
A compact routing protocol for ad hoc networks
Minghua Chen

Dept. of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720, USA

minghua@eecs.berkeley.edu

Ayalvadi Ganesh
Microsoft Research

7 J J Thomson Ave, Cambridge CB3 0FB, UK
ajg@microsoft.com

Abstract— We present a scheme for routing between arbitrary
source and destination nodes in a wireless network based on node
identifiers. Nodes are aware of their own location, but not of the
location of all other nodes. Our scheme provides a distributed
name to location directory. It achieves constant stretch with
polylogarithmic storage at each node. Join and leave operations
incur polylogarithmic cost.

I. INTRODUCTION

In recent years, there has been significant research interest
in wireless ad hoc, mesh and sensor networks. An important
goal is to provide communication functionality between nodes
without relying on any external infrastructure. The network
is typically too large to allow direct one-hop communication
between all node pairs. Hence nodes have to cooperate to route
messages from source to destination.

Ad hoc routing has been the topic of much previous work.
Currently, two of the best known schemes are AODV (ad hoc
on demand distance vector routing) [14] and DSR (dynamic
source routing) [10]. Route discovery in DSR takes place by
broadcasting the route request to all nodes in the network;
the cost of such an operation, measured by the number of
transmissions required, is of the order of �, where � is the
total number of nodes in the network. Moreover, after a route
has been discovered, the source node has to store the entire
route and include it in every transmitted packet; if the � nodes
are located on a plane, this can require of the order of

�
�

intermediate node identifiers. AODV also uses a broadcast
mechanism to discover routes. The main difference is that
routing information is maintained on intermediate nodes rather
than by just the source node, and hence doesn’t need to be
included in each packet header. The trade-off is that each node
has to maintain next hop information for every destination to
which it is an intermediary; this requires ���� storage in the
worst case but is expected to be much less in practice as only
a small fraction of nodes are typically active simultaneously.
In the case of route failure, for example due to node mobility,
both AODV and DSR re-initiate route discovery in order to
repair the route. As this involves broadcast, it is potentially
expensive. AODV and DSR are reactive, and discover routes
in response to a request. Schemes such as OLSR (optimized
link state routing) [9] maintain routes pro-actively, with the
aim of reducing message latency, but have similar memory
requirements to AODV and DSR.

The approach taken in this paper is different. We assume
that nodes know their own location in some co-ordinate

system. This could be achieved if nodes carry GPS receivers,
or using any of several distributed schemes that have been
proposed; see [12] and references therein, for example. If the
source of a message knows the location of the destination,
the message can be forwarded using a greedy routing scheme
described in Section II, or any other scheme proposed in the
literature, such as [11]. In this case, the packet header only
needs to carry the ID and location of the destination. However,
for every source to know the location of every destination
requires ���� storage per node; in addition, it requires changes
such as node join, leave or move to be broadcast throughout
the network. The main contribution of our work is a distributed
node ID to location mapping (directory) which can be used
in conjunction with any scheme for nodes to find their own
location, and to communicate between known locations.

There is a fundamental trade-off between the space used
to store the routing table at each node and the stretch of the
routing scheme, namely the worst-case ratio of the length of
the routing path used by the scheme to the length of the
shortest path. There is a large corpus of work studying this
trade-off; see [7] for a comprehensive survey. There are two
main variants of the routing problem: the name-independent
case, where node names are given, and the labelled case,
where the algorithm can assign pre-computed labels (of small
size, say polylogarithmic in �) to nodes; labels may contain,
e.g., location information. The latter are only relevant to static
networks and are not of interest to us. Peleg and Upfal [13]
showed that any routing scheme, even a labelled one, achieving
stretch � on arbitrary networks requires a total of ����� �

���� �
bits of storage over all nodes. Thorup and Zwick [16] pre-
sented a labelled scheme which achieves stretch ��� � using
�������� bits per node. (We write ���� � �������� to mean
that ��������� � ����	� �� for some �.) Name-independent
schemes achieving stretch 5 and 3 respectively with ���

�
��

bits per node were presented in [4] and [1]. Better results
are known for networks with special structure. For example,
it is shown in [6], [16] that labelled routing with stretch 1
can be achieved on trees using ����	� �� ��	 ��	�� bits of
storage per node. For name-independent routing, Abraham and
Malkhi [2] showed how to achieve constant stretch (� �) on
growth bounded networks using ����	� �� bits of storage per
node, while Abraham et al. [3] presented schemes achieving
constant stretch on networks with doubling dimension �
using ����� ��	� � bits per node. (A network is called growth
bounded if the number of nodes within distance �	 of any node



is bounded by a constant times the number within distance 	,
for any 	. A network is said to have doubling dimension � if
any ball of radius �	 can be covered by at most �� balls of
radius 	. A ball with centre 
 and radius 	 is defined as the
set of all nodes within distance 	 of 
; the centre need not be
unique.)

