i) there are multiple solutions for the derivative to be

0. In this case. any solution is an optimal solution. (ii) there is no solution

for the derivative to be 0 (the derivative is not continuous.). Then there

is a critical point at which the derivative ‘jumps’ from negative value to

positive value. Both cases can be solved numerically by binary search.

Remarks. The optimal bidding curve q∗j (p;α) is universal in that it

does not depend on the distribution of day-ahead MCP Pj. This is because

q∗j (p;α) actually minimizes the expected electricity procurement cost for

any p. This salient feature is appealing as it means that the CSP does not

need to re-optimize its bidding strategy upon possible changes in market

mechanism or pricing policy. Also, the structure of q∗j (p;α) helps us to
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combat the demand uncertainty and leverage the price uncertainty. More

insightful discussions can be found in Chapter 7.

6.2.1 Connections with Newsvendor Problem

As a single-period inventory problem, the Newsvendor problem is one of

the most classic problems in operation research and has been extensively

studied before. Comprehensive reviews are provided in [36] and [59].

In the basic version of Newsvendor problem, the vendor (or retailer)

needs to decide the optimal ordering quantity from the suppliers to maxi-

mize his expected profit by selling the goods to the customers at a higher

price. Usually, the decision should be made before the real-time demand

comes, so the vendor needs to optimize his decision based on statistical

information of future demand. On the one hand, if he orders too little,

he loses some chances of making profit. On the other hand, if he orders

too much, the unsold goods will incur some loss. So the scenario is quite

similar to that of EPj(α) studied in this thesis.

The Newsvendor problem can provide key insights for the inventory or

supply chain (consisting of supplier, retailer and customer) management

problems, especially with the perishable goods like electricity. Due to this

reason, multiple variants of the basic version have been studied. For exam-

ple, other than the expected profit, we can consider alternative objectives.

In [23, 41], the authors maximize a general concave utility function, which

can capture the vendor’s risk-aversion nature. In [41, 40], the authors

maximize the probability of reaching certain profit level, which is more
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practical in real-world management. Also, the vendor can decide not only

the ordering quantity but also the retail price, which can affect the real-

time demand. For this reason, ordering quantity and retail price are jointly

optimized in [40, 83, 57].

A key factor in the Newsvendor problem is the future demand random-

ness/uncertainty, to which some papers are devoted. In [27], the authors

studied how the optimal preodering quantity and profit will be changed by

manipulating demand uncertainty. In [70], a result that a larger demand

uncertainty will increase the cost expectation was established with proper

definitions of uncertainty (variability) levels, which is similar to Lemma 1

in this thesis. And in [63], the authors presented a more intriguing re-

sult, showing how a larger demand uncertainty could decrease the cost

expectation, with a different definition of uncertainty.

The main difference between EPj(α) studied in this thesis and the

Newsvendor problems in most literatures is that, in EPj(α), the vendor

(CSP) makes some order from the supplier (electricity day-ahead market)

by bidding, while in Newsvendor problem, the vendor only needs to tell the

supplier how much he wants to order and he can surely buy at a fixed and

known price. In EPj(α), the vendor is not only unsure about the future

demand, but also unsure about his ordering quantity from the supplier due

to the randomness of auction result (MCP in day-ahead markets). Alter-

natively speaking, the vendor is faced with both demand uncertainty and

price (day-ahead MCP) uncertainty. Also, in EPj(α), the ordering strat-

egy of CSP consists of bidding prices and bidding quantities. The coupling
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Table 6.1: Comparisons with Literatures on Newsvendor Problem

References

Demand

Uncertainty

Impact

Price

Uncertainty

Impact

With

Supply

Uncertainty

With

Risk

Managment

Multiple

Decision

Variables

Eeckhoudt et al. [23] � � � � �

Whitin et al. [83] � � � � �

Wu et al. [85] � � � � �

Laul et al. [40] � � � � �

Polatoglu1 et al. [57] � � � � �

Merzifonluoglu et al. [53] � � � � �

Gerchak et al. [27] � � � � �

Song et al. [70] � � � � �

This Thesis � � � � �

nature of the two variables makes the problem even more challenging. A

summary and comparison is provided in Table 6.1.

6.3 Outer Loop: Optimal GLB with Optimal Bidding

Curve as a Function of GLB Decision

After obtaining the optimal bidding strategy q∗j (p;α) as a function of GLB

decision α, we now solve the outer-loop problem P3 for optimizing GLB.

While P3 is convex and of finite dimension, its objective function does

not admit an explicit-form expression since we do not have an explicit

expression of the optimal objective value of EPj(α). Thus, gradient-based

algorithms cannot be directly applied.
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We tackle this issue by adapting a zero-order optimization algorithm,

named General Pattern Search (GPS) [43], to solve the out-loop problem

without knowing explicit expression of the objective function. Zero-order

optimization algorithms are widely used to solve optimization problems

without directly accessing the derivative information. The GPS algorithm

in [43] is a popular zero-order optimization algorithm for solving problems

with linear constraints, which is suitable for P3.

Our adapted GPS algorithm is an iterative algorithm. In each iteration,

the algorithm first creates a set of searching directions, named “patterns”,

which positively spans the entire feasible set. It then searches the directions

one by one in order to find a direction, along which the objective value

decreases. And we will update to a better solution if we find one. In

each search, the algorithm needs to evaluate the objective value of EPj(α)

given a GLB decision α, which can be obtained by plugging the optimal

solution q∗j (p;α) into the objective function of EPj(α). In this manner, our

adapted GPS algorithm works like gradient-based algorithms, but without

the need to compute gradient/subgradient. We summarize our proposed

nested-loop algorithm in Algorithm 1.

In general, GPS algorithm is not guaranteed to converge to the globally

optimal solution [43]. In the following theorem, we prove that our Algo-

rithm 1 actually converges to the optimal solution to the convex problem

P3, under proper conditions.

Theorem 3. Assume that fUj
(u), j = 1, . . . , N , are differentiable and their

derivatives are continuous. Algorithm 1 converges to a globally optimal
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solution to P3, which is also an optimal solution to P1 and P2.

Remarks. Theorem. 3 follows the facts that P3 is convex and GPS

algorithm converges to a point satisfying the KKT condition [43]. The

proof is deferred in Appendix 13.4.

6.4 Complexity and Practical Considerations

In this part, we discuss the computation complexity and some practical

considerations for our solution.

6.4.1 Computational Complexity

In our model and analysis, we assume that both MCP Pj and the demand

Uj are continuous random variables. When applying them to practice, we

need to sample a PDF (which is a continuous function) into a probability

mass function (which is a discrete sequence). So we assume that we sample

both the PDF of Pj, i.e., fPj
(p), and the PDF of Uj, i.e., fUj

(v), into

sequences with length m. The value of m depends on both the ranges of

MCP and demand and the accuracy we aim to achieve. Based on such

sampling, we show the computational complexity of our proposed solution,

i.e., Algorithm 1.

Theorem 4. If Algorithm 1 converges in niter iterations, its time complexity

is O(niter((N
5m log(Nm) +N 3m2))).

The proof of Theorem 4 is in Appendix 13.5. The complexity is linear

with the number of iterations until convergence. However, exactly char-
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acterizing the convergence rate of GPS algorithm is still an open problem

[22], and thus it is hard to get sharp bounds for the number of iterations,

i.e., niter. Instead, we empirically evaluate the convergence rate of our

Algorithm 1 in Chapter 10.2.3. The results show that our Algorithm 1

converges fast – within 30 iterations – for the practical setting considered

(i.e., niter ≤ 30).

The highest-order parameter for the complexity is N , i.e., the number

of datacenters of the CSP. But in reality N is usually small: For example,

there are only 10 deregulated electricity markets in US and less than 20

Datacenters of Google. Thus, Theorem 4 shows that the complexity of our

Algorithm 1 is affordable in practice.

6.4.2 Imperfect Knowledge of Probability Distributions.

In our model and solution, we require perfect probability distributions of

day-ahead MCP Pj and the regional demand Uj. However, in practice,

learning distributions from historical data inevitably introduces certain es-

timation error. Thus it is important to evaluate the robustness of our

solution to the estimation error. In Chapter 7 and 10.2.5, we empirically

show that our solution works pretty well for imperfect probability distri-

butions of the demand and market prices, which only use the first-order

(expectation) and second-order (variance) statistic information.

� End of chapter.
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Algorithm 1 An Algorithm for Solving P3 Optimally

1: initialize α0 ← IN×N , t ← 0

2: while not converge do

3: current value ← P3-Obj(αt)

4: Get αt+1 by invoking P3-Obj and comparing with current value at most 2N2

times (see [43, Fig. 3.4])

5: t ← t+ 1

6: end while

7: α∗ ← αt

8: Compute q∗j (p;α
∗) by (6.5) for all j ∈ [1, N ]

9: return α∗, q∗j (p;α
∗) for all j ∈ [1, N ]

A subroutine to compute the objective value of P3

10: function P3-Obj(α)

11: initialize j ← 1, val ← BCost(α) by (5.9)

12: while j ≤ N do

13: Compute q∗j (p;α) by (6.5)

14: val ← val+ ECostj
(
q∗j (p;α),α

)
by (5.12)

15: j ← j + 1

16: end while

17: return val

18: end function



Chapter 7

Impacts of Demand and Price Uncer-

tainty

In this chapter, we study the impacts of demand and price uncertainties,

to better understand the observations in Fig. 1.1(a) and 1.1(b). We will

use the variance of a random variable to measure its uncertainty. Taking

normal distribution as an example, the distribution of a random variable

with a larger variance will be more “stretched” and it is more likely to take

very large or small values.

Unless otherwise specified, our discussions in this chapter involve a single

datacenter.

7.1 Impact of Demand Uncertainty

Demand uncertainty is one of the main challenges handled by this work and

it is interesting to ask how the performance will change with different levels

of demand uncertainty. Given any purchased amount of electricity from the

day-ahead market, a larger demand uncertainty will increase the possibility

of real-time mismatch. As elaborated in Chapter 3, both over-supply and

under-supply will introduce inefficiency to the market and incur additional

cost. Thus, the demand uncertainty is always an unwished curse to increase

57
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the electricity cost, even for our carefully designed bidding strategy.

Now, we formalize our statement in Lemma 1.

Lemma 1. Assume that the day-ahead MCP is positive and follows an ar-

bitrary distribution, and that the electricity demand (proportional to work-

load) follows Truncated Normal, Gamma, or Uniform distribution, with a

variance σ2
D. The optimal expected electricity cost, achievable by using the

strategy in (6.5), is non-decreasing in σ2
D.

The proof for Lemma 1 is in Appendix 13.7. Though q∗j (p;α) in (6.5)

cannot fully eliminate this curse, it can handle the demand uncertainty

carefully such that the performance will not deteriorate too much, as illus-

trated in the empirical studies in Fig. 1.1(a) and Fig. 10.7. And we will

provide more discussions immediately.

7.1.1 q∗j (p;α) is Robust to Demand Uncertainty

In this part, we want to provide some theoretical analysis on the robustness

of the optimal bidding curve towards demand uncertainty. Specially, we

want to understand how the demand uncertainty will degrade the perfor-

mance and how our proposed “optimal bidding curve” by (6.5) will behave

when the demand uncertainty increases.

