
Simple and E�ective Dynamic

Provisioning for

Power-proportional Data Centers

LU, Tan

A Thesis Submitted in Partial Ful�lment
of the Requirements for the Degree of

Master of Philosophy
in

Information Engineering

The Chinese University of Hong Kong
September 2012

Abstract of thesis entitled:
Simple and E�ective Dynamic Provisioning for Power-proportional

Data Centers
Submitted by LU, Tan
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in September 2012

Energy consumption represents a signi�cant cost in data center
operation. A large fraction of the energy, however, is used to
power idle servers when the workload is low. Dynamic provision-
ing techniques aim at saving this portion of the energy, by turning
o� unnecessary servers. In this thesis, we explore how much gain
knowing future workload information can bring to dynamic pro-
visioning. In particular, we develop online dynamic provisioning
solutions with and without future workload information available.
We �rst reveal an elegant structure of the o�ine dynamic pro-
visioning problem, which allows us to characterize the optimal
solution in a �divide-and-conquer� manner. We then exploit this
insight to design two online algorithms with competitive ratios
2 − α and e/ (e− 1 + α), respectively, where 0 ≤ α ≤ 1 is the
normalized size of a look-ahead window in which future workload
information is available. A fundamental observation is that fu-
ture workload information beyond the full-size look-ahead window
(corresponding to α = 1) will not improve dynamic provisioning
performance. Our algorithms are decentralized and easy to im-
plement. We demonstrate their e�ectiveness in simulations using
real-world traces.

When designing online algorithms, we utilize future input infor-

i

mation because for many modern systems, their short-term future
inputs can be predicted by machine learning, time-series analysis,
etc. We also test our algorithms in the presence of prediction
errors in future workload information and the results show that
our algorithms are robust to prediction errors. We believe that
utilizing future information is a new and important degree of free-
dom in designing online algorithms. In traditional online algo-
rithm design, future input information is not taken into account.
Many online problems have online algorithms with optimal but
large competitive ratios. Since future input information to some
extent can be estimated accurately in many problems, we believe
that we should exploit such information in online algorithm design
to achieve better competitive ratio and provide more competitive
edge in both practice and theory.

ii

iii

Acknowledgement

I would like to thank my supervisor Prof. Chen Minghua, whose
valuable advice and consistent encouragement are highly appreci-
ated. His attitude and spirit toward research and life will a�ect
me for the rest of my life. I would like to show my gratitude to
Prof. Lachlan Andrew for his valuable advice and great e�ort to
make this project better. I also thank all the people in our lab for
their help. It was so much fun with them. I also want to thank
Minghong Lin for sharing the code of his LCP algorithm, and Eno
Thereska for sharing the MSR Cambridge data center traces.

iv

This work is dedicated to my dear mother and father.

v

Contents

Abstract i

Acknowledgement iv

1 Introduction 1

1.1 Motivation . 1
1.2 Contributions . 4
1.3 Thesis Organization 5

2 Related Work 6

3 Problem Formulation 10

3.1 Settings and Models 10
3.2 Problem Formulation 13

4 Optimal Solution and O�ine Algorithm 15

4.1 Structure of Optimal Solution 15
4.2 Intuitions and Observations 17
4.3 O�ine Algorithm Achieving the Optimal Solution 18

5 Online Dynamic Provisioning 21

5.1 Dynamic Provisioning without FutureWorkload In-
formation . 22

5.2 Dynamic Provisioning with Future Workload Infor-
mation . 23

vi

5.3 Adapting the Algorithms to Work with Discrete-
Time Fluid Workload Model 31

5.4 Extending to Case Where Servers Have Setup Time. 32

6 Experiments 35

6.1 Settings . 35
6.2 Performance of the Proposed Online Algorithms . 38
6.3 Impact of Prediction Error 39
6.4 Impact of Peak-to-Mean Ratio (PMR) 40
6.5 Discussion . 40
6.6 Additional Experiments 41

7 A New Degree of Freedom for Designing Online

Algorithm 44

7.1 The Lost Cow Problem 45
7.2 Secretary Problem without Future Information . . 47
7.3 Secretary Problem with Future Information 48
7.4 Summary . 50

8 Conclusion 51

A Proof 54

A.1 Proof of Theorem 4.1.1 54
A.2 Proof of Theorem 4.3.1 57
A.3 Least idle vs last empty 60
A.4 Proof of Theorem 5.2.2 61
A.5 Proof of Corollary 5.4.1 70
A.6 Proof of Lemma 7.1.1 72
A.7 Proof of Theorem 7.3.1 74

Bibliography 76

vii

List of Figures

4.1 Example of solution constructed by Optimal Solu-
tion Construction Procedure. 16

4.2 An example of a time period [0, T]. Interval δ1 =
T2 − T1, δ2 = T2, and δ3 = T − T1. 17

5.1 Comparison of the worst-case competitive ratios
(according to Theorem 5.2.2) and the empirical com-
petitive ratios observed in simulations using real-
world traces. The full-size look-ahead window size
∆ = 6 units of time. More simulation details are
in Chapter 6. 28

5.2 One example of workload for which the ratio of the
cost of the alternative longest-waiting-server-�rst
strategy to the o�ine optimal can be arbitrarily bad. 29

5.3 Comparison of the empirical competitive ratios of
the alternative approach with longest-waiting-server-
�rst, its randomized version, CSR and RCSR. The
full-size look-ahead window size ∆ = 6 units of time. 30

5.4 Upper bound of the worst-case competitive ratios
(according to Corollary 5.4.1). The full-size look-
ahead window size is 1 hour. 34

viii

6.1 Real-world workload trace, normalized number of
servers given by CSR/RCSR and the performance
of algorithms under di�erent settings. The critical
interval ∆ is 6 units of time. We discuss the per-
formance of algorithms CSR, RCSR, LCP(w) and
DELAYEDOFF in Section 6.5. 36

6.2 Experiments . 43

ix

List of Tables

x

Chapter 1

Introduction

1.1 Motivation

Cloud computing is a new paradigm for providing Internet services
to a large volume of end-users. In this paradigm, cloud computing
service providers provide infrastructure, in particular data centers,
as a service and charge customers based on their usage.

However, theenergy consumption of data centers hosting these
services has been skyrocketing. In 2010, data centers worldwide
consumed an estimated 240 billion kilowatt-hours (kWh) of en-
ergy, roughly 1.3% of the world total energy consumption [26].
Power consumption at such a level is almost enough to power all
of Spain [1]. Energy-related costs are approaching the cost of IT
hardware in data centers [7], and are growing 12% annually [48].

Recent work has explored electricity price �uctuation in time
and geographically balancing load across cloud data centers to cut
the electricity costs; see e.g., [32, 49, 43, 47] and the references
therein. To bene�t from this, the energy consumption of a data
center must re�ect its actual load.

Energy consumption in a data center is a product of the power
usage e�ectiveness (PUE)1 and the energy consumed by the servers.

1PUE is de�ned as the ratio between the amount of power entering a data center and
the power used to run its computer infrastructure. The closer to one PUE is, the better
energy utilization is.

1

CHAPTER 1. INTRODUCTION 2

There have been substantial e�orts in improving PUE, e.g., by
optimizing cooling [45, 46] and power management [44]. In this
thesis, we focus on reducing the energy consumed by the servers.

Real-world statistics reveal three observations that suggest that
ample savings are possible in server energy consumption [11, 40,
12, 27, 15, 8]. First, workload in a data center often �uctuates
signi�cantly on the timescale of hours or days, expressing a large
�peak-to-mean� ratio. Second, data centers today often provision
for far more than the observed peak to accommodate both the
predictable workload and the unpredictable �ash crowds. Such
static over-provisioning results in low average utilization for most
servers. Third, a lightly-utilized or idle server consumes more than
60% of its peak power. These observations imply that a large
portion of the energy consumed by servers goes into powering
nearly-idle servers, and it can be best saved by turning o� servers
during the o�-peak periods. In particular, an important technique
for reducing the energy consumption of idle servers is for servers
to autonomously turn o� sub-systems [36].

One promising technique exploiting the above insights is dy-
namic provisioning, which turns on a minimum number of servers
to meet the current demand and dispatches the load among the
running servers to meet Service Level Agreements (SLA), making
the data center �power-proportional�. This is enabled by virtual-
ization, which is the fundamental technology that allows the cloud
to exist.

There has been a signi�cant amount of e�ort in developing
such techniques, initiated by the pioneering work [11, 40] a decade
ago. Among them, one line of work [36, 27, 12] examines the
practical feasibility and advantage of dynamic provisioning using
real-world traces, suggesting substantial gain is indeed possible in
practice. Another line of work [11, 42, 12] focuses on developing
algorithms by utilizing various tools from queuing theory, control
theory and machine learning to provide insights that can lead

CHAPTER 1. INTRODUCTION 3

to e�ective solutions. These existing pieces of work address a
number of schemes that deliver favorable performance justi�ed by
theoretic analysis and/or practical evaluations. See [4] for a recent
survey.

However, turning servers on and o� incurs a cost. Hence the
e�ectiveness of these exciting schemes usually relies on the ability
to predict future workload to a certain extent, e.g., using model
�tting to forecast future workload from historical data [12]. This
naturally leads to the following questions:

• Can we design online solutions that require zero future work-
load information, yet still achieve close-to-optimal perfor-
mance?

• Can we characterize the bene�t of knowing future workload
in dynamic provisioning?

Answers to these questions provide fundamental understanding
on how much performance gain one can have by exploiting future
workload information in dynamic provisioning.

The performance of an online algorithm A is often measured
by its competitive ratio: the maximum, over all possible problem
instances, of ratio of the cost of the solution found by A to the
cost of the optimal o�ine solution that is computed with perfect
future knowledge. Competitive analysis, adopting a worst-case
mind set, allows us to access the robust performance guarantee for
an online algorithm for arbitrary inputs and arbitrary parameter
settings. Recently, Lin et al. [31] proposed an algorithm that
requires almost-zero future workload information2 and achieves a
competitive ratio of 3, i.e., the energy consumption is at most
3 times the o�ine minimum. In simulations, they further show
the algorithm can exploit available future workload information

2LCP algorithm [31] is a discrete time algorithm that only requires an estimate of the
job arrival rate of the current slot.

Minghua Chen
Cross-Out

CHAPTER 1. INTRODUCTION 4

to improve the performance. These results are very encouraging,
indicating that a complete answer to the questions is possible.

1.2 Contributions

In this thesis, we further explore answers to the questions, and
make the following contributions:

• We consider a scenario where a running server consumes a
�xed amount of energy per unit time3. We reveal that the
dynamic provisioning problem has an elegant structure that
allows us to solve it in a �divide-and-conquer� manner. This
insight leads to a full characterization of the optimal solution,
achieved by a centralized procedure.

• We show that the optimal solution can also be attained by
a simple last-empty-server-�rst job-dispatching strategy and
each server independently solving a classic ski-rental prob-
lem. We build upon this architectural insight to design two
decentralized online algorithms. The �rst, named CSR, is
deterministic with competitive ratio 2−α, where 0 ≤ α ≤ 1
is the normalized size of a look-ahead window in which fu-
ture workload information is available. The second, named
RCSR, is randomized with competitive ratio e/ (e− 1 + α).
We prove that 2 − α and e/ (e− 1 + α) are the best com-
petitive ratios for deterministic and randomized online al-
gorithms under last-empty-server-�rst job-dispatching strat-
egy.

• Our results lead to a fundamental observation: under the
cost model that a running server consumes a �xed amount

3The reason for this model is that the energy cost for typical servers is usually modeled
as a linear function of the load [2]. However, the energy cost of current servers is dominated
by the constant part cost [8]. Moreover, we will discuss later that our results can actually be
applied to the case that idle and busy servers have di�erent unit-time energy consumption.

CHAPTER 1. INTRODUCTION 5

of energy per unit time, future workload information beyond
the full-size look-ahead window will not improve the dynamic
provisioning performance. The size of the full-size look-ahead
window is determined by the wear-and-tear cost and the unit-
time energy cost of one server. We also believe utilizing fu-
ture input information is a new and important design degree
freedom for online algorithm.

• We also extend the algorithms to the case where servers take
setup time Ts to turn on and workload a (t) satis�es a(τ) ≤
(1+γ)a(t) for all τ ∈ [t, t+Ts], achieving competitive ratios
upper bounded by (2− α) (1 + γ) + 2γ and e

e−1+α (1 + γ) +
2γ.

• Our algorithms are simple and easy to implement. We demon-
strate the e�ectiveness of our algorithms in simulations using
real-world traces. We also compare their performance with
state-of-the-art solutions.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 intro-
duces background and related work. We formulate the problem in
Chapter 3. Chapter 4 reveals an important structure of the for-
mulated problem, characterizes the optimal solution, and designs
a simple decentralized o�ine algorithm achieving the optimal. In
Chapter 5, we propose two online algorithms and provide perfor-
mance guarantees. Chapter 6 presents the numerical experiments.
Chapter 7 introduces a new angle for designing online algorithm
and Chapter 8 concludes the thesis.

2 End of chapter.

Chapter 2

Related Work

A signi�cant amount of work has focused on the issue of energy
savings for a single processor, for an individual data center, and
for multiple geographically separated data centers.

Theoretical study of energy use in a single speed-scaling pro-
cessor starts from [51]. Yao et al. [51] proposed an o�ine algo-
rithm that �nds a minimum-energy schedule for any set of jobs
under the assumption that the unit time power consumption P
is a convex function of processor speed s. They also study two
simple online heuristics: Optimal Available and Average Rate,
and showed Average Rate has a constant competitive ratio for the
case P (s) = sα, α ≥ 2 . Paper [6] considers online dynamic fre-
quency scaling algorithms to minimize the energy used by a server
subject to the constraint that every job �nishes by its deadline.
The authors assume that the power required to run at frequency
f is P (f) = fα and show Optimal Available has a competitive
ratio upper bounded by αα. Paper [6] also proposes new online
algorithm with competitive ratio 2 [α/ (α− 1)]α eα. The new al-
gorithm is better then Optimal Available for large α in the light of
competitive ratio. Stochastic analysis has also been applied to the
problem of minimizing power consumption through speed scaling
[50]. In paper [50], the authors try to optimally scale speed to
balance mean response time and mean energy consumption un-
der processor sharing scheduling. In the work [41], the authors

6

CHAPTER 2. RELATED WORK 7

try to minimize the average response time of jobs, i.e., the time
between their arrival and their completion of service, given the
energy budget constraints.

For data centers with homogeneous servers, paper [18] tries to
minimize the Energy-Response time Product (ERP) metric for a
data center with single application servers which can only run on
one frequency but can transition to many sleep states while server
is idle. For a stationary demand pattern, [18] proves that there ex-
ists a very small, natural class of policies that always contains the
optimal policy for a single server. For time-varying demand pat-
terns, [18] proposes a simple, tra�c-oblivious auto-scaling policy,
DELAYEDOFF, to minimizing ERP, and the paper proves that
as the average workload ρ goes to in�nity, DELAYEDOFF will
achieve optimal ERP asymptotically if server can transition from
the o� state to the on state instantly. In paper [31], the author
proposed both o�ine and online algorithms to minimize the cost
of a data center with single application environment. The paper
proved that the online algorithm is 3-competitive, i.e., its cost is
at most 3 times of that of the optimal o�ine solution. [42, 39]
study the problem of minimizing the power cost for a data cen-
ter by combining virtualization mechanisms and DVFS(Voltage
and frequency scaling). They both propose optimization model
and do simulation to evaluate their own model. For data centers
with heterogeneous servers, work [11] designed an architecture to
manage resource for internet hosting centers through adaptive re-
source provisioning. The main objective of resource management
is to make the hosting centers more energy-e�cient. [30, 38, 20]
try to cut down the energy use for heterogeneous data center as
well.

There also exists work aiming to improve overall energy-e�ciency
for multiple geographically separated data centers [30, 32, 29]. [29]
tries to minimize the total energy cost for multiple internet data
centers with location diversity and time diversity of electricity

CHAPTER 2. RELATED WORK 8

price. They proposed a solution to the constrained mixed-integer
programming problem they studied in the paper. They did ex-
periments using real data showing that energy cost can be greatly
reduced. [30] studies online algorithm �receding horizon control�
(RHC) for geographical load balancing and shows that RHC per-
forms well for homogeneous servers. They also provide variants of
RHC with performance guarantee in the face of heterogeneity.

