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ABSTRACT

We present a novel energy-based algorithm to estimate the po-
sitions of microphones and speakers in an ad hoc microphone array
setting. Compared to traditional time-of-flight based approaches,
energy-based approach has the advantage that it does not require
accurate time synchronization. This property is particularly useful
for ad hoc microphone arrays because highly accurate synchro-
nization across microphones may be difficult to obtain since these
microphones usually belong to different devices. This new algo-
rithm extends our previous energy-based position estimation algo-
rithm [1] in that it does not assume the speakers are in the same
positions as their corresponding microphones. In fact, our new
algorithm estimates both the microphones and speakers simulta-
neously. Experiment results are shown to demonstrate its perfor-
mance improvement over the previous approach in [1], and evalu-
ate its robustness against time synchronization errors.

1. INTRODUCTION

How to use sensor arrays such as microphones and cameras to im-
prove meeting experience has attracted a lot of interests in the
research community and the industry in the past several years.
More and more meeting rooms use dedicated devices with built-in
microphone arrays such as Polycom’s SoundStation [2] and Mi-
crosoft’s RingCam [3]. Microphone arrays are used to enhance
audio quality as well as to localize speakers for camera directing.
Since the individual microphones in a microphone array device
are time synchronized and the geometry of the microphones are
known, techniques based on time delay of arrival are used to de-
termine the location of the speaker, known as sound source local-
ization (SSL). Once the sound source is localized, intelligent mix-
ing or beamformer picks up the sound and outputs higher quality
audio. Furthermore, the estimated speaker locations are used to
direct the video camera to point to the speaker providing better vi-
sual experience to the remote meeting participants. Over the past
decade, tremendous progress has been made on time delay estima-
tion, microphone array beamforming, and sound source localiza-
tion techniques. It is formidable to list all the references here.

In this paper, we address a different type of microphone ar-
ray, called ad hoc microphone array. An example of such an ad
hoc microphone array is a set of microphones built in the lap-
tops which are brought in by meeting participants. As portable
devices are becoming increasingly popular in collaborative envi-
ronments, many people bring their laptops and PDAs to meeting
rooms. Many of these devices are WiFi enabled and have built-in
microphones. They can easily form a network in an ad hoc fash-
ion. We would like to leverage such ad hoc microphone networks

to improve meeting experience.
Compared to traditional microphone arrays, on one hand, ad

hoc microphone arrays are spatially distributed and the microphones
are in general closer to the meeting participants. This is helpful
for both audio quality improvement and sound source localization.
Even in a meeting room with a dedicated microphone array de-
vice, the ad hoc microphone array could potentially help the ded-
icated microphone array device to obtain better audio quality and
more accurate sound source localization since the ad hoc micro-
phones are closer to the speakers. On the other hand, ad hoc mi-
crophone arrays present many technical challenges including (1)
Microphones are not synchronized; (2) The array geometry is un-
known; (3) Microphones have different and unknown gains; and
(4) Microphones have different signal to noise (SNR) ratios.

Lienhart et. al. [4] developed a system to synchronize the au-
dio signals by having the individual microphone devices to send
special synchronization signals over a dedicated link. Raykar et.
al. [5] developed an algorithm to calibrate the positions of the mi-
crophones and loudspeakers by having each loudspeaker to play a
coded chirp. Time of flight can be reliably estimated by matching
the special chirp signals.

In a meeting room environment, having the devices to play
special signals may be distracting to people especially in the mid-
dle of the meeting when a device changes position or a new device
joins in the network. A more natural approach is to estimate the
positions based on human speech signals.

Recently Liu et. al. [1] developed an energy-based technique
to estimate the microphone positions and gains based on human
speech signals. They used audio signal energy decays to estimate
the distances between the devices. After obtaining the pairwise
distance estimations, they used a multidimensional scaling tech-
nique to compute the coordinates.

One limitation of their technique is that it assumes each speaker
is at the same position as the corresponding microphone. In this
paper, we present a more general framework that does not have
this limitation. With this new technique, we are able to estimate
both the microphone and speaker positions simultaneously. We
show experiment results to demonstrate its performance improve-
ment over the previous approach in [1], and evaluate its robustness
against time synchronization errors.

2. FORMULATION OF ENERGY-BASED POSITION
ESTIMATION

Suppose there arem microphones andn speakers in a meeting
room. We assume they are on the same 2-D plane. Letzi(t), i =
1, ..., m denote the audio stream captured by thei-th microphone.
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Let aij denote the average energy of the audio segment inzi(t)
that corresponds toj-th person’s speech. Letsj denote the average
energy ofj-th person’s original speech which is unknown. We
sometimes callsj the volume of speakerj. Let cij denote the
attenuation of personj’s speech when it reaches microphonei. Let
mi denote the gain of microphonei. In the absence of noise and
observation error,aij ismisjcij . Modelling noise and observation
error as a zero mean Gaussian random variable in log domain, we
express the noisy observationaij as follows,

ln(aij) = ln(misjcij) + εij , (1)

whereεij ∼ N(0, σ2
ij). This model is similar to the lognormal re-

ceiving power model widely used in wireless communication [6].
Let dij denote the Euclidean distance between microphonei

and speakerj. The relationship betweencij anddij is in general
modelled aslog10cij = −λlog10dij whereλ is a parameter de-
pending on the environment [7]. Since we are mainly interested in
meeting room environment, we measured a typical meeting room
in an office building and found thatλ is approximately1 [1]. Thus
we assumecij = 1

dij
.

