
Proactive Serving Decreases

User Delay Exponentially

ZHANG, Shaoquan

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Information Engineering

The Chinese University of Hong Kong

August 2014

Abstract

In online service systems, delay experienced by a user from the service request

to the service completion is one of the most critical performance metrics. To

improve user delay experience, in this thesis, we investigate a novel aspect of

system design: proactive serving, where the system can predict future user

request arrivals and allocate its capacity to serve these upcoming requests

proactively. This approach is complementary to the conventional capacity

boosting mechanism and is motivated by recent industrial and academic ad-

vances. In particular, we investigate the fundamentals of proactive serving

from a queuing theory perspective.

First, most importantly, we show that under proactive serving the average

user delay decreases exponentially (in the prediction window size) for a wide

range of queuing models. Furthermore, the delay reduction is robust against

prediction errors. We also show that both the variance of user delay and the

tail of user delay decrease exponentially under proactive serving, which are

also important user delay experience metrics.

We then show that proactive serving is more effective in decreasing user

delay than capacity boosting in light workload regime. In particular, the

average user delay decays inverse-proportionally in system capacity, but ex-

ponentially in the prediction window size in proactive serving.

Finally we demonstrate how to leverage proactive serving in system design

from a optimization point of view, e.g., how many resources are dedicated to

proactive serving. The results provide useful engineering insights to system

i

designers.

Our trace-driven simulation results demonstrate the practical power of

proactive serving: for example, under the YouTube data trace of 1000 differ-

ent videos, the average user delay can be decreased by 50% when the system

predicts 100 seconds ahead. Our results provide useful insights for proactive

serving and justify its increasing applications in practical systems.

ii

摘摘摘要要要

對於在線服務系統，由於系統服務造成的用戶延遲是衡量系統性能的重要

指標。提高用戶的延遲體驗的傳統方法是提高系統中服務器的性能。在本

論文中，我們研究一種新穎的叫做“前瞻性服務”的方法用來提高用戶的

延遲體驗。前瞻性服務是指系統在預測用戶需求的基礎上，在用戶產生需

求之前，系統已經將服務送到用戶手中。前瞻性服務是傳統方法的有力補

充。我們從排隊論的角度研究前瞻性服務對用戶的延遲的提高。

首先，對於多种排隊系統，我們證明前瞻性服務能夠指數性降低用戶的

平均延遲。而且前瞻性服務對於用戶需求預測的誤差具有魯棒性。 我們同

時也證明了前瞻性服務能夠指數性降低用戶的延遲方差和尾概率。

然後，我們證明前瞻性服務在系统低负载时比傳統方法在降低用戶的平

均延遲上更加有效。 前瞻性服務能夠指數性降低用戶的平均延遲。而通過

提高系統服務器性能，只能反比例降低用戶的平均延遲。

最後，我們從優化的角度分析怎樣在系統設計中利用前瞻性服務，給系

統設計者提供有用的建議。

我們基於實際數據的仿真結果驗證了前瞻性服務在實際系統的作用。例

如，基於Youtube數據的仿真表明，如果系統能提前一百秒預測用戶的需

求，那麼前瞻性服務能夠降低一半的用戶延遲。

iii

Acknowledgement

PhD study is a long journey. It is my good fortune to have Prof. Minghua

Chen as my supervisor in my journey. I would like to take this opportunity

to express my deep gratitude to him. During my PhD study, he shows me

a good example of excellent researcher. His enthusiasm in research inspires

me to pursue what makes me excited and tackle all the fronting challenges.

What I have learned from him is not just how to do research, but his way

of living and his insights towards the world. He has always been my source

of encouragement and spiritual support. Thanks to him, my PhD life is

challenging and enjoyable.

I am also sincerely grateful to Prof. Longbo Huang who hosted me during

my visit at Tsinghua University, and Dr. Laurent Massoulie and Dr. Fabio

Picconi who hosted me during my internship in Technicolor Research Paris.

I have wonderful off-campus times under their great help. Also their broad

knowledge and deep insights in research benefit me a lot in my PhD study.

I also want to thank my collaborators in my PhD study: Prof. Mung

Chiang, Prof. Xin Liu, Prof. Zongpeng Li, Dr. Wenjie Jiang, Dr. Ziyu

Shao, Dr. Libin Jiang. Thanks to their great suggestions and big efforts, we

get some good works published. It is my pleasure to work with all of them.

My friends at CUHK make my PhD life full of joy. They are Liang Chen,

Wei Chen, Yue Wang, Ziyu Shao, Jihang Ye, Zhe Zhu, Tan Lu, Xiangwen

Chen, Sheng Cai, Lian Lu, Jinlong Tu, Jincheng Zhang, Hanxu Hou, Yang

Yang, Benedit Max, Wenjie Zhang, Guanglin Zhang, Xu Chen, Lingjie Duan

iv

and Lei Zhu. Many thanks, guys.

Finally, I would like to thank my parents for their warm and endless love.

Their love makes me stronger and keeps me forward forever. I dedicate this

thesis to them.

v

This work is dedicated to my parents.

vi

Contents

1 Introduction 1

2 Background 6

2.1 Proactive Serving . 6

2.2 Related Work . 7

3 Model 9

3.1 Service System without Proactive Serving 9

3.2 Service System with Proactive Serving 10

3.3 Queuing Models for Service System with Proactive Serving

Capability . 12

4 Proactive Serving with Perfect Prediction 14

4.1 Average User Delay of M/M/1[ω] 14

4.2 Average User Delay of G/G/1[ω] 19

5 Comparison With Capacity Boosting 24

6 Other Delay Performance Measures 27

6.1 Variance of User Delay . 28

6.2 Tail of User Delay . 28

7 Proactive Serving with Imperfect Prediction 30

7.1 Modeling . 30

vii

7.2 Impact of Miss Detections . 32

7.3 Impact of False Alarms . 35

7.4 Impact of Miss Detections and False Alarms 38

8 Utility Optimization 40

8.1 Trade-off Between Benefit and Cost of Proactive Serving . . . 40

8.2 Trade-off Between Proactive Serving and Capacity Boosting . 43

9 Delay Reduction for M/M/k[ω] and Markovian/Geo/1[ω] un-

der Proactive Serving 49

9.1 M/M/k[ω] . 49

9.1.1 Average User Delay . 50

9.1.2 Variance of User Delay 51

9.1.3 Tail of User Delay . 53

9.1.4 Comparison With Capacity Boosting 53

9.2 Markovian/Geo/1[ω] . 55

9.2.1 Average User Delay . 56

9.2.2 Variance of User Delay 56

9.2.3 Tail of User Delay . 58

9.2.4 Comparison With Capacity Boosting 58

10 Simulations 60

10.1 Parameters and Settings . 60

10.2 Delay Reduction by Proactive Serving 62

10.3 Impact of Miss Detections and False Alarms 63

10.4 Comparison with Capacity Boosting 66

11 Conclusions 68

A Proofs 70

A.1 Proof of Lemma 1 . 70

viii

A.2 Proof of Lemma 2 . 70

A.3 Proof of Theorem 1 . 71

A.4 Proof of Corrolary 1 . 72

A.5 Proof of Theorem 2 . 72

A.6 Proof of Theorem 3 . 73

A.7 Proof of Lemma 3 . 74

A.8 Proof of Lemma 4 . 74

A.9 Proof of Theorem 4 . 75

A.10 Proof of Theorem 5 . 81

A.11 Proof of Lemma 5 . 93

A.12 Proof of Lemma 6 . 94

A.13 Proof of Lemma 7 . 95

A.14 Proof of Lemma 8 . 98

A.15 Proof of Lemma 9 and 13 . 100

A.16 Proof of Lemma 10 . 100

A.17 Proof of Lemma 11 . 101

A.18 Proof of Lemma 12 . 102

Bibliography 103

ix

List of Figures

3.1 A single queue service system. 9

3.2 Prediction model: Each upright arrow represents a future re-

quest arrival. At time t, the system knows in (t, t+ω) the re-

quest arrival epochs (red solid arrows) and the corresponding

users who generate these requests by its prediction mechanism. 10

3.3 Service system with perfect prediction: Q0(t) represents the

queue of the requests that have arrived at the system and are

waiting for service at time t. Wω(t) is the prediction window

of size ω. Each arrived user request first goes through the

prediction window Wω(t) and then enters the queue Q0(t).

