
AIO-TFRC: A Light-weight Rate Control Scheme
for Streaming over Wireless

Minghua Chen and Avideh Zakhor

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720

{minghua, avz}@eecs.berkeley.edu

Abstract— Rate control is an important issue in video stream-
ing applications for both wired and wireless networks. A widely
accepted rate control method in wired networks is TCP Friendly
Rate control (TFRC). TFRC assumes that packet loss in wired
networks is primarily due to congestion, and as such is not
directly applicable to wireless networks in which the main
cause of packet loss is at the physical layer. In our previous
work, we proposed MULTFRC as an end-to-end based solution
to this problem. By opening appropriate number of TFRC
connections, MULTFRC not only avoids modifications to the
network infrastructure or protocol stack, but also results in full
utilization of the wireless channel. In this paper, we propose
an alternative end-to-end approach to MULTFRC, denoted by
AOI-TFRC. AIO-TFRC enjoys all the advantages of MULTFRC
except that it combines multiple connections into one connection
in order to reduce implementation complexity, and undesirable
consequences of “quantization effect” associated with MULT-
FRC. NS-2 simulations are carried out to characterize AIO-
TFRC’s performance, and to show its fairness with respect to
TCP. The reduced complexity of AIO-TFRC makes it appealing
for actual implementations on mobile handheld devices.

I. INTRODUCTION

Rate control is an important issue for streaming in both
wired and wireless networks. On one hand, too low of a
streaming rate could underutilize the network bandwidth; on
the other hand, too aggressive of a streaming rate could result
in serious congestion collapse at the shared bottlenecks [1]. A
widely accepted rate control method in wired networks is TCP
friendly Rate Control (TFRC) [2]. This is an equation based
rate control in which the TCP [1] Friendly rate is computed
as a function of packet loss rate, round trip time and packet
size. Both TCP and TFRC assume that packet loss in wired
networks is primarily due to congestion, and as such are not
applicable to wireless networks in which the main cause of
packet loss is at the physical layer. In previous work, we
have shown that this results in underutilization of the wireless
channel [3]. Hence rate control for streaming applications over
wireless is still an open problem.

There have been a number of efforts to improve the per-
formance of TCP or TFRC over wireless [4]–[9]. Snoop, a
well-known solution, is a TCP-AWARE local retransmission
link layer approach [4]. A Snoop module resides on the router
or base station on the last hop wireless link, and records a
copy of every forwarded packet. Assuming snoop module can
access TCP acknowledgement packets (ACK) from the TCP

receiver, it looks into the ACK packets and carries out local
retransmissions when a packet is corrupted by wireless channel
errors. It is easy to modify this scheme to improve TFRC’s
performance.

End-to-end statistics can also be used to help detect conges-
tion when a packet is lost [5], [6], [8]. The main observations
behind these schemes are as follows. First, one way delay
between a sender and a receiver increases monotonically if
there is congestion. Second, inter-arrival time is expected to
increase if there are packet losses caused by wireless channel
errors.

Tang et. al. have proposed the idea of using small dummy
packets to actively probe the network, so as to differentiate
between packet loss due to congestion and that due to channel
error [7]. Yang et. al. [9] propose a cross-layer scheme
that uses link layer information at the receiver to determine
whether a packet loss is caused by wireless channel errors or
congestion, assuming only the last link is wireless.

All these approaches either hide end-hosts from discovering
packet loss caused by wireless channel error, or provide end-
hosts the ability to differentiate between packet loss caused by
congestion, and that caused by wireless channel error. They
achieve this by either modifying the network infrastructure or
the protocol stack, potentially making them hard to deploy in
practice.

Our recently proposed approach, MULTFRC [3], improves
the performance of TFRC over wireless networks by measur-
ing the round trip time (RTT), and adjusting the number of
TFRC connections of the streaming application accordingly.
Specifically, it decreases the number of connections multi-
plicatively if RTT shows an increasing trend, and increases
inversely it otherwise. We have shown in [3] that MULTFRC
can control the number of connections around the optimal
value to achieve the highest throughput and lowest packet
loss rate, with no modification to the network infrastructure
or the protocol stack. This makes MULTFRC different from
all the existing approaches in that it is fairly straightforward
to deploy.