In the area of online algorithm designing, there is work trying
to utilize some information of input to achieve better competi-
tive ratio [17, 33, 21]. Paper [17] assumes that the input (time of
skiing) of ski-rental problem is exponentially distributed. Under
this assumption, they studied their problem using average-case
competitive analysis and proposed optimal online strategy. In
paper [33], the authors use semi-stochastic model rather than a
fully stochastic model to handle input uncertainty in online opti-
mization problems. Speci�cally, they explore the upper and lower
bounds on the amount of stochastic information(online algorithm
asks queries to obtain stochastic information about input and
each query is con�ned to following queries: the algorithm gives
a value 0 < s < 1, and then the input gives a value l such that∫ l

0 p (t) dt = s, where p (x) is the real probability distribution of
input. More stochastic information means more queries) required
by a deterministic algorithm for the ski-rental problem to achieve
a desired competitive ratio. In paper [21], the authors study on-
line TSP(Traveling Salesman Problem) and TRP(Traveling Re-
pairman Problem). They propose online algorithms which can uti-
lize future information(they call advanced information) to improve
competitive ratios achieved by previous work for the two problems.
In paper [22], the authors propose both online deterministic and
randomized algorithms for their server allocation problem with fu-
ture information(no algorithms have bounded competitive ratios
for this problem without future information). The paper proves
that the ratio of the randomized algorithm is tight and the one

CHAPTER 2. RELATED WORK 9

for deterministic algorithm is almost tight. The paper also shows
that their approach can be used in a more general bene�t task sys-
tem. However, their approach works mainly with maximization
problem not minimization problem.

In this thesis, the objective is to save energy cost for a data cen-
ter. The problem studied in this thesis is similar to that studied in
[31]. The di�erence is that we optimize a linear cost function over
integer variables, while Lin et al. in [31] minimize a convex cost
function over continuous variables (by relaxing the integer con-
straints). This thesis and [31] obtain di�erent online algorithms
with di�erent competitive ratios for the two di�erent formulations,
respectively. For our formulation, we show that the competitive
ratios of our algorithms can be signi�cantly improved by exploit-
ing the look-ahead information. We believe that looking-ahead
provides a valuable degree of freedom in designing �future-aware�
online algorithms with desirable competitive ratios. Comparing
to [17, 33], we utilize future workload information in a look-ahead
window in our online algorithms, and we study the cases where
the future information in the window can be predicted accurately
(in both analysis and experiments), or with prediction error (in
experiments). Our setting is motivated by the observation that
future workload information to some extent can be accurately pre-
dicted in data center [12, 10]. This is also the reason that we do
not assume that future workload follows some (partially) known
probability distribution in this thesis.

2 End of chapter.

Minghua Chen
Cross-Out

Minghua Chen
Replacement Text
The difference between their work and this thesis is that they focus on designing online algorithms for non-negative benefit maximization problem, while we design online algorithms for cost minimization problem. These two algorithm design problems are fundamentally different in the sense that knowing how to design competitive online algorithms for one problem in general does not give insights on designing competitive online algorithms for the other problem.

Chapter 3

Problem Formulation

3.1 Settings and Models

We consider a data center consisting of a set of homogeneous
servers. Without loss of generality, we assume each server has
a unit service capacity1, i.e., it can only serve one unit workload
per unit time. Let the unit time power consumption of busy and
idle servers be Pb and P , respectively. We de�ne βon and βoff as
the cost of turning a server on and o�, respectively. This includes
wear-and-tear costs, including the amortized service interruption
cost and procurement and replacement cost of server components
(hard-disks and power supplies in particular). [42, 13]. It is com-
parable to the energy cost of running a server for several hours
[31].

The results we develop in this thesis apply to both of the fol-
lowing two types of workload:

• �mice� type workloads, such as �request-response� web serv-
ing. Each job of this type has a small transaction size and
short duration. A number of existing work [11, 40, 31, 14]
model such workloads by a discrete-time �uid model. In the
model, time is divided into equal-length slots. Jobs arriv-
ing in one slot get served in the same slot. We assume that

1In practice, server's service capacity can be determined from the knee of its throughput
and response-time curve [27].

10

CHAPTER 3. PROBLEM FORMULATION 11

workload can be split among running servers at arbitrary
granularity like a �uid.

• �elephant� type workloads such as virtual machine hosting in
cloud computing. Each job of this type has a large trans-
action size, and can last for a long time. We model such
workload by a continuous-time brick model. In this model,
time is continuous, and we assume one server can only serve
one job2. Jobs arrive and depart at arbitrary times, and no
two job arrival/departure events happen simultaneously.

For the discrete-time �uid model, servers toggled at the discrete
time epoch will not interrupt job execution and thus no job migra-
tion is incurred. This neat abstraction allows research to focus on
server on-o� scheduling to minimize the cost. For the continuous-
time brick model, when a server is turned o�, the long-lasting job
running on it needs to be migrated to another server. In general,
such non-trivial migration cost needs to be taken into account
when toggling servers.

In the following, we present our results based on the continuous-
time brick model. We add discussions to show the algorithms are
also applicable to the discrete-time �uid model.

We assume that each job is present on a closed interval of time.
The number of jobs as a function of time is then a non-negative,
integer valued upper semi-continuous function a. For convenience,

2This could be justi�ed if there were a SLA in cloud computing that requires the job
to not share the physical server with other jobs due to security concerns. The problem is
substantially di�erent if a single server can host multiple virtual machines (VMs). Specif-
ically, if the scheduling discipline is restricted to being non-clairvoyant (job sizes are only
known when they complete) then VM migration becomes much more bene�cial than in
the case that scheduling discipline is clairvoyant; without VM migration, the competitive
ratio is at least as large as the number of VMs that can be hosted on a single server in
the case that scheduling discipline is non-clairvoyant. And the corresponding worst case is
that at �rst there are m2 jobs in the system and data center has to use at least m servers
to process it. However, in the m2 jobs there are only m jobs will last very long time and
others will depart the system after a short time. In worst case, the algorithm happens to
assign the m jobs to m di�erent servers other than assign the m jobs to one server which
is optimal o�ine dicision.

CHAPTER 3. PROBLEM FORMULATION 12

we further assume that a changes by at most 1 at any time. To
avoid technicalities, we assume a is bounded and not always zero.

The number of servers �on� (serving or idle) can be de�ned
as follows. For each server s, de�ne a function us that is right
continuous with us(0

−) = 0, counting the number of times the
server has turn on, and a function ds that is left continuous with
and ds(0) = 0, counting the number of times the server has turned
o�. The state of server s at time t is then xs(t) = us(t) − ds(t),
which must be either 0 or 1. Then de�ne u =

∑
s usand d =∑

s ds. The total number of servers on is x = u− d.
To focus on the cost within [0, T], we require x(0) = a (0) and

x (T) = a (T). For convenience, we set a (t) = 0 for all t < 0 and
all t > T .

De�ne the cost of server s on an interval [t1, t2) as

cs(t1, t2) = P

∫ t2

t1

xs(t) dt+βon(us(t2)−us(t1))+βoff(ds(t2)−ds(t1))

(3.1)
where the integral represents the running cost, and the other
terms are the switching costs. Note that this includes any cost
of switching on at t2 even though that is not in the interval,
and neglects the cost of switching o� at t1even though that is
in the interval. Consequently, for any t1 < t2 < t3 we have
cs(t1, t3) = cs(t1, t2) + cs(t2, t3).

It will sometimes be useful to consider the entire switching
cost on a closed interval. Let Pon(t1, t2) and Poff(t1, t2) denote
the total wear-and-tear cost incurred by turning on and o� servers
in [t1, t2], respectively. They take the on-o� cost at t1 and t2 into
account. Speci�cally, if u has left limits and d has right limits, then
Pon(t1, t2) = βon(us(t2)−us(t

−
1)) and Poff(t1, t2) = βoff(ds(t

+
2)−

ds(t1)). Our results depend only on the sum Pon + Poff , but we
retain both terms to emphasize the two physical processes.

CHAPTER 3. PROBLEM FORMULATION 13

3.2 Problem Formulation

We formulate the problem of minimizing server operation cost in
a data center in and interval [T1, T2] given an initial number of
�on� servers X1and a �nal number of �on� servers X2 as follows:

P [a (t) , X1, X2, T1, T2] :

min P

∫ T2

T1

x (t) dt+ Pon(T1, T2) + Poff(T1, T2) (3.2)

s.t. x(t) ≥ a(t),∀t ∈ [T1, T2], (3.3)

x(T1) = X1, x(T2) = X2, (3.4)

var x(t) ∈ Z+, t ∈ [T1, T2], (3.5)

where Z+ denotes the set of non-negative integers. In particular,
we are interested in the �Server Capacity Provisioning� problem,
SCP, given by P [a (t) , a(0), a(T), 0, T].

The objective is to minimize the sum of server energy consump-
tion and the wear-and-tear cost. The actual summation of the two
parts of power consumption is

∫ T

0 P [x (t)− a (t)] + Pba (t) dt +
Pon(0, T) + Poff(0, T), since the busy and idle powers can di�er.

However
∫ T

0 Pba (t)−Pa (t) dt is constant for given a (t), and so to
minimize the total power consumption is to minimize (3.2). Con-
straints in (3.3) say the service capacity must satisfy the demand.
Constraints in (3.4) are the boundary conditions.

Remarks:

1. The problem SCP does not consider the possible migration
cost associated with the continuous-time discrete-load model.
Fortunately, our results later show that we can schedule servers
according to the optimal solution, and at the same time dis-
patch jobs to servers in a way that aligns with their on-o�
schedules, thus incurring no migration cost. Hence, the min-
imum server operation cost remains unaltered even we con-
sider migration cost in the problem SCP (which can be rather
complicated to model).

CHAPTER 3. PROBLEM FORMULATION 14

2. The formulation remains the same with discrete-time �uid
workload model where there is no job migration cost to con-
sider.

3. The problem SCP is similar to a common one considered in
the literature, e.g., in [31], with a speci�c (linear) cost func-
tion. The bene�t of SCP is that we retain the constraint
that the decision variables be integers instead of real num-
bers. This is important for clusters and small data centers.

There are an in�nite number of integer variables x (t), t ∈ [0, T], in
the problem SCP, which make it challenging to solve. Moreover, in
practice the data center has to solve the problem without knowing
the workload a(t), t ∈ [0, T] ahead of time. In reality, a (t) is not
continuous and it may be right continuous or left continuous at all
the discontinuous points. However, in our SCP problem, we will
modify a (t) to make it right continuous and left continuous when
a (t) increases one and decreases one, respectively. We remark
that this simple modi�cation will not change the optimal value of
SCP.

Next, we �rst focus on designing o�ine solution, including (i)
a job-dispatching algorithm and (ii) a server on-o� scheduling al-
gorithm, to solve the problem SCP optimally. We then extend
the solution to its online versions and analyze their performance
guarantees with or without (partial) future workload information.

2 End of chapter.

Chapter 4

Optimal Solution and O�ine

Algorithm

We study the o�ine version of the server cost minimization prob-
lem SCP, where the workload a(t) in [0, T] is given.

We �rst design a procedure to construct an optimal solution
to problem SCP. We then derive a simple and decentralized algo-
rithm, upon which we build our online algorithms.

4.1 Structure of Optimal Solution

We �rst de�ne a critical interval as follows:

∆ , βon + βoff
P

(4.1)

Let M be the max value of a (t) , t ∈ t ∈ [0, T]. We then de�ne
ā (t) , t ∈ [−2∆, T + 2∆] which is just an extension of a (t):

ā (t) =

a (t) t ∈ [0, T]

0 t ∈ (−2∆, 0) ∪ (T, T + 2∆)

M + 1 t ∈ {−2∆, T + 2∆}

Let x∗(t), t ∈ [0, T], be an optimal solution to the problem
SCP, and the corresponding minimum server operation cost be
P ∗. We have the following observation.

15

CHAPTER 4. OPTIMAL SOLUTION AND OFFLINE ALGORITHM 16

t

a(t)

0 TT1 T2 T3 T4

x(t)a(t)

Figure 4.1: Example of solution constructed by Optimal Solution Construc-
tion Procedure.

Optimal Solution Construction Procedure:
For A from 1 to M + 1 do

Find all the intervals
(
τ, τ

′)
in [−2∆, T + 2∆] such that

ā (τ) ≥ A, ā
(
τ

′) ≥ A and ā (t) < A, ∀t ∈
(
τ, τ

′)
.

For all intervals
(
τ, τ

′)
do

If τ
′ − τ ≤ ∆ then

(re)assign x (t)← min
[
ā (τ) , ā

(
τ

′)]
;

Else

for any part of the interval that x (t) has not
already been set, set x (t)← ā (t).

End if

End For

End For

One example of x (t) , t ∈ [0, T] can be found in Fig. 4.1.
The following theorem is proved in Section A.1 using proof-by-

contradiction and counting arguments.

Theorem 4.1.1. The result of the Optimal Solution Construction
Procedure, x (t), t ∈ [0, T], is an optimal solution to the problem
SCP. Moreover, the optimal us and ds have both left and right

CHAPTER 4. OPTIMAL SOLUTION AND OFFLINE ALGORITHM 17

t

a(t)

1
2

T

1

2

3

0 T1 T2 T

Figure 4.2: An example of a time period [0, T]. Interval δ1 = T2−T1, δ2 = T2,
and δ3 = T − T1.

limits.

4.2 Intuitions and Observations

Consider the example shown in Fig. 4.2. During [0, T], the sys-
tem starts and ends with two jobs and two running servers. Let
the servers whose jobs leave at times 0 and T1 be S1 and S2,
respectively.

At time 0, a job leaves. Let T be the time T until a(t) again
reaches the level a(0). The procedure compares T against ∆. If
∆ > T , then it sets x(t) = 2 and keeps all two servers run-
ning for all t ∈ [0, T]; otherwise, according to Optimal Solution
Construction Procedure, x(t) = 1 for t ∈ [0, T1] ∪ [T2, T] and
x(t) = 0,∀t ∈ [T1, T2] if ∆ > δ1 or x(t) = 0,∀t ∈ [T1, T2] if
∆ ≤ δ1.

These actions reveal two important observations, based on which
we build a decentralized o�ine algorithm to solve the problem
SCP optimally.

CHAPTER 4. OPTIMAL SOLUTION AND OFFLINE ALGORITHM 18

• Newly arrived jobs should be assigned to servers in the re-
verse order of their last-empty-epochs.

• Upon being assigned an empty period, a server only needs to
independently make locally energy-optimal decision

In the example, when a new job arrives at time T2, the procedure
implicitly assigns it to server S2 instead of S1. As a result, S1
and S2 have empty periods of T and δ1, respectively. This may
sound �unfair� compared to an alternative strategy that assigns
the job to the early-emptied server S1, which gives S1 and S2
empty periods of δ2 and δ3, respectively. However, at each decision
point, allocating to the last-empty server results in a distribution
of the idle times I that is �convexly larger� than that resulting
from any other allocation; i.e., it maximizes E[(I − x)+] for all x
[35]. Note that if x is the time after which the server decides to
sleep, then E[(I − x)+] is the expected energy saving.

It is straightforward to verify that in the example, upon a job
leaving server S1 at time 0, the procedure implicitly assigns an
empty-period of T to S1, and turns S1 o� if ∆ < T and keeps it
running at idle state otherwise. Similarly, upon a job leaving S2
at time T1, S2 is turned o� if ∆ < δ1 and stays idle otherwise.
Such comparisons and decisions can be done by individual servers
themselves.

4.3 O�ine Algorithm Achieving the Optimal

Solution

The Optimal Solution Construction Procedure determines how
many running servers to maintain at time t, i.e., x∗(t), to achieve
the optimal server operation cost P ∗. However, as discussed in
Section 3.1, under the continuous-time brick model, scheduling
servers on/o� according to x∗(t) might incur non-trivial job mi-
gration cost.

CHAPTER 4. OPTIMAL SOLUTION AND OFFLINE ALGORITHM 19

Exploiting the two observations made in the case-study at the
end of last subsection, we design a simple and decentralized o�ine
algorithm that gives an optimal x∗(t) and incurs no job migration
cost.