Before that, we measure the uncertainty of the stochastic demand Vj by

its expected “absolute deviation” (AD), which is formally defined as

AD =

∫ v̄j

0

|v − E[Vj]|fVj(α)(v)dv.



CHAPTER 7. IMPACTS OF DEMAND AND PRICE UNCERTAINTY 59

A larger AD means that the real-time demand is likely to deviate more

from its expectation and implies that the demand is more uncertain.

With Vj Given, the simplest bidding strategy, which we refer to as Naive-

Bidding, would be to submit one bid, with bidding quantity E[Vj] and bid-

ding price μRT
j .1 In this way, the bidding curve of NaiveBidding would be a

stepwise function

q̃j(p) =

⎧⎪⎨
⎪⎩
E[Vj], if p ≤ μRT

j

0, otherwise.
(7.1)

With q̃j(p), the cost function (5.12) can be simplified as

E[Vj]μ
RT
j +

∫ μRT
j

0 fPj
(p)
[
(μRT

j − βx)AD
2 − (μRT

j − x)E[Vj]
]
dx.

It is saying that the expected cost scales linearly with AD and the per-

formance degradation by demand uncertainty would be quite noticeable,

which is validated by our simulation results in Fig. 1.1(a).

Furthermore, AD can be as large as E[Vj] in the worst case, and the

expected cost could be further revealed as

E[Vj]μ
RT
j + (1− β

2
)

∫ μRT
j

0

fPj
(p)

(
x− μRT

j

2− β

)
E[Vj]dx,

which can be larger than E[Vj]μ
RT
j

2.

It should be noted that E[Vj]μ
RT
j is the expected cost if the datacenter

does not bid in the day-ahead market but purchases all the electricity

from the real-time market. In other words, the carelessly-designed bidding

strategy will incur even more cost than not bidding, which is undesirable.
1The bidding price here is from [17]

2Just consider a simple example that the market clearing price is only distributed from
μRT
j

2−β to μRT
j
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Next we provide Proposition 2 to show how our carefully-designed bid-

ding curve will behave instead.

Proposition 2. With q∗j (p) given by (6.5), the value of the objective func-

tion (5.12) is always upper bounded by E[Vj]μ
RT
j for any demand distribu-

tion fVj
(v).

The proof of Proposition 2 is in Appendix 13.6. Essentially it tells that,

no matter how eccentric the demand is, bidding in the day-ahead market by

following (6.5) will always bring benefit as compared to not bidding. So,

besides minimizing the expected cost, another advantage of this bidding

curve is that it performs “robustly” to future demand uncertainty. The

reason is that, when we construct bidding curve by (6.5), the stochastic

information of future demand is fully utilized, while for NaiveBidding, only

the expectation is used.

7.2 Impact of Price Uncertainty

The price uncertainty in the day-ahead market is the fundamental reason

to motivate the continuous bidding curve design and differentiates EPj(α)

in this paper from the classic Newsvendor problem [36]. Different from

demand uncertainty, uncertainty in MCP of day-ahead market allows the

optimal bidding curve q∗j (p;α) to save cost. In particular, the unique two-

sequential-market structure where the real-time market serves as a backup

for the day-ahead market allows our bidding strategy q∗j (p;α) to fully ex-

plore the benefit of low MCP values but control the risk of high MCP
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values. We elaborate as follows. When MCP fluctuates, its value, denoted

by p, takes small and large values. When p is small, we can purchase cheap

electricity from the day-ahead market and thus enjoys “gain”. When p is

large, we have to purchase expensive electricity from the day-ahead mar-

ket and thus suffers “loss”. However, when p ≥ μRT
j , our optimal bidding

strategy q∗j (p;α) will not purchase any electricity from the day-ahead mar-

ket but purchase all electricity from the real-time market at the expected

price μRT
j , bounding the “loss” due to high MCP values. Overall, the gain

out-weights the loss and we achieve cost saving by leveraging MCP uncer-

tainty. In fact, the larger the MCP uncertainty, the more significant the

saving, as illustrated in our case study in Fig. 1.1(b).

Now, we make the above intuitive explanations more rigorous in Lemma 2.

Lemma 2. Assume that the electricity demand (proportional to workload)

is positive and follows an arbitrary distribution, and that the day-ahead

MCP follows Truncated Normal, Gamma, or Uniform distribution, with a

variance σ2
P . The optimal expected electricity cost, achievable by using the

strategy in (6.5), is non-inceasing in σ2
P .

The proof for Lemma 2 is in Appendix 13.8. It implies that a larger

price uncertainty in the day-ahead market will bring more benefit of the

two-stage market structure and decrease the cost expectation.
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7.3 Generalizations

In this part, we generalize our results in Lemma 1 and 2 by relaxing the

assumptions of specific distributions.

There are different approaches to measure and compare the uncertainties

of random variables [64, 70]. We provide two metrics, “increasing convex

ordering” and “variability ordering”, in the following two definitions.

Definition 1. ([70, Definition 4.1]) For two random variables X and Y ,

X ≥ic Y if and only if E[f(X)] ≥ E[f(Y )] for all nondecreasing convex

functions f .

Definition 2. ([70, Definition 4.8]) Consider two random variables X and

Y with the same mean E[X] = E[Y ], having distribution functions f and

g. Suppose X and Y are either both continuous or discrete. We say X is

more variable than Y , denoted as X ≥var Y , if the sign of f − g changes

exactly twice with sign sequence +,−,+.

We remark that X ≥var Y implies that X ≥ic Y , so the “variability or-

dering” is stronger than “increasing convex ordering”. Now, we present our

main results in the following two theorems, which are similar to Lemma 1

and 2.

Theorem 5. Assume that the day-ahead MCP is positive and follows an

arbitrary distribution. Consider two types of electricity demands V 1 and

V 2 with E[V 1] = E[V 2]. If V 1 ≥var V
2 or V 1 ≥ic V

2, the optimal expected
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electricity cost by V 1, which can be achieved by using the strategy in (6.5),

is not lower than that by V 2.

Theorem 6. Assume that the electricity demand is nonnegative and fol-

lows an arbitrary distribution. Consider two types of day-ahead MCPs P 1

and P 2 with E[P 1] = E[P 2]. If P 1 ≥var P 2 or P 1 ≥ic P 2, the optimal

expected electricity cost incurred by P 1, which can be achieved by using the

strategy in (6.5), is not higher than that by P 2.

Theorem 5 says that a demand with a higher uncertainty “ordering”

will lead to higher cost expectation while Theorem 6 says that a price with

a higher uncertainty “ordering” will lead to lower cost expectation. The

proofs of these two theorems are embedded in those of Lemma 1 and 2, and

are omitted. We remark that some limitations still exist, because for some

random variables, we cannot compare their uncertainties by Definition 1

or 2.

� End of chapter.



Chapter 8

Bidding with Finite Bids

We remark that the previously demonstrated advantages can only be re-

alized when submitting infinite number of bids or a continuous bidding

curve is allowed. If not, its feasibility to solve practical problems can be

questioned. In this part, we want to adapt our previous design to tackle

the problem when only K bids (bk, qk), k = 1, . . . , K can be submitted.

Our arguments for this part focus on a single datacenter unless otherwise

mentioned.

Recall that the bid (bk, qk) succeeds only when the MCP of the day-

ahead market is lower than or equal to the bidding price bk. Implicitly,

submitting K bids (bk, qk), k = 1, . . . , K can be viewed as proposing a

step-wise bidding curve

q̄(p) =
∑
k:bk≥p

qk.

Our task in this part is to optimize q̄(p), i.e., the values of bk, qk, ∀k, to
minimize the electricity cost expectation.

8.1 Performance Loss Characterization

Firstly, we quantize the cost difference of two different bidding curves by

the following lemma.

64
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Lemma 3. When the day-ahead MCP distribution for electricity market is

given as fPj
(p) and we denote the costs by two bidding curves q1(p), q2(p)

(q1(p) = q2(p) = 0, for p ≥ μRT
j ) as ECostj

(
q1(p)

)
,ECostj

(
q2(p)

)
, respec-

tively, we can have

|ECostj
(
q1(p)

)− ECostj
(
q2(p)

) |2 ≤ M ·
∫ μRT

j

0

|q1(p)− q2(p)|2dp,

where M =
∫ μRT

j

0

[
fPj

(p)(2μRT
j − βp− p)

]2
dp is a constant determined by the

market condition and irrelevant to the bidding curves.

Essentially Lemma 3 is saying that if two bidding curves are close in

terms of the distance measured by
∫ μRT

j

0 |q1(p) − q1(p)|2dp, their expected

costs are also close, which is quite intuitive.

We denote the optimal bidding curve in (6.5) and its cost by q∗(p) and

C∗, respectively. Obviously C∗ serves as a lower bound for ECost(q̄(p)).1

By applying Lemma 3, we can have

ECostj(q̄(p))− C∗ ≤
√

M ·
∫ μRT

j

0

|q∗(p)− q̄(p)|2dp. (8.1)

Remarks. (a) This result guarantees that the performance loss com-

pared with the optimal bidding curve by submitting only K bids is upper

bounded. And the upper bound is jointly determined by the market condi-

tion (M) and how the bids are designed (
∫ μRT

j

0 |q∗(p)− q̄(p)|2dp). (b) It also
provides a guideline for designing a “good” step-wise bidding curve: the

q̄(p) with a small value of
∫ μRT

j

0 |q∗(p) − q̄(p)|2dp. Alternatively speaking,

1C∗ can be viewed as the optimal value of the cost minimization problem without the “stepwise

bidding curve” constrain.
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we need to find a stepwise function to approximate the continuous bidding

curve.

8.2 Step-wise Bidding Curve Design

To have a good step-wise bidding curve, it is natural to find a q̄(p) to

minimize
∫ μRT

j

0 |q∗(p)− q̄(p)|2dp. Without loss of generality, we assume the

bidding prices are indexed increasingly with bk ≤ bk+1 and b0 = 0, bK+1 =

μRT
j . We denote by sk the procurement quantity from the day-ahead market

when the MCP is higher than bk−1 but not higher than bk, i.e., sk = q̄(p)

for p ∈ (bk−1, bk], and we can have⎧⎪⎨
⎪⎩
sk =

∑K
l=k q

l

qk = sk − sk+1.

And the problem to optimize a step-wise bidding curve (FB) is cast

below.

FB min
K∑
k=0

∫ bk+1

bk

|q∗(p)− sk+1|2dp (8.2a)

s.t. bk ≤ bk+1 (8.2b)

sk+1 ≤ sk (8.2c)

var. bk, sk, k = 1 . . . , K. (8.2d)

It is easy to see that the above problem is non-convex and the different

terms of the objective function are coupled with each other by the opti-

mization variable bk. So the global optimal solution of FB is difficult to
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obtain. In the following we will present an algorithm that guarantees to

converge to a local optimal solution.

8.2.1 To Optimize the Bidding Quantities

Let us firstly consider a subproblem: how to determine the values sk of

the step-wise function when the bidding prices bk are given. By changing

the optimization variable bk to input parameter, FB reduces to the opti-

mization problem of determining the optimal bidding quantities, which we

denote as Bidding-Q.

Bidding-Q min
K∑
k=0

∫ bk+1

bk

|q∗(p)− sk+1|2dp

s.t. sk+1 ≤ sk

var. sk, k = 1 . . . , K.