Nevertheless, if the optimal number of connections is non-
integer, MULTFRC oscillates around the fractional optimal,
resulting in both large throughput variability and underutiliza-
tion. This so called “quantization effect” is most serious when
the optimal number of connections is small, e.g. between 1 and



3. Moreover, operating multiple connections in one application
requires more resources than one connection; these include
ports, memory, feedback signalling, and computation power.
These make MULTFRC inefficient, especially for implemen-
tation on low power, resource-limited handheld devices.

In this paper, we propose an improved scheme, called ALL-
IN-ONE TFRC (AIO-TFRC), to address these drawbacks of
MULTFRC. We achieve this by integrating the control law
for the number of connections in MULTFRC into one TFRC
connection with the same utilization performance as that of
MULTFRC. NS-2 simulations are carried out to evaluate AIO-
TFRC’s performance, and to show its fairness with respect to
TCP.

Related work in [10] has proposed improvements to MULT-
FRC, at the cost of modifying TFRC protocol. It follows the
same strategy as MULTFRC in that it controls the way TFRC
computes loss event rate, and hence controls the sending rate
accordingly. However, this work is still a multiple connection
approach, and as such suffers from the quantization effect;
furthermore it is more complex than AIO-TFRC, and its
fairness with respect to TCP is not evaluated in [10].

The rest of the paper is structured as follows. In Section
II, we briefly review MULTFRC. We propose AIO-TFRC in
Section III, followed by NS-2 simulation results in Section IV.
Section V includes discussions and conclusions.

II. OVERVIEW OF MULTFRC

We have shown in Theorem 1 in [3] that if the packet
loss rate caused by wireless channel error, denoted by pw, is
high enough, then wireless connection suffers from bandwidth
underutilization. Furthermore, for a given network setting,
there is an optimal number of connections1 for an application
to achieve the highest possible throughput and minimum
packet loss rate. Opening more connections than the optimal
results in an increase in RTT, and subsequently an increase in
end-to-end packet loss rate [3], [11].

A strategy leading to the optimal number of connection,
hence the optimal performance, can then be described as:
keep increasing the number of connections until an additional
connection results in increase of end-to-end RTT or packet
loss rate, which indicates the full utilization of the bottleneck
links.

Following this strategy, MULTFRC measures the RTT, and
adjusts the number of connections so as to (a) utilize the
wireless bandwidth efficiently, and (b) ensure fairness be-
tween applications. Specifically, it measures the average RTT,
denoted by ave rtt, and Inversely Increases and Additively
Decreases (IIAD(α, β)) the number of virtual connections,
denoted by n, based on the following law:

n =
{

n− β, if ave rtt− rtt min > γ rtt min;
n + α/n, otherwise.

(1)
where rtt min is the minimum ave rtt seen so far, and α, β,
and γ are preset parameters empirically chosen to be α = β =

1Not necessarily an integer.

1, γ = 0.25 [3]. MULTFRC quantizes n to its closest integer
number, denoted by n̄, and opens multiple TFRC connections
accordingly.

For a given route, ave rtt−rtt min corresponds to current
queuing delay, and γrtt min is a threshold on the queuing de-
lay that MULTFRC can tolerate before it starts to decrease n.
Thus by evaluating the relation between ave rtt and rtt min,
MULTFRC detects full utilization of network bottleneck, and
controls n accordingly.

In [3], [11], we have evaluated the performance of MULT-
FRC system through NS-2 simulations and actual experiments
over Verizon Wireless 1xRTT CDMA data network. Sim-
ulations and experiments have shown that MULTFRC can
achieve reasonable utilization of the wireless bandwidth, does
not starve applications that use one TCP connection, and
significantly improves video streaming performance.