Decentralized O�ine Algorithm:
By a central job-dispatching entity: it implements a last-
empty-server-�rst strategy. In particular, it maintains a stack
(i.e., a Last-In/First-Out queue) storing the IDs for all idle or o�
servers. Before time 0, the stack contains IDs for all the servers
that are not serving.

• Upon a job arrival: the entity pops a server ID from the top
of the stack, and assigns the job to the corresponding server
(if the server is o�, the entity turns it on).

• Upon a job departure: a server just turns idle, the entity
pushes the server ID into the stack.

By each server:

• Upon receiving a job: the server starts serving the job im-
mediately.

• Upon a job leaving this server and it becomes empty: let the
departure epoch be t1. The server searches for the earliest
time t2 ∈ (t1, t1 + ∆] so that a(t2) = a(t1). If no such t2
exists, then the server turns itself o�. Otherwise, it stays
idle.

We remark that in the algorithm, we use the same server to
serve a job during its entire sojourn time. Thus there is no job
migration cost. The following theorem justi�es the optimality of
the o�ine algorithm.

CHAPTER 4. OPTIMAL SOLUTION AND OFFLINE ALGORITHM 20

Theorem 4.3.1. The proposed o�ine algorithm achieves the op-
timal server operation cost of the problem SCP.

Refer to Section A.2.
There are two important observations. First, the job-dispatching

strategy only depends on the past job arrivals and departures.
Consequently, the strategy assigns a job to the same server no
matter it knows future job arrival/departure or not; it also acts
independently to servers' o�-or-idle decisions. Second, each indi-
vidual server is actually solving a classic ski-rental problem [25] �
whether to �rent�, i.e., keep idle, or to �buy�, i.e., turn o� now and
on later, but with their �days-of-skiing� (corresponding to servers'
empty periods) jointly determined by the job-dispatching strategy.

Next, we exploit these two observations to extend the o�ine
algorithm to its online versions with performance guarantee.

2 End of chapter.

Chapter 5

Online Dynamic Provisioning

Inspired by our o�ine algorithm, we construct online algorithms
by combining (i) the same last-empty-server-�rst job-dispatching
strategy as the one in the proposed o�ine algorithm, and (ii)
an o�-or-idle decision module running on each server to solve an
online ski-rental problem. To evaluate our online algorithms, we
compare its performance to that of the best o�ine algorithm.
This notion of comparison is called competitive analysis. We say
a deterministic online algorithm A is R-competitive if for all input
sequences σ, we have

CA (σ) ≤ RCopt (σ) +O(1)

where CA (σ) is the cost of algorithm A and Copt (σ) is the
o�ine optimal. We say a randomized online algorithm A, is R-
competitive 1 if for all input sequences σ, we have

E
[
C̄A (σ)

]
≤ RCopt (σ) +O(1)

where E
[
C̄A (σ)

]
is the expectation of the cost of algorithm

A with respect to its random choices for input sequence σ, and
Copt (σ) is the o�ine optimal.

As discussed at the end of last section, the last-empty-server-
�rst job-dispatching strategy utilizes only past job arrival/departure

1against an �oblivious adversary�

21

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 22

information. Consequently, as compared to the o�ine case, in the
online case it assigns the same set of jobs to the same server at
the same sequence of epochs. The following lemma rigorously
con�rms this observation.

Lemma 5.0.2. For the same a (t) , t ∈ [0, T], under the last-
empty-server-�rst job-dispatching strategy, each server will get the
same job at the same time and the job will leave the server at the
same time for both o�ine and online situations.

Lemma 5.0.2 is true because last-empty-server-�rst job-dispatching
strategy only depends on past workload and it is independent on
the historical statuses of servers. Hence, under the last-empty-
server-�rst job-dispatching strategy, each server will get the same
job at the same time and the job will leave the server at the same
time for both o�ine and online situations.

As a result, in the online case, each server still faces the same
set of o�-or-idle problems as compared to the o�ine case. This
is the key to derive the competitive ratios of our to-be-presented
online algorithms.

Each server, not knowing the empty periods ahead of time,
however, needs to decide whether to stay idle or be o� (and if
so when) in an online fashion. One natural approach is to adopt
classic algorithms for the online ski-rental problem.

5.1 Dynamic Provisioning without FutureWork-

load Information

For the online ski-rental problem, the break-even algorithm in
[25] and the randomized algorithm in [24] have competitive ratios
2 and e/ (e− 1), respectively. The ratios have been proved to
be optimal for deterministic and randomized algorithms, respec-
tively. Directly adopting these algorithms in the o�-or-idle deci-
sion module leads to two online solutions for the problem SCP

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 23

with competitive ratios 2 and e/ (e− 1) ≈ 1.58. These ratios
improve the best known ratio 3 achieved by the algorithm in [31].

The resulting solutions are decentralized and easy to imple-
ment: a central entity runs the last-empty-server-�rst job-dispatching
strategy, and each server independently runs an online ski-rental
algorithm. For example, if the break-even algorithm is used, a
server that just becomes empty at time t will stay idle for ∆
amount of time. If it receives no job during this period, it turns
itself o�. Otherwise, it starts to serve the job immediately. As a
special case covered by Theorem 5.2.2, it turns out this directly
gives a 2-competitive dynamic provisioning solution.

5.2 Dynamic Provisioning with Future Work-

load Information

Classic online problem studies usually assume zero future informa-
tion. However, in our data center dynamic provisioning problem,
one key observation many existing solutions exploited is that the
workload expressed highly regular patterns. Thus the workload
information in a near look-ahead window may be accurately es-
timated by machine learning or model �tting based on historical
data [12, 10]. Can we exploit such future knowledge, if available,
in designing online algorithms? If so, how much gain can we get?

Let's elaborate through an example to explain why and how
much future knowledge can help. Suppose at any time t, the
workload information a(t) in a look-ahead window [t, t + α∆] is
available, where α ∈ [0, 1] is a constant. Consider a server running
the break-even algorithm just becomes empty at time t1, and its
empty period happens to be just a bit longer than ∆.

Following the standard break-even algorithm, the server waits
for ∆ amount of time before turning itself o�. According to the
setting, it receives a job right after t1 + ∆ epoch, and it has to
power up to serve the job. This incurs a total cost of 2P∆ as

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 24

compared to the optimal one P∆, which is achieved by the server
staying idle all the way.

An alternative strategy that costs less is as follows. The server
stays idle for (1− α)∆ amount of time, and peeks into the look-
ahead window [t1 + (1− α)∆, t1 + ∆]. Due to the last-empty-
server-�rst job-dispatching strategy, the server can easy tell that
it will receive a job if any a(t) in the window exceeds a(t1), and
no job otherwise. According to the setting, the server sees itself
receiving no job during [t1 + (1− α)∆, t1 +∆] and it turns itself
o� at time t1 + (1− α)∆. Later it turns itself on to serve the
job right after t1 + ∆. Under this strategy, the overall cost is
(2− α)P∆ and is better than that of the break-even algorithm.

This simple example shows it is possible to modify classic online
algorithms to exploit future workload information to obtain better
performance. To this end, we propose new future-aware online
ski-rental algorithms and build new online solutions.

We model the availability of future workload information as
follows. For any t, the workload a(t) for in the window [t, t+α∆]
is known, where α ∈ [0, 1] is a constant and α∆ represents the
size of the window.

We present both the modi�ed break-even algorithm and the
resulting decentralized and deterministic online solution named
CSR (Collective Server-Rentals) as follow. The modi�ed future-
aware break-even algorithm is very simple and is summarized as
the part in the server's actions upon job departure.

Future-Aware Online Algorithm CSR:

By a central job-dispatching entity: it implements the last-
empty-server-�rst job-dispatching strategy, i.e., the one described
in the o�ine algorithm.
By each server:

• Upon receiving a job: the server starts serving the job im-
mediately.

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 25

• Upon a job leaving this server and it becomes empty: the
server waits for (1− α)∆ amount of time,

� if it receives a job during the period, it starts serving the
job immediately;

� otherwise, it looks into the look-ahead window of size
α∆. It turns itself o�, if it will receive no job during the
window. Otherwise, it stays idle.

In fact, as shown in Theorem 5.2.2 later in this section, the al-
gorithm CSR has the best possible competitive ratio for any deter-
ministic algorithms under the last-empty-server-�rst job-dispatching
strategy. Thus, unless we change the job-dispatching strategy, no
deterministic algorithms can achieve better competitive ratio than
the algorithm CSR.

The competitive ratio can be improved by replacing the deter-
ministic sleep decision by a randomized decision, similarly to [24],
but extended to consider future information. However, if servers
turn o� after random times, then it is possible that the last-empty
server is o� even though there are idle servers that are on. Instead
of using the last-empty server, we will dispatch jobs to the server,
if any, that is on but has been idle least time, as done in [18].

The following decentralized and randomized online algorithm
named RCSR (Randomized Collective Server-Rentals) is new, and
has the best possible competitive ratio.

Future-Aware Online Algorithm RCSR:

By a central job-dispatching entity: it implements the least-
idle job-dispatching strategy.
By each server:

• Upon receiving a job: reset all timers, and start serving the
job immediately.

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 26

• Upon a job leaving this server, record the occupancy as a,
and initialize a timer to expire time Z into the future, where
Z is distributed as

fZ(z) =
exp({z/ (1− α)∆})
(e− 1 + α) (1− α)∆

10<z≤(1−α)∆ +
α

e− 1 + α
δ(z)

(5.1)
where δ is the Dirac delta distribution, and 1X = 1 if X is
true, and 0 otherwise.

� Upon expiration of the timer, consult the prediction en-
gine. If the maximum occupancy in the coming window
of size α∆ is less than a, then turn o�. Otherwise, re-
main idle until a job is assigned.

The following lemma, proved in Section A.3, shows that RCSR
performs at least as well as it adopting last-empty-server-�rst job-
dispatching strategy, which will allow us to obtain a competitive
ratio.

Lemma 5.2.1. For any given workload, the cost of using RCSR
is, with probability 1, no greater than the cost of applying last-
empty-server-�rst with the same per-server sleep policy, provided
that the same random number Z is generated under both schemes
for any given job departure.

The two future-aware online algorithms inherit the nice prop-
erties of the proposed o�ine algorithm in the previous section.
The same server is used to serve a job during its entire sojourn
time. Thus there is no job migration cost. The algorithms are de-
centralized (except for the prediction mechanism), making them
easy to implement and scale.

Observing no such future-aware online algorithms available in
the literature, we analyze their competitive ratios and present

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 27

the results as follows. Assume that jobs assigned to a server is
countable.

Theorem 5.2.2. For any P, βoff , βon, the online algorithms CSR
and RCSR have competitive ratio of 2 − α and e/ (e− 1 + α).
The competitive ratios of CSR and RCSR are the best possible for
deterministic and randomized algorithms, respectively, under the
last-empty-server-�rst job-dispatching strategy.

Refer to Section A.4.
Remarks: (i) When α = 1, all two algorithms achieve the

optimal server operation cost. This matches the intuition that
servers only need to look ∆ amount of time ahead to make op-
timal o�-or-idle decision upon job departures. This immediately
gives a fundamental insight that future workload information be-
yond the �rst critical interval ∆ (corresponding to α = 1) will not
improve dynamic provisioning performance. (ii) The competitive
ratios presented in the above theorem is for the worst case. We
have carried out simulations using real-world traces and found the
empirical ratios are much better, as shown in Fig. 5.1. (iii) To
achieve better competitive ratios, the theorem says that it is nec-
essary to change the job-dispatching strategy, since otherwise no
deterministic or randomized algorithms do better than the algo-
rithms CSR and RCSR. (iv) Our analysis assumes the workload
information in the look-ahead window is accurate. We evaluate
the two online algorithms in simulations using real-world traces
with prediction errors, and observe they are fairly robust to the
errors. More details are provided in Section 6. (v) In the the-
sis, we propose CSR/RCSR for data centers with homogeneous
servers. In fact, the proposed algorithms can also be applied to
date centers with following heterogeneous servers for mice work-
load(CSR and RCSR can be applied to this kind of workload with
few modi�cations. Detailed discussion of those modi�cations in
Section 5.3): servers have the same one-time switching cost but

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 28

0 5 10
1

1.2

1.4

1.6

1.8

2

Look−ahead window size

C
om

pe
tit

iv
e

ra
tio

CSR:empirical CR
RCSR:empirical CR
CSR:analytical CR
RCSR:analytical CR

Figure 5.1: Comparison of the worst-case competitive ratios (according to
Theorem 5.2.2) and the empirical competitive ratios observed in simulations
using real-world traces. The full-size look-ahead window size ∆ = 6 units of
time. More simulation details are in Chapter 6.

di�erent unit time power consumption. In this heterogeneous sce-
nario, CSR and RCSR will use servers with lower unit time power
consumption �rst in each slot. And each server solves its own ski-
rental problem independently. It can be veri�ed that CSR and
RCSR still have competitive ratios of 2 − α and e/ (e− 1 + α)
in this case. Extending CSR and RCSR to general heterogeneous
cases is a future direction for this thesis.

In our algorithms, we assign the servers which were most re-
cently busy to new coming jobs. An alternative approach is that
servers which haven't served jobs for the longest time are dis-
patched to new jobs(we call this as longest-waiting-server-�rst
strategy), and individual server solves its ski-rental problem in-
dependently. This new approach may seem fairer than our algo-
rithms. However, it is not energy e�cient both from the perspec-
tive of competitive analysis and in our case study.

For the competitive analysis, let workload be the curve shown
in Fig. 5.2. The service time for each job is exactly δ/2 units of
time and a new job is coming δ/2 units of time after the departure
of the previous job. And the number of active servers(idle or busy

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 29

t

a(t)

�

�

�

Figure 5.2: One example of workload for which the ratio of the cost of the
alternative longest-waiting-server-�rst strategy to the o�ine optimal can be
arbitrarily bad.

servers) in data center at time 0 is N . δ is chosen such that
Nδ = ∆. In this scenario, the o�ine optimal policy would turn
o� N−1 servers at the beginning and leave one server on and run
this server to serve all the jobs. The optimal energy consumption
is PT + Nβon + Nβoff . For this workload, CSR will turn o�
N − 1 servers at time ∆ and just run one server to serve all
the jobs because CSR will assign the server which has waited for
the least time to new job. Therefore the total cost of CSR is
PT + (N − 1)P∆+Nβon +Nβoff(RCSR is similar to CSR but
randomly choose a time to turn o� N − 1 servers, therefore the
cost of RCSR is less than that of CSR).

Meanwhile, due to the longest-waiting-server-�rst strategy, in
the new approach theseN servers will be running during the whole
period. This is because there are exactly N jobs coming into the
data center during the waiting period of ∆ units of time after a
particular server becoming empty. And when the Nth job arrives
this particular server would be assigned to serve the job because
it is the one which has not served a job for the longest time. Thus
the total energy cost for this approach is [NPT +Nβon+Nβoff].
Since N and PT can be much larger than βon + βoff , the ratio
of total energy cost of the new approach to the o�ine optimal is
close to N in this case. Another important observation is that
as compared to the alternative approach, CSR behaves more like

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 30

0 2 4 6 8 10

2

4

6

8

look−ahead window size

C
om

pe
tit

iv
e

ra
tio

Deterministic approach
Randomized approach
CSR
RCSR

Figure 5.3: Comparison of the empirical competitive ratios of the alternative
approach with longest-waiting-server-�rst, its randomized version, CSR and
RCSR. The full-size look-ahead window size ∆ = 6 units of time.

the o�ine optimal policy(just use one server to serve all the jobs)
and cost much less energy. This demonstrates that least-waiting-
server-�rst(equivalent to last-empty-server-�rst in CSR and least-
idle in RCSR) is better than longest-waiting-server-�rst strategy.
We can get similar conclusion for its randomized version(with the
same job-dispatching strategy but each server adopts the best ran-
domized ski-rental algorithm [24]).

In our case study, we evaluate this alternative approach and
its randomized version using real-world trace and compare their
performance to that of CSR/RCSR. The results are shown in Fig.
5.3, which indicate that the empirical competitive ratios of these
alternative approaches are much worse than those of CSR/RCSR.