In this paper, we make the much stronger assumption
that nodes are uniformly distributed on a square. We then
present a routing scheme that achieves constant stretch (with
high probability) and requires each node to store location
information for ����	� �� other nodes. The main advantage of
the scheme is its simplicity and the ease of making incremental
changes, such as to deal with node join and leave. Hence, it
is also well suited for applications where node mobility is an
issue. We remark that while [2], [3] solve the same problem in
a more general setting, the schemes they present are not easily
amenable to a distributed implementation. The routing tables
are constructed using a fairly complex global scheme and can
then support simple routing decisions. While this is acceptable
for static networks, it is not well suited for networks where
nodes may join and leave frequently, or where mobility is an
issue.

The paper unfolds as follows. We present the system model
and describe our protocol in Section II, including stretch
and storage requirement analysis. NS-2 simulation results are
presented in Section III. Section IV concludes the paper.

II. SYSTEM MODEL AND PROTOCOL DESCRIPTION

Suppose for simplicity that there are exactly 
� nodes on a
square of side ��, so the average node density is 1. Suppose
nodes are assigned distinct IDs uniformly at random; this can
be achieved by hashing node IDs, for example. By a node 
,
we will mean the node with ID 
 � 
�
� � � �
� in base 4.
The location of node 
 is denoted ��
�. The routing table of
node 
 consists of the locations of a subset of other nodes.
We now describe how to populate routing tables, i.e., how to
choose nodes whose locations are stored.

We use 	 to denote a constant (which may depend on � but
not on the node ID or location) which will be specified later.
Node 
 maintains IDs of:

� All nodes within distance �	 as its Level 0 routing table
entries;

� All nodes with ID 
�� within distance 
	 as its Level 1
routing table entries; and likewise,

� All nodes with ID 
�
� � � �
�� within distance ����	 as
its Level � routing table entries, for each � � �� 
 
 
 � �.

As usual, 
�� refers to all IDs with first digit 
� and so on.
Let ��
� 	� denote the ball of radius 	 centred at 
. Clearly,

the expected number of Level � routing table entries is no more
than 
�	�; to see this, note that the density of nodes with
prefix 
�
� 
 
 
 
� is 
��, and the area of the intersection of
��
� ����� with the square on which the nodes are located is
at most �
���	�. Summing over �, the expected size of node

’s routing table is 
�	��� � ��. Later, we shall see that 	�

is chosen to be proportional to �. Therefore, the number of

routing table entries per node is quadratic in the logarithm of
the number of nodes.

Before specifying the routing algorithm, we state our as-
sumptions about the communication model. We assume that
all nodes have the same finite range and communicate over
point-to-point links. We take the range to be �	, which can be
ensured by choosing the transmit power appropriately, if we
suppose that the transmission range is limited by noise rather
than interference. (If this is not the case, a more complex
scheme involving time or code-sharing will be needed to
achieve a range of �	. We don’t discuss the details as this is not
the focus of our work.) Thus, we can represent the system as a
graph in which there is an edge between any two nodes within
distance �	 of each other. We denote this graph ��
�� �	�. Any
communication between nodes more than distance �	 apart has
to be routed via intermediate nodes.

We have used the same constant 	 in specifying both the
routing table construction and the transmission range in order
not to overburden the notation. In fact, our routing protocol
description is unchanged if the transmission range is ��
and we choose � � 	; if � � 	, it needs a somewhat
more complicated implementation (and may be impossible to
implement if � is too small).

The routing protocol that we now describe comprises two
distinct algorithms: (i) Algorithm A aims to find a physical
location corresponding to a given node ID, while (ii) Algorithm
B routes between nodes with known locations via intermediate
nodes, if necessary.

A. Algorithm A

Suppose node 
 wants to route a message to node � �
���� � � � ��. It does along a path of intermediate nodes
��� ��� 
 
 
 specified as follows.