However, there are two drawbacks associated with MULT-
FRC. First drawback has to do with bandwidth underutiliza-
tion, and the second one with implementation complexity.
We will begin with utilization drawback. NS-2 simulations in
[3] show that although MULTFRC performs reasonably well,
there is still some gap between its throughput and the optimal.
Specifically, MULTFRC achieves only 77% utilization for
pw = 0.02. This suboptimal performance has two causes. First
one is the control behavior described in (1): as described, n is
decreased when the full utilization of bottlenecks is detected,
and is inversely increased until the next full utilization is
detected. During this period, bottlenecks stay underutilized,
resulting in suboptimal average throughput. It is impossible
to remove this sub-optimality determined by the control law
without changing the law. The second reason for bandwidth
underutilization is the “quantization effect” in MULTFRC
whereby in practice the number of connections is forced
to be an integer. This loss of granularity typically results
in bandwidth underutilization. For example, if the optimal
number of connections has been determined to be 1.5, then
n is forced to take fractional values between 1 and 3, e.g. 1,
1.25, 1.45, 2.14, 1.14, ..., as dictated by (1). MULTFRC then
quantizes n to the closest integer to oscillate between one and
two, resulting in loss of throughput granularity. This effect can
be eliminated by avoiding the quantization step.

The second drawback of MULTFRC is of a more practical
nature. Operating multiple connections in one application
could potentially consume too much system resources. For
example, each TFRC connection uses a different port to send
out data packets, carries out individual feedback process, and
updates the loss event rate and RTT even though they are
highly correlated for these TFRC connections. Clearly, there is
unnecessary overhead associated with operating multiple con-
nections, in terms of computation, processing power, memory,
and ports, particularly for today’s low power, resource-limited
handheld devices.

III. ALL-IN-ONE TFRC (AIO-TFRC

In this section, we propose an alternative to MULTFRC,
called ALL-IN-ONE TFRC (AIO-TFRC), in order to address



the two drawbacks of MULTFRC, while retaining the same
control law for n as in MULTFRC.

To achieve this goal, we integrate the bandwidth filtered
loss detection (BFLD) technique from [12], to be described
shortly, together with the control law in (1) to construct the
AIO-TFRC system. The system framework is shown in Fig. 1.
Basically, the Sink at the receiver feeds back the RTT and loss
event rate to the sender. The sender then adjusts of n based on
(1), and sends out the data packets at a rate of n times that of
one TFRC’s sending rate. The functionalities of AIO-TFRC
senders and receivers are described as follows:

Fig. 1. The system framework of AOI-TFRC.

• Sender: There are two functional components in the
sender. One component is represented by the “compute n”
block. It receives the RTTs from the receiver, computes
an ave rtt, by averaging these RTT samples over a 20
second window, then updates n according to (1) every
20 seconds, i.e. using the same law as MULTFRC. For
AIO-TFRC, we choose α = β = 1, and γ = 0.5.
The other component is represented by the
“TFRC+BFLD” block, and it has two functionalities:
first, it obtains the updated n from the “compute n”
component, as well as the loss event rate from the
receiver. It then computes the TCP friendly rate of one
TFRC connection as the standard TFRC does [2], and
adjusts the sending rate to be n times that of one TFRC.
The second functionality of the “TFRC+BFLD” block
in the sender is to mark the headers of selected data
packets before they are sent out. The data packets to
mark are selected in such a way that they form a
virtual single TFRC flow, and hence correspond to 1/n
of all the outgoing packets. For example, if n = 1.5,
then “TFRC+BFLD” evenly marks 2/3 of all outgoing
packets. The reason for the marking is to facilitate the
loss event rate measurement at the receiver.

• Receiver: The AIO-TFRC Sink component reports the
RTT and the loss event rate of the virtual TFRC connec-
tion to the sender every RTT. The only difference between
the AIO-TFRC Sink and the original TFRC Sink is that
the AIO-TFRC Sink measures and updates the loss event
rate based on the virtual TFRC flow with marked packets.