The servers can observe and serve the requests in both Q0(t)

and Wω(t). 11

4.1 M/M/1: The arrival process is {A(t + ω)}t. Service times

of requests are independent and identically exponentially dis-

tributed with mean 1/µ. The initial value Qp(0) is |A(0 :

ω)|+Q0(0). The service policy is FCFS. 16

4.2 Probability density function (PDF) of user delay with/without

future prediction: The PDF under perfect prediction (the ver-

tical arrow at the origin and the dash curve) can be obtained

by shifting the PDF without prediction (dash curve) ω units

left, where ω = 2. 17

x

4.3 The average queuing delay vs how far we predict the future

under perfect prediction under different inter-arrival time dis-

tributions and service time distributions. ‘Exponential’ means

that the corresponding distribution is an Exponential distribu-

tion. ‘Uniform’ means that the corresponding distribution is a

Uniform distribution. ‘Weibull’ means that the corresponding

distribution is a Weibull distribution. We choose λ = 0.4 and

µ = 0.5. For the Uniform distribution, boundaries are 0 and

double mean. For the Weibull distribution, the scale parame-

ter is equal to 1. Under the settings, the Uniform distribution

has the smallest variance. The Weibull distribution has the

largest variance. The variance of the Exponential distribution

is in the middle. The variance of different distributions un-

der the settings are summarized in Tab. 4.1. As seen for the

figure, first, the average queuing delay always decreases ex-

ponentially in ω. Second, the average queuing delay is small

under inter-arrival time distributions with small variance or

service time distributions with small variance. 22

5.1 How far do we need predict in order to achieve the same de-

lay performance as compared to the server capacity being in-

creased by m− 1 times in the M/M/1[ω] system? 25

5.2 To achieve the same delay performance, the system can select

different combinations of proactive serving and system capac-

ity boosting. 26

xi

7.1 A service system with imperfect prediction: The miss detection

process {A1(t)}t can not be served proactively. Requests in {A1(t)}t
enters the system Q0(t) for service directly. The process {A2(t)}t
includes false alarms and actual arrivals that are predicted cor-

rectly. Requests in {A2(t)}t go through the prediction window

Wω(t) and can be pre-served by the system. p is the probability

that a request in {A2(t)}t is an actual arrival. 31

7.2 The average user delay vs how far we predict the future: The

average user delay decreases exponentially when the system

predicts further, under both miss detections and false alarms. 34

7.3 Impact of miss detection on the average user delay: The aver-

age user delay increases when there are more miss detections.

The delay increasing rate is enlarged when the number of miss

detections increases. 35

7.4 Impact of false alarm on the average user delay: The average

user delay increases when there are more false alarms. When

the average number of false alarms is smaller than the server

capacity, the rate of delay increasing is enlarged as the number

of false alarms increases. However, when the average number

of false alarms is larger than the server capacity, the rate of

delay increasing is diminished as the number increases. 37

7.5 Impact of miss detection and false alarm on delay reduction:

The curve marked with dot is the result of the case that the

system predicts future arrivals aggressively. The curve marked

with up-triangle is the result of the case that the system pre-

dicts future arrivals conservatively. The curve marked with

down-triangle is the result of the cast that the prediction mech-

anism acts moderately. 39

xii

8.1 An illustrating example of the optimization problem (8.1) where

U(x) = 100 · ln(x + 1) and C(x) = x2. The optimal solution

is ω∗ = 3.42. 42

8.2 The left plot is the derivative of the objective function in ω.

The right plot is the derivative of the objective function in m.

The delay requirement d = 1
10
d0. The request arriving rate

λ = 0.1. 47

8.3 The left plot is the derivative of the objective function in ω.

The right plot is the derivative of the objective function in m.

The delay requirement d = 1
10
d0. The request arriving rate

λ = 0.5. 47

8.4 The left plot is the derivative of the objective function in ω.

The right plot is the derivative of the objective function in m.

The delay requirement d = 1
10
d0. The request arriving rate

λ = 0.9. 48

9.1 The average user delay vs how far we predict the future under

perfect prediction: Under different workload levels, the aver-

age user delay decreases exponentially as the system predicts

further. 52

9.2 How far do we need predict in order to achieve the same de-

lay performance as compared to the server capacity being in-

creased by m times in the M/M/k[ω] system? 54

9.3 On-Off Markovian Arrival: The state of the Markov chain is

A(t). A(t) = 1 means that there is one request arrival at slot

t. A(t) = 0 means that there is no request arriving at the

system. The mean arrival rate is λ = α
α+β

. 56

xiii

9.4 The average user delay vs how far we predict the future under

perfect prediction: Under different workload levels, the aver-

age user delay decreases exponentially as the system predicts

further. 57

9.5 How far do we need predict in order to achieve the same de-

lay performance as compared to the server capacity being in-

creased by m times in the Markovian/Geo/1[ω] system? 59

10.1 The number of views of a weekly TV show video in Youku

during 3 days since its first release. 62

10.2 The number of views of 1000 different videos in YouTube dur-

ing one week. 62

10.3 The average user request delay vs how far we predict the fu-

ture when the request inter-arrival time follows Exponential

distribution and the request service time follows Uniform dis-

tribution. 63

10.4 The average user request delay vs how far we predict the future

when the request inter-arrival time follows Uniform distribu-

tion and the request service time follows Uniform distribution. 63

10.5 The average user request delay vs how far we predict the fu-

ture when the request inter-arrival time follows Exponential

distribution and the request service time follows Weibull dis-

tribution. 64

10.6 The average user request delay vs how far we predict the future

when the request inter-arrival time follows Uniform distribu-

tion and the request service time follows Weibull distribution. 64

10.7 The average user request delay vs how far we predict the future

under the YouTube data trace. 64

10.8 The average user request delay vs how far we predict the future

under the Youku data trace. 64

xiv

10.9 Delay distributions when the request inter-arrival time follows

Exponential distribution and the request service time follows

Uniform distribution. 65

10.10Delay distributions when the request inter-arrival time follows

Uniform distribution and the request service time follows Uni-

form distribution. 65

10.11Delay distributions when the request inter-arrival time follows

Exponential distribution and the request service time follows

Weibull distribution. 65

10.12Delay distributions when the request inter-arrival time fol-

lows Uniform distribution and the request service time follows

Weibull distribution. 65

10.13Delay distributions under the YouTube data trace. 66

10.14Delay distributions under the Youku data trace. 66

A.1 G/G/1: The arrival process is {A(t + ω)}t. Service times

of requests are independent and identically distributed with

mean 1/µ. The initial value Qg(0) is |A(0 : ω)| +Q0(0). The

service policy is FCFS. 72

A.2 M/M/1 with preemptive priority: Two arrival processes are

A1(t) and A2(t + ω) respectively. Service times of requests

are independent and identically exponentially distributed with

mean µ. The initial value of Qm is |A2(0 : ω)| + Q0(0). Re-

quests of A1 have preemptive priority over those of A2. 76

A.3 Contour integration: The contour consists of L and CR. s1

and s2 are branch points. s3 and s4 are simple poles. 80

xv

A.4 A discrete service system with only false alarms: The request

arrival process A2(t) and the service process are independent

Bernoulli processes. Each request first goes through a pipeline

of these small windows from wω/δ(t) to w1(t) before entering

Q̄0(t). If A2(t + iδ) = 1, then the system can observe a re-

quest in the window wi(t), which can be served proactively.

A request stays in each small window for exact 1 slot. Each

request in {A2(t)}t is independently an actual request with

probability p. 81

A.5 State diagram when ω̄ = 1: In each state, the lower value is

the number of requests in Q̄0(t), and the upper is the number

of requests in w1(t). The state number is calculated by 2 ·
Q̄0(t) + w1(t). 85

xvi

List of Tables

4.1 Variance of inter-arrival time distributions and service time

distributions. The upper table shows the variance of differ-

ent inter-arrival time distributions. The lower table shows the

variance of different service time distributions. The mean ar-

rival rate is λ = 0.4. The mean service rate is µ = 0.5. For

the Uniform distribution, boundaries are 0 and double mean.

For the Weibull distribution, the scale parameter is equal to 1. 21

4.2 The decaying rate of the average queuing delay. Under the

distribution with larger variance, the decaying rate is smaller.

The table shows that the speed that the average queuing delay

decreases is a decreasing function in variance. 23

8.1 Solutions (m∗, ω∗) of (8.3) under different average request ar-

riving rates λ and average user delay requirements d. d0 =
1

µ−λ

and µ = 1. 46

xvii

10.1 Comparison with system capacity boosting under the Youtube

data trace: The first column is how far the system serves

proactively with perfect prediction. The second column is how

many percent the number of servers is increased to achieve the

same delay performance under proactive serving. The third

column is percentage of the decrement of the utilization rate

of each server, when the total number of servers increases.