Let P m
i = (xm

i , ym
i ) denote the position ofi-th microphone,

and P s
j = (xs

j , y
s
j ) denote the position ofj-th speaker. Then

Eqn. 1 can be expressed as
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We use maximum likelihood estimation to generate estimates
for the positions of microphones and speakers. The maximum like-
lihood estimates are given by solving the following problem:
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i ,ym

i ,sj ,xs
j ,ys

j
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1
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There are3(m+n) variables to estimate:mi, xm
i , ym

i , sj , xs
j ,

ys
j , i = 1, ..., m, j = 1, ..., n. Since the microphone and speaker

positions can only be determined up to a global translation and
rotation, and both microphone gains and speaker volumes can only
be determined up to a scaling, the actual number of uncertainty to
resolve for is3(m+n)−5. As the number of observations ismn,
the optimization problem is well defined ifmn ≥ 3(m + n)− 5.

3. INITIALIZATION

Eqn. 4 is a nonlinear optimization problem with non-convex objec-
tive function, and has no close form solution. As such, we solve
it by using a commonly used numerical optimization technique,
Levenberg-Marquardt method [8]. Due to the non-convexity of
the optimization problem, the numerical procedure often get stuck
in a local minima if the initial guesses are too far away from the
optimum solution.

In order to perform the maximum likelihood estimation, we
need to measureaij and δij , and generate good initial guesses.
We will focus on generating initial guesses in this section, and will
describe how to measureaij andδij in the next section.

In order to obtain reasonable initial guesses, we first assume
each speaker is at the same position as its corresponding micro-
phone and uses the technique as described in [1] to estimate mi-
crophone gains, microphone positions, and speaker volumes. The
correspondence between the speakers and microphones is deter-
mined heuristically based on SNR information. When the number
of speakers is larger than the number of microphones, we cluster
the speakers into groups so that the number of groups is the same
as the number of microphones. Each group is then treated as a
single speaker.

In the following, we briefly describe the procedures for esti-
mating microphone gains, microphone positions and speaker vol-
umes under the assumption that each speaker is as the same po-
sition as the corresponding microphone. For detailed derivations,
the reader is referred to [1].

First,cij are estimated by the following equation

cij =

r
aijaji

aiiajj
. (5)

Then we obtain the pairwise distances between the microphones
via the relationdij = 1

cij
. Given pairwise distancesdij , a Singu-

lar Value Decomposition (SVD) based Multidimensional Scaling
(MDS) Technique [9] is applied to compute the coordinates of the
microphones.

We estimate the relative microphone gains by

mj

mi
=

aji

aii

1

cji
. (6)

Since the gains are equivalent with respect to scaling, we can gen-
erate one set of microphone gains by settingm1 = 1 and use
Eqn. 6 to obtain the restmi. Based on estimatedcij andmi, the
speaker volumessj are estimated from the following equation:

sj =
aij

micij
. (7)

4. MEASUREMENT OF AVERAGE ENERGY AND
VARIANCE

To measureaij andσij , we first perform short window Fourier
transformation onzi(t). Let Zi(k, f) denote the transformed sig-
nal wherek is the frequency band andf is the frame number.
Denoteb(f) to be the total energy of framef , that is, b(f) =P

k |Zi(k, f)|2. Assume personj’s speech segment is fromf1 to
f2. Thenln(aij) andσij are computed as

ln(aij) =
1

f2 − f1 + 1

f2X
f=f1

ln(b(f)), (8)

σij =

sPf2
f=f1

(ln(b(f))− ln(aij))2

f2 − f1
. (9)

5. EXPERIMENT RESULTS

We use two sets of actual audio recordings to evaluate the perfor-
mance of our proposed algorithm. The recording was done in a
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meeting room of an office building. The reverberation time of the
room is approximately250 milliseconds.

In the first set of experiments, we place 7 synchronized stand-
alone microphones on a meeting room table to represent 7 laptops
and capture 7 people’s voice signals. These microphones have dif-
ferent gains and the gains are unknown. Each person was asked
to speak a short sentence. Since the microphones are synchro-
nized, the seven audio files can be perfectly aligned. Then speaker
segmentation is performed by finding the segment of the highest
SNR on each audio file. The details are omitted since this is not
the focus of this paper. To obtain the ground truth of microphone
positions, we used a ruler to measure the pairwise distances be-
tween the microphones. Since the stand-alone microphones are
quite small, the distance measurement is quite accurate. After the
pairwise distances are measured, we use the SVD-based MDS [9]
technique to compute the 2D coordinates from the measured dis-
tances. The resulting coordinates are used as the ground truth to
evaluate the performance of our algorithm. In Fig. 1, the points
marked with square signs are the ground truth of the seven micro-
phone positions. We did not measure the ground truth of human
speakers because people tend to move a lot when they are speaking
and it is difficult to reliably measure the mouth positions of human
speakers.