Note that the objective function of Bidding-Q is separable, we can

firstly ignore the constraints and solve it by minimizing each term of the

objection function individually. The optimal solution is given by 2

ŝk+1 =
1

bk+1 − bk

∫ bk+1

bk

q∗(p)dp, ∀k. (8.4)

This result is very intuitive: the best constant to approximate a func-

tion in an interval (bk, bk+1) is the averaged value of the function in that

interval. With the fact that q∗(p) is a nonincreasing function, ŝk+1 auto-

matically satisfies Constraint (8.2c) and thus, (8.4) is the optimal solution

2The optimal solution is the unique solution making the first-order derivative of the objective function

equal to 0.
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to Bidding-Q. In other words, given the bidding prices, the corresponding

optimal bidding quantities can obtained by (8.4).

8.2.2 To Optimize the Bidding Prices

Then, we turn to consider the problem of how to set the bidding prices

bk, ∀k with the bidding quantities given by (8.4), i.e., solving Bidding-P

below.

Bidding-P min
K∑
k=0

∫ bk+1

bk
|q∗(p)− ŝk+1|2dp

s.t. bk ≤ bk+1

var. bk, k = 1 . . . , K.

As compared with Bidding-Q, the objective function of Bidding-

P is not separable, for example, two terms
∫ bk+1

bk |q∗(p) − ŝk+1|2dp and∫ bk

bk−1 |q∗(p)−ŝk+1|2dp are coupled by bk; thus, the optimization variables are

also coupled with each other. Additionally, this problem is still non-convex.

To further understand the problem structure, we firstly try to charac-

terize how to optimize bk when b1, b2, · · · , bk−1, bk+1, bK−1, bK are given, i.e.,

to minimize

Obj(bk)

=

∫ bk

bk−1

|q∗(p)− ŝk|2dp+
∫ bk+1

bk
|q∗(p)− ŝk+1|2dp. (8.6)

A necessary condition for the optimal solution is to satisfy the first-order
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optimality condition, i.e.,

dObj(bk)/dbk

=
(
ŝk+1 − ŝk

) · (2q∗(bk)− ŝk − ŝk+1
)

= 0.

It is easy to see that
(
ŝk+1 − ŝk

) ≤ 0. However, the second term(
2q∗(bk)− ŝk − ŝk+1

)
is not monotonic with bk,

3 which indicates that (8.6)

is nonconvex in bk. So even minimizing only two consecutive terms with

a single variable bk is challenging. Nevertheless, we can find a solution to

dObj(bk)/dbk = 0 as long as dObj(bk)/dbk is continuous, for example, by

gradient descent method.

Based on the above understandings, we propose a heuristic algorithm

to solve Bidding-P and FB iteratively. The basic idea is as follows. In

each round, we firstly fix b0 and b2 and find a new b1 that improves the

current solution and satisfies dObj(b1)/db1 = 0, then we fix b1 and b3 to

update b2, then fix b3 and b5 to update b4, and so on. In this way, we can

sequentially update the variables from b1 to bK . It is worth emphasizing

that when bk−1, bk, bk+1 satisfies the first-order condition, this condition

may not hold after we optimize bk+1. So, after we optimize bK , we still can

decrease the objective value of (8.2a) for all k by going through another

round of optimization, starting from b1. Because the objective value is

non-increasing in each iteration and lower bounded by 0, this algorithm is

guaranteed to converge. We summarize the algorithm in Alg. 2.

3Note that ŝk and ŝk+1 are also functions of bk.
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Algorithm 2 A Heuristic Algorithm for Solving FB

Input: Optimal bidding curve q∗(p), number of bids K.

Output: (bk, qk), k = 1, . . . , K.

1: initialize (bk, qk), k = 1, . . . , K.

2: while not converge do

3: for k = 1, . . . , K do

4: Find a value b̃k that satisfies

2q∗(b̃k)− 1

bk+1−b̃k

∫ bk+1

b̃k
q∗(p)dp− 1

b̃k−bk−1

∫ bk+1

b̃k
q∗(p)dp = 0

by binary search.

5: Update bk = b̃k if b̃k decreases the objective value of (8.2a).

6: end for

7: end while

8: sk+1 = 1
bk+1−bk

∫ bk+1

bk
q∗(p)dp, ∀k.

9: qk = sk − sk+1, ∀k
10: return (bk, qk), k = 1, . . . , K.

Back to our joint optimization framework, we can firstly ignore the

“finite-bid” constraint and adopt the “continuous-bidding-curve” solution,

i.e., Alg. 1 to produce the optimal, yet possibly continuous, bidding curves

q∗j (p;α
∗), ∀j. After that, we use Alg. 2 to produce step-wise bidding

curves q̄j(p) to approximate q∗j (p;α
∗), ∀j. Obviously the objective value

by q∗j (p;α
∗) is a lower bound for the optimal value, and according to (8.1),

the performance of q̄j(p), ∀j is close to that of q∗j (p;α
∗), so the objective

value by q̄j(p), ∀j is also close to the optimal.

� End of chapter.



Chapter 9

Extensions to Other Pricing Models

In this chapter, we briefly describe how to extend our joint GLB and EP

framework to other market models, which handles the real-time mismatch

by different pricing mechanisms.

9.1 Real-time Pricing Model Two

We firstly consider the scenario that when the MCP is p, the real-time

buying price is (1+ ε1)p while the real-time selling price is (1− ε2)p, where

ε1 ∈ (0,∞), ε2 ∈ (0, 1). This model is used in [55, 56, 76, 75], etc.

Denote the real-time mismatch by Δ. We formally describe the rela-

tionship between the day-ahead MCP P da and real-time price P rt in (9.1).

P rt =

⎧⎪⎨
⎪⎩
(1 + ε1)P

da, if Δ > 0,

(1− ε2)P
da, if Δ < 0.

(9.1)

This pricing mechanism also incentives the customers to make accurate

prediction of their future demand and purchase all electricity they need

in the day-ahead markets, since both the over-supply and under-supply

will introduce additional cost. We denote the electricity consumption of a

particular future hour as a random variable V and the submitted bidding

curve as qj(p); the expected electricity cost is expressed in (9.2).

71
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ECost1j(qj(p),α) =

∫ +∞

0

[
pqj(p) + (1 + ε1)pE

[
(Vj − qj(p))

+
]− (1− ε2)pE

[
(qj(p)− Vj)

+
]]
fPj

(p)dp.

(9.2)

9.1.1 Single Datacenter Case

Similar to our previous solution, we first consider the subproblem of how

to purchase electricity for one single datacenter, i.e., solving the following

problem,

EP1 min ECost1j(q(p),α) (9.3a)

s.t. q(p) ∈ Q. (9.3b)

We provide the optimal solution of Problem EP1 in Lemma 4

Lemma 4. The optimal bidding curve of EP1 is given by

q1∗j(p) = F−1
Vj

(
ε1

ε1 + ε2

)
(9.4)

The proof of Lemma 4 is in Appendix 13.12. We remark that under

this pricing model, the optimal bidding curve is a constant for any real-

ization of MCP, which means that we can realize such a bidding curve by

submitting one bid with an extremely high bidding price, to ensure that

we can successfully buy F−1
V

(
ε1

ε1+ε2

)
amount of electricity. As an example,

if ε1 = ε2, the amount of electricity should be purchased is the median of

the electricity demand V . If we have the finite-bid constraint, submitting

one bid will be sufficient to realize this optimal bidding curve.
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9.1.2 Multiple Datacenter Case

We follow the similar approach to solve the problem involving multiple

datacenters, based on our results on the single datacenter scenario. Sup-

pose our GLB decision is α, and we denote the optimal electricity cost

of datacenter j with α as ECost1j(q1
∗
j(p),α), which can be computed by

substituting q(p) in (9.2) by (9.4). The optimal geographic load balancing

strategy can thus be obtained by solving the following problem GLB1,

GLB1 min
N∑
j=1

ECost1j(q1
∗
j(p),α) + BCost(α) (9.5a)

s.t α ∈ A. (9.5b)

Even though GLB1 has not closed-form objective function, it is a con-

vex optimization problem and can be optimally solved by any algorithm

which guarantees at least a local optimal solution, like General Pattern

Search [43]. We formally establish this property of GLB1 in Theorem 7.

Theorem 7. GLB1 is a convex optimization problem. Provided that the

objective function of GLB1 is continuously differentiable, General Pattern

Search algorithm will converge to its global optimal solution.

The proof of this theorem exactly follows the logic in the proof of The-

orem 1 and is omitted.

9.2 Real-time Pricing Model Three

Next we consider another pricing model, according to which the real-time

price is jointly determined by the day-ahead MCP and the total mismatch



CHAPTER 9. EXTENSIONS TO OTHER PRICING MODELS 74

(between day-ahead electricity procurement and real-time demand) of all

participants in the markets. This model is used to evaluate the value

of flexibility for electricity market in [54] and to analyze the impact of

renewable penetration for microgrid in [86].

Mathematically, if the day-ahead MCP is P da, then the real-time price

is given by P rt = P da + a
∑

iΔi + ε, where Δi is the mismatch by the ith

market participant, and ε is noise, capturing the factors we ignored. For the

purpose of simplicity, we assume that ε,Δi, ∀i are zero-mean and mutually

independent random variables. Also, we assume that the datacenter owner

cannot impact or predict the consequence of other participants’ behaviour,

i.e., the datacenter has no incentive or capability to arbitrage the markets,

then for one participant, the real-time price can be characterized by (9.6).

P rt
j = P da

j + aΔj + εj. (9.6)

On one hand, when Δj > 0, meaning that real-time demand is higher

than day-ahead procurement and we need to buy additional electricity at

higher price (the real-time price is higher than the day-ahead MCP statis-

tically); on the other hand, when Δj < 0, meaning that real-time demand

is lower than day-ahead procurement and we need to sell additional elec-

tricity at lower price (the real-time price is lower than the day-ahead MCP

statistically). This pricing model will transfer the real-time mismatch into

economic loss and incentive the customer to plan its demand in day-ahead

markets.

According to the pricing model by (9.6), the expected cost by submit-
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ECost2(qj(p),α) =

∫ +∞

0

[
pqj(p) +

∫ V̄

0

(v − qj(p)) (p+ a(v − qj(p)) + εj) fVj
(v)dv

]
fPj

(p)dp

(9.7)

ting a bidding curve qj(p) can be expressed in (9.7).

9.2.1 Single Datacenter Case

The optimal electricity procurement (bidding) strategy can be obtained by

solving EP2, shown below.

EP2 min ECost2(qj(p),α) (9.8a)

s.t. qj(p) ∈ Q. (9.8b)

And we directly present the optimal solution in Lemma 5.

Lemma 5. The optimal solution of EP2 is q2∗j(p) = E [Vj] , ∀p, and the

corresponding optimal cost is

E [Pj]E [Vj] + aVar(Vj).

The proof for Lemma 5 exactly follows the logic of those for Theorem 2

and Lemma 4 and omitted.

Remarks: Under this pricing model, the bidding curve is a constant for

any MCP p, which means that we can realize this bidding curve by submit-

ting one bid with a bidding quantity E [V ] and an extremely high bidding

price, so that the bid will succeed for any realization of MCP. Besides, the
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expected cost under the optimal bidding strategy is determined both by

the demand expectation and its variance. Under this model, the intuition

that a larger demand variance will lead to larger real-time mismatch is

more clear than the results in Chapter 7.1.