The forth column is how many percent the average user delay

is decreased. For example, the first row says, serving proac-

tively 120 seconds ahead can decrease the average user delay

by 54.1%. To achieve the delay performance, the system can

instead increase the number of servers by 10%, which results

in that the utilization rate of each server is decreased by 9.1%. 66

10.2 Comparison with system capacity boosting under the Youku

data trace: The meaning of each column is the same as Tab.

10.1. For example, the first row says, serving proactively 10

minutes ahead can decrease the average user delay by 42.6%.

To achieve the delay performance, the system can instead in-

crease the number of servers by 10%, which results in that the

utilization rate of each server is decreased by 9.1%. 67

xviii

Chapter 1

Introduction

The fast growing number of personal devices with Internet access, e.g., smart

mobile devices, has led to the blossom of diverse online service systems, such

as cloud computing, cloud storage, online social networks, mobile Internet

access, and a variety of online communication applications. In online service

systems, delay experienced by a user from the service request to the service

completion is one of the most critical performance metrics. For example,

experiments at Amazon showed that every 100-millisecond increase in load

time of Amazon.com would decrease revenues by 1% [31]. Google also found

that an extra 0.5 seconds in search page generation time dropped traffic by

20% [31].

Traditionally, to decrease user delay and to improve quality of experience,

a widely adopted design mechanism is capacity boosting, i.e., increasing the

service capacity by for example deploying more servers. However, such a

mechanism may be expensive as it needs to provision for the peak demand

and thus results in low average utilization due to the bursty nature of service

requests, especially when the user arrivals are time-varying.

Recently, both industrial practice and academic studies suggest proactive

serving, i.e., serving future requests before they arrive, as a modern approach

for decreasing user delay. Proactive serving is based on the key observation

1

CHAPTER 1. INTRODUCTION

on service request predictability. It is a technique that has been widely used

in computer systems based on what is likely to happen next, such as cache

pre-loading and command pre-fetching 1. Similarly, in cloud service systems,

it is not atypical to have predictable service requests. For example, in cloud

computing platforms, service jobs, such as indexing, page-ranking, backup,

crawling, and maintenance-related load, are often predictable. In fact, in an

industrial grade cloud computing system, we observe a significant portion of

the workload to be periodic and thus predictable [28]. Intuitively, if one user

is observed to watch football news consistently in the morning, then such

contents can be preloaded in the future.

In practice, Amazon launched Amazon Silk, a mobile web browser in its

tablet Kindle Fire [4]. All the web traffic from the browser goes through the

Amazon cloud. The cloud uses machine learning techniques to predict what

users will browse and pre-loads web pages that are likely to be requested in

the future. In this manner, when the user clicks on the corresponding content,

the loading is instant and the user delay is decreased to zero. This technique

speeds up request responses and improves user browsing experience.

All the above exciting developments suggest proactive serving as a new

design mechanism for decreasing user delay: based on user request arrival

prediction, the system can allocate its capacity proactively and pre-serve

future requests to decrease the delay experienced by users. This observation

naturally leads to two fundamental questions:

• How much user delay reduction can we obtain by proactive serving?

• How does proactive serving compare to capacity boosting in decreasing

user delay?

In this thesis, we explore answers to the above open questions and investigate

the fundamentals of proactive serving from a queuing theory perspective. In

1Detailed description can be found in section 2.1

2

CHAPTER 1. INTRODUCTION

particular, we study proactive serving with a prediction window of size ω,

where one has the ability to predict future requests in a time window of ω

and serve them if needed. We investigate the impact of proactive serving on

decreasing user delay as a function of the prediction window size ω. We also

consider the case of imperfect prediction.

Challenge. We address two technical challenges in our study. First, a

generic approach to obtain average user delay is to model the queuing sys-

tem with proactive serving (based on perfect or imperfect prediction) using

a multi-dimensional Markov chain, and compute its steady-state distribution

and subsequently average user delay. However, it is highly non-trivial to de-

rive closed-form expressions for steady-state distributions of multi-dimensional

Markov chains, and it is hard to generalize the approach to scenarios with im-

perfect prediction. We address this challenge by developing a new approach

that relates the user delay distribution with proactive serving to that without

proactive serving. This observation suggests that we can first obtain the de-

lay distribution without proactive serving, which is usually a less-complicated

task, and then derive the desired one with proactive serving. The approach

is simple yet can reveal insights behind the delay reduction by proactive serv-

ing. More importantly, the approach can be generalized to various queuing

models.

Second, even with our new approach, characterizing user delay with

proactive serving in the presence of prediction errors is still non-trivial. We

carefully model the system behavior under two types of prediction errors,

namely miss detection and false alarm, as priority queues, and apply residue

theorem in a highly involved derivation process to obtain closed-form expres-

sions for the average user delay.

Contribution. We make the following contributions.

� In chapter 3, we present the first set of queuing models for service

systems with proactive serving capability. In our models, there are user

3

CHAPTER 1. INTRODUCTION

request arrivals, servers, a queue, and a prediction window of size ω (modeled

as a pipe). User requests pass through the pipe before entering the queue.

The system can serve the requests in both the queue and the pipe. The

time a request spent in the pipe is excluded from its delay computation.

We develop corresponding taxonomy and notations. These models enable

the use of queuing theory tools to characterize the delay reduction benefit of

proactive serving. We focus on stable queuing systems where arrivals happen

slower than service completions.

� In chapter 4, we first show that, for stable M/M/1 queuing systems

with proactive serving, the average user delay decreases exponentially in the

prediction window size ω. More importantly, based on the insights from the

M/M/1 systems, we then extend the analysis to G/G/1 queuing systems

and show that proactive serving can still decrease the average queuing delay

exponentially.

� In chapter 5, we compare proactive serving to capacity boosting and

show that proactive serving is more effective in decreasing user delay in light

workload regime. In particular, for stable M/M/1 systems, the average user

delay decays inverse-proportionally in system capacity, but exponentially in

the prediction window size ω in proactive serving.

� In chapter 6, we show that proactive serving can decrease both the

variance of user delay and the tail of user delay exponentially in the predic-

tion window size ω, which are also important factors that impact user delay

experience.

� In chapter 7, we incorporate prediction errors (in terms of miss de-

tection and false alarm) into proactive serving and consider more realistic

settings. We show that the effect of proactive serving on user delay reduc-

tion is robust against prediction errors.

� In chapter 8, from a optimization point of view, we show how to leverage

proactive serving in system design. In particular, we consider two specific

4

CHAPTER 1. INTRODUCTION

problems, namely how to balance the benefit and cost of proactive serving and

how to leverage both proactive serving and capacity boosting to improve user

delay experience. The results we obtain provide useful engineering insights

to system designers.

� We evaluate the performance of proactive serving using simulations

based on real-world traces in chapter 10. Specifically, under the YouTube

data trace of 1000 different videos, user delay can be decreased by 50% when

the system can predict 100 seconds ahead. Under Youku data trace of bursty

request arrivals, user delay can be decreased by 50% when the system can

predict 12 minutes ahead, which is highly feasible according to the study

on predicting user requests for an industrial-grade VoD system [23]. Overall,

the simulation results suggest that in addition to capacity boosting, proactive

serving is indeed a powerful mechanism for improving user delay experience

in practice.

5

Chapter 2

Background

2.1 Proactive Serving

Proactive serving is a technique, based on system’s request predictability,

that serves future service requests before they arrive at the system. This

technique has seen industrial practices and also has been studied in aca-

demics. Proactive serving can be cache pre-loading, which means that the

system can send contents to users’ caches before users request them. A good

example is Amazon’s Kindle Fire [4]. All the web traffic from Kindle Fire goes

through the Amazon cloud. Based on cached user traffic, the servers in the

cloud use machine learning techniques to predict what users will browse and

pre-load web pages to users’ tablets. Proactive serving can be prefetching in

computing systems [41], [34]. Prefetching means that data or instructions are

preloaded into memory before they are actually requested. Another example

of proactive serving is used in computing management where the computing

resource managing unit pre-computes some information in case some later

applications request them, e.g., branch prediction in computer architecture

[33], [22].