We first run the SVD algorithm in [1] to generate estimates
of microphone positions (as mentioned earlier, the speaker posi-
tions are assumed to be at the same positions as the correspond-
ing microphones), as well as microphone gains and speaker vol-
umes. We then run our proposed algorithm with the SVD results
as initial guess. Since the positions can only be determined up to
a global transformation (rotation, translation, and scale), we com-
pute a global transformation to align the estimated positions with
the ground truth positions. We define the estimation error as the
average distance between the aligned points and the ground truth
positions.

The results are shown in Fig. 1 where the blue dots are the
ground truth microphone positions, the green dots are microphone
positions estimated by our proposed algorithm, and the red dots
are estimated speaker positions. For visual comparison, the results
of the SVD algorithm are shown in Fig. 2.

There are two improvements as compared to the SVD result.
First, the estimation error of the SVD algorithm is 0.26 meters,
while the estimation error of our proposed algorithm is 0.15 me-
ters. The relative error reduction is 42%, which is significant. Sec-
ond, our proposed algorithm generates quite reasonable speaker
positions, which cannot be obtained by the previous SVD algo-
rithm.

To evaluate the robustness of our algorithm against the syn-
chronization error, we artificially introduce synchronization errors
by randomly shifting each audio channel. The amount of shifting
is generated by a random generator with a uniform distribution on
[−T, T ] whereT is a parameter that controls the average amount
of shift on the audio channels.

By choosing differentT values, we generate data with differ-
ent amount of time shift (synchronization error). The results are
shown in Fig. 3. The horizontal axis is the average amount of time
shift of the audio channels. The vertical axis is the estimation er-
ror. The blue curve is the estimation error of the SVD results. The
green curve is the estimation error of the results from our proposed
algorithm. We can see that both algorithms are quite robust to syn-
chronization errors. The estimation increases very slowly when
the average synchronization error is less than500 milliseconds.
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Figure 1: Estimated microphone and speaker positions on the syn-
chronized data set. The blue curve is the ground truth microphone
positions. The green curve and red curves are, respectively, the
microphone and speaker positions estimated by our algorithm.

This shows the robustness of the energy-based approach against
synchronization errors.

In addition, Fig. 3 shows that our proposed algorithm consis-
tently improves the SVD results as long as the average synchro-
nization error is no larger than0.8 seconds. When the time shift is
too big, SVD works better because of its regularization constraints
on the speaker positions.

We have also tested our algorithm on the audio data recorded
by laptops. We asked seven people each with a laptop sitting
around a meeting table. The seven laptops have different brands
and their microphone gains are unknown. Each person was asked
to speak a short sentence.

The audio files recorded by the laptops are roughly aligned
by detecting the first speech frame on each audio channel through
simple thresholding. To obtain the ground truth, we measured the
pairwise distances between the microphones on the laptops. The
microphones are located by visual inspection. We then use Multi-
dimensional Scaling technique to compute the 2D coordinates of
the laptop microphone positions.

Fig. 4 shows the results of our algorithm. Again, the blue
dots are the ground truth, the green dots are the microphone posi-
tions estimated by our algorithm and the red dots are the estimated
speaker positions. The estimation error of our proposed algorithm
is 0.21 meters. In comparison, the estimation error of the SVD al-
gorithm is 0.26 meters. Our algorithm achieves 20% relative error
reduction. Furthermore, the estimated speaker layout looks con-
sistent with the actual speaker positions.

6. CONCLUSIONS

In this paper, we have presented a new energy-based algorithm to
estimate the positions of both microphones and speakers in an ad
hoc microphone array setting. In our approach, noise in receiving
powers is modelled using lognormal distribution. We then perform
a maximum likelihood estimation on the observed receiving pow-
ers to generate the results. Compared to our previous energy-based
position estimation algorithm [1], the proposed algorithm has two
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Figure 2: Microphone and speaker positions estimated by the pre-
viously published SVD-based algorithm [1]. The blue dots are the
ground truth while the green dots are the microphone positions es-
timated by the SVD-based algorithm.

advantages. First, it does not assume the speakers are in the same
positions as their corresponding microphones, and can estimate
positions of microphones and speakers separately and simultane-
ously. Second, the new proposed scheme can generate more ac-
curate estimates for microphone position than the previous algo-
rithm. Results of actual experiment are shown to characterize the
performance of the proposed algorithm, and evaluate its robustness
against time synchronization errors.
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Figure 3: Performance evaluation when there are synchronization
errors between audio channels. The horizontal axis is the aver-
age amount of time shift in milliseconds. The vertical axis is the
estimation error in meters. The blue curve is the result from the
previous SVD algorithm. The green curve is the result from our
proposed algorithm.
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Figure 4: Results on the data set recorded by the laptops. The blue
dots are the ground truth positions of the laptop microphones. The
green and red dots are, respectively, the microphone and speaker
positions estimated by our algorithm.