� If � � ��
� �	�, 
 routes directly to �; otherwise, it routes
to an intermediate node �� � ��� � ��
� 	�, assuming
for now that such a node exists.

� If � � ����� 
	�, then �� knows this by construction of
its routing table, and routes directly to �. Otherwise, it
routes to a node �� � ����� � ����� �	�.

� Likewise, the intermediate node �� � ���� � � � ��� routes
directly to � if � � ���� � ����	� and to ���� �
���� � � � ����� � ���� � ��	� otherwise.

Note that if suitable intermediate nodes can be found at each
step of the routing algorithm, then it is a form of prefix routing
and is guaranteed to reach the destination � in at most � steps.
We shall later address how 	 should be chosen so that such
intermediate nodes exist at each step of the routing protocol
with high probability (whp), i.e., with probability going to 1
as ���. For definiteness, we need to specify what to do in
the unlikely event that such a node can’t be found. We assume
in this case that the routing protocol resorts to flooding the
network, like in AODV. Better choices may be possible, but
this will be a sufficiently rare event as to not affect average
performance measures.



B. Algorithm B

Suppose nodes 
 and � with known locations ��
� and
���� are further than �	 apart. In order to specify how a
message is routed from 
 to �, we need some definitions.
We say that the graph ��
�� �	� is �-connected if, for any
node 
 and any cone of angle � with vertex at 
, there is
at least one other node within distance �	 of 
. (In fact, we
will not impose this requirement for nodes which are within
distance �	 of an edge of the square, but we ignore edge effects
for ease of exposition.) This definition is motivated by, and
closely related to, the concept of �-coverage introduced by Xue
and Kumar [17], but not identical to it. Note that ��
�� �	�
is connected if it is �� connected, and that the smaller the
value of �, the more stringent is the requirement that it be �-
connected. We shall henceforth assume that 	 has been chosen
large enough that ��
�� �	� is ��
-connected. We will discuss
how to choose 	 in a later subsection.

Node 
 routes the message to � through a sequence of
intermediate nodes �� with �� � 
. Each intermediate node
�� routes the message to one of its neighbors � ��� which is
in the sector of angle ��
 centred on the ray �� � � ��; it does
not matter which but, for definiteness, we can assume that
it chooses the node which is closest to �. Since the distance
to � strictly decreases after each routing step, the message is
guaranteed to reach � after at most 
� routing hops.

C. Analysis of stretch

We first consider Algorithm B, routing a message from node

 to node �, whose coordinates are known. Let � �� ��� 
 
 

denote the sequence of intermediate nodes through which the
message is routed. Let �� � ���� � �� denote the Euclidean
distance between �� and �, and let ���� � ���� � �����. Let
���� denote the angle between the rays ��� � �� and ��� � �����
and note that ���� � ��� by the specification of the routing
algorithm. Using the well-known trigonometric identity

��
��� � ��

� � ����� � ������� ���������

� ��
� � ����� � ������� ���

�

�
�

we find that ���� �� ���� ��� satisfies

����

����
�
�

�� � ����
���� ���

�
�
�

� ����

���

 (1)

To obtain the last inequality, we have used the fact that
���� � �� (the distance to � strictly decreases with each
routing step) and that ���� � �� (otherwise, � is within range
of �� and �� would route directly to �). In words, (1) says
that each routing step reduces the Euclidean distance to the
target by at least �

�

 � ���� times the length of the step.

Consequently, the total distance traversed by the message is
at most ���

�

 � �� times the Euclidean distance between 


and �. Therefore, the stretch due to Algorithm B is bounded
above by ���

�

� ��, which in turn is smaller than 3.

Next, we consider Algorithm A which seeks to route a
message from a node 
 to another node � whose coordinates
may not be known to 
. Let ��� ��� 
 
 
 be the sequence

of intermediate nodes through which the message is routed.
Observe that �� � ������� ����	� unless �� � �; hence,
by induction, �� � ��
� ��� � ��	�, for each intermediate
node. Therefore, ���� � ����	� 	 ��
� ��	�. In particular,
if � � ��
� ��	�, then ���� � �. More precisely, it can
be seen that if � is the smallest whole number for which
� � ��
� ��	�, then the smallest � for which �� � � is either
� or � � �.