6

CHAPTER 2. BACKGROUND

2.2 Related Work

In [47], the authors study how future information can be used to facilitate

queue admission control, i.e., which requests should be redirected away (up

to certain rate) in order to minimize the average queue length. They find

that, in the heavy-traffic regime (arrival rate λ → 1), when the size of look-

ahead window is O(log 1
1−λ

), the achieved average queue length is equal to

that when we know all the future. In [37], [18] [36], the authors design on-

line request scheduling algorithms to reduce request waiting times based on

request future information. The future information includes request arrival

time and service time. In their settings, when the system sees future requests,

the system cannot pre-serve them but the only choice is to decide whether

to keep server idle and wait for them.

When the system can pre-serve future requests based on prediction, au-

thors in [49] show that the probability of server outage in wireless networks

decreases linearly with the size of look-ahead window. They also show that

appropriate use of future information by primary users can improve the gain

of the secondary network at no cost of primary users in cognitive networks. In

[48] they explore the idea of proactive serving in data networks to shape user

demand. In [15] and [16], authors provide a prediction model and develop

techniques for proactively serving web contents.

In addition, many works exist on proactive serving mobile content based

on predicting mobile user traffic and mobility patterns, e.g., in [9], [38],

[46], [50], [54]. In [24], the authors present a system architecture for mobile

prefetching where informed prefetching is structured as a library to which

any mobile application may link. Experiment results show significant benefit

of prefetching in reducing access delay and energy consumption. Bread-

crumb [40] and smarttransfer [51] address the issue of predicting future net-

work conditions and user profile. These experimental studies motivate the

7

CHAPTER 2. BACKGROUND

necessity to address the fundamentals of proactive serving.

Proactive serving is also a well-studied mechanism in general computer

systems. Authors in [42, 32, 56] explore prediction and prefetching for file

systems, databases, and DRAM respectively. [52, 19, 43] address the theo-

retical problem in prefetching including cost benefit analysis.

Instead of using proactive serving to decrease user delay by exploiting

time domain information, some works exploit user domain information to

improve user delay experience. For example, [39], [11], [45], [44], [27], [10]

design algorithms by scheduling user traffic to improve user delay experience

in wireless networks. Some works leverage coding scheme to decrease delay

in various systems, e.g., [21], [14], [35], [20], [25].

This thesis is motivated by the above mentioned advances in industry

and academic. To the best of our knowledge, we are the first to investigate

the fundamentals of proactive serving from a queuing theory perspective.

8

Chapter 3

Model

3.1 Service System without Proactive Serv-

ing

Consider a service system shown in Fig. 3.1. In the system, backend servers

provide service to incoming user requests that arrive at the system according

to a process {A(t)}t. For all t, A(t) ∈ {0, 1} where A(t) = 1 if a user request

arrives at t and A(t) = 0 otherwise. When a user request arrives and there

is idle service capacity, the request will be served. Otherwise, the request

waits in the queue Q(t) for service. After being served, the request leaves

the system. We define user delay as the time from when the user request

arrives at the system till it leaves the system.

Traditionally, queuing theory has been applied to model such a system

and study its performance. In particular, queuing theoretic analysis suggests

)(tQ servers)(tA

Figure 3.1: A single queue service system.

9

CHAPTER 3. MODEL

t ω+t
time

 windowprediction

Figure 3.2: Prediction model: Each upright arrow represents a future request

arrival. At time t, the system knows in (t, t + ω) the request arrival epochs

(red solid arrows) and the corresponding users who generate these requests

by its prediction mechanism.

that boosting the system capacity is a principal mechanism to decrease the

average user delay. For example, one can use the standard M/M/1 queuing

model to represent the service system in Fig. 3.1, and it is well known that

for such a system the average user delay decreases inverse-proportionally in

the service capacity.

3.2 Service System with Proactive Serving

We now consider a service system that can proactively serve future user re-

quests based on arrival prediction. For the ease of presentation, we consider

perfect prediction of arrivals in this chapter and chapter 4, and study imper-

fect prediction in chapter 7.

As shown in Fig. 3.2, we assume that the system can predict user request

arrivals ω time ahead, or users indicate their arrivals to the system ω time

ahead1. In either case, at time t, the system knows exactly in (t, t + ω) the

request arrival epochs and the corresponding users who generate the requests.

Meanwhile, we do not assume the knowledge of the workload of each user

request.

1For instance, in video-on-demand systems a user can request the delivery of a movie

that he or she wants to watch ω time ahead, for better quality of video-watching experience

or discounted cost.

10

CHAPTER 3. MODEL

)(ω+tA

servers

)(0 tQ

)(tWωω

Figure 3.3: Service system with perfect prediction: Q0(t) represents the

queue of the requests that have arrived at the system and are waiting for

service at time t. Wω(t) is the prediction window of size ω. Each arrived

user request first goes through the prediction window Wω(t) and then enters

the queue Q0(t). The servers can observe and serve the requests in both

Q0(t) and Wω(t).

Based on the arrival prediction, the system can allocate its service capac-

ity to serve future requests proactively. Specifically, the servers can provide

service to the users who will generate requests in the future. The user re-

quests that get pre-served will not enter the system. Such a proactive serving

model captures service systems that can perform cache pre-loading or com-

mand pre-fetching. As a practical example of cache pre-loading, the Amazon

cloud can predict web page requests and pre-load desired web pages to users’

Kindle Fire tablets beforehand. When the user clicks on the predicted con-

tent, it gets the content immediately.

We depict the service system which can proactively serve future requests

based on perfect prediction in Fig. 3.3. Let Q0(t) represent the queue of the

requests that have arrived at the system and are waiting for service at time

t, and Wω(t) be the prediction window of size ω.

11

CHAPTER 3. MODEL

Each user request first goes through the prediction window Wω(t) and

then enters the queue Q0(t). The servers can serve the requests in both

Q0(t) and Wω(t). We remark that each request entering Wω(t) will transit

to Q0(t) after exactly ω amount of time, if it has not been pre-served before

that. The requests will not queue up in Wω(t). Thus Wω(t) should be

viewed as a pipe. User delay corresponds to the time that the request spends

in Q0(t) and with the server, and it does not include the time spent in Wω(t).

Slightly abusing the notations, we sometimes use Q0(t),Wω(t) to denote its

corresponding size. For example, Wω(t) can represent the number of arrivals

within the prediction window which have not been pre-served at time t.

3.3 Queuing Models for Service System with

Proactive Serving Capability

In this thesis, we are interested in understanding the fundamental benefit of

proactive serving on user delay reduction. For this purpose, we extend the

classical queuing model to capture the proactive serving behaviors.

• In classical queuing model, requests arrive randomly at the system. If

all servers are busy, requests wait in the queue for service. Servers serve

requests according to certain service policy. The time it takes to serve

a request is random.

• In our extended model, there is also a prediction window (modeled as

a pipe). Each request first goes through the pipe before entering the

queue. Servers can serve the requests in both the queue and the pipe

according to certain service policy.

Remark that our new model is applied to service systems which can be mod-

eled as queuing systems and have proactive serving capabilities.

12

CHAPTER 3. MODEL

In classical queuing theory, Kendall’s notation is widely used to describe

a queuing system. We extend it to describe the service system with proactive

serving capability as

A/S/k[ω]/POLICY.

Here A represents the distribution of request inter-arrival time, S represents

the distribution of service time, k is the number of servers, and POLICY

denotes the service discipline, such as First-Come-First-Served (FCFS). In

particular, [ω] denotes that the system can know future arrivals ω time ahead

and serve them proactively.

For example, one can use M/M/1[ω]/FCFS to model the system in Fig. 3.3.

Both the inter-arrival time and the service time follow exponential distribu-

tions. There is a single server in the system. The system can know future

arrivals ω time ahead and serve them proactively. When the server becomes

idle, it will first check Q0(t). If Q0(t) > 0, the server serves the request at

the head of Q0(t). If Q0(t) = 0, the server will then check the prediction

window Wω(t), and pre-serve the earliest request in it.

A queuing system is stable if arrivals happen slower than service com-

pletions, and is unstable otherwise. Stability of a queuing system is thus

determined by the average arrival and service rates, and is not affected by

proactive serving. Unstable systems do not have steady-state distributions

and consequently do not have well-defined average user delays. Thus we

only study user delay for stable queuing systems. To focus on characterizing

the benefit of proactive serving and avoid the complication of service policy

design, we assume FCFS as the service policy in the rest of the thesis, un-

less mentioned otherwise. We evaluate the user delay performance under the

Processor Sharing policy in simulation and observe results similar to that

under the FCFS policy.