We now explain the reasoning behind the marking process.
It has been argued in [12] that if the sending rate of the
application is adjusted to be n times that of one TFRC, then
TFRC Sink at the receiver underestimates the loss event rate
based on using all the received packets. TFRC Sink records

the beginning of a loss event when a packet loss is detected.
The loss event ends when, after a period of one RTT, another
packet loss is detected. A loss event interval is defined as
the difference in sequence numbers between the above two
lost packets; the loss event rate is thus estimated by taking the
inverse of this difference. In the case where all the packets are
used to estimate loss event rate, since the number of packets
received by TFRC Sink is n times that of one TFRC, the
above procedure tends to underestimate the loss event rate.
To overcome this problem, we sample the outgoing packets
at the sender to form a single virtual TFRC stream at the
sender, and modify TFRC Sink to carry out the loss event
rate measurement based on this virtual stream. This is the
functionality of BFLD as verified in [12].

We now explain the reason to choose a larger γ in AIO-
TFRC than in MULTFRC. MULTFRC achieves n TFRC
flow shares by opening n̄ independent TFRC connections,
while AIO-TFRC achieves n flow shares by opening one
connection and sending at n times the sending rate of one
TFRC connection. In situations where the throughput of each
TFRC connection is a function of the random packet loss rate,
e.g. that caused by random wireless channel error, it is well
known the latter method results in a higher variance in the
aggregate sending rate. Since the queueing delay along the
route is a function of the aggregate sending rate, AIO-TFRC
experiences higher queuing delay variance along the path.
Therefore, in order to achieve the same level of confidence
in the measured queueing delay, used to adjust n in (1), AIO-
TFRC needs a larger threshold than MULTFRC. In this paper,
we have empirically chosen γ = 0.5.

IV. SIMULATION RESULTS

In this section, we carry out NS-2 simulations to evaluate
the performance of AIO-TFRC. Specifically, we examine three
issues in these simulations: (a) how AIO-TFRC performs
in terms of average throughput, average RTT, and packet
loss rate, as a function of pw, and how it compares with
MULTFRC; (b) whether n is stable; (c) whether or not AIO-
TFRC is fair to TCP. In all the simulations, throughput is
measured every 10 seconds, packet loss rate is measured every
30 seconds, the average RTT is measured every 100 packets,
and the number of connections is sampled whenever there is
a change.

2Mbps, 20ms 1.6Mbps, 10 ms 1Mbps, 40ms
s r

wireless link

2Mbps, 20ms 1.6Mbps, 10 ms 1Mbps, 40ms
s r

wireless link

Fig. 2. The simulation topology for AIO-TFRC’s utilization evaluation.

The topology used in simulations for utilization evaluation
is shown in Fig. 2. The sender is denoted by s, and the receiver
is denoted by r. They both run AIO-TFRC at the application
layer. For the simulations, the wireless bandwidth, denoted by
Bw, is set be 1 Mbps and is assumed to be the bottleneck.
The wireless link is modeled by an exponential error model,
and the wireless packet loss rate pw varies from 0.0 to 0.08



in increments of 0.02. DropTail type queue is used for each
node.

We simulate the AIO-TFRC system to stream for 9000
seconds. The average throughput, end-to-end packet loss rate,
average RTT, and average n for pw =0.0, 0.02, 0.04, 0.06 and
0.08 are shown in Fig. 3, where RTTmin = 168 ms. As seen,
the throughput is within 15% of the optimal, and the packet
loss rate is almost identical to the optimal, i.e. a line of slope
one as a function of wireless channel error rate. As expected,
the average n increases with wireless channel error rate, pw.
2

0

200000

400000

600000

800000

1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

AIO-TFRC
the otpimal
MULTFRC

0

0.02

0.04

0.06

0.08

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d 

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
(b)

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
nd

-t
o-

en
d 

ro
un

d 
tr

ip
 ti

m
e 

(s
)

Wireless channel error rate (packet level)
(c)

0
1
2
3
4
5
6
7
8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

A
ve

ra
ge

 n

Wireless channel error rate (packet level)
(d)

Fig. 3. NS-2 simulations for Bw = 1 Mbps and RTTmin = 168 ms; (a)
throughput, (b) end-to-end packet loss rate, (c) end-to-end RTT, (d) number
of connections, all as a function of packet error rate on the wireless channel.