Note that our algorithms are closely related to the DELAYED-
OFF algorithm in [18], despite the fact that they seek to opti-
mize di�erent objective functions (total energy consumption in
our study v.s. Energy-Response time Product (ERP) in [18]).
The main algorithmic di�erence is that we make use of future
information to improve performance, and use randomization to
improve the competitive ratio. The main analytic di�erence is

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 31

that we consider worst-case performance, whereas [18] considers
expected performance in a stochastic setting and a large-system
asymptotic regime.

5.3 Adapting the Algorithms toWork with Discrete-

Time Fluid Workload Model

Adapting our o�ine and online algorithms to work with the discrete-
time �uid workload model involves two simple modi�cations. Re-
call in the discrete-time �uid model, time is chopped into equal-
length slots. Jobs arriving in one slot get served in the same slot.
Workload can be split among running servers at arbitrary granu-
larity like �uid.

For the job-dispatching entity in all the algorithms, at the end
of each slot when all servers are considered to be empty, it pushes
all the server IDs back into the stack (order doesn't matter).
Then at the beginning of each slot, it pops just-enough server
IDs from the stack in a Last-In/First-Out manner to satisfy the
current workload. In this way, the job-dispatching entity essen-
tially packs the workload to as few servers as possible, following
the last-empty-server-�rst strategy.

For individual servers, they start to serve upon receiving jobs,
and start to solve the o�ine or online ski-rental problems upon all
its jobs leaving and it becomes empty. It is not di�cult to verify
the modi�ed algorithms still retain their corresponding perfor-
mance guarantees. Actually, we have following corollary.

Corollary 5.3.1. The modi�ed deterministic and randomized on-
line algorithm for discrete-time �uid workload have competitive
ratios of 2− α and e/ (e− 1 + α), respectively.

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 32

5.4 Extending to CaseWhere Servers Have Setup

Time.

Until now, we have ignored the time Ts required for a server to
turn on. We will extend our algorithms CSR and RCSR to the case
where servers take Ts to turn on in this section. We now describe
a centralized algorithm EXT that provides a bounded CR in the
case where a(τ) ≤ (1 + γ)a(t) for all τ ∈ [t, t + Ts]. This is
to say workload increases at most by a factor of (1 + γ) in any
interval of length Ts. De�ne amin = mint∈[0,T] a(t). Our �bounded-
increment� model imposes a requirement that amin has to be no
less than 1/γ. This is because the number of job increases at least
by 1 and we must therefore have γamin ≥ 1, which indicates that
amin ≥ 1/γ. The requirement that amin needs to be larger than
1/γ is not di�cult to satisfy in practice and hence it does not
limit the practical relevance and applicability of our model and
the following analysis. For instance, in [34] it suggests a typical
value of γ is around 10%. This in terms requires amin to be large
enough to be served by at least 10 servers, for our model and
analysis to be applicable. But such requirement is easily satis�ed
in any realistic data centers or server racks such as the Akamai
ones [34].

In this model, servers can be in three states: ON, BOOT, OFF.
Only servers in state ON can serve jobs, but servers in states ON
and BOOT both consume power P per unit time. An OFF server
�turns on� when it enters state BOOT; Ts later it will become ON.
A server in any state can immediately be turned OFF.

Algorithm EXT for Cases with Setup Time:

Each server:

• Behaves as for CSR or RCSR, but when its timer expires, it
does not turn o� but sends a message M to manager.

Manager:

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 33

Keeps track of the setX (of size x) of �active� servers, i.e., those
that have not sent M since being allocated a job. It responds to
two types of events as follows:

• Job arrival: If X contains an idle server, the job is sent to a
server in X using the last-empty-�rst strategy in CSR or the
least-idle-�rst strategy in RCSR. Otherwise it is sent to an-
other ON server. Additional servers will be turned on so that
the total number of ON and BOOT servers is ⌊x(1 + γ)⌋+1.

• MessageM from server: All but ⌈x(1 + γ)⌉+1 servers will be
turned OFF. BOOT servers are turned o� �rst, in decreasing
order of how recently they were turned on. No active servers
are turned o�.

The following result, proven in Appendix A.5, establishes the
validity and performance guarantees of EXT.

Corollary 5.4.1. If there are ⌈a (0) (1 + γ)⌉ + 1 ON servers at
time 0, then under EXT, the number of ON servers at time t is
at least a (t) . The competitive ratio of EXT on instances with
discrete arrival instants is (2− α) (1 + γ) + 2/amin if servers use
CSR, or e

e−1+α (1 + γ) + 2/amin if servers use RCSR. These are
bounded above by (2− α) (1 + γ) + 2γ and e

e−1+α (1 + γ) + 2γ.

Remarks: (i) Note that 1/γ is a lower bound for amin, follow-
ing which we can get the stated upper bounds of the competitive
ratios of EXT. (ii) The upper bound of competitive ratio of EXT
is linearly proportional to γ. (iii) Since the minimal workload amin

in large data centers is usually much larger than that in small ones,
EXT is more bene�cial for large data center because the compet-
itive ratio is smaller. (iv) In EXT, we adopt over-provisioning
to combat the problem that servers need setup time Ts; it would
be interesting to know if there exist other approaches to handle
this problem. EXT can not achieve competitive ratio of 1 even if

CHAPTER 5. ONLINE DYNAMIC PROVISIONING 34

α = 1. Therefore, it is also good to know how to better utilize
future information when servers have a setup time constraint.

0 2 4 6 8
1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

Look−ahead window size

U
pp

er
 b

ou
nd

 o
f C

R

EXT: γ=0.175, T
s
=5 min

REXT: γ=0.175, T
s
=5 min

EXT: γ=0.3, T
s
=10 min

REXT: γ=0.3, T
s
=10 min

Figure 5.4: Upper bound of the worst-case competitive ratios (according to
Corollary 5.4.1). The full-size look-ahead window size is 1 hour.

Fig. 5.4 shows the relationship between the upper bounds of
competitive ratios of EXT and the setup time Ts for a workload
trace which increases at most by a factor of 1.3 in any interval
with length 10 minutes and at most by a factor of 1.175 in any
interval with length 5 minutes(More details about the workload
and other simulations in Chapter 6). As indicated in Fig. 5.4,
the shorter the setup time Ts, the better the competitive ratio of
EXT. This is because workload increases less dramatically when
setup time Ts is shorter, hence the over-provisioning of EXT is
less than that of longer setup time.

2 End of chapter.

Chapter 6

Experiments

We implement the proposed o�ine and online algorithms and
carry out simulations using real-world traces to evaluate their per-
formance. Our aims are threefold. First, to evaluate the perfor-
mance of the algorithms in a typical setting. Second, to study
the impacts of workload prediction error and workload charac-
teristics on the algorithms' performance. Third, to compare our
algorithms to two recently proposed solutions LCP(w) in [31] and
DELAYEDOFF in [18].

6.1 Settings

Workload trace: The real-world traces we use in experiments are
a set of I/O traces taken from 6 RAID volumes at MSR Cam-
bridge [37]. The traced period was one week from February 22 to
29, 2007. We estimate the average number of jobs over disjoint 10
minute intervals. The data trace has a peak-to-mean ratio (PMR)
of 4.63. The jobs are �request-response� type and thus the work-
load is better described by a discrete-time �uid model, with the
slot length being 10 minutes and the load in each slot being the
average number of jobs.

35

CHAPTER 6. EXPERIMENTS 36

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time(hour)

W
or

kl
oa

d

(a) Trace for one week in MSR

0 5 10
66

67

68

69

70

71

look−ahead window size

%
C

os
t r

ed
uc

tio
n

Opt
CSR
RCSR
LCP
Delayedoff

(b) Impact of future information

0 10 20 30 40 50

67

68

69

70

71

Prediction error(%)

%
C

os
t r

ed
uc

tio
n

Opt CSR RCSR LCP

Look−ahead window size:2

Look−ahead window size:4

(c) Impact of prediction error

2 4 6 8 10

40

50

60

70

80

Peak to mean ratio

%
C

os
t r

ed
uc

tio
n

Opt
CSR
RCSR
LCP
Delayedoff

(d) Impact of PMR

95 100 105 110
0

0.2

0.4

0.6

0.8

1

Time(hour)

N
or

m
al

iz
ed

 n
um

be
r

Workload
of active servers in CSR
of active servers in RCSR

(e) Normalized numbers of jobs and active servers given by CSR/RCSR in a
period

Figure 6.1: Real-world workload trace, normalized number of servers given
by CSR/RCSR and the performance of algorithms under di�erent settings.
The critical interval ∆ is 6 units of time. We discuss the performance of
algorithms CSR, RCSR, LCP(w) and DELAYEDOFF in Section 6.5.

CHAPTER 6. EXPERIMENTS 37

In the experiments, we run algorithm LCP(w) [31] by directly
using the above discrete-time trace, since LCP(w) was originally
designed to work under a discrete-time setting. Meanwhile, CSR,
RCSR, and DELAYEDOFF [18] were primally designed to work
under a continuous-time setting. To evaluate their performance
by using the above discrete-time trace, we run these algorithms
by feeding jobs continuously to the algorithms, where the job-
arrivals in a slot are assumed to uniformly spread out the slot.
By this setting, we would like to demonstrate that algorithms
CSR/RCSR/DELAYEDOFF do not require to know the number
of job-arrivals a priori to operate. We use last-empty-server-�rst
job-dispatching strategy for RCSR.

Cost benchmark : Current data centers usually do not use dy-
namic provisioning. The cost incurred by static provisioning is
usually considered as benchmark to evaluate new algorithms [31,
27]. Static provisioning runs a constant number of servers to serve
the workload. In order to satisfy the time-varying demand dur-
ing a period, data centers usually overly provision and keep more
running servers than what is needed to satisfy the peak load. In
our experiment, we assume that the data center has the complete
workload information ahead of time and provisions exactly to sat-
isfy the peak load. Using such benchmark gives us a conservative
estimate of the cost saving from our algorithms.

Sever operation cost: The server operation cost is determined
by unit-time energy cost P and on-o� costs βon and βoff . In the
experiment, we assume that a server consumes one unit energy for
per unit time, i.e., P = 1, ∀x. We set βoff +βon = 6, i.e., the cost
of turning a server o� and on once is equal to that of running it
for six units of time [31]. Under this setting, the critical interval
is ∆ = (βoff + βon) /P = 6 units of time.

CHAPTER 6. EXPERIMENTS 38

6.2 Performance of the Proposed Online Algo-

rithms

We have characterized in Theorem 5.2.2 the competitive ratios of
CSR and RCSR as the look-ahead window size, i.e., α∆, increases.
The resulting competitive ratios, i.e., 2 − α and e/ (e− 1 + α),
already appealing, are for the worst-case scenarios. In practice,
the actual performance can be even better.

In our �rst experiment, we study the performance of CSR and
RCSR using real-world traces. The cost reduction are shown in
Fig. 6.1b. The cost reduction curves are obtained by comparing
the power cost incurred by the o�ine algorithm, CSR, RCSR, the
LCP(w) algorithm [31] and the DELAYEDOFF algorithm [18] to
the cost benchmark. The vertical axis indicates the cost reduction
and the horizontal axis indicates the size of look-ahead window
varying from 0 to 10 units of time.

The curves of normalized numbers of servers(normalized by
the maximal number of servers in [0, T]) given by CSR/RCSR
are shown in Fig. 6.1e. In order to show more details, only the
numbers of active servers in a period(from hour 95 to hour 110) are
plotted. Fig. 6.1e indicates that the numbers of active servers used
by CSR and RCSR decrease when workload is low and increase
when workload is high and similar patterns are observed in the rest
period. Those curves actually match the intuitive strategy that in
order to save energy we should turn on just enough servers to meet
the demand. It can also be seen that RCSR is more aggressive in
turning servers o� as compared to CSR, which for this workload
trace leads to the observation that RCSR reduces more operating
cost than CSR.

For this workload, CSR, RCSR, LCP(w) and DELAYEDOFF
achieve substantial cost reduction as compared to the benchmark.
In particular, the cost reductions of CSR and RCSR are beyond
66% even when no future workload information is available. LCP(w)

CHAPTER 6. EXPERIMENTS 39

starts to perform when the look-ahead window size is one. This
is because we run LCP(w) under a discrete-time setting and the
workload information for the current slot is only available after all
jobs in this slot have arrived. Meanwhile, CSR, RCSR, and DE-
LAYEDOFF are running under a continuous-time setting, where
jobs arriving at any moment are served immediately.

The cost reductions of CSR and RCSR grow linearly as the
look-ahead window increases, and reaching optimal when the look-
ahead window size reaches ∆. These observations match what
Theorem 5.2.2 predicts. Meanwhile, LCP(w) has not yet reach
the optimal performance when the look-ahead window size reaches
the critical value ∆. DELAYEDOFF has the same performance
for all look-ahead window sizes since it does not exploit future
workload information.

6.3 Impact of Prediction Error

Previous experiments show that CSR, RCSR and LCP(w) have
better performance if accurate future workload is available. How-
ever, there are always prediction errors in practice. Therefore, it
is important to evaluate the performance of the algorithms in the
present of prediction error.

To achieve this goal, we evaluate CSR and RCSR with look-
ahead window size of 2 and 4 units of time. Zero-mean Gaussian
prediction error is added to each unit-time workload in the look-
ahead window, with its standard deviation grows from 0 to 50% of
the corresponding actual workload. In practice, prediction error
tends to be small [28]; thus we are essentially stress-testing the
algorithms.

We average 100 runs for each algorithm and show the results
in Fig. 6.1c, where the vertical axis represents the cost reduction
as compared to the benchmark.

On one hand, we observe all algorithms are fairly robust to

CHAPTER 6. EXPERIMENTS 40

prediction errors. On the other hand, all algorithms achieve better
performance with look-ahead window size 4 than size 2. This
indicates more future workload information, even inaccurate, is
still useful in boosting the performance.

6.4 Impact of Peak-to-Mean Ratio (PMR)

Intuitively, comparing to static provisioning, dynamic provision-
ing can save more power when the data center trace has large
PMR. Our experiments con�rm this intuition which is also ob-
served in other work [31, 27]. Similar to [31], we generate the
workload from the MSR traces by scaling a (t) as a (t) = Kaγ (t),
and adjusting γ and K to keep the mean constant. We run the
o�ine algorithm, CSR, RCSR, LCP(w) and DELAYEDOFF us-
ing workloads with di�erent PMRs ranging from 2 to 10, with
look-ahead window size of one unit time. The results are shown
in Fig. 6.1d.

As seen, energy saving increases form about 40% at PRM=2,
which is common in large data centers, to large values for the
higher PMRs that is common in small to medium sized data cen-
ters. Similar results are observed for di�erent look-ahead window
sizes.

6.5 Discussion

Note that CSR and RCSR have competitive ratios 2 − α and
e/ (e− 1 + α), which improve as future information is available.
This is in contrast to LCP(w), whose best known competitive
ratio is 3 and, regardless of how much future information is avail-
able, there are instances with performance arbitrarily close to the
ratio. Fig. 6.1b shows that CSR/RCSR perform slightly better
than LCP(w), partially because they need not work in discrete
time. These performance gains of CSR/RCSR over LCP(w) and

CHAPTER 6. EXPERIMENTS 41

DELAYEDOFF shown in Fig. 6.1b, when multiplying the large
amount of energy consumed by the data centers every year, cor-
respond to non-negligible energy cost saving. Moreover, the sleep
management in CSR/RCSR are decentralized, which makes them
very much easier to implement; while the LCP(w) is inherently
centralized, since it requires the solution of a convex program at
each time.

Although in this example, DELAYEDOFF performs close to
the optimal, there are very natural cases in which it can be almost
a factor of two more expensive than CSR/RCSR. The value of ∆
is approximately one hour [31], and it is common for workloads
to have a periodic structure with period one hour. In this case,
it is possible that DELAYEDOFF always turns machines o� just
before they are needed again. If the workload can be predicted
an hour into the future, then CSR/RCSR can guarantee optimal
performance in this case. DELAYEDOFF also does not exploit
randomness to improve performance like RCSR does.