We now compute the total distance travelled by a message
from 
 to �. Suppose �� 
� � but ���� � �. Now, defining
�� � 
, the sum of Euclidean distances along the path from

 to ���� satisfies

����
���

������� ��� �
����
���

����	 � ����� � ��	


Since �� 
� �, it must be the case that ������� �� � ��	.
But ��
������ � ����� � ��	 as noted above. So ��
� �� �
����� � ��	 by the triangle inequality. Also,

��
���

������ � ��� � ���� � �� � ��� � ��	 � ��
����

���
� ��

� ���� � ��	 � ��
� ��


Since ��
� �� � ����� � ��	, it follows that
����

��� ���
��� � ���

��
� ��
�

���� � ��	

����� � ��	
� �

� � �

� �

����

� � �
����

� �
 (2)

Combining this with the fact that the stretch of Algorithm B
(which is used for routing between successive intermediate
nodes �� , ���� of Algorithm A) is at most 3, we find that
the overall stretch of the routing protocol is at most 15.
Remarks: An alternative definition of stretch would be with
respect to graph distance in ��
�� �	� rather than Euclidean
distance. We don’t provide analytical results for this metric
but evaluate it through simulation. Theoretical bounds on the
stretch with respect to graph distance can be obtained using
the relationship between Euclidean distance and number of
hops explicated in [5]. The analysis above is not very tight,
but suffices to show that constant worst-case stretch can be
achieved with polylogarithmic memory per node. Simulations
show that the constant is much better than 15 on average.

D. Join and Leave

The routing tables constructed by the algorithm described
above have the property that, if node 
 is among node �’s
Level � routing table entries, then � must also be in Level �
of 
’s routing table. This pairwise symmetry property is the
key to making join and leave operations easy.

Before a node, say 
, leaves the network, it needs to notify
all nodes that have it as a routing entry. By the pairwise



symmetry property, these are precisely the nodes that comprise

’s routing table, so 
 can leave after notifying all nodes in
its routing table. Thus, the number of nodes which need to be
notified of a leave is ����� (provided 	� � ����, as we shall
show).

When node 
 joins the network, it needs to build up its
routing table and to update those of nodes that it includes
in its routing table. In order to facilitate a join protocol as
decentralized as the leave protocol above, we need some
additional assumptions. These are slightly stronger than the
assumption of ��
-connectivity made earlier.

Assumption A We assume that, with high probability, every
node 
 has the property that for each � � ��� 
 
 
 � ��, every
sector of the ball ��
� ��	� subtending an angle of ���
 at
the centre contains at least one node with ID 
�
� � � �
��.

We also need the following elementary geometric fact:
Lemma 1: Suppose every sector of ��
� 	� subtending an

angle ���
 at the centre contains at least one other node � �.
Then ��
� �	� 
 ����� �	�, where the union is taken over all
nodes �� 
� 
 in ��
� 	�.
Proof. Let � � ��
� �	�. Consider the sector of ��
� 	� of
angle ���
 centred on the ray �
� ��; by assumption, there
is at least one node �� in this sector. We shall show that � �
����� �	�, i.e., that ����� �� � �	. Denoting the angle between
the rays �
� �� and �
� ��� by �, we have � � ��
. Now,

����� ��
� � ����� 
�

� � ���� 
�� � ������ 
����� 
� ��� �

� ����� 
�
� � ���� 
�� � ����� 
����� 
�

� 




���� 
�� �

�
����� 
�� �

�
���� 
�

��

� 
	� �����	�� 	�� � 
	��

where the last inequality follows from the fact that ���� 
� �
�	 and ����� 
� � 	. Thus, ����� �� � �	, and the proof of the
lemma is complete. �

The join protocol for a node 
 works as follows:

1) As a bootstrap, 
 discovers its one-hop neighbors by lo-
cally broadcasting a “hello” message and getting replies
from all neighbors within distance �	. These constitute
its Level 0 routing table entries.

2) Next, it uses the Level 1 routing table entries of all its
Level 0 neighbors �� with ID 
�� in order to construct
its own Level 1 routing table. (In fact, it need only
use enough of them for ����� 
	� to cover ��
� 
	�.
This can be achieved using at most six neighbors.) By
Assumption A and Lemma 1, the balls ����� 
	� cover
��
� 
	�. Hence, all nodes 
�� in ��
� 
	� belong to
the Level 1 routing table of some Level 0 neighbor � �
of 
 sharing its first digit. Finally, location information
can be used to filter out those Level 1 entries of � �’s
routing table that don’t belong in ��
� 
	�.