The throughput of MULTFRC is also shown in Fig. 3(a)
for comparison. As seen, AIO-TFRC has almost the same
throughput as MULTFRC when pw is high, while it signif-
icantly outperforms MULTFRC when pw is low. For example,
when pw = 0.02, AIO-TFRC achieves 95% utilization of

2Note the RTT for pw = 0 is not shown in Fig. 3 because it represents the
channel error free case in which MULTFRC reduces to one TFRC connection.

the wireless bandwidth, while MULTFRC’s utilization is only
77%. Therefore, by avoiding the “quantization effect”, AIO-
TFRC achieves better throughput performance than MULT-
FRC.

To examine the dynamics of AIO-TFRC systems, we show
throughput, the number of virtual connections n, packet loss
rate, and average RTT as a function of time for pw = 0.04
in Figure 4. As seen, the throughput and the number of
connections are quite stable; as expected, packet loss rate
is around 0.04 and RTT is properly controlled to be around
γRTT min. Similar results are obtained for other values of
pw.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

n

Time (s)

0
0.01
0.02
0.03
0.04
0.05
0.06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d 

pk
t l

os
s 

ra
te

Time (s)

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3
0.32
0.34
0.36

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
g 

rt
t (

s)

Time (s)

Fig. 4. NS-2 simulations for Bw = 1Mbps and pw = 0.04; (a)throughput,
(b) number of connections , (c) end-to-end packet loss rate, (d) end-to-end
RTT, all as a function of time.

To investigate the fairness of AIO-TFRC, we carry out NS-2
simulations based on the “dumbbell” topology shown in Fig.
5. Senders are denoted by si, i = 1, . . . , 16, and receivers
are denoted by di, i = 1 . . . , 16. We investigate two types of
fairness: the inter-protocol fairness between AIO-TFRC and
TCP, and the intra-protocol fairness within AIO-TFRC.

The intra-protocol fairness is defined as the fairness between
AIO-TFRC flows. In our simulations, we run AIO-TFRC on
all 16 sender-receiver pairs shown in Fig. 5 for 5000 seconds,
and compare their throughput. AIO-TFRC is said to be intra-



Fig. 5. The simulation topology for AIO-TFRC’s fairness evaluation.

protocol fair if all receivers get the same throughput. The
fairness ratios for pw = 0.01 and pw = 0.04 are shown in
Table I. The fairness ratio is defined as receivers’ throughput
divided by the average throughput; the closer to one, the
more fair the AIO-TFRC system is. As seen, the fairness
ratio is fairly close to one, indicating AIO-TFRC flows are
fair to each other, at least in this simulation setting. The
bandwidth utilization ratios are 95% for pw = 0.01 and 98%
for pw = 0.04.

TABLE I
SIMULATION RESULTS FOR INTRA-PROTOCOL FAIRNESS OF AIO-TFRC.

receiver fairness fairness receiver fairness fairness
ratio ratio ratio ratio

pw=0.01 pw=0.04 pw=0.01 pw=0.04
d1 1.00 0.99 d9 1.02 1.03
d2 0.99 0.99 d10 0.98 0.98
d3 0.96 1.00 d11 0.97 1.01
d4 0.99 0.97 d12 0.99 0.99
d5 1.05 0.95 d13 0.99 1.01
d6 1.04 1.01 d14 1.01 0.97
d7 1.03 1.02 d15 1.01 0.98
d8 1.02 1.03 d16 0.96 1.02