6.6 Additional Experiments

In this section, we will evaluate CSR and RCSR with �elephant�
workload. Since we do not have any real data center trace of
this kind of workload, we generate a synthetic workload as shown
in Fig. 6.2a. In this �elephant� workload trace, the job arrival is
Poisson process and the arrival rate is constant within an hour but
varies across the intervals of length one hour. The service time
of each job is exponentially distributed and the mean is about
33 hour. The PMR of this trace is 1.7. The simulation result is
shown in Fig. 6.2b. One observation from Fig. 6.2b is that the
CSR and RCSR energy-saving curves of the �elephant� workload
are similar to that of the �mice� workload as shown in Fig. 6.1b.
Our algorithms can save more than 37% energy. This number is
consistent with the result in Fig. 6.1d, which suggests that the

CHAPTER 6. EXPERIMENTS 42

energy saving is about 40% when PMR is 2.
The workload increases at most by a factor 1.3 in 10 minutes

and by a factor 1.175 in 5 minutes. We evaluated our algorithm
EXT. Fig. 6.2c shows that our algorithm EXT can save more than
20% energy when comparing to static provisioning. Moreover, the
empirical competitive ratio of is much smaller then the analytic
one in Fig. 6.2d (EXT is the algorithm extended from CSR; REXT
is the one extended from RCSR). This is because i) the analytic
competitive ratio for online algorithm is for worst case and the
particular trace we used here may not be the worst case; ii) we use
the upper bound of competitive ratios as the theoretical results.

2 End of chapter.

CHAPTER 6. EXPERIMENTS 43

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time(hour)

W
or

kl
oa

d

(a) Synthetic �Elephant� Workload.

0 200 400 600
37

37.5

38

38.5

Look−ahead window size

%
C

os
t r

ed
uc

tio
n

Opt
CSR
RCSR

(b) Energy saving of our algorithms for �ele-
phant� workload.

0 200 400 600
17.5

18

18.5

19

19.5

20

20.5

Look−ahead window size

%
C

os
t r

ed
uc

tio
n

EXT based on CSR
EXT based on RCSR

(c) Energy saving of EXT.

0 200 400 600
1

1.5

2

2.5

3

Look−ahead window size

U
pp

er
 b

ou
nd

 o
f C

R

EXT:empirical CR
REXT:empirical CR
EXT:analytical bound
REXT:analytical bound

(d) Competitive ratios of EXT.

Figure 6.2: Experiments

Chapter 7

A New Degree of Freedom for

Designing Online Algorithm

In the preceding chapter, we proposed algorithms CSR and RCSR
which can utilize future information to achieve better performance.
This suggests a new angle for designing online algorithm: utiliz-
ing future information of input to get better performance. In
online algorithm design, most of the existing work focus on the
worst case analysis in which online algorithms do not know any
information of the future input and the performance of the online
algorithm is determined by its performance under its worst case
(such as competitive ratios). There is also work that evaluates
online algorithms using average case analysis. In this case, on-
line algorithms know the probability distribution of the input and
the performance of the online algorithms is decided by its aver-
age performance over all possible inputs [17]. In this chapter, we
will �rst introduce a classic online problem named the lost cow
problem and its online algorithms which are analyzed with in the
worst case. Then we will show how to utilize future input informa-
tion to improve the performance of the online algorithms. We will
also take secretary problem and its online algorithm with average
case analysis as an example to illustrate how online algorithm can
bene�t from future input information.

44

CHAPTER 7. A NEWDEGREE OF FREEDOMFORDESIGNINGONLINE ALGORITHM 45

7.1 The Lost Cow Problem

Image a totally short-sighted cow (can only see things right before
it) is at point S on a line and it wants to �nd a target at point
T on the same line. However, the cow dose not know whether
the target is located to its right or left, neither does it know the
distance d ≥ 1 between S and T . The objective of the cow is to
minimize the total distance it will walk in order to �nd the target
at T .

This problem was introduced by [5] which also proposed a �dou-
bling� strategy to achieve the optimal competitive ratio of 9 for
deterministic algorithm. The algorithm performs as follows:

1. The cow �rst walks to the right for a distance of 1, it will go
back to S if it fails to reach the target;

2. After a failed search, the cow will go in the opposite direction
for a distance which is double of that of the previous search.
If the cow fails to reach the target, it will go back to S;

3. Repeat step 2 until the cow reaches the target at T .

The above algorithm achieves the best competitive ratio of 9 for
deterministic algorithm. In paper [23], the author proposed a ran-
domized algorithm, called SmartCow, achieving the optimal com-
petitive ratio for randomized algorithms. De�ne r = argmin

x>1

1+x
lnx ≈

3.59, the randomized algorithm is as follows:

1. The cow �rst randomly and uniformly choose a direction and
generate a number ε which is uniformly distributed [0, 1),
then walks in the chosen direction for a distance of rε, it will
go back to S if it fails to reach the target;

2. After a failed search, the cow will go in the opposite direction
for a distance which is r times of that of the previous search.
If the cow fails to reach the target, it will go back to S;

CHAPTER 7. A NEWDEGREE OF FREEDOMFORDESIGNINGONLINE ALGORITHM 46

3. Repeat step 2 until the cow reaches the target at T .

This randomized algorithm has competitive ratio 1 + 1+r
ln r ≈ 4.59

[23].
It turns out that with future input information, we can do

better for the online lost cow problem. Assume that the cow is
not totally short-sighted and can see thing clearly within a look-
ahead window of length of l = θd, where 0 ≤ θ ≤ 1. The cow can
follow the following deterministic and randomized algorithms:

1. If the cow can see the target at T at S, it will go directly to
the target; Otherwise, the cow �rst walks to the right for a
distance of 1. If it can not see the target at T in the look-
ahead window, it will go back to S; Otherwise, it will go
directly to the target at T .

2. After a failed search, the cow will go in the opposite direction
for a distance which is double of that of the previous search.
If the cow fails to reach the target or see the target in the
look-ahead window, it will go back to S; Otherwise, it will
go directly to the target at T .

3. Repeat step ii) until reach target T .

SmartCow(θ) is the randomized algorithm.

1. If the cow can see the target at T at S, it will go directly
to the target; Otherwise, the cow �rst randomly and uni-
formly choose a direction and generate a number ε which is
uniformly distributed in [0, 1), then walks in the chosen di-
rection for a distance of rε, if it can not see the target at T
in the look-ahead window, it will go back to S; Otherwise, it
will go directly to the target at T .

2. After a failed search, the cow will go in the opposite direction
for a distance which is r times of that of the previous search.
If the cow fails to reach the target or see the target in the

CHAPTER 7. A NEWDEGREE OF FREEDOMFORDESIGNINGONLINE ALGORITHM 47

look-ahead window, it will go back to S; Otherwise, it will
go directly to the target at T .

3. Repeat step ii) until reach target T .

With future information, the cow can see the target even if it
is not very close to the target. Therefore, the cow can travel less
distance than that without future information because in the later
case the cow will explore the opposite direction if the target is not
close to itself. De�ne θ such that (1 − θ)d = 1. In fact, we have
following lemma:

Lemma 7.1.1. If the cow can see things clearly within a distance
of l = θd, where 0 ≤ θ ≤ 1, then above deterministic algorithm
and randomized algorithm SmartCow(θ) have competitive ratios
of i) 9 − 8θ and 1 + 1+r

ln r −
1+r
ln r θ ≈ 4.59 − 3.59θ when θ < θ; ii)

3− 2θ and 1 + r−1
ln r −

r−1
ln r θ ≈ 3− 2θ when θ ≤ θ < 1; iii) 1 and 1

when θ = 1, respectively.

Refer to Section A.6.

7.2 Secretary Problem without Future Infor-

mation

It turns out many online problems can utilize future information to
have better competitive ratio. One example is the classic secretary
problem [16].

Imagine an employer wants to hire a secretary from n appli-
cants which the employer can rank from the best to the worst
without ties. Moreover, the capability of an applicant can only
be determined after interview and the employer interviews the
candidates in a random order. After interviewing an applicant,
the employer has to make a decision immediately and irrevocably
whether to hire the applicant, or move on to the next one. The

CHAPTER 7. A NEWDEGREE OF FREEDOMFORDESIGNINGONLINE ALGORITHM 48

objective of the employer is to maximize the probability of hiring
the best applicant.

This problem is known as the secretary problem. An optimal
strategy for the employer is to interview and reject the �rst k
applicants, k is to be determined. After rejecting the �rst k appli-
cants, the employer hires the �rst applicant who is better than all
the applicants previously interviewed. If no such applicants exist,
the employer hires no one. With this policy, according to [16] the
probability of hiring the best applicant is

n∑
j=k+1

1

n

k

j − 1
(7.1)

The optimal k for this strategy is the one maximizing the total
probability (7.1). For small n, the optimal k can be easily com-
puted. We are more interested in �nding the approximate value of

the optimal k for large n. For large n, we have
n∑

j=k+1

1
n

k
j−1 ≈

k
n ln

n
k .

Hence, it is easy to �nd the optimal k = n
e and the employer has

probability 1/e [16] to hire the best applicant.

7.3 Secretary Problem with Future Informa-

tion

Without any future information, 1/e is the best we can do for large
n [19]. However, the probability can be improved if future infor-
mation of next m = θn applicants is known when the employer
makes a decision to hire or reject a speci�c applicant. In reality,
knowing the future information can be seen as result of following
policy: the employer �rst interviews m + 1 candidates, then de-
cide whether to hire the one being earliest interviewed among the

CHAPTER 7. A NEWDEGREE OF FREEDOMFORDESIGNINGONLINE ALGORITHM 49

m + 1 candidates or not. If the earliest one is rejected, the em-
ployer interviews another applicant and then decides to hire the
new �earliest� applicant or not. This process will be repeated until
the employer reaches the last applicant of the total n candidates.

For secretary problem with future information, the online so-
lution is similar to that without future information:

• The employer interviews and rejects the �rst k applicants, k
is to be determined.

• After rejecting the �rst k applicants, the employer stops at
an applicant who is better than all the applicants previously
interviewed and hires the best applicant among the m + 1
applicants (the one currently being interviewed and the m

applicants that employer can foresee their capabilities with-
out interview.)

The following theorem justify that the above online solution
improve the probability of selecting the best one.

Theorem 7.3.1. When n is large, let k = (1− θ) e−
1

1−θ in above
online solution, the probability of selecting the best applicant is
θ + (1− θ) e−

1
1−θ .

Refer to Section A.7.
We remark that with future information we can improve the

probability to hire the best candidate. This is possible because we
can explore and reject less candidates (less then n/e candidates)
but gain roughly the some amount of information of the capabil-
ity of applicants as that without future information. Moreover,
when we select one applicant we select the best one from m + 1
candidates instead of just one in the case without future infor-
mation. Therefore, the probability can be enhanced with future
information.

CHAPTER 7. A NEWDEGREE OF FREEDOMFORDESIGNINGONLINE ALGORITHM 50

7.4 Summary

Based on the three cases: ski-rental problem faced by a server in
CSR and RCSR, the lost cow problem and the secretary problem,
we believe utilizing future information of the input is a new and
important design degree freedom for online algorithm. In tradi-
tional online algorithm design, future input information is usually
not taken into account. Perhaps as a result of that, many online
problems have simple online algorithms with optimal but large
competitive ratios. Since future input information to some extent
can be estimated accurately in many online problems, hence we
believe future input information can be harnessed in online algo-
rithm design to achieve better competitive ratio and provide more
competitive edge in both practice and theory.

2 End of chapter.

Chapter 8

Conclusion

Dynamic provisioning is an e�ective technique for reducing server
energy consumption in data centers, by turning o� unnecessary
servers to save energy. In this thesis, we design online dynamic
provisioning algorithms with zero or partial future workload in-
formation available.

We reveal an elegant �divide-and-conquer� structure of the o�-
line dynamic provisioning problem, under the cost model that a
running server consumes a �xed amount of energy per unit time.
Exploiting such structure, we show its optimal solution can be
achieved by the data center adopting a simple last-empty-server-
�rst job-dispatching strategy and each server independently solv-
ing a classic ski-rental problem.

We build upon this architectural insight to design two new
decentralized online algorithms. One is deterministic with com-
petitive ratio 2−α, where 0 ≤ α ≤ 1 is the fraction of the full-size
look-ahead window in which future workload information is avail-
able. The size of the full-size look-ahead window is determined by
the wear-and-tear cost and the unit-time energy cost of running
a single server. The other is randomized with competitive ratio
e/ (e− 1 + α). The ratios 2 − α and e/ (e− 1 + α) are the best
competitive ratios for any deterministic and randomized online
algorithms under last-empty-server-�rst job-dispatching strategy.
Note that the problem we study in this thesis is similar to that

51

CHAPTER 8. CONCLUSION 52

studied in [31]. The di�erence is that we optimize a linear cost
function over integer variables, while Lin et al. in [31] minimize
a convex cost function over continuous variables (by relaxing the
integer constraints). This thesis and [31] obtain di�erent online
algorithms with di�erent competitive ratios for the two di�erent
formulations, respectively.

Our results lead to a fundamental observation that under the
cost model that a running server consumes a �xed amount of en-
ergy per unit time, future workload information beyond the the
full-size look-ahead window will not improve the dynamic provi-
sioning performance. We also believe utilizing future input infor-
mation is a new and important design degree freedom for online
algorithm.

In addition, we also propose online algorithms for the case that
servers need setup time Ts but the load satis�es a(τ) ≤ (1+γ)a(t)
for all τ ∈ [t, t + Ts]. These algorithms have competitive ratios
(2− α) (1 + γ) + 2γ and e

e−1+α (1 + γ) + 2γ .
Our algorithms are simple and easy to implement. Simulations

using real-world traces show that our algorithms can achieve close-
to-optimal energy-saving performance, and are robust to future-
workload prediction errors.

These results suggest that it is possible to reduce server energy
consumption signi�cantly with zero or only partial future work-
load information.

This work can be extended in many important directions. In
the elephant model considered here, each server could only serve
one job at a time. Cloud data centres typically run multiple VMs
on each physical machine. One particular motivation is to pack
together jobs with complementary resource requirements, such as
placing a CPU-intensive and a memory-intensive VM on the same
server. In this scenario, minimizing the total power cost is a dy-
namic bin-packing problem which is NP-hard. (It contains classic
bin packing as a special case.). The analysis of dynamic bin-

CHAPTER 8. CONCLUSION 53

packing problem is entirely di�erent and it would be interesting
to look at it in the future. Even in the simplest case that each
server can host an arbitrary combination of m VMs, the problem
is signi�cantly di�erent; it is no longer the case that the opti-
mal performance can be obtained by a non-clairvoyant algorithm
without VM migration, and indeed such algorithms are at best
m- competitive. A related extension would be to consider the fact
that VMs may have time-varying resource requirements. When
utilizing future workload information, we assume that the future
information is accurate in the look-ahead window in our algorithm
design and competitive analysis, and we study in experiments the
performance of the proposed algorithms when the future informa-
tion is not perfectly known. An interesting and important future
direction is to design competitive online algorithms that can uti-
lize inaccurate future input information. Such algorithms will be
very attractive in practice, where prediction of the future input
information often comes with errors.

Another important direction would be to extend these results
to the general case of heterogeneous servers or multiple geograph-
ically separated data centers [30, 38, 20]. It would be useful to
extend the insight from this thesis to heterogeneous cases.

2 End of chapter.

Appendix A

Proof

The claims made in the previous sections will now be proven.

A.1 Proof of Theorem 4.1.1

In order to prove theorem 4.1.1, we introduce three lemmas. The
�rst establishes that Pon and Poff are well de�ned.

Lemma A.1.1. The optimal us and ds have both left and right
limits.

Proof. The interval between two discontinuities in the optimal ds
(or optimal us) is at least ∆, and so the set of discontinuities
has no accumulation points. Since it is piecewise constant, this is
su�cient for it to have both left and right limits at all points.

Lemma A.1.2. Let m = max {ā (τ) : τ ∈ (Ts, Te)}. If Ts−Te >
∆ and m < min(ā(Ts), ā(Te)) then a necessary condition for x (t)
to achieve optimal power consumption of P (ā, X, Y, Ts, Te) is that
x (t) ≤ m,∀t ∈ (Ts, Te).