13

Chapter 4

Proactive Serving with Perfect

Prediction

In this chapter, we study the user delay for two models: M/M/1[ω] and

G/G/1[ω]. We first start from the simple model M/M/1[ω] and characterize

the average user delay. Then we extend the analysis to G/G/1[ω] based on

the insights obtained from analyzing M/M/1[ω]. We observe that the average

delay decreases exponentially under proactive serving.

4.1 Average User Delay of M/M/1[ω]

In an M/M/1[ω] system, there is a single server. User requests arrive accord-

ing to a Poisson process {A(t)}t with rate λ, and service times of requests are

independent and identically distributed according to an exponential distribu-

tion with parameter µ. The system can predict future arrivals ω time ahead

and serve them proactively. M/M/1[ω] can be used to model systems whose

capacity is pooled together to serve incoming requests. For example, content

distribution networks pool CPU cycles, bandwidth of servers in multiple data

centers to load-balance and serve worldwide users [53]. Define ρ = λ
µ
and Dω

as the user delay.

14

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

When ω = 0, i.e., without proactive serving, the system reduces to the

classical M/M/1 queue. It’s well known that the average user delay is given

by

E
[
D0

]
=

1

µ− λ
. (4.1)

The probability density function of D0 is also known as [8]

fD0(t) = (µ− λ)e−(µ−λ)t, t ≥ 0. (4.2)

To characterize the average user delay with proactive serving, i.e., E[Dω],

a generic approach is to discretize the system and then use a multi-dimensional

Markov chain to model the number of requests in both the queue and the pre-

diction window, where user requests passing through the window can be cap-

tured by moving from one state to its subsequent state in the Markov chain.

If we can compute the steady-state distribution of the multi-dimensional

Markov chain, then we can compute the average number of user requests in

the queue, and consequently the average user delay by using Little’s Law.

However this approach suffers from two limitations. One is that it is diffi-

cult to derive the stationary distribution of the Markov chain. The other is

that it is hard to generalize the method to more complex models. Detailed

discussions can be found in Appendix A.3.

Instead of applying the generic method, we develop a new approach to

analyze the average user delay. To analyze the user delay for M/M/1[ω], we

first prove an interesting result that Qsum(t) , Q0(t) + Wω(t) evolves the

same as an M/M/1 system with a properly initialized queue. Based on this

observation, the distribution of user delay under proactive serving, i.e., Dω,

turns out to be a “shifted” version of that of user delay without proactive

serving as shown in (4.2). Once we know the distribution of Dω, we can

compute the average user delay E [Dω].

To proceed, consider Q0(t) and Wω(t) as a group. The request arrival

process of the group is {A(t+ ω)}t. The time to serve a request is exponen-

tially distributed. The server serves the requests in the group according to

15

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

)(tQ p
server)(ω+tA

Figure 4.1: M/M/1: The arrival process is {A(t + ω)}t. Service times of

requests are independent and identically exponentially distributed with mean

1/µ. The initial value Qp(0) is |A(0 : ω)|+Q0(0). The service policy is FCFS.

the FCFS policy. This essentially mimics an M/M/1 system, and intuitively,

the size of the group evolves statistically the same as the queue size of the

M/M/1 system. Our following lemma confirms this observation.

Lemma 1. Define Qp(0) = |A(0 : ω)|+Q0(0), where A(0 : ω) = {A(τ), 0 <

τ ≤ ω} is the set of arrivals from time 0 to time ω and |A(0 : ω)| is the size

of A(0 : ω), and Qp(t) is an M/M/1 queue with initial value Qp(0) as shown

in Fig. 4.1. We have

Qsum(t) = Qp(t), for all t.

Proof. See Appendix A.1.

Lemma 1 reveals a useful observation: the total time that a user request

spends in the M/M/1[ω] system, i.e., the sum of those in the prediction

window Wω(t), the queue Q0(t), and with the server, is statistically the

same as that in an M/M/1 system. As discussed at the end of section 3.2,

the time spent in Wω(t) is excluded from the user delay calculation. Then

the user delay in M/M/1[ω] system, i.e., Dω, has the same distribution as

max (0, D0 − ω). We leverage this observation to obtain the distribution of

Dω for M/M/1[ω] system in the following lemma.

Lemma 2. Let fDω(t) be the probability density function of Dω. We have

fDω(t) = fD0(t+ ω) when t > 0

and

Pr(Dω = 0) =

ˆ ω

0

fD0(t)dt = 1− e−(µ−λ)ω.

16

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

0 2 4 6 8 10

0.1

0.3

0.5

0.7

t

M/M/1[2]

f(t)

fω(t)

Figure 4.2: Probability density function (PDF) of user delay with/without

future prediction: The PDF under perfect prediction (the vertical arrow at

the origin and the dash curve) can be obtained by shifting the PDF without

prediction (dash curve) ω units left, where ω = 2.

Proof. See Appendix A.2.

An illustrating example of the distribution derived in Lemma 2 is shown

in Fig. 4.2.

Although Lemma 1 and 2 are established for M/M/1[ω] system, they can

be directly applied to G/G/1[ω] system as shown in the following Corollary,

which will be useful in next section.

Corollary 1. In G/G/1[ω] system, the user delay distribution which is de-

noted by fG
Dω(t) can be obtained from that of G/G/1 system which is denoted

by fG
D0(t) as follows

fG
Dω(t) = fG

D0(t+ ω) for t > 0 and Pr(Dω = 0) =

ˆ ω

0

fG
D0(t)dt.

Proof. See Appendix A.4.

Lemma 2 allows us to obtain the distribution of Dω from that of D0.

Based on this lemma, we obtain the average user delay E[Dω] as follows.

17

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

Theorem 1. Assume µ > λ. The average user delay of M/M/1[ω] with

perfect prediction is given by

E[Dω] =
1

µ− λ
e−(µ−λ)ω. (4.3)

Proof. See Appendix A.3.

Theorem 1 reveals that the average user delay decays exponentially in

the prediction window size ω1. This indicates that little future information

can improve user delay experience tremendously.

From Theorem 1, in the heavy-load regime where the arrival rate λ is

close to the service rate µ, (4.3) can be approximated by 1
µ−λ

− ω when ω

is small, which is linear in ω. As contrast, when the system is in the light-

load regime, (4.3) decreases exponentially in ω. This indicates that proactive

serving is more effective in decreasing delay in the light-load regime than in

the heavy-load regime. The reason is as follows. In the light-load regime, the

number of requests that enter Q0(t) for service is small and thus most of the

serve capacity can be spared to serve future requests. Consequently, many

requests get served proactively and thus experience zero delay. In contrast, in

the heavy-load regime, the server is busy with serving requests in Q0(t) most

of time. As a result, the chance that a request gets served proactively by the

server is small when going through a small prediction window. Therefore,

proactive serving has limited delay reduction capability. When the system

is in the heavy-load regime, to achieve small user delay, the system needs to

guarantee a sufficient large prediction window so that the probability that a

request gets served proactively is high enough before entering the queue.

1The amount of delay reduction by proactive serving is 1
µ−λ (1− e−(µ−λ)ω).

18

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

4.2 Average User Delay of G/G/1[ω]

In this section, we extend the analysis to the general queuing system G/G/1[ω].

In G/G/1[ω], inter-arrival times of user requests are independent, identically

and generally distributed with mean 1
λ
and variance σ2

λ, and service times of

user requests are also independent, identically and generally distributed with

mean 1
µ
and variance σ2

µ. Meanwhile, inter-arrival times and service times

are independent. The system can predict future arrivals ω time ahead and

serve them proactively.

By definition, under the FCFS queuing policy, user delay is the summa-

tion of queuing delay and service time, where queuing delay is defined as the

time from when the user request arrives at the system till the system starts

serving it. In G/G/1[ω] systems, the distribution of service time is general.

As a result, the distribution of user delay is general. As shown by Corollary

1, proactive serving essentially shifts the distribution left by ω unit. There-

fore, we cannot observe exponential decreasing of user delay under proactive

serving as we did in section 4.12. Instead, in this section, we focus on the

effect of proactive serving on queuing delay and show that proactive serving

decreases the average queuing delay exponentially.

Let QDω denote the user queuing delay when the system predicts ω time

ahead and QD0 denote the user queuing delay without proactive serving.