The inter-protocol fairness is defined as the fairness between
AIO-TFRC and TCP3. In our simulations, we run AIO-TFRC
on the first 8 sender-receiver pairs, i.e. (si, di), i = 1, . . . , 8,
and TCP on the remaining 8 sender-receiver pairs shown in
Fig. 5; each session lasts 5000 seconds, and we compare their
throughput for pw = 0.01 and pw = 0.02. Under the simula-
tion settings, each AIO-TFRC consumes more bandwidth than
one TCP under full utilization. This is because in this case, the
wireless channel error rate is large enough to make the number
of virtual connections of each AIO-TFRC to be larger than
one. Hence, it is meaningless to define the fairness between
AIO-TFRC and TCP as having the same throughput.4 As such,
in our simulations, we define AIO-TFRC to be fair to TCP if it
does not result in a decrease in TCP’s throughput. Specifically
for our simulations, it implies TCP retains the same throughput
whether or not it coexists with AIO-TFRC under the same
network setting. The throughput of AIO-TFRC and TCP, as

3We use TCP SACK implementation in simulations.
4Obviously, there are situations in which AIO-TFRC ends up with perform-

ing similar to one TFRC. An example would be AIO-TFRC competing for
bandwidth with TCP on wired networks. In that case, however, the fairness
between AIO-TFRC and TCP is reduced to the fairness between TFRC and
TCP, and has been well explored in [2].

well as the total bandwidth utilization ratios for the setup
shown in Fig. 5, are shown in Table II for two scenarios:
(a) 8 AIO-TFRC coexisting with 8 TCP connections, (b) 16
TCP connections. Figs. 6 and 7 also show the dynamics
of throughput, packet loss rate, RTT, and the number of
virtual connections n. Comparing AIO-TFRC+TCP with TCP-
alone, we see the former has a much higher utilization of the
wireless bandwidth at the expense of lower TCP throughput.
A careful examination of Fig. 6 reveals that this throughput
drop is caused by the higher RTT for AIO-TFRC+TCP as
compared with TCP-alone. For example, for pw = 0.01 and
γ = 0.5, AIO-TFRC+TCP experiences around 0.6 seconds
RTT, while TCP-alone only experiences 0.5 seconds RTT, i.e.
the propagation delay. As TCP’s throughput is known to be
inversely proportional to RTT, the 20% increase in the RTT
explains the 16% decrease in the TCP’s throughput shown in
first row in Table II.

TABLE II
SIMULATION RESULTS FOR FAIRNESS BETWEEN AIO-TFRC AND TCP.

settings 8 AIO-TFRC + 8 TCP 16 TCP
ave. thput. ave. thput. utili- ave. thput. utili-

(AIO-TFRC) (TCP) zation (TCP) zation
(kbps) (kbps) (%) (kbps) (%)

pw=0.01 436.501 168.048 98 200.168 65
γ=0.5

pw=0.01 379.656 185.286 91 200.168 65
γ=0.1

pw=0.02 486.821 120.313 99 139.674 46
γ=0.5

pw=0.02 449.226 130.953 95 139.674 46
γ=0.1

This increase in the RTT is, by design, a consequence of
AIO-TFRC controlling the number of virtual connections n ac-
cording to (1). As n is only decreased after the queuing delay
exceeds the threshold γrtt min, round trip time is increased
when AIO-TFRC increases n to achieve full utilization. One
way to address this problem is to use a smaller value for γ, in
order to reduce the increase in the RTT, and hence minimize
the TCP’s throughput drop. However, smaller values of γ
also results in lower bandwidth utilization due to increased
sensitivity of AIO-TFRC to RTT measurements. As shown
in Table II, γ = 0.1 results in a smaller drop in the TCP’s
throughput than γ = 0.5.

V. DISCUSSION AND CONCLUSION

In this paper, we have proposed AIO-TFRC to enhance
our previously proposed MULTFRC scheme to address two
drawbacks. The first one is the “quantization effect”, the
second one is the control overhead of operating multiple
connections. AIO-TFRC achieves these goals by creating one
connection whose throughput is equivalent to that of the
optimal number of TFRC connections even though the optimal
number could be non-integer. It does so by measuring round
trip times, adjusting the number of virtual connections based
on the measurements, and using BFLD technique within one
connection. NS-2 simulations show that AIO-TFRC achieves



0
100000
200000
300000
400000
500000
600000
700000
800000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

one AIO-TFRC thput
one tcp thput

1
1.5

2
2.5

3
3.5

4
4.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

n

Time (s)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d 

pk
t l

os
s 

ra
te

Time (s)