3) Following the same idea, 
 can build its routing table
recursively. To build Level �, 
 selects all nodes ��
with ID 
�
� � � �
�� in Level ��� of its routing table;
by definition, these nodes belong to ��
� ��	�. It then
uses the Level � routing table entries of these nodes to

construct its own Level � routing table. The construction
is feasible and complete by Assumption A and Lemma
1.

4) After 
 finishes building its routing table, it sends
out messages to all nodes in its routing table, asking
them to add its ID and location into their own routing
tables. These updates are sufficient due to the pairwise
symmetry property.

In the low probability event that Assumption A fails for some
node 
 at some Level �, it could resort to flooding (with
limited range) in order to locate nodes in the uncovered region.

By the above process, 
 successfully adds itself into the
network. The message complexity of the join operation is:
one one-hop broadcast message to find Level 0 neighbors,
and up to six messages at each of the � levels. Each of these
messages involves nodes sending one level of their routing
table to node 
, and hence has size ���� in terms of number
of entries. Finally, node 
 informs all ����� of its routing
table entries that it has joined, which involves a message of
size ����. Thus, the total cost of a join is �����. We do not
analyse the cost in the event that Assumption A fails, as we
can make its probability sufficiently small that it won’t affect
the average cost.

E. Choice of 	

The parameter 	 has three roles in the routing protocol, and
needs to be chosen large enough to fulfil all of them. First,
��
�� �	� needs to be ��
-connected, in order for Algorithm
B to work. (In particular, this guarantees connectivity.) Sec-
ond, 	 should be large enough to guarantee that each ball
��
� ����	� contains at least one node with each of the four
prefixes 
�
� � � �
����, for � � �� �� �� 
. This is needed for
the prefix routing algorithm A to work. Finally, we would
like 	 to satisfy Assumption A, so that join operations can be
supported in a simple, decentralized manner. We now compute
bounds on the probability of each of these conditions being
violated, for a given value of 	. We ignore edge effects in the
analysis.

First, note that ��
�� �	� will be ��
-connected if, for each
node 
, and a fixed partition of ��
� �	� into sectors of angle
���, every sector contains at least one node. This is because
any sector of angle ��
 in ��
� �	� must fully contain one of
the fixed sectors of angle ���. Let ��
� denote the probability
that this requirement is violated by node 
. Then,

��
� �
�
�� 
�	�

� � 
�
���

� ����	
��	
 (3)

Similarly, Assumption A is satisfied if, for each 
 and �, and
a fixed partition of ��
� ��	� into sectors of angle ��
, every
sector contains at least one node with prefix 
�
� � � �
�. Let
���
� denote the probability that this fails for a given � and

. Since the number of nodes with prefix 
�
� � � �
� is 
���,
we have

���
� �
�
�� �
�	�


 � 
�
�����

� ���	
��	
 (4)



Finally, let ���
� denote the probability that for some level
� and node 
, the ball ��
� ����	� fails to contain any node
with prefix 
�
� 
 
 
 
����, for some � � ��� �� �� 
�. Since
there are 
��� nodes with each �-digit prefix, we have

���
� �
�
�� �
���	�


�

�����
� ���	

���
 (5)

Now let � denote the probability that our assumptions are
violated at some node 
. By the union bound, and (3), (4),
(5), we have,

� �
�



��
� �
�

��

����
� � ���
��

� 
�
�
����	

��	 � ����	
��	 � ����	

���
�



Thus, for any Æ � �,

	� � �� � Æ�

 ��	 


�
� � � � ���� ��
�Æ�
 (6)

As the bound above goes to zero as � tends to infinity, we see
that our assumptions hold with high probability if we choose
	 as in (6) for any Æ � �. In other words, we need to choose
	� � �� for a suitable constant � � �. With this choice of
	, it follows that routing table sizes are quadratic in �, the
logarithm of the number of nodes, and that the complexity of
the join and leave protocols are also quadratic in �.

Finally, we remark on the choice of transmission range. It
was shown by Gupta and Kumar [8] that the transmission
range of a node, defined as �	, must satisfy 
�	� � � ��	 

in order for ��
�� �	� to be connected. Clearly, this is a
minimum requirement for routing! Thus, our routing protocol
only requires a transmission range which is some constant
multiple of the minimum range needed for connectivity; it has
the same scaling behaviour in relation to the number of nodes.