The explicit form of the distribution of QD0 in G/G/1 is open in queuing

theory. However, people have shown that the tail of the distribution of

QD0 can be upper-bounded [30]. Let x denote the inter-arrival time random

variable and y denote the service time random variable. Let U(s) denote the

Laplace-Stieltjes transform of the random variable y − x. Define

s0 = sup{s > 0 : U(−s) ≤ 1}. (4.4)

2Note that proactive serving can still clear the average user delay as long as the system

predicts sufficiently far.

19

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

By [30], s0 always exists. Given a positive t > 0, the tail of the distribution

of QD0, i.e., Pr(QD0 ≥ t), can be upper-bounded as follows

Pr(QD0 ≥ t) ≤ e−s0t. (4.5)

This upper-bound (4.5) on the tail of the distribution of QD0 enables

us to prove that proactive serving can exponentially decrease the average

queuing delay, i.e., E[QDω]. Based on the same idea as developed in section

4.1, we obtain the following theorem.

Theorem 2. Assume µ > λ. The average queuing delay of G/G/1[ω] with

perfect prediction is given by

E[QDω] ≤ 1

s0
e−s0ω. (4.6)

Proof. See Appendix A.5.

Theorem 2 reveals that, regardless of inter-arrival time distribution and

service time distribution, proactive serving is so powerful that it can decrease

the average queuing delay exponentially.

Same as the distribution of queuing delay, the explicit form of s0 is also

open. As a result, Theorem 2 does not tell how the inter-arrival time distribu-

tion and the service time distribution impact the average queuing delay under

proactive serving. Instead, we simulate G/G/1[ω] under different inter-arrival

time distributions and service time distributions. The results of the average

queuing delay are shown in Fig. 4.3. As seen from the figure, the average

queuing delay always decreases exponentially in ω, which aligns with Theo-

rem 2. Under the same mean, different distributions have different variances.

For example, the variance of Weibull distribution3 is larger than that of Ex-

ponential distribution, and the variance of Exponential distribution is larger

than that of Uniform distribution. We can see from Fig. 4.3 that the average

3Note that the Weibull distribution has a heavy tail.

20

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

inter-arrival time distribution Uniform Exponential

variance 2.08 6.25

service time distribution Uniform Exponential Weibull

variance 1.33 4 20

Table 4.1: Variance of inter-arrival time distributions and service time dis-

tributions. The upper table shows the variance of different inter-arrival time

distributions. The lower table shows the variance of different service time

distributions. The mean arrival rate is λ = 0.4. The mean service rate is

µ = 0.5. For the Uniform distribution, boundaries are 0 and double mean.

For the Weibull distribution, the scale parameter is equal to 1.

queuing delay under the Weibull distribution is larger than other cases. The

average queuing delay under the Uniform distribution is smaller than other

cases. This indicates that the average queuing delay is an increasing function

in variance.

In Tab. 4.2, we show the decaying rate of the average queuing delay under

the same setting as Fig. 4.3. The decaying rate is defined as −dE[QDω]
dω

· 1
QDω .

The larger the decaying rate, the faster the delay decreases. As seen, the

variance of the inter-arrival time distribution or the service time distribution

impacts how fast the average queuing delay decays. Under the distribution

with larger variance, the decaying rate is smaller. This indicates that the

speed that the average queuing delay decreases is a decreasing function in

variance.

21

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

0 20 40 60 80 100
0

5

10

15

20

25

ω

a
ve

ra
g

e
 d

e
la

y
G/G/1[ω]

exponential inter−arrival, exponential service
exponential inter−arrival, weibull service
exponential inter−arrival, uniform service
uniform inter−arrival, weibull service
uniform inter−arrival, uniform service

Figure 4.3: The average queuing delay vs how far we predict the future under

perfect prediction under different inter-arrival time distributions and service

time distributions. ‘Exponential’ means that the corresponding distribution

is an Exponential distribution. ‘Uniform’ means that the corresponding dis-

tribution is a Uniform distribution. ‘Weibull’ means that the corresponding

distribution is a Weibull distribution. We choose λ = 0.4 and µ = 0.5.

For the Uniform distribution, boundaries are 0 and double mean. For the

Weibull distribution, the scale parameter is equal to 1. Under the settings,

the Uniform distribution has the smallest variance. The Weibull distribution

has the largest variance. The variance of the Exponential distribution is in

the middle. The variance of different distributions under the settings are

summarized in Tab. 4.1. As seen for the figure, first, the average queuing

delay always decreases exponentially in ω. Second, the average queuing delay

is small under inter-arrival time distributions with small variance or service

time distributions with small variance.

22

CHAPTER 4. PROACTIVE SERVING WITH PERFECT PREDICTION

inter-arrival time distribution, service time distribution delay decaying rate

Uniform inter-arrival, Uniform service 0.28

Exponential inter-arrival, Uniform service 0.15

Exponential inter-arrival, Exponential service 0.1

Uniform inter-arrival, Weibull service 0.03

Exponential inter-arrival, Weibull service 0.028

Table 4.2: The decaying rate of the average queuing delay. Under the dis-

tribution with larger variance, the decaying rate is smaller. The table shows

that the speed that the average queuing delay decreases is a decreasing func-

tion in variance.

23

Chapter 5

Comparison With Capacity

Boosting

In this chapter, based on the results for the M/M/1[ω] system, we compare

capacity boosting and proactive serving (with perfect prediction) as two prin-

cipal design mechanisms for decreasing user delays.

For the M/M/1 system without proactive serving, the average user delay

with service capacity m is given by

1/(m · µ− λ). (5.1)

By comparing it with the average delay of the M/M/1[ω] system with proac-

tive serving in (4.3), we obtain the amount of prediction (measured in pre-

diction window size) needed to obtain the same delay reduction as boosting

the capacity by m − 1 times. Denote the corresponding prediction window

size as ω∗(m), we have the following theorem.

Theorem 3. Assume λ < µ. For the M/M/1[ω] system with perfect predic-

tion, ω∗(m) (m ≥ 1) is given by

ω∗(m) =
1

µ− λ
ln

m− ρ

1− ρ
. (5.2)

Proof. See Appendix A.6.

24

CHAPTER 5. COMPARISON WITH CAPACITY BOOSTING

1 100 200 300 400 500
0

20

40

60

80

100

m

ω
*(

m
)

M/M/1[ω]

ρ=0.5

ρ=0.9

Figure 5.1: How far do we need predict in order to achieve the same delay

performance as compared to the server capacity being increased by m − 1

times in the M/M/1[ω] system?

We plot the ω∗(m) as a function of m in Fig. 5.1 under different ρ (re-

call that ρ = λ
µ
). We observe that ω∗(m) increases logarithmically in the

system capacity m. This suggests that proactive serving is more effective

than boosting the system capacity to keep the system in low delay regime,

which is critical for online services. For example, to achieve the same av-

erage user delay, proactive serving with prediction window size of 14 unit

time is equivalent to increasing the server capacity by about 500 times when

ρ = 0.5.

In Fig. 5.1, when ρ = 0.9, the system is in heavy-load regime when m

is small and is in light-load regime when m is large. Then the logarithmic

curve indicates that proactive serving is more effective in delay reduction

than capacity boosting in light-load regime. The reason is as follows. When

the workload is light, the number of requests that enter the queue for ser-

vice is small and thus most of the serve capacity can be spared to serve

future requests. So, the power of proactive serving gets fully performed. As

a result, most of requests get served proactively and thus experience zero

delay. To achieve the same effect, the system capacity needs to be increased

25

CHAPTER 5. COMPARISON WITH CAPACITY BOOSTING

2 4 6 8
0

1

2

3

4

m

ω

M/M/1[ω]

average delay=0.001
average delay=0.01
average delay=0.1

Figure 5.2: To achieve the same delay performance, the system can select

different combinations of proactive serving and system capacity boosting.

significantly.

It is also conceivable to combine proactive serving and capacity boosting

to achieve a desired average user delay for a system. For example, when

λ = 9 and µ = 10, to obtain that the average user delay of 0.1 unit time, the

system can serve proactively 2.3 unit time ahead without boosting the service

capacity, or it can serve proactively 0.8 unit time ahead and boosting the

service capacity by 10%. We plot different combinations of ω (representing

proactive serving capability) andm (representing service capacity) in Fig. 5.2

when the system has different desired delay targets. All the combinations

of ω and m on the same isoline give the same average user delay, and the

system designer can select the best combination based on the average user

delay requirement and various resource constraints. Details are discussed in

chapter 8.

26

Chapter 6

Other Delay Performance

Measures

In chapter 4, we show that proactive serving can decrease the average user

delay exponentially. In this chapter, we study the impact of proactive serving

on the user delay performance from other important aspects. Specifically, we

study the variance of user delay and the tail of user delay under proactive

serving.