0.45
0.5

0.55
0.6

0.65
0.7

0.75

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt 
(s

)

Time (s)

Fig. 6. NS-2 simulation results for the case pw = 0.01, γ = 0.5: the
dynamics of (a)throughput, (b) number of connections , (c) end-to-end packet
loss rate, (d) end-to-end RTT, all as a function of time.

similar throughput as MULTFRC in high packet loss rate
situation, but better throughput than MULTFRC at the low
packet loss rate scenarios. The simulations also shows that
AIO-TFRC is relatively fair to TCP, and highly fair to itself.

Future work includes reducing the throughput variance of
AIO-TFRC. This can be done by first measuring multiple
instances of loss event rates over multiple virtual streams
separately, and then computing aggregate sending rate as the
sum of the individual sending rates. The cost associated with
this approach is the computational power and memory of
handheld devices. It would also be interesting to explore the
effect of γ on the trade-off between AIO-TFRC’s fairness with
respect to TCP and the utilization of wireless bandwidth.

ACKNOWLEDGEMENT

The authors would like to thank Ketan Mayer-Patel for
mentioning BFLD technique to us at the INFOCOM 2004
conference.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIG-
COMM, Stanford, CA, Aug. 1998, pp. 314–329.

[2] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proc. ACM SIGCOMM,
Stockholm, Sweden, Aug. 2000, pp. 43–56.

0
100000
200000
300000
400000
500000
600000
700000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

one AIO-TFRC thput
one tcp thput

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

n

Time (s)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d 

pk
t l

os
s 

ra
te

Time (s)

0.48
0.5

0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt 
(s

)

Time (s)

Fig. 7. NS-2 simulation results for the case pw = 0.01, γ = 0.1:
(a)throughput, (b) number of connections , (c) end-to-end packet loss rate,
(d) end-to-end RTT, all as a function of time.

[3] M. Chen and A. Zakhor, “Rate control for streaming video over
wireless,” in Proc. IEEE INFOCOM, Hongkong, China, Mar. 2004.

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A compari-
son of mechanisms for improving tcp performance over wireless links,”
IEEE/ACM Trans. Networking, vol. 5, no. 6, pp. 756–769, 1997.

[5] N. Samaraweera, “Non-congestion packet loss detection for tcp error
recovery using wireless links,” IEE Proceedings of Communications.

[6] S. Cen, P. Cosman, and G. Voelker, “End-to-end differentiation of
congestion and wireless losses,” IEEE/ACM Trans. Networking, vol. 11,
no. 5, pp. 703–717, 2003.

[7] J. Tang, G. Morabito, I. F. Akyildiz, and M. Johnson, “Rcs: A rate
control scheme for real-time traffic in networks with high bandwidth-
delay products an high bit error rates,” in Proc. IEEE INFOCOM,
Alaska, USA, Apr. 2001, pp. 114–122.

[8] G. Yang, M. Gerla, and M. Y. Sanadidi, “Adaptive video streaming in
presence of wireless errors,” in Proc. ACM MMNS, San Diego, USA,
Jan. 2004.

[9] F. Yang, Q. Zhang, W. Zhu, and Y.-Q. Zhang, “End-to-end tcp-friendly
streaming protocol and bit allocation for scalable video over mobile
wireless internet,” in Proc. IEEE INFOCOM, Hongkong, China, Mar.
2004.

[10] X. Tong and Q. Huang, “Multfrc-lerd: An improved rate control scheme
for video streaming over wireless,” in Proc. 5th Pacific Rim Conference
on Multimedia, Tokyo, Japan, Nov. 2004, pp. 282–289.

[11] M. Chen and A. Zakhor, “Transmission protocols for streaming video
over wireless,” in Proc. ICIP, Singapore, Oct. 2004, pp. 1743–1746.

[12] D. E. Ott, T. Sparks, and K. Mayer-Patel, “Aggregate congestion control
for distributed multimedia applications,” in Proc. IEEE INFOCOM,
Hongkong, China, Mar. 2004.