Proof. Let xi (t) be any optimal solution to above optimization
problem P (ā,X, Y, Ts, Te) and xi (t) does not satisfy xi (t) ≤
m,∀t ∈ (Ts, Te). In order to prove the necessary condition, we
divide xi (t) into two cases.

54

APPENDIX A. PROOF 55

(a) If xi (t) ≥ m + 1,∀t ∈ (Ts, Te) then let x (t) = m,∀t ∈
(Ts, Te). Then xi (t) will consume at least (Te − Ts)P more power
for each extra running servers than x (t) during (Ts, Te). On the
other hand, x (t) causes at most βon+βoff more wear-and-tear cost
than xi (t) for turning o�/on each server. Because (Te − Ts) > △,
xi (t) actually cost more power than x (t), which is a contradiction
with that xi (t) is an optimal solution.

(b) Otherwise, if xi (t) does not satisfy case (a), then there
must exist time τ in (Ts, Te) such that xi (τ) = m. Let x (t) =
min [m,xi (t)] , ∀t ∈ (Ts, Te). Then x (t) satis�es all the con-
straints of P (ā,X, Y, Ts, Te). Moreover, x (t) does not consume
more on-o� cost or operating cost than xi (t), which means x (t)
is an optimal solution.

Lemma A.1.3. Let x̄∗ (t) be an optimal solution to
P [ā, ā (−2∆) , ā (T + 2∆) ,−2∆, T + 2∆], where ā (t) is de�ned
in section 4. Then x̄∗ (t) = 0,∀t ∈ (T, T + 2∆) ∪ (−2∆, 0),
x̄∗ (T) = ā (T) = a (T) and x̄∗ (0) = ā (0) = a (0). Moreover,
x̄∗ (t) , t ∈ [0, T] is an optimal solution to SCP problem.

Proof. Applying lemma A.1.2, we have that x̄∗ (t) = 0,∀t ∈
(−2∆, 0).

Next, we prove x̄∗ (0) = ā (0) = a (0). Assume instead that
x̄∗ (0) > ā (0). Let µ = inf{t > 0 : ā(t) ̸= ā(0)} be the �rst
discontinuity in ā. If ā(µ) = ā(0) then let

x̂ (t) =

{
ā (0) , ∀t ∈ [0, µ] ;

x̄∗ (t) , otherwise.

Otherwise, let

x̂ (t) =

{
ā (0) , ∀t ∈ [0, µ) ;

x̄∗ (t) , otherwise.

Since x̄∗ (t) = 0, ∀t ∈ (−2∆, 0), x̂ (t) incurs a lower running
cost, and no higher switching cost. This contracts the assump-
tion that x̄∗ (t) is an optimal solution and so x̄∗(0) ≤ ā(0). Since

APPENDIX A. PROOF 56

x̄∗(0) ≥ ā(0) for feasibility, we have x̄∗ (0) = ā (0). By the de�ni-
tion of ā (t), we have x̄∗ (0) = ā (0) = a (0).

Similarly, x̄∗ (t) = 0,∀t ∈ (T, T + 2∆) and x̄∗ (T) = ā (T) =
a (T).

Since x̄∗ (t) = 0,∀t ∈ (T, T + 2∆)∪(−2∆, 0), x̄∗ (T) = ā (T) =
a (T) and x̄∗ (0) = ā (0) = a (0). Suppose that x̄∗ (t) , t ∈ [0, T]
is not an optimal solution to SCP. Let x∗ (t) denote an optimal
solution to SCP. Then we let

x̂ (t) =

{
x∗ (t) , ∀t ∈ [0, T] ;

x̄∗ (t) , otherwise.

Then x̂ (t) cause less power consumption than x̄∗ (t) in [0, T]
and they have the same power consumption in the rest periods.
It is a contraction that x̄∗ (t) is an optimal solution. Therefore,
we have that x̄∗ (t) , t ∈ [0, T] is an optimal solution to SCP.

Next, we are going to prove Theorem 4.1.1.

Proof. For any µ ∈ [0, T], we must have that µ is in some interval(
τ, τ

′)
such that ā (τ) ≥ ā (µ) + 1, ā

(
τ

′) ≥ ā (µ) + 1 and ā (t) ≤
ā (µ) ,∀t ∈

(
τ, τ

′)
. We divide the situation in two cases.

Case I: τ
′ − τ > ∆. In this case, according to our Optimal

Solution Construction Procedure, we will set x (µ) = ā (µ) =
a (µ).

On the other hand, according to lemma (A.1.2), x̄∗ (t) ≤ a (µ) , ∀t ∈(
τ, τ

′)
because x̄∗ (t) is an optimal solution to

P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆, T + 2∆]. Therefore, we must
have x̄∗ (µ) = ā (µ) = a (µ). This means in Case I our Optimal
Solution Construction Procedure gives an optimal solution.

Case II: τ
′ − τ ≤ ∆. In this case, since τ

′ − τ ≤ ∆, we must
have that τ, τ

′ ∈ [0, T]. Therefore, there must exist two intervals(
τ1, τ

′

1

)
and

(
τ2, τ

′

2

)
which have following properties:

(1)
(
τ1, τ

′

1

)
covering

(
τ, τ

′)
, ā (τ1) ≥ ā (µ)+1, ā

(
τ

′

1

)
≥ ā (µ)+

1 and τ
′

1 − τ1 ≤ ∆. Moreover, for any interval
(
υ1, υ

1
1

)
cov-

APPENDIX A. PROOF 57

ering
(
τ1, τ

′

1

)
and ā (υ1) ≥ min

[
ā (τ1) , ā

(
τ

′

1

)]
+ 1, ā

(
υ

′

1

)
≥

min
[
ā (τ1) , ā

(
τ

′

1

)]
+ 1, we must have υ

′

1 − υ1 > ∆.
(2)

(
τ2, τ

′

2

)
covering

(
τ1, τ

′

1

)
, ā (τ2) ≥ min

[
ā (τ1) , ā

(
τ

′

1

)]
+

1, ā
(
τ

′

2

)
≥ min

[
ā (τ1) , ā

(
τ

′

1

)]
+ 1, τ

′

2 − τ2 > ∆ and a (t) ≤
min

[
ā (τ1) , ā

(
τ

′

1

)]
, ∀t ∈

(
τ2, τ

′

2

)
.

In this case, according to our Optimal Solution Construction
Procedure, we will set x (µ) = min

[
ā (τ1) , ā

(
τ

′

1

)]
.

On the other hand, according to lemma (A.1.2),
x̄∗ (t) ≤ min

[
ā (τ1) , ā

(
τ

′

1

)]
, ∀t ∈

(
τ2, τ

′

2

)
because x̄∗ (t) is an op-

timal solution to P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆, T + 2∆].
It is clear that x̄∗ (t) ≥ min

[
ā (τ1) , ā

(
τ

′

1

)]
,∀t ∈

(
τ1, τ

′

1

)
because

turning server o� and on later cause no less power that just let
server be idle during

(
τ1, τ

′

1

)
since τ

′

1 − τ1 ≤ ∆. Therefore, we
must have x̄∗ (µ) = min

[
ā (τ1) , ā

(
τ

′

1

)]
. This means in Case II

our Optimal Solution Construction Procedure also gives an opti-
mal solution.

Thus the x (t) constructed by the Optimal Solution Construc-
tion Procedure is an optimal solution to
P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆, T + 2∆]. Due to lemma (A.1.3),
we have x (t) , t ∈ [0, T] constructed by the Optimal Solution Con-
struction Procedure is an optimal solution to SCP.

A.2 Proof of Theorem 4.3.1

First we are going to prove that the o�ine can solve
P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆, T + 2∆] op-

timally. Due to lemma (A.1.3), the o�ine algorithm can also
solve SCP problem optimally. First, we are going to prove follow-
ing lemma.

Lemma A.2.1. Under last-empty-server-�rst job-dispatching strat-
egy, if a server becomes empty at τ1 and it will receive the �rst job
after τ1 at τ

′

1, then we have ā (τ1) = ā
(
τ

′

1

)
and ā (t) < ā (τ1) , ∀t ∈(

τ1, τ
′

1

)
.

APPENDIX A. PROOF 58

Proof. It is clear that at any time, the number of jobs in the system
is equal to the number of server's IDs that are not in the stack
of job-dispatching entity. Assume that the server's ID becoming
empty at τ is S. Since τ

′

1 is the �rst time that S is poped out
after τ , then the number of servers' ID on the top of S does not
change during

(
τ1, τ

′

1

)
. Therefore, we have ā (τ1) = ā

(
τ

′

1

)
and

ā (t) < ā (τ1) ,∀t ∈
(
τ1, τ

′

1

)
because the number of jobs in the

system is equal to the number of server's IDs that are not in the
stack.

Lemma A.2.2. For any idle server at time µ, assume that the
idle server become empty at τ . Then we have ā (τ) > ā (µ).

Proof. Assume that the idle server will receive its �rst job after µ
at τ

′
, according to lemma A.2.1, we ā (t) < ā (τ1) , ∀t ∈

(
τ1, τ

′

1

)
.

Thus, we have ā (τ) > ā (µ).

Now, we are going to prove theorem 4.3.1. The proof is similar
to the proof of theorem 4.1.1. Let xo (t) Denote the number of
servers run by o�ine algorithm at t.

Proof. For any µ ∈ [0, T], we must have that µ is in some interval(
τ, τ

′)
such that ā (τ) ≥ ā (µ) + 1, ā

(
τ

′) ≥ ā (µ) + 1 and ā (t) ≤
ā (µ) ,∀t ∈

(
τ, τ

′)
. We divide the situation in two cases.

Case I: τ
′ − τ > ∆. In this case, according to our Optimal

Solution Construction Procedure, we will set x (µ) = ā (µ) =
a (µ).

We are going to prove that there is no idle server in the system
at µ if we are running the proposed o�ine algorithm. We will
divide the situation in three sub-cases.

(1) if τ = −2∆.
In this sub-case, if there is idle servers at µ, then some idle

servers will receive jobs at τ
′
. According to lemma A.2.1, there

must exist a time υ in
[
0, τ

′)
such that ā (ν) > ā (µ), which

contradicts that ā (t) ≤ ā (µ) ,∀t ∈
(
−2∆, τ

′)
.

APPENDIX A. PROOF 59

(2) if τ
′
= T + 2∆.

In this sub-case, if there is idle servers at µ, according to
lemma A.2.1 and A.2.2, there must exist a time υ in (τ, T) such
that ā (ν) > ā (µ), which contradicts that ā (t) ≤ ā (µ) , ∀t ∈
(τ, T + 2∆).

(3)
(
τ, τ

′) ∈ [0, T].
In this sub-case, if there is idle servers at µ, according to lemma

A.2.1 and A.2.2, the idle server will receive a job after τ
′
. Thus

the idle period for the idle server is larger than τ
′− τ > ∆, which

contradicts that in our o�ine algorithm the idle period for a server
is at most ∆.

The three sub-cases shows that in Case I there is no idle server
at µ, which means xo (µ) = x (µ). Therefore, the o�ine algorithm
gives an optimal solution to P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆, T + 2∆].

Case II: τ
′ − τ ≤ ∆. In this case, since τ

′ − τ ≤ ∆, we must
have that τ, τ

′ ∈ [0, T]. Therefore, there must exist two intervals(
τ1, τ

′

1

)
and

(
τ2, τ

′

2

)
which have following properties:

(1)
(
τ1, τ

′

1

)
covering

(
τ, τ

′)
, ā (τ1) ≥ ā (µ)+1, ā

(
τ

′

1

)
≥ ā (µ)+1

and τ
′

1 − τ1 ≤ ∆. Moreover, for any interval
(
υ1, υ

1
1

)
covering(

τ1, τ
′

1

)
and ā (υ1) ≥ min

[
ā (τ1) , ā

(
τ

′

1

)]
+1, ā

(
υ

′

1

)
≥ min

[
ā (τ1) , ā

(
τ

′

1

)]
+

1, we must have υ
′

1 − υ1 > ∆.
(2)

(
τ2, τ

′

2

)
covering

(
τ1, τ

′

1

)
, ā (τ2) ≥ min

[
ā (τ1) , ā

(
τ

′

1

)]
+

1, ā
(
τ

′

2

)
≥ min

[
ā (τ1) , ā

(
τ

′

1

)]
+ 1, τ

′

2 − τ2 > ∆ and a (t) ≤
min

[
ā (τ1) , ā

(
τ

′

1

)]
, ∀t ∈

(
τ2, τ

′

2

)
.

In this case, according to our Optimal Solution Construction
Procedure, we will set x (µ) = min

[
ā (τ1) , ā

(
τ

′

1

)]
.

Similar to Case I, we can also divide the situation into three
sub-cases: (1)τ2 = −2∆. (2) τ

′

2 = T + 2∆. (3)
(
τ2, τ

′

2

)
∈ [0, T].

In each sub-case, we can adopt the approach we used in Case I to
show that xo (t) = min

[
ā (τ1) , ā

(
τ

′

1

)]
,∀t ∈ (τ2, τ1). According

to lemma A.2.1, o�ine algorithm will not turn o� server during(
τ1, τ

′

1

)
. Therefore, we have xo (µ) = min

[
ā (τ1) , ā

(
τ

′

1

)]
= x (µ).

In the two cases, we proved that xo (t) is equal to x (t) con-

APPENDIX A. PROOF 60

structed by Optimal Solution Construction Procedure. Therefore,
the proposed o�ine algorithm can solve SCP optimally.

A.3 Least idle vs last empty

In order to prove that least-idle is at least as good as last-empty,
we are going to prove two facts: (i) the number of physical switches
in least-idle is no more than last-empty, and (ii) the number of
"on" servers at any given time under least-idle is also no more
than that of last-empty.

Let L(s, t) be a time-varying permutation of servers such that
any arrival to or departure from server s at time t under last-
empty arrives to or departs from L(s, t) under least-idle. (Note
this is a random variable depending on the random variables Z

chosen at times prior to t.) Multiple such permutations exist; we
impose the continuity condition so that L(s, t) only changes at job
arrival times. Speci�cally, if L(s1, t1) = L(s2, t2) for s1 ̸= s2 and
t1 < t2 then there is an arrival to either s1 or s2 under last-empty
in the interval [t1,t2], and least-idle assigns the job to a di�erent
server.

Partition the interval [0, T) as follows. Let Ds be the set of
points of discontinuity of L(s, ·). We claim that, with probability
1, there are no accumulation points in Ds. To see this, note that
an accumulation point would only occur if there were an interval of
length ϵ such that there were an in�nite number of (i.i.d.) random
timeouts Z generated, each of which is less than ϵ. We can then
partition [0, T) into intervals of the form [as(i), as(i+ 1)), where
as(·) ∈ Ds. According to the continuity condition of L (s, t), all
the points as(·) in Ds are job arrival points.

We can think of L(s, ·) as de�ning a �logical� server that serves
the same jobs under least-idle as s does under last-empty. By
hypothesis, it also generates the same sequence of Z sleep timeouts
under least-idle as s does under last-empty. There are two ways

APPENDIX A. PROOF 61

that logical server L (s, ·) can turn on are: (i) the mapping L (s, ·)
remains constant and the server L(s, t) turns on. (ii) the mapping
L (s, ·) changes from a server that is o� to a server that is on.
Consequently, the only times that logical server L(s, ·) turns on
or o� and server s does not are in the case (ii). These switches do
not correspond to a physical server turning on or o�, and so do
not incur a switching cost. Hence the total switching cost under
least-idle is at most that under last-empty.

It remains to show that xL(s,t)(t) under least-idle is at most
xs(t) under last-empty. The only cause for L(s, ·) to turn on is a
new arrival, after which both s and L(s, t) must be on. The only
times that s turns o� that L(s, ·) does not are during idle periods
when L(s, ·) has already turned o� �for free� due to a discontinuity
in L(s, ·).

A.4 Proof of Theorem 5.2.2

In order to prove theorem 5.2.2, we use Lemma 5.0.2 and two
other technical lemmas. First, let us introduce some notation.

Let τj,s be the time in [0, T] that job j arrives at server s, and
τj,e be the time that j leaves the system. Let τ †j,s = inf{t > τj,e :
a job arrives to sat time t}; if there are �nitely many arrivals in
[0, T] then τ †j,s = τj+1,s. We also consider time T as a virtual job
arrival point to the server.