9.2.2 Multiple Datacenter Case

Now we would like to proceed with the scenario with N datacenters. With

workload allocation decision α, we denote the expected electricity cost of

datacenter j with the optimal bidding strategy by ECost2j(α) and the

bandwidth cost by BCost(α). The optimal workload allocation strategy

can be obtained by solving the following problem GLB2.

GLB2 min
N∑
j=1

ECost2j(q2
∗
j(p),α) + BCost(α) (9.9a)

s.t. α ∈ A. (9.9b)

By assuming that the original demand from each location Ui, ∀i are

mutually independent, the electricity cost expectation can be expressed

more explicitly, in the following,

N∑
j=1

ECost2j(q2
∗
j(p),α)

=
N∑
j=1

[
N∑
i=1

αi,jE[Ui] + aα2
i,jVar[Ui]

]
,

which is a quadratic function of α. With the fact that the other term

BCost(α) is linear in α, we can conclude that GLB2 is a convex problem
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and can be optimally solved by standard solvers, like [31].

Remarks: Under this model, the optimal workload allocation and bid-

ding strategies only depends on the expectation and variance of future

demands, which is easier to get than their exact probability distributions.

� End of chapter.



Chapter 10

Empirical Evaluations

In this chapter, we use trace-driven simulations to evaluate the perfor-

mance of the joint GLB and EP framework modelled in Chapter 5 and our

algorithm designed in Chapter 6.

10.1 Dataset and Settings

Network Settings. We consider a CSP operating 3 datacenters in San

Diego, Houston, and New York City. We assume that due to quality of

experience consideration, the CSP cannot balance workloads between dat-

acenters in San Diego and New York City. We set the unit bandwidth

cost of routing workloads across datacenters as zij = κ · (μRT
1 + μRT

2 + μRT
3

)
/3

if i 
= j, and zii = 0, i = 1, 2, 3. We let κ = 0.1 as a default setting, and we

vary the values of κ to evaluate the overall cost-saving performance under

different bandwidth-cost settings.

Workload and Electricity Demand. We get the numbers of service

requests per hour against the Akamai CDN in North America for 48 days

from Akamai’s Internet Observatory website [8]. By using the conversion

ratio claimed by Google for its datacenters [60], we scale up the request

information to create an electricity demand series with averaged hourly

78
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Figure 10.1: Empirical distributions of

MCPs, 2pm.
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Figure 10.2: Empirical distributions of

electricity demands, 2pm.

demand of 125 MWh. The total demand is divided into three regions

according to regional electricity consumptions of the three locations (a

detailed description is in Chapter 4.2.1). We set the ratio of demand of

region i to be served locally, i.e., λi, to be 0.7. We also set datacenter j’s

capacity Cj to be 30% larger than region j’s peak demand, since it was

reported that on average 30% or more of the capacity of datacenters is

idling in operation [17, 3, 25].

Electricity Prices in Day-ahead and Real-time Markets. We ob-

tain the electricity prices (MCP of day-ahead market and real-time market

price) from three regional ISO websites which serve the customers in San

Diego, Houston, and New York, respectively [16] [24] [4]. The discounting

factor β of selling back unused electricity is set as 0.5, which means that

the CSP suffers half loss in case of over-supply.

We provide the brief statistics of demand and price traces in Table 10.1.

Evaluation and Comparison. We test our design on 24 instances,



CHAPTER 10. EMPIRICAL EVALUATIONS 80

Table 10.1: Hourly Electricity Demand and Price Statistics in the Experiments

Region Mean STD

DAM

Prices ($)

1 42.7 71.7

2 55.6 63.3

3 56.4 17.1

RT

Prices ($)

1 42.3 71.5

2 56.4 64.6

3 57.4 16.1

Electricity

Demands (MWh)

1 52.8 19.2

2 39.1 12.2

3 36.4 13.4

each corresponding to one hour of the day. For each hour, the distri-

butions of electricity demand, day-ahead MCP and real-time prices are

learned from our dataset, and the real-time price expectation is computed

from the distribution accordingly. For illustration purpose, we plot the

empirical distributions of MCPs and demands for 2pm in Fig. 10.1 and

Fig. 10.2, respectively. We denote our solution as OptBidding-OptGLB, in

which the GPS part is based on an implementation used in [20, 21]. We

test the following four baseline alternatives. (i) NoBidding-NoGLB: it rep-

resents the strategy of buying all electricity in real-time markets without

doing GLB. It serves as the benchmark to compute cost reduction for other

algorithms. (ii) OptBidding-NoGLB: it represents the strategy of optimally

bidding in day-ahead markets but without doing GLB. (iii) NoBidding-

OptGLB: it represents the strategy of doing no bidding in the day-ahead

markets but purchasing all electricity in real-time markets and doing opti-
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Table 10.2: Cost-saving performance of different schemes.

Solution Daily Cost (k$) Reduction (%)

NoBidding-NoGLB 161.9 -

NoBidding-OptGLB (adapted from [67]) 154.5 4.6

SimpleBidding-OptGLB [17] 155.8 3.8

OptBidding-NoGLB 135.4 16.4

OptBidding-OptGLB (Our solution) 128.2 20.8

OptBidding-OptGLB (1 bid) 133.3 17.7

OptBidding-OptGLB (3 bids) 128.6 20.5

mal GLB (adapted from the solution in [67]). (iv) SimpleBidding-OptGLB:

it represents a joint bidding and GLB strategy proposed in [17], in which

the CSP only submits one bid to each day-ahead market j with bidding

price being μRT
j and the GLB strategy is optimized by a Matlab solver

fmincon.

10.2 Experimental Results

10.2.1 Performance Comparison and Impact of Finite Bids

We compare the performance of different solutions in terms of the expected

daily cost in Table 10.2. Further, we also evaluate the performance loss

due to that we approximate the optimal bidding curve (which may require

the CSP to submit infinite number of bids) by using only 1 and 3 bids in

our solution. We show the cost reduction of using infinite number of bids,

1 bid, and 3 bids in the last three rows of Table 10.2, respectively.
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We have the following observations. First of all, as seen from Ta-

ble 10.2, we can see that our proposed solution outperforms all other alter-

natives and reduces the CSP’s operating cost by 20.8% as compared to the

benchmark NoBidding-NoGLB. Meanwhile, we observe that SimpleBidding-

OptGLB only reduces the cost by 3.8%, which is much less than that

achieved by our solution OptBidding-OptGLB. Moreover, the cost reduc-

tion (3.8%) is even less than NoBidding-OptGLB (4.6%), which does not

perform bidding in the day-ahead markets but purchases all electricity

from the real-time markets. This highlights the importance of designing

intelligent strategies for bidding on the day-ahead markets.

In addition to intelligent bidding strategy design, we observe that GLB

also brings extra cost saving for CSP. For example, NoBidding-OptGLB re-

duces the cost by 4.6% as compared to NoBidding-NoGLB, and OptBidding-

OptGLB achieves 4.4% extra reduction as compared to OptBidding-NoGLB.

Here, we use the simple method explained in Chapter 8 to approximate

the optimal bidding curve with a finite number of bids (in particular, 1 and

3 bids in this experiment). From the last two rows in Table 10.2, we observe

that submitting 1 bid can achieve reasonably good performance (17.7% vs

20.8%). Submitting 3 bids can almost achieve the same performance as

submitting infinite number of bids (20.5% vs 20.8%). This observation

suggests that our solution performs well in practice even if the CSP is

only allowed to submit a small number of bids to a day-ahead market.

To understand this observation, we visualize the optimal bidding curves

of three datacenters for one optimization instance (4pm) in Fig. 10.3. We



CHAPTER 10. EMPIRICAL EVALUATIONS 83

can see that all three bidding curves are “flat” and thus can be accurately

approximated by step-wise functions corresponding to submitting only a

small number of bids.

10.2.2 Impact of Market Price Uncertainty and Demand Un-

certainty

In Chapter 1, we provide two experiments related to the electricity demand

variability and market price variability (Fig. 1.1(a) and Fig. 1.1(b)) to mo-

tivate our study and we describe the details here. Our Solution denotes the

strategy by OptBidding-OptGLB and Baseline denotes a simple strategy:

in each region, we pick only one market with cheaper electricity, day-ahead

market or real-time market depending on the price expectations, and buy

the expected amount of electricity demand in the picked market (If picking

the real-time market, we submit no bid in the day-ahead market; if picking

the day-ahead market, we submit one bid with the bidding price infinity

and the bidding quantity as the expected electricity demand). To under-

stand their individual impact separately, we construct two experiments.

In Fig. 1.1(a), we set the day-ahead MCP and real-time price to be con-

stant (their sample means), and test the performance of our solution and

the baseline with different levels of demand uncertainty (we manipulate the

data such that the demand expectations stay the same and their sample

STDs increase from 0 to 4.2, where 0 STD represents the scenario with-

out demand uncertainty.). As we can observe, the cost reduction ratio of

our solution decreases from 7% to 6.7% while that of the baseline solution
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decreases from 7% to 5.5%. It means that even though the demand uncer-

tainty curses the performance of both two schemes, our solution behaves

more robustly. In Fig. 1.1(b), we set the electricity demand to be constant

(its sample mean), and test the performance with different levels of market

price uncertainty (similarly, we keep the day-ahead MCP expectation the

same and increase its sample STD from 0 to 30.). In this case, the per-

formance of the baseline solution stays the same. This observation is not

surprising because the baseline’s decision will be the same for any level of

market price uncertainty and we also only care about the expected cost.

On the other hand, the cost reduction ratio of our solution increases from

7% to 21%. Also, this result should not be surprising based on our analysis

in Chapter 7.2. Because when the market price uncertainty is larger, it is

more likely that we can buy cheaper electricity from the day-ahead market

while the performance loss due to higher price is always capped by μRT
j .

10.2.3 Convergence Rate of the Joint Bidding and GLB Algo-

rithm

In this part, we empirically evaluate the convergence rate of our proposed

Algorithm 1. We run our algorithm for two instances with workload/price

distribution of 10am and 2pm, respectively. From Fig. 10.4, we can see

that our algorithm converges rather fast – within 30 iterations – for the

practical setting considered. The computation complexity of each iteration

is polynomial in the problem size (Theorem 4). The main efforts in each

iteration are just put to evaluate the objective values by a given set of
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candidate solutions, and the number of such candidate solutions is less

than 18 (2 times the dimensions of α).

In Fig. 10.5, we also report the accumulative statistics of the convergence

information for all the 24-hour instances. As we can see, in more than 80%

of testing instances, the algorithm will achieve 99.5% optimality within 20

iterations and 99.9% optimality within 40 iterations.

Many modern gradient-based numerical solvers are advanced in the

sense that it can estimate the gradient information if not given directly,

like the fmincon in Matlab [51], which can also be used to solve P3. Even

though the gradient information provides a searching direction to decrease

the objective, estimating such information is also computationally expen-

sive. We show the performance of the solutions produced by Algorithm 1

and fmincon in Fig. 10.6. As we can observe, the two algorithms produce

solutions with the similar objective values, which may not be too surpris-

ing since P3 is convex. However, in terms of running time to produce such

solutions, Algorithm 1 (GPS Algorithm) is 2-9 times fasters than fmincon.