We also remark that while 	� � �� is the natural scaling
relationship, there is room to choose the constant � in order to
trade off between stretch and storage. From the analysis above,
the average routing table size is 
�	������, so larger values
of 	 result in larger routing tables. On the other hand, each
iteration of Algorithm A is likely to match more digits of the
destination prefix, leading to a path with fewer intermediate
nodes, and hence with smaller stretch, on average. These
observations are confirmed by simulation results presented in
the next Section.

III. SIMULATION RESULTS

In this section, we carry out NS-2 [18] simulations to
evaluate the efficiency of our scheme and present the results.

In the simulations, 400 fixed nodes are randomly uniformly
distributed over a 2000x2000 square meters area. We use the
CMU wireless extension to simulate wireless ad-hoc nodes
and their communications. Every node knows its geometric
location, has a radio range of 250 meters, runs our routing al-
gorithm on it, and randomly selects an ID in ��� �� �� 
 
 
 � 
���.

In the simulations, we randomly select 700 pairs of source
and destination nodes to compute stretch. For the results
reported in this section, we define stretch as the ratio between

the number of hops along the path selected by our routing
algorithm, and the one along the shortest path. As remarked
earlier, we use simulations to evaluate the stretch of our
scheme with respect to graph distance, i.e. hop count; this
complements the analytical results, which pertain to Euclidean
distance. The sizes of nodes’ routing tables are also of interest.
Finally, we evaluate the impact of different choices of 	 on
the stretch and routing table size, which are our two main
performance measures.

The average stretch and size of routing table for 	 �
���� 
��� ��� and 810 meters are shown in Fig. 1. For 	 � ���
meters, which is the radio range of a node and hence a natural
choice, our scheme achieves an average stretch around 1.45
and average number of routing entries per node around 40
(10% of the total number of nodes). As 	 increases, the average
size of routing tables increases, while at the same time the
average stretch decreases. For 	 � ��� meters, the average
stretch is 1.27 and the average number of routing entries is
109. This demonstrates the trade-off between stretch and size
of routing table, and confirms the observations made in Section
II-E on the effect of different values of 	.

0

50

100

150

200

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

A
ve

ra
ge

 n
um

be
r 

of
 r

ou
tin

g 
en

tr
ie

s 
pe

r 
no

de

Average stretch

r = 810 meters
r = 510 meters
r = 310 meters
r = 250 meters

Fig. 1. Trade-off between stretch and size of routing table per node.

To provide a more detailed view of the performance metrics,
we show cumulative probability statistics of stretch in Fig. 2,
and of routing table sizes in Fig. 3. For example, in the case
where 	 � ��� meters, about 99% of the sampled routes have
a stretch less than 2.7, and 99% of nodes have fewer than
60 routing table entries. We also observe that the variance of
routing table sizes increases as 	 increases. This is because
edge effects when constructing Level � routing entries in
���� ��	� are more significant for larger values of 	, and so
the difference in the number of routing entries between nodes
close to the edges and those near the centre becomes larger.

To evaluate the join and leave operations, we fix 	 � ���
meters, start our routing scheme on every node, and wait until
the network stabilizes. Then we randomly pick 10 nodes to
leave, and rejoin the network at the same geometric positions.
(We do not pick a large number of nodes to perform leave and
join operations simultaneously. This is because the network
isolates into several partitions instead of remaining connected,



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5

C
um

ul
at

iv
e 

pr
ob

ab
lil

ty

Stretch

r = 250 meters
r = 310 meters
r = 510 meters
r = 810 meters

Fig. 2. Cumulative probability statistics of stretch.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

C
um

ul
at

iv
e 

pr
ob

ab
lil

ty

Number of routing entries of a node

r = 250 meters
r = 310 meters
r = 510 meters
r = 810 meters

Fig. 3. Cumulative probability statistics of nodes’ number of routing entries.

if too many nodes leave at the same time.) The routing
tables of all nodes before the leave and after the join are
compared, and we find all contents are matched. This indicates
the correctness of the join and leave operations described
in Section II-D. Furthermore, the average number of unicast
messages sent by those 10 nodes is 132, which is close to 109
(average size of routing table) + �� � ��	 
�� (retrieving routing
entries) as calculated using results in Section II-D.