As shown by Lemma 2 and Corollary 1, proactive serving shifts the delay

distribution left as a whole. As a result, for any given positive values d and

τ , Pr(d < Dω < d+ τ) decreases when ω grows. Therefore, one can imagine

that, under proactive serving, not only does the average user delay (the

first moment) decrease, but also the variance (the second moment related)

and the tail of user delay decrease. In this chapter, we show that proactive

serving can decrease both the variance of user delay and the tail of user delay

exponentially, which further demonstrates the power of proactive serving on

improving the user delay experience.

27

CHAPTER 6. OTHER DELAY PERFORMANCE MEASURES

6.1 Variance of User Delay

As suggested by [17], [26], delay variance is an important factor that affects

user experience in Video-on-Demand systems. The variance of user delay re-

flects the fluctuation of delays that users experience on the system side. Small

variance corresponds to low fluctuation and thus better user experience.

Let V ar[Dω] denote the variance of the user delay Dω. For the M/M/1[ω]

system, Lemma 2 characterizes the distribution of Dω. Based on that, we

have the following lemma for the delay variance V ar[Dω].

Lemma 3. Assume that λ < µ. The variance of user delay in M/M/1[ω] is

given by

V ar[Dω] = V ar[D0] · e−(µ−λ)ω ·
[
2− e−(µ−λ)ω

]
, (6.1)

where V ar[D0] is the delay variance without proactive serving.

Proof. See Appendix A.7.

From Lemma 3, we can see that proactive serving can decrease the vari-

ance of user delay exponentially.

The delay variance without proactive serving is

V ar[D0] =
1

(µ− λ)2
. (6.2)

As comparison, when boosting the server capacity, the delay variance de-

creases inverse-proportionally to the square of the service capacity. This

suggests that proactive serving is more effective in decreasing the delay vari-

ance than capacity boosting as we observed for the average delay in chapter

5.

6.2 Tail of User Delay

The delay tail is defined as the probability that user delay is larger than

certain value, i.e., DT ω(d) = Pr(Dω > d) for given positive value d. By

28

CHAPTER 6. OTHER DELAY PERFORMANCE MEASURES

the definition, it measures the fraction of users in the system that experience

large delay. The larger the tail, the worse the user experience. It is important

for system designers to decrease delay tail, especially long delay tail [55], [57].

For the M/M/1[ω] system, we have the following lemma for the delay tail

DT ω(d) for any given positive d.

Lemma 4. Assume that λ < µ. The tail of user delay in M/M/1[ω] is given

by

DT ω(d) = e−(µ−λ)ωDT 0(d), d > 0, (6.3)

where DT 0(d) is the delay tail without proactive serving.

Proof. See Appendix A.8.

From Lemma 4, we can see that proactive serving can decrease the delay

tail exponentially.

Without proactive serving, the delay tail is

DT 0(d) = e−(µ−λ)d. (6.4)

As seen, when boosting the server capacity, the delay tail also decreases

exponentially. This suggests that both proactive serving and server capacity

boosting are effective in decreasing the delay tail, which is different from

what we observed from the average user delay and the delay variance.

29

Chapter 7

Proactive Serving with

Imperfect Prediction

In chapter 4, we analyze the benefit of proactive serving under the assumption

that perfect future arrival prediction is available. In this chapter, we look

at two more realistic scenarios that correspond to two common types of

prediction errors, and study the performance of proactive serving under these

settings. For the ease of analysis and illustration, we consider a single server

system.

7.1 Modeling

The first type of error is failing to predict actual arrivals, i.e., miss detection

(also called false negative). When miss detection happens, the arrival will

be out of the system’s vision. Therefore, it cannot be served proactively.

Intuitively, such errors result in a “side flow” into the system and will af-

fect the ultimate gain one can obtain by proactive serving. The other type

of error is false alarm (also called false positive), which happens when the

system mistakenly predicts the existence of non-existing arrivals. Such false

arrivals will not eventually enter the system for service. However, the system

30

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

)(2 ω+tA

server

)(0 tQ

)(tWω

)(1 tA

ω

p−1 p

Figure 7.1: A service system with imperfect prediction: The miss detection pro-

cess {A1(t)}t can not be served proactively. Requests in {A1(t)}t enters the system

Q0(t) for service directly. The process {A2(t)}t includes false alarms and actual

arrivals that are predicted correctly. Requests in {A2(t)}t go through the predic-

tion window Wω(t) and can be pre-served by the system. p is the probability that

a request in {A2(t)}t is an actual arrival.

may incorrectly allocate resources to serve them, resulting in wasted service

opportunities.

We model the system with these two types of prediction errors by the

model shown in Fig. 7.1. In this model, {A2(t)}t represents the process of

predicted arrivals, which include false alarms and actual arrivals that are pre-

dicted correctly. {A1(t)}t instead represents the process of miss detections.

Q0(t) stores requests that have already entered the system and are waiting

for service at time t. Wω(t) is the prediction window with length ω. Requests

in {A2(t)}t go through the prediction window and can be served proactively

by the server. In contrast, requests in {A1(t)}t enter Q0(t) directly and can-

not be served proactively. False alarms in {A2(t)}t will not enter Q0(t) and

thus disappear once they leave the prediction window.

For tractability, we make the following two assumptions on {A1(t)}t and
{A2(t)}t. First, we assume that each request in {A2(t)}t is independently an

31

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

actual request with probability p. In this case, with probability p, a request

of {A2(t)}t will enter Q0(t) and with probability 1−p, it will leave the system.

The larger p is, the more accurate the prediction mechanism is. Second, we

assume that {A1(t)}t and {A2(t)}t are independent Poisson processes. Note

that our assumptions are not very restrictive. In systems where there are a

large number of users, consecutive arrivals can well be from different users. In

this case, the prediction about one arriving request can be quite independent

from the other.

Denote E[A1(t)] = λ1 and E[A2(t)] = λ2. Since all the miss detections

and the actual arrivals among the predicted arrivals compose the real arrivals,

we have

λ1 + pλ2 = λ. (7.1)

Here we recall that λ is the average rate for the real arrival process. Equation

(7.1) shows the tradeoff between miss detection and false alarm: To predict

more actual arrivals or equivalently to reduce the number of miss detections,

the prediction mechanism must act more aggressively. However, this can

lead to more false alarms. On the other hand, to reduce the number of false

alarms, the prediction mechanism needs to act more conservatively, which

may result in more miss detections.

In this system, the server applies the FCFS service policy. Different from

the case of perfect prediction, here we assume that the requests that are

already in Q0(t) and the arrivals from {A1(t)}t have preemptive priority.

That is, the service of arrivals in Wω(t) will be suspended unless the queue

is empty and there is no new arrival entering Q0(t) from {A1(t)}t.

7.2 Impact of Miss Detections

Now suppose that only miss detections exist in the system, i.e., p = 1 and

λ1 + λ2 = λ. Note that in this case, the delay improvement may be less

32

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

significant as compared to the perfect-prediction case, because miss detection

cannot be pre-served by the system.

To characterize the impact of miss detections, we follow the same idea

used in the perfect prediction case. That is, linking the distribution of Dω

to the delay distribution of a single queue system without proactive serving.

After obtaining the distribution of Dω, we then calculate the average user

delay, i.e., E[Dω]. In this case, miss detection creates a sub-arrival process

into Q0(t) and mixes with the requests in {A2(t)}t. This makes it very chal-

lenging to derive the user delay distribution. To resolve this difficulty, we

develop a single priority queue system which allows us to study the miss

detection process {A1(t)}t and the predicted arrival process {A2(t)}t sepa-
rately. Even so, in the deriving process, we need to apply residue theorem [5]

with carefully designed branch cuts [3], which is highly non-trivial. In this

way, we obtain the following result.

Theorem 4. Assume λ = λ1 + λ2 < µ. The average user delay under miss

detections is given by:

E[Dω] (7.2)

=
λ1

(µ− λ1)λ
+

λ2

λ

[
λ2 − λ1µ

λ2
2(µ− λ)

· e
λ2(λ−µ)

λ
ω · 1λ2>λ1µ+

1

2π

ˆ 4
√
λ1µ

0

(µ− λ)
√

x(4
√
λ1µ− x)e(−(

√
µ−

√
λ1)2−x)ω(

(
√
µ−

√
λ1)2 + x

)2 · (λx+ (
√
λ1µ− λ)2

)dx] ,
which decreases exponentially in ω.