10.2.4 Impact of Demand Uncertainty and Distribution Estima-

tion

To study the impact of demand uncertainty, we properly scale the electric-

ity demand of all three regions such that the demand expectations stay the

same and the average of the normalized sample standard deviations among

all three regions changes from 0.02 to 0.13, to mimic low to high uncer-

tainty in workloaddemand. Here normalized sample standard deviation is
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defined as the ratio of the sample standard deviation to the sample mean.

We apply our solution OptBidding-OptGLB to the set of scaled demands

and plot the cost reduction in Fig. 10.7. From Fig. 10.7, we can see that

the cost reduction decreases as the demand certainty increases, but the per-

formance loss is minor, suggesting that our solution OptBidding-OptGLB is

robust to demand uncertainty.

We also study the impact of distribution estimation. In our solution

OptBidding-OptGLB, we use the distribution of the demand Uj for region j

as input. In practice, however, the CSP may not have the exact demand

distributions, but just their estimates based on historical data. It is com-

mon for these estimated distributions to have the same mean and variance
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as the actual demand distributions, but it is difficult, if not impossible,

for the estimated distribution to match the actual distribution exactly. A

central question is then how sensitive is the performance of our solution

OptBidding-OptGLB to the accuracy of the distribution estimation, given

that we have obtained an accurate estimate of the mean and variance?

We explore answers to this question by comparing the performance

achieved by our solution OptBidding-OptGLB based on the following distri-

butions for demand with the same mean and variance: actual distribution,

normal distribution, and uniform distribution. We compare their cost re-

ductions in Fig. 10.7. As seen, the performance loss is minor, implying

that accurate first and second order statistics of the demand distribution

may be enough to determine the performance of our solution OptBidding-

OptGLB. This observation also suggests an interesting direction for future

work.

10.2.5 Impact of Market Price Uncertainty and Distribution Es-

timation

To study the impact of Market Price uncertainty, we use a similar way to

manipulate the MCP such that the average of the normalized sample stan-

dard deviations changes from 0.3 to 1.08, to mimic low to high uncertainty

in market price uncertainty. We apply our solution OptBidding-OptGLB to

the set of scaled MCPs and plot the cost reductions in Fig. 10.8.

We also study the impact of distribution estimation. In our solution

OptBidding-OptGLB, we use the distribution of the demand Pj for region
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j as input. In practice, however, the CSP may not have the exact MCP

distributions, but just their estimates based on historical data. It is com-

mon for these estimated distributions to have the same mean and variance

as the actual demand distributions, but it is difficult, if not impossible,

for the estimated distribution to match the actual distribution exactly. A

central question is then how sensitive is the performance of our solution

OptBidding-OptGLB to the accuracy of the distribution estimation, given

that we have obtained an accurate estimate of the mean and variance?

We explore answers to this question by comparing the performance

achieved by our solution OptBidding-OptGLB based on the following dis-

tributions for demand with the same mean and variance: actual distri-

bution, normal distribution, and uniform distribution. We compare their

cost reductions in Fig. 10.8. As seen, the cost reductions of three schemes

increase as the market price uncertainty increases, the underlying reason is

explained in Chapter10.2.2 and Chapter 6.2. Moreover, the cost reduction

due to the distribution estimation error is minor.

We want to remark that the difference of the price profiles in our dataset

is significant and it is easy to recognize which market is more economic (The

inaccuracy of the MCP distribution will result in no uneconomic decision

as long as the inaccuracy is not huge). And, the bidding strategy for each

datacenter is not affected by the MCP distributions.
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Figure 10.7: Cost reductions with different

levels of demand uncertainty and different

estimated distributions.
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Figure 10.8: Cost reductions with different

levels of price uncertainty.

10.2.6 Impact of Local Service Requirement

We investigate the impact of local service requirement, where we changes

the percentage of demand that must be served locally, i.e., λi, from 0.5

to 1.0. The simulation results are in Fig. 10.9, where we can see the cost

reduction of our solution OptBidding-OptGLB decreases as λi increases.

This matches our intuition that larger λi means that the CSP has less

room to do GLB. When λi = 1, i.e., all demand should be served locally,

our solution OptBidding-OptGLB coincides with OptBidding-NoGLB.

We also study the impact of bandwidth cost, where we choose two dif-

ferent values (0.1 and 0.4) for the bandwidth cost factor κ. We show the

cost reduction in Fig. 10.9. As seen, a larger κ, meaning higher bandwidth

cost, leads to smaller reduction, which matches out intuition.
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Figure 10.9: Cost reductions when more

workloads must be locally served, under

different bandwidth cost.
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Figure 10.10: Cost reduction ratios with

different levels of network cost

10.2.7 Impact of Bandwidth Cost

Moving more workload to the datacenters with lower electricity price will

cut the electricity bills, but incur more internet cost. If the internet cost is

too large, GLB may not be so economic, which motivates our evaluations

in this part. We test the cost reduction by GLB with different network

cost by increasing κ from 0.05 to 0.5 and the result is shown in Fig. 10.10.

As we can see, higher network cost will lead to smaller cost reductions;

but even when σ is 0.5, the cost reduction by OptBidding-OptGLB is still

over 17%, which means the design space of broker-assisted GLB is still

much rewarding to exploit.
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10.3 Reflections on Experimental Results

In this part, we make some reflections on the previous experimental results

to better understand the source of the economic gains and the impact of

simulation trace properties. From Table 10.2, we can observe that the

cost reduction of our joint optimization framework (OptBidding-OptGLB)

is roughly equal to the summation of those of optimizing EP and GLB

independently (OptBidding-NoGLB and NoBidding-OptGLB), which are two

sources of economic gains.

We firstly make some discussions on EP. According to our statistics in

Table 10.1, the day-ahead MCP expectation is almost equal to the real-

time price expectation for each market, but the cost reduction by only

optimizing EP is over 16%. So, the benefit from joining the day-ahead

market is not because the day-ahead market can provide electricity that is

always cheaper than real-time market, but because it provides a chance of

obtaining cheaper electricity, which comes from the multiplicity between

the day-ahead MCP and the real-time price. However, a simple bidding

strategy (SimpleBidding-OptGLB) can only reduce the cost expectation by

no more than 4%, which means that to fully exploit this chance is non-

trivial. We remark that, in our simulation, mutual independence between

regional day-ahead MCP and real-time price is assumed, but in practice,

positive correlation between them could exist [28], which will degrade the

performance. Also, as shown in Chapter 7, the trace with higher price

(day-ahead MCP) uncertainty will lead to higher economic gain and the
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trace with higher demand uncertainty lower economic gain.

As for GLB, its economic gain comes from the regional “price” diversity

and could be affected by many factors, including bandwidth cost, data-

center capacities, etc. Note that the “price” here means not the price

expectation, but the averaged buying cost, which is jointly determined by

the market conditions and the demand statistical characteristics. We re-

mark that the design space of GLB is not only seeking electricity with

lower price, but also actively manipulating the workload so that it can be

satisfied more economically. In our simulation, we assume that the original

demands in all locations are mutually independent, but in practice, both

positive and negative correlations could exist. Since the demand after GLB

is a linear combination of the original demands with positive coefficients,

the trace with negative correlation between original demands will lead to

higher economic gain which the trace with positive correlation lower eco-

nomic gain.

� End of chapter.



Chapter 11

An Alternative Formulation

As mentioned in Chapter 5.4, there exists another natural formulation,

which adopts the two-stage optimization framework [68]. In this formula-

tion, we can defer the optimization of GLB strategy to the second stage

(real-time), at which time we know the exact information of day-ahead

MCPs and demands. We briefly discuss this two-stage formulation in this

chapter.

11.1 Problem Formulation

In the new formulation, the optimization variables for EP and GLB es-

sentially span two stages, day-ahead and real-time, respectively. To be

consistent, we still use the bidding curves for datacenter j qj(p) to denote

the day-ahead EP strategy and the matrix α to denote the real-time GLB

strategy.

In the second stage (real-time), we know the demand ui from location

i, the day-ahead MCP pj for datacenter j and also the corresponding elec-

tricity procurement amount qj = qj(pj). We only need to determine how

to route the workload and the mismatch will be automatically balanced

by the market. Our objective is to minimize the summation of bandwidth

94
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cost and electricity cost in real-time markets. The optimization problem

we need to solve is as follows,

S2: min
N∑
j=1

ecostj (α) + bcost(α)

var. α ∈ Au,

where ecostj (α) = μRT
j (vj − qj)

+ − βpj(qj − vj)
+ with vj =

∑
i αijui, and

bcost(α) =
∑N

i=1

∑N
j=1 zijαijui denote the electricity cost and bandwidth

cost, respectively. The feasible region Au is an analogy of A, but is imposed

by the exact realization of demand Di, ∀i. 1

It is easy to see that the optimal solution and objective value of S2 is

determined by the EP strategy qj(p), ∀j in the first stage (day-ahead). We

denote the optimal value of Problem S2 by CS2
(
[qj(p)]j=1:N

)
, which is

a random variable due to the randomness of Ui, Pi, ∀i. When we submit

bidding curves in the day-ahead markets, our objective is to minimize the

total cost expectation, and the optimization problem is as follows,

S1: min
N∑
j=1

EPj
[Pjqj(Pj)] + EPj ,Vi,i,j=1:N

[
CS2

(
[qj(p)]j=1:N

)]
var. qj(p) ∈ Q, j = 1, . . . , N,

where ER [·] is the expectation taken by the joint distribution of R.

11.2 Problem Properties and Challenges

In this part, we reveal some structures of Problem S1 and S2.
1The main difference between Au and A comes from the capacity constraint (5.3) and Au ⊆ A, ∀u.
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We firstly provide the following proposition to connect P1 and S1.

Proposition 3. The optimal value of S1 is a lower bound for that of P1.

Proposition 3 holds directly by the fact that, given any feasible solution

(α̂, q̂j(p), ∀j) of P1, (q̂j(p), ∀j) is feasible to S1 and α̂ is feasible to S2.

In our following discussions, we restrict our attention to the cases that

the bidding curves satisfy

qj(p) = 0 for p ≥ μRT
j , ∀p. (11.1)

We claim that we will lose no optimality by this restriction. The intuition

is very clear and similar to that of Theorem 1: since we can obtain the

electricity in real-time at price μRT
j , there is no need to buy more expensive

electricity in day-ahead market with the risk of additional mismatch cost.

We also make the intuition rigorous in the following proposition.

Proposition 4. There is an optimal solution of S1 that satisfies (11.1).

The proof is deferred to Chapter 13.13.

Under the condition of (11.1), it is easy to see that Problem S2 is to

minimize a convex polyhedral with some linear constraints and can be

solved by linear programming. We provide a property of S1, which is not

so obvious, in the following lemma.

Lemma 6. Under Condition (11.1), Problem S1 is convex.

The proof is deferred to Chapter 13.14.

Even though S1 is convex, several obstacles exist to make the problem

challenging, which we list below.
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(C1) The optimization variable of S1 are functional, so its dimensionality

is infinite and the off-the-shelf numerical solvers are not applicable.

(C2) The objective function is an expectation taken by the distributions

of several random variables Vi, Pi, ∀i. To compute the objective value

for each bidding curve design, we need to evaluate the real-time cost

CS2 (·) for each possible realization of Ui, Pi, ∀i, the number of which

could be exponential. 2 So, it would be computationally intensive to

only evaluate the objective value of S1.