Lemma A.4.1. The deterministic online ski-rental algorithm we
applied in our online algorithm CSR has competitive ratio 2− α.

Proof. As we already proved in Lemma 5.0.2, for both online and
o�ine cases, a server faces the same set of jobs. From now on,
we focus on one server, s. The server should decide to turn o�
itself or stay idle between τj,e and τ †j,s. In order to get competitive
ratio of the deterministic online ski-rental algorithm we applied
in CSR, we want to compare the power consumptions P on

j and

APPENDIX A. PROOF 62

P off
j of the online and o�ine ski-rental algorithms respectively in(
τj,s, τ

†
j,s

]
. This does not include the power to turn on at τj,s, but

does include the power to turn on at τ †j,s (or immediately after

if τ †j,s is an accumulation point). The power consumption of the
online and o�ine ski-rental algorithms depend on the length of
the time between τj,e and τ †j,s. Let Tj,B = τj,e − τj,s denote the

length of the busy period in
(
τj,s, τ

†
j,s

]
and Tj,E = τ †j,s−τj,e denote

the length of the empty period in
(
τj,s, τ

†
j,s

]
. Then

P off
j =

{
PbTj,B + PTj,E, if Tj,E ≤ △;

PbTj,B + (βon + βoff) , if Tj,E > △.
(A.1)

and the online ski-rental algorithm in CSR gives

P on
j =

{
PbTj,B + PTj,E, if Tj,E ≤ △;

PbTj,B + (βon + βoff) + P (1− α)△, if Tj,E > △.

(A.2)
Hence, Tj,E ≤ △ implies P on

j /P off
j = 1, and since P△ = (βon + βoff),

Tj,E > △ implies

P on
j

P off
j

≤ (βon+βoff)+P (1−α)△
(βon+βoff)

= 2− α.

In either case, P on
j /P off

j ≤ 2 − α for any Tj,E. Summing over j
and s gives the result.

Lemma A.4.2. The randomized online ski-rental algorithm we
applied in our online algorithm RCSR with last-empty-server-�rst
strategy has competitive ratio e/ (e− 1 + α).

Proof. In the proof, we still focus on one server. We will use
the same notations we used to prove Lemma A.4.1. This time

APPENDIX A. PROOF 63

it is su�cient to compare the average power consumption P on
j of

the randomized online ski-rental algorithm in
(
τj,s, τ

†
j,s

]
with o�-

line optimal power consumption in (A.1). Under the randomized
online ski-rental algorithm, when T < α △, we have

E
(
P on
j

)
= PbTj,B + PTj,E;

when α △≤ Tj,E ≤△, we have

E
(
P on
j

)
= PbTj,B +

∫ Tj,E−α△

0

(Pz + βon + βoff) fZ (z) dz

+P

∫ (1−α)△

Tj,E−α△
Tj,EfZ (z) dz;

and when Tj,E >△, we have

E
(
P on
j

)
= PbTj,B +

∫ (1−α)△

0

(Pz + βon + βoff) fZ (z) dz.

We get the above expected power consumption for α△ ≤
Tj,E ≤ △ as follows: If the number Z generated by the server
is less than Tj,E − α△, then the server will wait for time Z, con-
suming energy PZ. It looks into the look-ahead window of size
α∆ and �nds it won't receive any job during the window because
Z < Tj,E − α△. Therefore, it turns itself o� and cost power
(βon + βoff). On the other hand, if Z ≥ Tj,E − α△, the server
will not turn itself o� and consume PTj,E to stay idle. We can get
the expected power consumption for Tj,E < α△ and Tj,E > △ in
the same way. According to the distribution of Z in RCSR, we
can calculate E (Pj,on) and the ratio between E (Pj,on) and Pj,off :

E
(
P on
j

)
P off
j

=

{
1, Tj,E < α △;

e
e−1+α , Tj,E ≥ α △ .

From this expression, for all j, we can conclude that E
(
P on
j

)
/P off

j ≤
e

e−1+α for any Tj,E. Summing over j and s gives the result.

APPENDIX A. PROOF 64

Now we are ready to prove theorem 5.2.2.
As we already proved in our o�ine algorithm that the optimal

power consumption of the data center can be achieved by each
server run o�ine ski-rental algorithm individually and indepen-
dently. On the other hand, in Lemma A.4.1 and A.4.2, we proved
that the power consumption of deterministic and randomized on-
line ski-rental algorithm we applied are at most 2− α and e

e−1+α

times the power consumption of o�-line ski-rental algorithm for
one server. Therefore, the power consumption of our online algo-
rithm CSR is at most 2 − α times the power consumption of of-
�ine algorithm for data center. Moreover, if we adopt last-empty-
server-�rst job-dispatching strategy in the randomized algorithm
RCSR, it can achieve competitive ratio e

e−1+α . By Lemma 5.2.1,
RCSR with least-idle performs at least as well as if it adopted
last-empty-server-�rst job-dispatching strategy. Therefore, RCSR
has competitive ratio e

e−1+α .
Next, we want to prove that CSR has the best competitive ra-

tio for deterministic online algorithms under our job-dispatching
strategy. First, we prove that the best competitive ratio of deter-
ministic algorithm for single ski-rental problem is 2− α. Assume
that deterministic online algorithm peeks into the look-ahead win-
dow and then decide to turn o� or stay idle time θ △ after becom-
ing empty at t1. For θ < 1− α, if the server receives its next job
right after t1 + (θ + α) △, then the online algorithm will turn o�
itself at t1 + θ △, and consume energy P (θ + 1) △. On the other
hand, the o�ine optimal is (α + θ)P △, whence the competitive
ratio is at least θ+1

θ+α > 2− α. For θ > 1− α, if the server receives
its next job right after t1 + (θ + α) △, then the online algorithm
will turn o� itself at t1 + θ △, and consume P (θ + 1) △ power.
On the other hand, the o�ine optimal is P △. The competitive
ratio at least is 1 + θ > 2 − α. Hence, only when θ = 1 − α
can the deterministic algorithm have the competitive ratio 2−α.
Therefore, the best competitive ratio of deterministic algorithm

APPENDIX A. PROOF 65

for single ski-rental problem is 2 − α. However, a server will re-
ceive a sequence of jobs in data center. And after �nishing each
job, the server faces a ski-rental problem. Hence, each server actu-
ally faces a repeated ski-rental problem. As for repeated ski-rental
problem we have following lemma.

Lemma A.4.3. The best competitive ratio of deterministic algo-
rithm for the repeated ski-rental problem faced by each server is
2− α.

Proof. We will prove lemma A.4.3 by induction. Assume that
deterministic algorithm A1 achieves the best competitive ratio
for repeated ski-rental problem. Let θi △ be the length of idle
time before the server peeking into the look-ahead in the ith ski-
rental problem. Since the best deterministic algorithm for single
ski-rental problem will peek into look-ahead window after staying
idle for (1− α)△ time, thus A1 must have θ1 = 1− α.

Suppose θi = 1− α for i = 1, 2, ...k. Therefore, the cost of A1
is at most 2−α times the o�ine optimal for the �rst k ski-rental
problems. We will prove that A1 must have θk+1 = 1 − α. As a
matter of fact, if θk+1 < 1−α or θ1+k > 1−α, we can use the same
approach we used to prove the best competitive ratio for single ski-
rental is 2−α to show that in the (k + 1)th ski-rental problem A1
consumes more than 2−α times the o�ine optimal in worst case.
It contradicts A1 achieves the best competitive ratio for repeated
ski-rental problem. Therefore, we must have θk+1 = 1 − α. It
follows that the best competitive ratio of deterministic algorithm
for repeated ski-rental algorithm is 2− α.

Therefore, the best deterministic online algorithm is CSR, which
has competitive ratio 2− α.

Finally, we want to prove that RCSR has the best competi-
tive ratio for randomized online algorithms under our last-empty-
server-�rst job-dispatching strategy. Consider the case that the
server becomes empty at τ1 and it will receive its next job at

Minghua Chen
Highlight

APPENDIX A. PROOF 66

τ2. In order to �nd the best competitive ratio for a randomized
online algorithm, according to the proof of Lemma A.4.2, it is
su�cient to �nd the minimal ratio of the power consumed by ran-
domized online algorithm to that of the o�ine optimal in [τ1, τ2].
The competitive ratio cannot be lower than the competitive ratio
on an instance with a single empty interval, and so we consider
that case. We �rst divide time period (τ1, τ2) into slots of equal
length. As the length of the slots goes to zero, we can get the
best competitive ratio for a continuous time randomized online
algorithm.

Assume the critical interval △ contains exact b slots and there
are D slots in [τ1, τ2]. We focus on the case that the look-ahead
window has k ≤ b − 2 slots. (If k ≥ b − 1, the online algorithm
can achieve the o�ine optimum and the competitive ratio is 1.)
Let pi denote the probability that the algorithm decides to turn
o� the server at slot i = 1, 2, Let the competitive ratio be
c. Regardless of the value of D, the expected online cost must
be at most the competitive ratio times the o�ine cost. Thus the
minimum competitive ratio satis�es

inf c (A.3)

s.t. D

∞∑
i=1

pi ≤ cD, ∀D ∈ [0, k], (A.4)

D−k∑
i=1

(b+ i− 1) pi +
∞∑

i=D−k+1

Dpi ≤ Dc, ∀D ∈ (k, b] ,(A.5)

D−k∑
i=1

(b+ i− 1) pi +
∞∑

i=D−k+1

Dpi ≤ bc, ∀D ∈ (b,∞] ,(A.6)

∞∑
i=1

pi = 1, 0 ≤ pi ≤ 1, ∀i, (A.7)

var c, pi, ∀i ∈ {1, 2, 3, . . .} . (A.8)

Minghua Chen
Highlight

APPENDIX A. PROOF 67

We can apply the steps in [3] to show that the optimal value c∗d
of problem (A.3)�(A.8) is equal to the optimal value c̄∗ of following
problem.

min c̄ (A.9)

s.t. 1 ≤ c̄, ∀D ∈ [0, k], (A.10)
D−k∑
i=1

(b+ i− 1) p̄i +
b−k∑

i=D−k+1

Dp̄i ≤ Dc̄, ∀D ∈ (k, b) ,(A.11)

b−k∑
i=1

(b+ i− 1) p̄i ≤ bc̄, ∀D ∈ [b,∞] , (A.12)

b−k∑
i=1

p̄i = 1, 0 ≤ pi ≤ 1,∀i, (A.13)

var c̄, p̄i, ∀i ∈ {1, 2, . . . , b− k} . (A.14)

Next, we prove that p̄∗1 is positive. If instead p̄∗1 = 0, let j be
the minimal i such that p̄∗i > 0. Then the constraints (A.11)�
(A.12) must hold as strict inequalities for D ≤ k + j − 1, for
the following reason. First consider the constraint for D = k + j.
Since we have j ≤ b−k−1 (otherwise we obtain the deterministic
algorithm CSR, which is suboptimal), we have D = k+ j < b and
the constraint for D = k + j, divided by D, is

b+ j − 1

k + j
p̄j +

b−k∑
i=j+1

p̄i ≤ c̄.

and when D ≤ k + j − 1, the constraints, divided by D, are

b−k∑
i=j

p̄i ≤ c̄.

Since k ≤ b − 2, if the latter were active, then the former would
be violated.

Minghua Chen
Highlight

APPENDIX A. PROOF 68

We use the slackness of these constraints to show p̄∗1 > 0.
The coe�cient of p̄∗1 is less than that of p̄∗j in the constraints
for D > k + j − 1. Therefore, we can decrease p̄∗j a little bit
and increase p̄∗1 a little bit such that all the constraints of (A.10)�
(A.13) have slackness, which means we can �nd a smaller c̄ which
satis�es all the constraints. This contradicts the optimality of
p̄∗ =

[
p̄∗1, p̄

∗
2, p̄
∗
3, · · · , p̄∗b−k

]
. Therefore, we must have p̄∗1 > 0.

Next, we again follow [3] to show that each of the inequalities
in (A.11), (A.12) is tight. Assume instead that the constraint
corresponding to some particular D ∈ (k, b] is loose. Let D#

be the largest such D. Consider case (i) that D# < b. Note
that p̄∗D#−k+1 > 0, since otherwise D# + 1 would also be slack.
Then decrease p̄∗D#−k+1 and increase p̄∗D#−k slightly. This does
not a�ect constraints for smaller D, but introduces slack into the
constraints for all larger D. Next, we could increase p̄∗D#−k and
decrease p̄∗1, which doesn't a�ect constraints for larger D, but
introduces slack for all constraints with smaller D. Alternatively,
in case (ii) that D# = b, we can decrease p̄∗1 while increasing
p̄∗b−k to introduce slack into earlier constraints. In either case, the
transformation induces slack in all constraints, which allows c̄∗

to decrease, contradicting the optimality of c̄∗. Therefore, all the
constraints for D ∈ (k, b] must be tight.

Since the total b − k constraints for all the D ∈ (k, b] is tight

and
b−k∑
i=1

p̄i = 1, we can solve the system of linear equations and get

the minimal competitive ratio and probability distribution:

c̄∗ =

(
1−

(
b− k − 1

b− k

)b−k−1
b− k − 1

b

)−1
,

p̄∗b−k−i =
c̄∗

b− k

(
b− k − 1

b− k

)i

, 0 ≤ i < b− k − 1,

Minghua Chen
Highlight

APPENDIX A. PROOF 69

p̄∗1 =

(
b− k − 1

b− k

)b−k−1
k + 1

b
c̄∗, k < b.

Letting b go to in�nity and keeping k/b = α, we have the
minimal competitive ratio c∗ for continuous time:

c∗ =
e

e− 1 + α
.

This means the minimal competitive ratio for continuous time
randomized online algorithm is c∗ = e

e−1+α , as required. There-
fore, the best competitive ratio of randomized algorithm for single
ski-rental problem is e

e−1+α . We have the following lemma to prove
that RCSR has the best competitive ratio for randomized algo-
rithms against oblivious adversary [9].

Lemma A.4.4. The best competitive ratio of randomized algo-
rithm for the repeated ski-rental problem faced by each server is

e
e−1+α.

Proof. In the proof we will use the notation used in the proof
of lemma A.4.1. Assume that the cost of online algorithm in
the ith ski rental problem is Ci and the o�ine optimal in the
ith ski rental is C∗i . If the strategy of the oblivious adversary is
to arbitrarily choose a number as the empty period in each ski
rental problem, then the online algorithm has no information of
the length of empty period Ti,E of current ski rental problem even
the online algorithm knows Ti−1,E, Ti−2,E,...T1,E. Assume that
online algorithm chooses fZi

(zi) as the probability distribution
of Zi given the actual values of Zi−1, Ti−1,E, Zi−2, Ti−2,E, ...,Z1,
T1,E. Then there always exists a T̄i,E ∈ (α∆,∆] (we don't need
to consider the case of T̄i,E > ∆ because in this case the cost of
online algorithm and o�ine algorithm are equal to that under the
situation T̄i,E = ∆) such that

E (Ci|Zi−1, Zi−2, ..., Z1) ≥
e

e− 1
T̄i,E.

Minghua Chen
Highlight

APPENDIX A. PROOF 70

To see this, suppose there is no T̄i,E ∈ (α∆,∆] satisfying above
inequality, then for any Ti,E ∈ (α∆,∆], we must have

E (Ci|Zi−1, Zi−2, ..., Z1) <
e

e− 1
Ti,E.

Then in the single ski rental problem, we can also let the dis-
tribution of random variable Z follow the some distribution as Zi.
We can get a better competitive ratio than e

e−1 for single ski rental
problem in this way. This is a contradiction. Therefore, such T̄i,E

must exist.
Following this, we have

E (Ci) = E (E (Ci|Zi−1, Zi−2, ..., Z1)) ≥
e

e− 1
T̄i,E =

e

e− 1
C∗i .

It is clear that the expected total cost of online algorithm is
E (
∑

Ci) =
∑

E (Ci) and the total cost of o�ine algorithm is∑
C∗i . The competitive analysis is a worst case analysis even if

the worst case dose not happen very often, and we indeed have
cases in which we have E (Ci) ≥ e

e−1C
∗
i . Therefore, in the worst

cases of the online algorithm, we must have

E
(∑

Ci

)
=
∑

E (Ci) ≥
e

e− 1

∑
C∗i .