IV. DISCUSSION AND CONCLUSIONS

We presented a compact routing scheme for wireless ad-
hoc networks. The scenario considered is one where nodes
are aware of their own geographic location, but not of that
of other nodes. We proposed a scheme which provides a
distributed name (node identifier) to location directory. It
requires polylogarithmic (in the total number of nodes) storage
at each node, and enables routing between arbitrary source
and destination identifiers with constant stretch. Join and leave
operations are lightweight, incurring only polylogarithmic cost
in terms of the number and size of messages required. The
results are obtained for a model of nodes located uniformly
at random on a square, and hold with high probability in this
model.

Our scheme is somewhat similar to that of Abraham and
Malkhi [2], in that it uses the same basic idea of prefix based
name-location lookup. By imposing much stronger model as-
sumptions, our scheme achieves a better stretch-storage trade-
off; more importantly, it permits light-weight join and leave
operations. We believe that the assumptions are not altogether
unrealistic for the target application scenario, and that the
comparative ease of dealing with changes to the network is
important in this setting.

Future work could aim to extend the scheme to support
mobility, as well as extending it to perform multi-path routing.
It would also be of interest to obtain similar results with
weaker assumptions on the distribution of nodes.

REFERENCES

[1] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan and M. Thorup, “Compact
name-independent routing with minimum stretch”, in Proc. ���� ACM
Symp. Parallel Algo. Arch. (SPAA), 2004.

[2] I. Abraham and D. Malkhi, “Name Independent Routing for Growth
Bounded Networks”, in Proc. ���� ACM Symp. Parallel Algo. Arch.
(SPAA), 2005.

[3] I. Abraham, C. Gavoille, A. Goldberg and D. Malkhi, “Routing in Net-
works with Low Doubling Dimension”, Microsoft Research Technical
Report No. MSR-TR-2005-175, Dec. 2005.

[4] M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman and O. Taka,
“Compact routing with name independence”, in Proc. ���� ACM Symp.
Parallel Algo. Arch. (SPAA), 2003.

[5] A. Busson, G. Chelius and E. Fleury, “From Euclidean to hop distance in
multi-hop radio networks: a discrete approach”, INRIA Research Report
RR 5505, 2005.

[6] P. Fraigniaud and C. Gavoille, “Routing in trees”, in Proc. ���� Intl.
Colloq. on Automata, Languages and Programming (ICALP), 2001.

[7] C. Gavoille and D. Peleg, “Compact and localized distributed data
structures”, J. Distrib. Comp. 16: 111–120, PODC 20-year Special Issue,
2003.

[8] P. Gupta and P. R. Kumar, “Critical Power for Asymptotic Connectivity
in Wireless Networks”, pp. 547-566, in Stochastic Analysis, Control,
Optimization and Applications: A Volume in Honor of W.H. Fleming.,
Edited by W.M. McEneany, G. Yin, and Q. Zhang, Birkhauser, Boston,
1998. ISBN 0-8176-4078-9

[9] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum, L.
Viennot, “Optimized link state routing protocol for ad hoc networks”,
in Proc. IEEE INMIC, 2001.

[10] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks”, in Mobile Computing, T. Imielinksi and H. Korth
eds., Kluwer Academic Publishers, 1996.

[11] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks”, in Proc. Mobile Computing and Networking
(Mobicom), 2000.

[12] T. Moscibroda, R. O’Dell, M, Wattenhofer and R. Wattenhofer, “Virtual
Coordinates for Ad hoc and Sensor Networks”, in Proc. ��� Joint
Workshop on Foundations of Mobile Computing (DIALM-POMC), 2004.

[13] D. Peleg and E. Upfal, “A trade-off between space and efficiency for
routing tables”, Journal of the ACM 36: 510–530, 1989.

[14] C. E. Perkins, E. M. Belding-Royer, and S. Das, “Ad Hoc On Demand
Distance Vector (AODV) Routing”, IETF RFC 3561, 2003.

[15] C. G. Plaxton, R. Rajaraman and A. W. Richa, “Accessing Nearby
Copies of Replicated Objects in a Distributed Environment”, Proc. ���

ACM Symp. Parallel Algo. Arch. (SPAA), 1997.
[16] M. Thorup and U. Zwick, “Compact routing schemes”, in Proc. ����

ACM Symp. Parallel Algo. Arch. (SPAA), 2001.
[17] F. Xue and P. R. Kumar, “On the �-coverage and connectivity of large

random networks”. Preprint, 2005.
[18] Network Simulation version 2, http://www.isi.edu/nsnam/ns/