(C3) CS2
(
[qj(p)]j=1:N

)
in the objective function involves another opti-

mization problem. So we cannot have the closed form or derivative

information of the objective function.

Several simple heuristics to handle these challenges are suggested in the

following.

• To handle ChallengeC1, for each bidding curve, we can fix several bid-

ding prices and optimize the corresponding bidding quantities. Then,

the optimization of a continuous function is transformed to the opti-

mization of a vector. This approach is also adopted in [46, 33].

• To handle Challenge C2, we can construct a fixed number of represen-

tative scenarios from the dataset using Monte Carlo Method [29, 65]

or clustering algorithms [39].
2Consider a simple scenario in which we have 3 datacenters and markets (N = 3) and each random

variable Ui or Pi has 10 different realizations. By assuming mutual independence among the 6 random

variables Ui, Pi, i = 1, 2, 3, we could have 106 possible instances, which means that we need to solve 106

optimization problems.
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• To handle Challenge C3, we can apply GPS algorithm to find a local

optima of S1, or we can explicitly plug S2 into S1 with duplicated

variables and nonanticipativity constraint, see Chapter 2.4 of [68] for

details.

� End of chapter.



Chapter 12

Conclusion and Future Work

In this thesis, we consider the problem of how a CSP jointly does load

balancing and electricity procurement for its geographically located dat-

acenters, with stochastic electricity demand and price information. We

show that the joint optimization framework is necessary to realize the full

potential of GLB, as a separate solution may increase the demand uncer-

tainty and make electricity supply chains in all regions less efficient. This

problem is formulated as a challenging nonconvex optimization problem.

And we solve this problem optimally by carefully studying its structure.

As part of the solution, we use “bidding curve” to characterize the optimal

bidding strategy. By fully utilizing the stochastic information, the optimal

bidding curve not only minimizes the cost expectation, but also is shown

to be robust to demand uncertainty. The merit of our design was exten-

sively shown by empirical simulations. We believe that this work serves an

important guideline for the CSPs to participate in the wholesale electricity

market in different locations and allocate their demands geographically.

The current study relies on the distribution of price and demand. It

would also be interesting to extend the study to the scenario where we

only have first and second moment statistics. Also, we currently assume

that the workloads in different locations and prices in day-ahead and real-

99
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time markets are mutually independent, but it is reasonable to believe

that the users’ activities in different locations are correlated with each

other. It deserves effort to study how the correlation can bring additional

benefit, for example, how GLB can utilize this correlation to stabilize the

demands. Lastly, if the percentage of datacenters’ energy consumption

increases further, like going beyond 10% of total electricity consumption,

how CSP (this new type of customers being able to move their demands

geographically) will impact on the electricity supply chain or whether the

current market mechanism should be redesigned to improve its efficiency,

these topics are also interesting to explore.

� End of chapter.
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Appendix

13.1 Proof of Proposition 1

Proof. We note that (5.12) is an integral over p. A naive but critical

observation is that the function inside the integral is separable over p.

We write the inside function (excluding the constants fPj
(p)) as follows,

C(qj(p))

=pqj(p)− βp

∫ qj(p)

0

(qj(p)− v)fVj
(v)dv + μRT

j

∫ v̄j

qj(p)

(v − qj(p))fVj
(v)dv

=pqj(p)− βp

∫ qj(p)

0

(qj(p)− v)fVj
(v)dv + μRT

j

∫ qj(p)

0

(qj(p)− v)fVj
(v)dv+

μRT
j E[Vj]− μRT

j qj(p)

=μRT
j E[Vj] + (p− μRT

j )qj(p) + (μRT
j − βp)

∫ qj(p)

0

(qj(p)− v)fVj
(v)dv

Then the derivative of C(qj(p)) with respect to qj(p) is as follows,

dC(qj(p))

qj(p)
= (p− μRT

j ) + (μRT
j − βp)

∫ qj(p)

0

fVj
(v)dv. (13.1)

And its second derivative is

(μRT
j − βp)fVj

(qj(p)).

101
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It is obvious that the second derivative is not always non-negative, for

example, when p >
μRT
j

β . But this proof also indicates that the objective

function is convex in the set

Q̂j = {qj(p)|qj(p) ∈ Q, and qj(p) = 0, ∀p ≥ μRT
j }.

Thus the subprolem EPj(α) solved in Chapter 6.2 is convex.

The proof is completed.

13.2 Proof of Theorem 1

Proof. To prove Theorem 1, we firstly provide Proposition 5 and 6 to aid

our analysis.

The discussions in Proposition 5 and 6 only involve one datacenter, so

we hide the GLB decision α and abuse the notations a little bit to lighten

the formula. We will denote Costj(q(p), fV (v)) as the electricity cost of

datacenter j when its demand follows fV (v) and it submits a bidding curve

q(p).

Proposition 5. Given two feasible 1 demands Ṽ and V with Ṽ = δV ,

where δ ∈ (0, 1) is a constant, we can have

Costj(δq(p), fṼ (v)) = δCostj(q(p), fV (v)), (13.2)

for any q(p) ∈ Q.
1Demand V is feasible means that the maximum value of V is less than or equal to the datacenter’s

capacity.
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Proposition 6. Given two feasible demands V 1 and V 2 with PDF fV 1(v)

and fV 2(v), if q1(p), q2(p) ∈ Q̂j and V 1 + V 2 is also feasible, we can have

Costj(q
1(p) + q2(p), fV 1+V 2(v)) ≤

Costj(q
1(p), fV 1(v)) + Costj(q

2(p), fV 2(v)). (13.3)

Besides the technical proofs of Proposition 5 and Proposition 6 (Ap-

pendix 13.10 and Appendix 13.11), here we try to explain their impli-

cations. The implication of Proposition 5 is very clear: if we scale the

bidding curve and electricity demand by the same factor, the electricity

cost expectation will also scale accordingly. As for Proposition 6, imagine

we have two datacenters in one location (the two datacenters are served

by the same market). The bidding curves and demand distributions of the

two datacenters are q1(p), fV 1(v) and q2(x), fV 2(v) respectively; fV 1+V 2(v)

is the probability distribution of the demand summation. The right-hand

side of the inequality (13.3) is the sum of the two datacenters’ cost, while

the left-hand side can be viewed as the cost of the datacenters if they can

share their electricity procurements and demands. It means that as long as

their bids satisfy q(p) = 0 for p > μRT
j , cooperation between the datacenters

will help to reduce cost. The fundamental reason can be explained as fol-

lows. Remember that the datacenter will suffer more cost due to mismatch

(discounted price to sell back for over-supply or more expensive electric-

ity for under-supply); in case of that both datacenters meet over-supply

or under-supply, there is no difference, but in case of that one datacenter

meets under-supply while the other one meets over-supply, the cooperation
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between them will remove part of the mismatch and thus decrease the cost,

which is also quite intuitive.

Now we are ready to prove Theorem 1 by following steps,

To prove P2 is convex, it is enough to show that its objective func-

tion is convex over its feasible region. And we only need to show that

ECostj (qj(p), α) is convex in (qj(p), α).

Let V 1 = (α1D)i, V 2 = (α2D)i and α = δα1 + (1 − δ)α2, we have

V = (αD)i = δV 1+(1− δ)V 2. If the distributions for V 1 and V 2 are f 1(y)

and f 2(y), the distribution for Y is given by f̃ 1 � f̃ 2(y), where f̃ 1(y) and

f̃ 2(y) are the distributions for δV 1 and (1− δ)V 2. Then,

δECostj
(
q1j (p), α

1
)
+ (1− δ)ECostj

(
q2j (p), α

2
)

=δCostj(q
1(p), f 1(v)) + (1− δ)Costj(q

2(p), f 2(v)),

(Ea)
= Costj(δq

1
j (p), f̃

1(v)) + Costj(q
2
j (p), f̃

2(v)),

(Eb)≥ Costj(δq
1(p) + (1− δ)q2(p), fδV 1+(1−δ)V 2(v)),

=ECostj
(
δq1j (p) + (1− δ)q2j (p), δα

1 + (1− δ)α2
)
.

(Ea) and (Eb) are established by Proposition 5 and Proposition 6, respec-

tively.

Moreover, to prove that P1 and P2 have the same optimal solution, we

only need to show that, with anyα, the optimal bidding curve of datacenter

j belongs to Q̂j, which is true by Theorem 2.The proof is completed.
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13.3 Proof of Theorem 2

Proof. To solve EPj(α), we need to assign a value qj(p) for each p, to

specify how much electricity to buy for any realization of MCP.

The sketch of the proof is as follows: We note that there is a constraint

that qj(p) ∈ Q̂j. In the following, we first ignore this constraint and

solve the relaxed problem optimally. Then we will show that the optimal

solution of the relaxed problem actually satisfies this constraint and thus

is optimal to the original problem EPj(α). We minimize the objective of

unconstraint EPj(α) by minimizing the function value inside the integral

for each p.

Now, let c(q) = pq − βp
∫ q

0 (q − v)fVj
(v)dv + μRT

j

∫ v̄j
q (v − q)fVj

(v)dv, we

can have

dc(q)

dq
= p− μRT

j

∫ v̄j

q

fVj
(v)dv − βp

∫ q

0

fVj
(v)dv

= p− μRT
j + (μRT

j − βp)

∫ q

0

fVj
(v)dv.

We discuss the form of the optimal solution as follows,

• If p ≤ μRT
j , μRT

j ≥ βp and dc(q)
dq increases with q. The optimal

solution can be obtained by solving dc(q)
dq = 0 and the solution is

q∗j (p) = F−1
Vj

(
μRT
j −p

μRT
j −βp

)
.

• If p ∈ (μRT
j , μRT

j /β
)
, p−μRT

j ≥ 0 and μRT
j −βp ≥ 0, we have dc(q)

dq ≥ 0.

The optimal solution is q∗j (p) = 0.
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• If p ≥ μRT
j /β, μRT

j −βp ≤ 0 and we can observe that dc(q)
dq ≥ p−μRT

j +

(μRT
j − βp) ≥ 0. Then the optimal solution is q∗j (p) = 0.

The we can get that the optimal solution to the relaxed problem is

q∗j (p;α) =

⎧⎪⎨
⎪⎩
F−1
Vj

(
μRT
j −p

μRT
j −βp

)
, if p ∈ [0, μRT

j

)
;

0, otherwise.

Note that
μRT
j −p

μRT
j −βp

∈ (0, 1) decreases with p and F−1
Vj

(·) is an increasing

function, so q∗j (p;α) ∈ Q̂j. Also, in the processing of obtaining q∗j (p;α),

we do not restrict our attention to Q̂j, instead we search the entire bidding

curve design space Q, which meas that q∗j (p;α) is also the optimal bidding

curve for P1. The proof is completed.

13.4 Proof of Theorem 3

Proof. Again, to prove that P3 is convex, we only need to prove that

ECostj
(
q∗j (p;α),α

)
is convex in α.

δECostj
(
q∗j (p;α

1),α1
)
+ (1− δ)ECostj

(
q∗j (p;α

2),α2
)

=ECostj
(
δq∗j (p;α

1), δα1
)
+ ECostj

(
(1− δ)q∗j (p;α

2), (1− δ)α2
)
,

by Proposition 5.