This means the online algorithm can not do better than e
e−1

even against oblivious adversary. Therefore, RCSR has the best
competitive ratio e

e−1+α for randomized algorithms against obliv-
ious adversary.

A.5 Proof of Corollary 5.4.1

In this section, we are going to prove corollary 5.4.1.

Proof. We prove the result for RCSR. Since we make no use of
the form of fX , the same proof holds for CSR (which corresponds
to RCSR with fx(x) = δ(x−∆)).

Minghua Chen
Highlight

APPENDIX A. PROOF 71

We �rst establish validity. Note that x(t) is the number of
servers ON under RCSR, and that x(t) increases by at most a
factor of 1 + γ in an interval of length Ts, since x(t) ≥ a(t) at
the start, and x(t) = a(t) at all times that x increases. Since
arrival instants are discrete, there are also no limit point in the
set of times {tn}Nn=0 at which x(t) changes, and so we can apply
induction on n.

By induction, the number of ON and BOOT servers at each
time tn is either ⌈x(tn)(1 + γ)⌉ or ⌈x(tn)(1 + γ)⌉ + 1. The base
case, t0 = 0, is true by hypothesis. For subsequent tn it is true
by construction except that when M is sent, there may be only
⌊x(tn−1)(1 + γ)⌋+ 1 ≥ ⌈x(tn)(1 + γ)⌉ servers ON or BOOTing.

We now show by induction that there are at least x(tn) ON
servers at each time tn. If x decreases at tn, this is true since
there were at least x(tn−1) > x(tn) servers ON before tn. Next
consider the case that x(t) increases at tn.

Let τ = argminτ∈[tn−Ts,tn] x(τ), with ties broken by taking the
smallest τ . We claim all BOOT servers at τ were BOOT at tn−Ts.
This is trivial if τ = tn − Ts. To see it in other cases, suppose
instead there is a BOOT server at τ that was turned on at τ ′ ∈
(tn − Ts, τ). Now x(τ ′) > x(τ) by the minimality of τ, and so
⌈x(τ ′)(1+γ)⌉ ≥ ⌈x(τ)(1+γ)⌉+1, whence there are more ON or
BOOT servers at τ ′ than at τ. However, since EXT turns of the
most recently turned on BOOT servers �rst, existence at τ of a
BOOT server turned on at τ ′ means that more servers are turned
on during [τ ′, τ] than are turned o�, which is a contradiction.

Since x (tn) ≤ x (τ) (1 + γ) and all the BOOT servers at τ will
become ON at tn, thus there will be at least x (τ)+⌊x (τ) γ⌋+1 ≥
x (tn) ON servers. This completes the induction.

Since x (t) ≥ a (t), we have proved the number of ON servers is
at least a (t) at time t in the extended algorithm, which establishes
the �rst claim of the theorem.

To prove the competitive ratios, note that the number of total

APPENDIX A. PROOF 72

active servers in EXT is at most (1 + γ)x (t) + 2. The total
running energy cost of EXT is at most 2PT more than (1 + γ)
times of the running cost of RCSR.

Now, we are going to analyze the switching cost. We divide the
x (t) down into periods during which x (t) is increasing and peri-
ods in which it is decreasing. Moreover, a decreasing/increasing
period must be followed by an increasing/decreasing period and
the combination of all the periods covers the interval of [0, T]. In
any increasing period, assume that x (t) increase from A to A+k,
the number of turning-on in extended algorithm is

⌊(A+ k) (1 + γ)⌋ − ⌈A (1 + γ)⌉ ≤ k (1 + γ) .

We will get similar result for decreasing period. Therefore, the
total switching cost of the extended algorithm is at most (1 + γ)
times that of RCSR.

When servers have setup time, the o�ine optimal cost P ∗S is
changed. However, the optimal value of SCP(corresponding to
case with Ts = 0) is a lower bound of P ∗S(This is because in the
optimal solution to the problem with setup time each server will
be assigned a sequence of jobs. And each server tries to minimize
its power cost when processing the sequence of jobs. It is obvious
that the smaller Ts, the smaller the power cost of each server.
Thus the total cost is smaller). Hence, the total cost of RCSR
is at most e

e−1+αP
∗
S . Moreover, the total cost of EXT is at most

2PT + e
e−1+α (1 + γ)P ∗S . The competitive ratio of EXT follows

from that amin is the minimal workload and P ∗S ≥ aminPT . Since
1/γ is a lower bound of amin, we can directly get the upper bound
of competitive ratio stated in corollary 5.4.1.

A.6 Proof of Lemma 7.1.1

When θ ≤ θ, we have (1− θ) d ≥ 1. If the cow can see clearly
things within a distance of θd, where d ≥ 1, 0 ≤ θ ≤ 1, then in or-

APPENDIX A. PROOF 73

der to �nd the target the cow only needs to �nd the pointM which
is (1− θ) d away from S. To �nd pointM is a new traditional lost
cow problem(without future information). Since our determinis-
tic and randomized algorithms adopt the traditional algorithms
for the lost cow problem to �nd M , the cow at most walks for a
distance of 9 (1− θ) d and 4.59 (1− θ) d to reach point M . The
distance from M to S is θd. Therefore the total distance is at
most (9− 8θ) d and (4.59 − 3.59θ)d, respectively. The compet-
itive ratios follow directly from the fact the the o�ine optimal
distance is d.

When θ < θ < 1, then we have (1− θ) d < 1. Since the
distance between S and M is (1− θ) d < 1, �nding point M is
not a traditional lost cow problem. In this case, it is clear that
the worst case for our deterministic algorithm is that the �rst
search of the cow is in the wrong direction. Since (1− θ) d < 1,
according to our deterministic algorithm, the cow will �nd the
target after the �rst failed search and the total distance traveled
by the cow is d+2. On the other hand, in SmartCow(θ), the cow
has probability 0.5 to choose the right direction and the wrong
direction in the �rst search, respectively. And the total distance
the cow has to travel is d if the direction is right and d + 2rε if
the direction is wrong. It is easy to calculate that the expected
distance traveled by the cow for SmartCow(θ) is d+E(rε), where
ε is uniformly distributed in [0, 1). Since r ≈ 3.59, we have that
the value of d + E(rε) ≈ d + 2. The competitive ratios follow
directly from the fact the the o�ine optimal distance is d = 1

1−θ .
When θ = 1, then the cow can see the target at S. There-

fore, the cow can go directly to the target and this is what the
o�ine algorithm does. In this case, the competitive ratios for both
algorithms are 1.

APPENDIX A. PROOF 74

A.7 Proof of Theorem 7.3.1

If the future information is known in the secretary problem, the
probability of our strategy to hire the best applicant is:

n−m∑
j=k+1

1

n

k

j − 1
+

n−m∑
j=k+1

1

j

k

j − 1

m

n
. (A.15)

In above expression,
n−m∑
j=k+1

1
n

k
j−1 is the probability that the ap-

plicant currently being considered whether to hire or not is the

best one among the total n applicants and
n−m∑
j=k+1

1
n

k
j−1 is the prob-

ability that the best one among the total n applicants is in the m
applicants whose information(considered as future information) is
known by employer. The optimal k for this strategy is the one
maximizing the total probability computed by (A.15). For small
n, the optimal k can be easily computed. We are interested in the
approximate value of the optimal k for large n.

For large n, we have
n−m∑
j=k+1

1
n

k
j−1 ≈

k
n ln

n(1−θ)
k and

n−m∑
j=k+1

1
j

k
j−1

m
n =

θk
[
1
k −

1
n(1−r)

]
. Let k

n = x and x is continuous between 0 and 1,

and then the problem becomes to �nd the optimal x maximizing
the following expression:

x ln
1− θ

x
+ θ

[
1− x

1− θ

]
. (A.16)

It is easy to �nd the optimal x∗ to (A.16) is (1− θ) e−
1

1−θ and
the corresponding probability is θ+(1− θ) e−

1
1−θ . It indicates that

the probability of hiring the best applicant is enhanced. Moreover,

APPENDIX A. PROOF 75

If θ = 0, we have x∗ = 1
e and the probability is 1

e which match the
results from the classic secretary problem.

2 End of chapter.

Bibliography

[1] Spain Energy Consumption,
http://www.nationmaster.com/country/sp-spain/ene-
energy.

[2] SPEC power data, http://www.spec.org.

[3] Online algorithms: Ski rental, Claire Mathieu,
http://www.cs.brown.edu/∼claire/Talks/skirental.pdf.

[4] Y. C. L. A. Beloglazov, R. Buyya and A. Zomaya. A
taxonomy and survey of energy-e�cient data centers and
cloud computing systems. Advances in Computers, M.
Zelkowitz(ed.), vol. 82, pp. 47-111, 2011.

[5] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in
the plane. Information and Computation, 106:234�234, 1993.

[6] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling
to manage energy and temperature. 2004.

[7] L. Barroso. The price of performance. ACM Queue, 3(7):48�
53, 2005.

[8] L. Barroso and U. Holzle. The case for energy-proportional
computing. IEEE Computer, 40(12):33�37, 2007.

[9] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and
A. Wigderson. On the power of randomization in on-line
algorithms. Algorithmica, 11(1):2�14, 1994.

76

BIBLIOGRAPHY 77

[10] P. Bodík, R. Gri�th, C. Sutton, A. Fox, M. Jordan, and
D. Patterson. Statistical machine learning makes automatic
control practical for internet datacenters. In Proceedings of
the 2009 conference on Hot topics in cloud computing.

[11] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle.
Managing energy and server resources in hosting centers. In
Proc. ACM SOSP, 2001.

[12] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao. Energy-aware server provisioning and load dis-
patching for connection-intensive internet services. In Proc.
USENIX NSDI, 2008.

[13] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang,
and N. Gautam. Managing server energy and operational
costs in hosting centers. In ACM SIGMETRICS, volume 33,
pages 303�314, 2005.

[14] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-
based resource provisioning in a web service utility. In Pro-
ceedings of the 4th conference on USENIX Symposium on
Internet Technologies and Systems, 2003.

[15] X. Fan, W. Weber, and L. Barroso. Power provisioning for a
warehouse-sized computer. In Proc. the 34th annual interna-
tional symposium on Computer architecture, 2007.

[16] T. Ferguson. Who solved the secretary problem? Statistical
science, pages 282�289, 1989.

[17] H. Fujiwara and K. Iwama. Average-case competitive analyses
for ski-rental problems. Algorithms and Computation, pages
157�189, 2002.

BIBLIOGRAPHY 78

[18] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch.
Optimality analysis of energy-performance trade-o� for server
farm management. Performance Evaluation, 2010.

[19] J. Gilbert and F. Mosteller. Recognizing the maximum of a
sequence. Selected Papers of Frederick Mosteller, pages 355�
398, 2006.

[20] T. Heath, B. Diniz, E. Carrera, W. Meira Jr, and R. Bian-
chini. Energy conservation in heterogeneous server clusters.
In Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 186�
195. ACM, 2005.

[21] P. Jaillet and M. Wagner. Online routing problems: Value of
advanced information as improved competitive ratios. Trans-
portation Science, pages 200�210, 2006.

[22] T. Jayram, T. Kimbrel, R. Krauthgamer, B. Schieber, and
M. Sviridenko. Online server allocation in a server farm via
bene�t task systems. In Proceedings of the thirty-third annual
ACM symposium on Theory of computing, pages 540�549,
2001.

[23] M. Kao, J. Reif, and S. Tate. Searching in an unknown envi-
ronment: An optimal randomized algorithm for the cow-path
problem. In Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms, pages 441�447, 1993.

[24] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Com-
petitive randomized algorithms for nonuniform problems. Al-
gorithmica, 11(6):542�571, 1994.

[25] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Com-
petitive snoopy caching. Algorithmica, 3(1):79�119, 1988.

BIBLIOGRAPHY 79

[26] J. G. Koomey. Growth in data center electricity use 2005 to
2010. Oakland, CA: Analytics Press, 2010.

[27] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and
R. Katz. Napsac: design and implementation of a power-
proportional web cluster. ACM SIGCOMM Computer Com-
munication Review, 41(1):102�108, 2011.

[28] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and
G. Jiang. Power and performance management of virtual-
ized computing environments via lookahead control. Cluster
Computing, 12(1):1�15, 2009.

[29] L. X. L. Rao, X. Liu and W. Liu. Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-
electricitymarket environment. Proc. IEEE INFOCOM, 2010.

[30] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew. Online al-
gorithms for geographical load balancing. In Proc. Int. Green
Computing Conf., 2012.

[31] M. Lin, A. Wierman, L. Andrew, and E. Thereska. Dynamic
right-sizing for power-proportional data centers. Proc. IEEE
INFOCOM, Shanghai, China, pages 10�15, 2011.

[32] Z. Liu. Greening geographical load balancing. PhD thesis,
California Institute of Technology, 2011.

[33] A. M¡dry and D. Panigrahi. The semi-stochastic ski-rental
problem.

[34] V. Mathew, R. Sitaraman, and P. Shenoy. Energy-aware load
balancing in content delivery networks. Proc. IEEE INFO-
COM, 2012.

[35] I. Meilijson and A. Nádas. Convex majorization with an ap-
plication to the length of critical paths. Journal of Applied
Probability, pages 671�677, 1979.

BIBLIOGRAPHY 80

[36] D. Meisner, B. Gold, and T. Wenisch. Powernap: eliminating
server idle power. ACM SIGPLAN Notices, 2009.

[37] D. Narayanan, A. Donnelly, and A. Rowstron. Write o�-
loading: Practical power management for enterprise storage.
ACM Transactions on Storage (TOS), 4(3):10, 2008.

[38] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform
heterogeneity for power e�cient data centers. In Autonomic
Computing, 2007. ICAC'07. Fourth International Conference
on, pages 5�5. IEEE, 2007.

[39] V. Petrucci, O. Loques, and D. Mossé. Dynamic optimization
of power and performance for virtualized server clusters. In
Proceedings of the 2010 ACM Symposium on Applied Com-
puting, pages 263�264, 2010.

[40] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load
balancing and unbalancing for power and performance in
cluster-based systems. In Workshop on Compilers and Oper-
ating Systems for Low Power, 2001.

[41] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the
best response for your erg. Algorithm Theory-SWAT 2004,
pages 14�25, 2004.

[42] H. Qian and D. Medhi. Server operational cost optimization
for cloud computing service providers over a time horizon. In
Proceedings of the 11th USENIX conference on Hot topics in
management of internet, cloud, and enterprise networks and
services, pages 4�4, 2011.

[43] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and
B. Maggs. Cutting the electric bill for internet-scale systems.
In Proc. ACM SIGCOMM, pages 123�134, 2009.

BIBLIOGRAPHY 81

[44] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and
X. Zhu. No power struggles: Coordinated multi-level power
management for the data center. In ACM SIGARCH Com-
puter Architecture News, volume 36, pages 48�59, 2008.

[45] N. Rasmussen. Electrical e�ciency modeling of data centers.
Technical Report White Paper, 113.

[46] R. Sharma, C. Bash, C. Patel, R. Friedrich, and J. Chase.
Balance of power: Dynamic thermal management for internet
data centers. IEEE Internet Computing, 2005.

[47] R. Urgaonkar, B. Urgaonkar, M. Neely, and A. Sivasubrama-
niam. Optimal power cost management using stored energy in
data centers. In Proc. ACM SIGMETRICS, pages 221�232,
2011.

[48] U.S. Environmental Protection Agency. Epa report on server
and data center energy e�ciency. ENERGY STAR Program,
2007.

[49] P. Wendell, J. Jiang, M. Freedman, and J. Rexford. Donar:
decentralized server selection for cloud services. In Proc.
ACM SIGCOMM, volume 40, pages 231�242, 2010.

[50] A. Wierman, L. Andrew, and A. Tang. Power-aware speed
scaling in processor sharing systems. In INFOCOM 2009,
IEEE, pages 2007�2015. IEEE, 2009.

[51] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced cpu energy. In Foundations of Computer Science,
1995. Proceedings., 36th Annual Symposium on, pages 374�
382. IEEE, 1995.