≥ECostj
(
δq∗j (p;α

1) + (1− δ)q∗j (p;α
2), δα1 + (1− δ)α2

)
,

by Proposition 6

≥ECostj
(
q∗j (p; δα

1 + (1− δ)α2), δα1 + (1− δ)α2
)
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The last step is due to the fact that q∗j (p; δα
1 + (1− δ)α2) is the optimal

bidding curve when the GLB decision is δα1 + (1− δ)α2, so its electricity

cost should not be higher than that of δq∗j (p;α
1) + (1− δ)q∗j (p;α

2).

According to [43], GPS algorithm is guaranteed to converge to a solution

satisfying the KKT condition (which is optimal if the problem is convex)

with four hypothesises(Page 9). We examine these conditions one by one

as follows.

• Hypothesis 0 is satisfied by the implementations of GPS algorithm

[21, 20].

• Hypothesis 1 is saying that the matrix in the constraint is rational,

which is automatically satisfied by (5.1)-(5.5).

• Hypothesis 2 can be guaranteed by the convexity of P3, which is

proved above.

• Hypothesis 3 is guaranteed by the condition that fUj
(u), j = 1, . . . , N ,

are continuously differentiable.

To prove that Hypothesis 3 holds, we only need to show that ECostj
(
q∗j (p;α),α

)
is continuously differentiable with respect to αij, ∀i, j. A sufficient condi-

tion condition is that both fVj
(v) and q∗j (p;α) are continuously differen-

tiable with respect to αij.

For fVj
(v), remember that fVj

(v) is a convolution of several functions.

We denote f̄Ūij
(v) be the convolution of fUkj

(u), k 
= i, and then

fVj
(v) =

1

αij
fUi

(
v

αij

)
⊗ f̄Ūij

(v).
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Note that f̄Ūij
(v) is not related with αij, and the condition in Theorem 2

provides that fUi
(u) is continuously differentiable, then fVj

(v) is continu-

ously differentiable with respect to αij.

For q∗j (p;α), remember that it is derived from the inverse function of

FVj
(v) and FVj

(v) is continuously differentiable (since its derivative fVj
(v) is

continuously differentiable.). By the Inverse function theorem[34], q∗j (p;α)

is also continuously differentiable.

Thus GPS algorithm will converge to a point satisfying KKT condition,

which is global optimal by the previous convexity argument.

13.5 Proof of Theorem 4

Proof. We first describe the complexity to solve our inner-loop problem

EPj(α), i.e., compute the optimal datacenter j’s bidding curve q∗j (p;α)

through (6.5) when the GLB decision is given by α. We need five steps

to obtain q∗j (p;α). (i) We obtain the PDF of Uij, i.e., fUij
(v), for all

i ∈ [1, N ]. Through (5.8), we can obtain fUij
(v) in O(m) for each i, and

thus get all fUij
(u)’s (∀i ∈ [1, N ]) in O(Nm). (ii) We obtain the PDF

of datacenter j’s allocated demand Vi, i.e., fVj
(v). We can obtain fVj

(v)

through (5.7) by doing convolution N − 1 times in O(N 2m log(Nm)) [15].

Note that fVj
(v) could take values at Nm different points. (iii) We obtain

the CDF of Vj, i.e., FVj
(v). We can iteratively do summation to obtain

FVj
(v) in O(Nm). (iv) We obtain the inverse function of the CDF of Vj, i.e.,

F−1
Vj

(v). We only need to inverse all Nm points of FVj
(v), which requires
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O(Nm) complexity. (v) We obtain the optimal bidding curve q∗j (p;α).

Since we have sampled fPj
(p) into a length-m sequence, we only need to

get q∗j (p;α) for at most m different values for p. Thus we can construct

q∗j (p;α) inO(m) steps. Therefore, the total complexity is the sum of (i)-(v),

i.e., O(Nm) +O(N 2m log(Nm)) +O(Nm) +O(Nm) +O(Nm) +O(m) =

O(N 2m log(Nm)).

We then analyze the computation complexity of the subroutineP3-OBJ(α),

i.e., evaluating the objective value of P3 for any given GLB decision α.

Step 13 needs O(N 2) from (5.9). Steps 15 is the complexity to compute

q∗j (p;α), which requires O(N 2m log(Nm). Step 16 is the complexity to

compute ECostj
(
q∗j (p;α),α

)
by (5.12). For any Pj = p, the day-ahead

trading cost part can be computed in O(1); the rebate of over-supply can

be computed in O(Nm); the cost of under-supply can be computed in

O(Nm); thus the total complexity for given Pj = p is O(Nm). Since we

have sampled fPj
(p) into a length-m sequence, the total complexity to com-

pute ECostj
(
q∗j (p;α),α

)
will be O(Nm2). Since P3-OBJ(α) should do N

iterations for all datacenters, the total complexity to evaluate P3-OBJ(α)

is O(N 2 +N(N 2m log(Nm) +Nm2)) = O(N 3m log(Nm) +N 2m2).

Finally we come to analyze the computational complexity of our global

solution, i.e., Algorithm 1. During the while loop, each iteration requires

at most (2N +1) invokes for the subroutine P3-OBJ(α), and thus incurs

O((2N + 1) × (N 3m log(Nm) + N 2m2)) = O((N 4m log(Nm) + N 3m2)).

Suppose that our Algorithm 1 converges in niter iterations. Then the

computational complexity of our Algorithm 1 is O(niter((N
4m log(Nm) +
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N 3m2))).

13.6 Proof of Proposition 2

Proof. This result is easily to prove. Since there is one option for the CSP:

do not bid in the day-ahead market, i.e., setting q̃j(p) = 0, ∀p ≥ 0. With

q̃j(p), the objective value of EPj(α) is E[Vj]μ
RT
j . Since q∗j (p) is the optimal

solution to minimize the objective value, we can have that its objective

value is always upper bounded by E[Vj]μ
RT
j .

13.7 Proof of Lemma 1

Proof. To aid our analysis, we introduce two stochastic orderings called

“increasing convex ordering” (≥ic) and “variability ordering” (≥var), the

definitions of which are presented Chapter 7.3. And an important property

is presented in Proposition 7.

Proposition 7. ([70, Lemma 4.9]) X ≥var Y implies that X ≥ic Y .

We consider two electricity demands V1 and V2 with the same expecta-

tions and V1 has a larger variance. According to the definition of “vari-

ability ordering” and the properties of involved unimodal distributions,

V1 ≥var V2. We denote C1 and C2 as the cost of V1 and V2 by the optimal

bidding curve in (6.5). Our purpose is to show that C1 ≥ C2.

Let C1(p) and C2(p) be the cost expectation conditioning on that the

day-ahead MCP is realized as p, and C1 =
∫ +∞
0 C1(p)fPi

(p)dp, C2 =
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∫ +∞
0 C2(p)fPi

(p)dp. It would be sufficient if we can show that C1(p) ≥
C2(p), ∀p.

Also, note that when the day-ahead MCP is fixed as p, the problem

EPj(α) will reduce to the classic Newsvendor problem and (6.5) is the

corresponding optimal solution. According to Proposition 7, we can have

V1 ≥ic V2. By the following proposition, we can immediately have C1(p) ≥
C2(p), ∀p.
Proposition 8. [70, Proposition 4.3] For the Newsvendor problem, given

two future demands D1, D2, if D1 ≥ic D2, E[D1] = E[D2], then the optimal

cost of D1 is not less than that of D2.

The proof is complete.

13.8 Proof of Lemma 2

Proof. We first define Copt(p) as the expected cost under the optimal bid-

ding strategy when the day-ahead MCP is realized as p. And the total

cost expectation by (6.5) can be expressed as EP [Copt(p)], where the ex-

pectation is taken with respected to the distribution of day-ahead MCP.

We consider two stochastic day-ahead MCP denoted by P 1 and P 2 with

E[P 1] = E[P 2] and P 1 having a larger variance. According to the definition

of “variability ordering” and the properties of involved unimodal distribu-

tions, P 1 ≥var P
2. Our goal is to show that EP 1[Copt(p)] ≤ EP 2[Copt(p)].

Since P 1 ≥var P 2 implies P 1 ≥ic P 2 (by Proposition 7), according to

the following lemma, it will be sufficient to show that Copt(p) is a concave
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function of p. (A more direct result is that EP 1[−Copt(p)] ≥ EP 2[−Copt(p)]

if −Copt(p) is convex.)

Lemma 7. ([64]) If X and Y are nonnegative random variables with

E[X] = E[Y ], then X ≥ic Y if and only if E[f(X)] ≥ E[f(Y )] for all

convex functions f .

Let α ∈ (0, 1) and p0 = αp1 + (1− α)p2. We will show that Copt(p
0) ≥

αCopt(p
1) + (1− α)Copt(p

2).

Recall that Copt(p) = pq∗j (p)−βp
∫ q∗j (p)
0 (q∗j (p)−v)fVj

(v)dv+μRT
j

∫ v̄j
q∗j (p)

(v−
q∗j (p))fVj

(v)dv. To lighten the formula, we further denote Qover(q
∗
j (p)) =∫ q∗j (p)

0 (q∗j (p)−v)fVj
(v)dv and Qunder(q

∗
j (p)) =

∫ v̄j
q∗j (p)

(v−q∗j (p))fVj
(v)dv as the

expected over-supply and under-supply, respectively. Then our proof will

proceed as follows,

Copt(p
0)

=p0q∗j (p
0)− βp0Qover(q

∗
j (p

0)) + μRT
j Qunder(q

∗
j (p

0))

(Ea)
= α

(
p1q∗j (p

0)− βp1Qover(q
∗
j (p

0)) + μRT
j Qunder(q

∗
j (p

0))
)
+

(1− α)
(
p2q∗j (p

0)− βp2Qover(q
∗
j (p

0)) + μRT
j Qunder(q

∗
j (p

0))
)

(Eb)≥ α
(
p1q∗j (p

1)− βp1Qover(q
∗
j (p

1)) + μRT
j Qunder(q

∗
j (p

1))
)
+

(1− α)
(
p2q∗j (p

2)− βp2Qover(q
∗
j (p

2)) + μRT
j Qunder(q

∗
j (p

2))
)

=αCopt(p
1) + (1− α)Copt(p

2).

We get step (Ea) by replacing the p0 outside q∗j (·) with αp1 + (1− α)p2

and rearranging the terms. And (Eb) is due to the fact that q∗j (p
1) and

q∗j (p
2) are the optimal electricity procurement. (remember that we obtain
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q∗j (p
1), q∗j (p

2) by minimizing pq∗j (p)− βpQover(q
∗
j (p)) + μRT

j Qunder(q
∗
j (p)) for

p1, p2). The proof is completed.

13.9 Proof of Lemma 3

Proof. We firstly reformulate the cost function from (5.12) to the following

one,

Costj(q(p))

=

∫ +∞

0

fP (p)

[
(μRT

j − βp)

∫ q(p)

0

(q(p)− v)fV (v)dv − (μRT
j − p)q(p)

]
dp

+ μRT
j E [V ]

(Ea)
=

∫ μRT
j

0

fP (p)

[
(μRT

j − βp)

∫ q(p)

0

FV (v)dv − (μRT
j − p)q(p)

]
dp

+ μRT
j E [V ]

(Ea) comes from the facts that q(p) = 0 for p ≥ μRT
j and∫ q(p)

0

(q(p)− v)fV (v)dv =

∫ q(p)

0

(q(p)− v)dFV (v)

=(q(p)− v)FV (v)|q(p)0 −
∫ q(p)

0

FV (v)d(q(p)− v)

=

∫ q(p)

0

FV (v)dv.
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We will proceed as follows,

|Costj(q1(p))− Costj(q
2(p))|2

=|
∫ μRT

j

0

fP (p)

[
(μRT

j − βp)

∫ q1(p)

q2(p)

FV (v)dv − (μRT
j − p)(q1(p)− q2(p))

]
dp|2

(Eb)≤ |
∫ μRT

j

0

fP (p)

[
(μRT

j − βp)|
∫ q1(p)

q2(p)

FV (v)dv|+ (μRT
j − p)|q1(p)− q2(p)|

]
dp|2

(Ec)≤ |
∫ μRT

j

0

fP (p)
[
(μRT

j − βp)|q1(p)− q2(p)|+ (μRT
j − p)|q1(p)− q2(p)|] dp|2

=|
∫ μRT

j

0

fP (p)
[
(2μRT

j − βp− p)|q1(p)− q2(p)|] dp|2
(Ed)≤
∫ μRT

j

0

[
fP (p)(2μ

RT
j − βp− p)

]2
dp

∫ μRT
j

0

|q1(p)− q2(p)|2dp

(Eb) is obtained by replacing the two terms in the integral by their

absolute values, which is similar to |a + b| ≤ ||a| + |b||; (Ec) is due to

the fact that F (v) ≤ 1 and (Ed) is the application of Cauchy-Schwarz

inequality.
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13.10 Proof of Proposition 5

Proof. Firstly we can have fṼ (δv) =
1
δfV (v) by Ṽ = δV . Then,∫ δq(p)

0

(δq(p)− ṽ)fṼ (ṽ)dṽ

=

∫ q(p)

0

(δq(p)− δv)fṼ (δv)d(δv), by changing the integral variable

=

∫ q(p)

0

(δq(p)− δv)
1

δ
fV (v)d(δv), by f̃Ṽ (δv) =

1

δ
fV (v)

=δ

∫ q(p)

0

(q(p)− v)fV (v)dv.

By similar arguments we have∫ δv̄

δq(p)

(ṽ − δq(p))fṼ (ṽ)dṽ = δ

∫ v̄

q(p)

(v − q(p))fV (v)dv.

According to the cost function (5.12), we have

Costj(δq(p), fṼ (ṽ))

=

∫ +∞

0

fd
i (p)[pδq(p)− βp

∫ δq(p)

0

(δq(p)− ṽ)fṼ (ṽ)dṽ

+ μRT
j

∫ δv̄

δq(p)

(ṽ − δq(p))fṼ (ṽ)dṽ])dp

=

∫ +∞

0

fd
i (p)[pδq(p)− δβp

∫ q(p)

0

(q(p)− v)fV (v)dv

+ μRT
j δ

∫ v̄

q(p)

(v − q(p))fV (v)dv])dp

= δCostj(q(p), fV (v)).

The proof is completed.
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13.11 Proof of Proposition 6

Proof. We first rewrite the cost function as

Costj(q(p), fV (v))

=μRT
j E[V ] +

∫ +∞

0

fPj
(p)
[
(p− μRT

j )q(p)
]
dp

+

∫ +∞

0

fPj
(p)

[
(μRT

j − βp)

∫ q(p)

0

(q(p)− v)fV (v)dv

]
)dx.

Note the first two terms are linear in fV (v) and q(p) respectively, and

(μRT
j − βp) ≥ 0 for all p such that qi(p) > 0. By letting V = V 1 + V 2, we

only need to prove that∫ q1(p)+q2(p)

0

(q1(p) + q2(p)− v)fV (v)dv ≤∫ q1(p)

0

(q1(p)− v1)fV 1(v1)dv1 +

∫ q2(p)

0

(q2(p)− v2)fV 2(v2)dv2. (13.4)

(13.4) can be rewritten as

E
[
(q1(p) + q2(p)− V 1 − V 2)+

]
≤E
[
(q1(p)− V 1)+

]
+ E

[
(q2(p)− V 2)+

]
=E
[
(q1(p)− V 1)+ + (q2(p)− V 2)+

]
.

This inequality is obliviously true because for any realization v1, v2 we can

have

(q1(p) + q2(p)− v1 − v2)+ ≤ (q1(p)− v1)+ + (q2(p)− v2)+.

Then we establish the inequality of (13.4) and the proof for Proposition 6

is completed.
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13.12 Proof of Lemma 4

Proof. The first-order derivative of the objective function with respect to

q(p) is given by

dECost1(q(p),α)

dq(p)

=

∫ +∞

0

[p− (1− ε2)p

∫ q(p)

0

fVj
(v)dv − (1 + ε1)p

∫ C̄

q(p)

fVj
(v)dv]fPj

(p)dp,

=

∫ +∞

0

p

[
ε2

∫ q(p)

0

fVj
(v)dv − ε1

∫ C̄

q(p)

fVj
(v)dv

]
fPj

(p)dp

=(ε1 + ε2)

∫ q(p)

0

fVj
(v)dv − ε1.

It is easy to see that the first order derivative is nondecreasing with

q(p). By solving Cost1(q(p))
dq(p) = 0, we can get the optimal solution as q∗(p) =

F−1
Vj

(
ε1

ε1+ε2

)
.

The proof is completed.

13.13 Proof of Proposition 4

Proof. To prove Proposition 4, we will prove that, given any solution

q̂j(p), j = 1, · · · , N for S1, which may violate (11.1), we can construct

another solution q̄j(p) =

⎧⎪⎨
⎪⎩
q̂j(p), if p < μRT

j ,

0, if p ≥ μRT
j

and the objective value of

q̄j(p), j = 1, · · · , N cannot be larger than that of q̂j(p), j = 1, · · · , N . In

other words, we can construct another solution q̄j(p), which satisfies (11.1)

and has a smaller objective value.
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Now, let us consider an alternative cost of q̄j(p), ∀j, which is incurred by

the following strategy: we submit bidding curves q̄j(p), ∀j to the day-ahead
markets, but for any realization of Ui, Pi in real-time, we follow the GLB

solution that is optimized with respect to q̂j(p), ∀j. We call the cost by

this strategy as “fake” cost of q̄j(p), ∀j. Clearly, the fake cost is an upper

bound of the objective value of q̄j(p), ∀j, since we do not follow its optimal

strategy in the second stage. We will show that the “fake” cost of q̄j(p), ∀j
cannot be larger than the objective value of q̂j(p), ∀j, which will complete

our proof.

Note that the strategies of the “fake” cost of q̄j(p), ∀j and the objective

value of q̂j(p), ∀j share the same GLB strategy. Then both the electricity

demands after GLB vj, ∀j and the bandwidth costs bcost(·) are the same. It

will be sufficient to only compare their electricity costs for each datacenter,

as shown in the following two cases.

Case 1. For the MCP realization pj with pj < μRT
j , the electricity procurements

and the day-ahead electricity costs for q̂j(p) and q̄j(p) are the same,

so as the real-time electricity costs.

Case 2. For the MCP realization pj with pj ≥ μRT
j , the solution q̂j(p) will

purchase q̂j = q̂j(pj) > 0 amount of electricity from the day-ahead

market, and the q̄j(p) will not purchase any electricity from the day-

ahead market. Then the electricity cost for q̂j(p) will be pj q̂j+μRT
j (vj−

q̂j)
+ − βpj(q̂j − vj)

+ and the electricity cost for q̄j(p) will be μRT
j vj.
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– If vj ≥ q̂j,

pj q̂j + μRT
j (vj − q̂j)

+ − βpj(q̂j − vj)
+

=pj q̂j + μRT
j (vj − q̂j)

=μRT
j vj + (pj − μRT

j )q̂j

≥μRT
j vj.

The last step is by the fact that pj ≥ μRT
j .

– If vj < q̂j,

pj q̂j + μRT
j (vj − q̂j)

+ − βpj(q̂j − vj)
+

=pj q̂j − βpj(q̂j − vj)

=pj(q̂j − vj) + pjvj − βpj(q̂j − vj)

=(1− β)pj(q̂j − vj) + pjvj (13.5)

≥μRT
j vj.

The last step is by the fact that the first term of (13.5) is positive

and pj ≥ μRT
j .

13.14 Proof of Lemma 6

Proof. It would be sufficient to show that EPj ,Vi,i,j=1:N

[
CS2

(
[qj(p)]j=1:N

)]
is convex in qj(p), ∀j since EPj

[Pjqj(Pj)] is linear in qj(p). Towards this

end, we will show that, for any Pi and Ui realization (one scenario),

CS2
(
[qj(p)]j=1:N

)
is convex in qj(p), ∀j.
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Given two solutions q1j (p), ∀j, q2j (p), ∀j, and their convex combination

q3j (p) = αq1j (p) + (1− α)q2j (p) with δ ∈ [0, 1], we will show that

CS2
([

q3j (p)
]
j=1:N

)
≤ δCS2

([
q1j (p)

]
j=1:N

)
+ (1− δ)CS2

([
q2j (p)

]
j=1:N

)
.

We denote ecj (qj(p),α) = ecostj (α) as the real-time electricity cost by

bidding curve qj(p). We can have CS2
([

q3j (p)
]
j=1:N

)
= ecj (qj(p),α

∗) +

bcost(α∗), where α∗ is the corresponding optimal GLB solution in that

scenario.

We firstly prove that ecj (qj(p),α) is convex in (qj(p),α) , ∀j, which
would be clear if we rewrite it in a composition form. Specifically, let

u(w) = μRT
j w++βpjw

− 2 and A(qj(p),α) =
∑

i uiαij − qj(p). We can have

ecj (qj(p),α) = u (A (qj(p),α)). Note that due to (11.1), μRT
j ≥ βpj and

the function u(w) is convex in w. Also, A(qj(p),α) is an affine function of

(qj(p),α). According to Chapter 3.2.2 of [13] (Composition with an affine

mapping preserves convexity.), ecj (qj(p),α) = u (A (qj(p),α)) is convex in

(qj(p),α).

Our argument proceeds as follows. Denoting αk∗ as the corresponding

2w+ =

⎧⎪⎨
⎪⎩
w,w ≥ 0

0, w < 0
and w− =

⎧⎪⎨
⎪⎩
0, w ≥ 0

w,w < 0
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optimal solution for qkj (p) in that scenario, we can have

δCS2
([

q1j (p)
]
j=1:N

)
+ (1− δ)CS2

([
q2j (p)

]
j=1:N

)
=δ

[∑
j

ecj
(
q1j (p),α

1∗)+ bcost(α1∗)

]
+ (1− δ)

[∑
j

ecj
(
q2j (p),α

2∗)+ bcost(α2∗)

]
(Ea)≥
∑
j

ecj
(
δq1j (p) + (1− δ)q2j (p), δα

1∗ + (1− δ)α2∗)+ bcost(δα1∗ + (1− δ)α2∗)

=
∑
j

ecj
(
q3j (p), δα

1∗ + (1− δ)α2∗)+ bcost(δα1∗ + (1− δ)α2∗)

(Eb)≥
∑
j

ecj
(
q3j (p),α

3∗)+ bcost(α3∗)

=CS2
([

q3j (p)
]
j=1:N

)
,

where (Ea) is from the convexity of ecj
(
qkj (p),α

)
and (Eb) is from the

optimality of α3∗ for q3j (p).

The proof is completed.

� End of chapter.
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