Proof. See Appendix A.9.

The result in (7.2) consists of two components. The first component does

not depend on w. This part is due to miss detections. As shown in Fig. 7.1,

miss detections enter Q0(t) directly without going through the prediction

window. Thus, proactive serving cannot serve miss detections. In this case,

there will be a constant arrival rate entering the queue, resulting in a delay

33

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

0 2 4 6 8 10
0

0.5

1

1.5

ω

av
er

ag
e

de
la

y

M/M/1[ω]

with miss detections
with false alarms
with perfect prediction

Figure 7.2: The average user delay vs how far we predict the future: The

average user delay decreases exponentially when the system predicts further,

under both miss detections and false alarms.

that cannot be decreased by proactive serving. The second component of the

delay decreases exponentially with ω and diminishes as the system predicts

sufficiently far. This is because the system can pre-serve predicted arrivals

in {A2(t)}t, which in turn leads to exponential decrease of the second part,

demonstrating the power of proactive serving.

Based on (7.2), we plot the average user delay under the impact of miss

detections in Fig. 7.2. As seen, user delay decreases exponentially as the

system predicts further, and it is finally dominated by the first part of (7.2)

as discussed above. Compared to the scenario under perfect prediction, we

note that the decay rate in w is smaller. This is intuitive because miss

detections occupy part of the server capacity and thus the capacity used for

proactive serving is reduced. We plot the detailed impact of miss detections

in Fig. 7.3 based on (7.2). The average user delay increases when there are

more miss detections in the system. At the same time, the increasing rate is

enlarged when the number of miss detections increases. Although the gain is

not as significant as in the perfect-prediction case, we can see from Fig. 7.2

that proactive serving still provides a large delay improvement.

34

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

1 2 3
0

0.5

1

1.5

λ
1

av
er

ag
e

de
la

y

M/M/1[ω]

ω=0 ω=2 ω=4 ω=6

Figure 7.3: Impact of miss detection on the average user delay: The aver-

age user delay increases when there are more miss detections. The delay

increasing rate is enlarged when the number of miss detections increases.

7.3 Impact of False Alarms

When there exist only false alarms in the system, i.e., λ1 = 0 and pλ2 = λ, the

server capacity will be wasted if a false alarm is pre-served. As a result, the

power of proactive serving will be affected compared to the perfect prediction

scenario. Despite this effect, as we will see, proactive serving still provides

significant delay improvement.

Different from miss detections, false alarms do not enter Q0(t). Therefore,

the system cannot be modeled by a single queue system without proactive

serving. As a result, we cannot carry out the same equivalence argument

as for the miss detection case in section 7.2. Hence, the idea used in the

miss detection scenario can not be applied here. To resolve the difficulty,

we first discretize the system and model its evolution by a multi-dimensional

Markov chain where user requests passing through the window is captured

by moving from one state to its subsequent state in the Markov chain. Then,

by studying the stationary distribution of the Markov chain, we obtain the

average user delay by applying Little’s Law. Remark that the structure of the

35

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

Markov chain is very complicated which makes the analysis highly involved.

We obtain the following result.

Theorem 5. Assume λ = pλ2 < µ. The average user delay under the impact

of false alarms is given by

E[Dω] =


µ−λ2

(µ−λ)2
1

e(µ−λ2)ω−λ2−λ
µ−λ

λ2 ̸= µ

1
(µ−λ)[(µ−λ)ω+1]

λ2 = µ

. (7.3)

The average delay decreases exponentially in ω when λ2 ̸= µ.

Proof. See Appendix A.10.

From (7.3), it is not immediately clear that E[Dω] decreases exponentially

in ω when λ2 ̸= µ. Instead, we show in the proof that E[Dω] can be lower

and upper bounded by exponential functions which decrease exponentially

in ω.

Based on (7.3), we plot the average user delay under the impact of false

alarms in Fig. 7.2. We can see that the average delay decreases exponentially

with ω. Compared to the perfect prediction case, the decay rate is smaller.

This is because part of the server capacity dedicated to proactive serving is

wasted by false alarms. More interestingly, we can derive the following from

(7.3):

lim
ω→∞

E[Dω] =

0 when λ2 ≤ µ

λ2−µ
(µ−λ)(λ2−λ)

when λ2 > µ
. (7.4)

This equation shows that the system cannot push delay to zero if λ2 > µ.

This is because a large fraction of the server capacity used to proactive serving

is now consumed by false alarms, and remaining fraction for pre-serving the

actual arrivals is not enough to clear the user delay. However, when λ2 ≤ µ

the delay can always be decreased to zero as long as the system can predict

sufficiently far.

36

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

4 6 8 10
0

0.5

1

λ
2

av
er

ag
e

de
la

y

M/M/1[ω]

ω=0
ω=2
ω=4
ω=6

Figure 7.4: Impact of false alarm on the average user delay: The average

user delay increases when there are more false alarms. When the average

number of false alarms is smaller than the server capacity, the rate of delay

increasing is enlarged as the number of false alarms increases. However, when

the average number of false alarms is larger than the server capacity, the rate

of delay increasing is diminished as the number increases.

In Fig. 7.4, we show the detailed impact of false alarms on user delay

based on (7.3). The average user delay increases when more false alarms

exist in the system. Different from the miss detection case in Fig. 7.3, when

the average number of false alarms is small, the rate of delay increasing is

enlarged as the number increases. When the average number of false alarms

is large, the rate of delay increasing is gradually diminished as the number

increases.

Discussion: Besides the impact on user delay reduction, false alarm may

incur additional costs. For example, in content prefetching scenario, serving

false alarms will waste the bandwidth resource on the system side and the

bandwidth and storage resource on the user side. Thus system designers

should take into account the consequences of false alarms when designing

the request prediction algorithm. In next section, we will see that the ratio

of miss detection and false alarm of the prediction algorithm impacts the

37

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

value of user delay. In practice system designers should adjust the ratio of

miss detection and false alarm of the prediction algorithm so that user delay

experience is satisfactory and the false alarm cost is acceptable.

7.4 Impact of Miss Detections and False Alarms

When miss detections and false alarms are both present in the system, it

is very difficult to analyze the user delay due to the coupling of the two

effects. Instead, we conduct simulations to investigate the system behavior.

We consider three cases. In the first case, the prediction mechanism works

very aggressively and results in few miss detections but many false alarms. In

the second case, the prediction mechanism works very conservatively, which

leads to few false alarms but many miss detections. The third case is in-

between. The first two can be considered as extreme cases. The simulation

results are shown in Fig. 7.5.

A few comments are in order for Fig. 7.5. First of all, the average user

delay still decreases exponentially as the system predicts further. Second,

when the system acts aggressively to predict future arrivals so that many

false alarms occur, the system cannot clear delay totally, which aligns with

(7.4). When the system acts conservatively so that many miss detections

occur, the delay decay rate is weakened because the server is occupied most

of time to deal with miss detections, which also aligns with the results in Fig.

7.3. When the number of miss detections and false alarms are moderate,

compared to other two cases, proactive serving decreases user delay rapidly

and ensures a small delay for the users.

38

CHAPTER 7. PROACTIVE SERVING WITH IMPERFECT
PREDICTION

0 2 4 6 8 10
0

0.5

1

1.5

ω

av
er

ag
e

de
la

y

M/M/1[ω]

λ

1
=0, λ

2
=4, p=1

λ
1
=0.5, λ

2
=7, p=0.5

λ
1
=2, λ

2
=2.5, p=0.8

λ
1
=1.3, λ

2
=3.6, p=0.75

Figure 7.5: Impact of miss detection and false alarm on delay reduction:

The curve marked with dot is the result of the case that the system pre-

dicts future arrivals aggressively. The curve marked with up-triangle is the

result of the case that the system predicts future arrivals conservatively. The

curve marked with down-triangle is the result of the cast that the prediction

mechanism acts moderately.

39

Chapter 8

Utility Optimization

For service system designers, it is a critical task to decide how many resources

to be deployed in the system based on the designing objective. If the resources

are over-provisioned, it will lead to low resource utilization. If the resources

are under-provisioned, on the other hand, the quality of service provided by

the system will suffer. Both situations can cause loss of revenue. The results

we obtained in previous chapters can help to provide guidance to system

designers on how many resources should be deployed in the system. In this

chapter, we introduce two specific examples under the M/M/1[ω] model.

8.1 Trade-off Between Benefit and Cost of

Proactive Serving

In chapter 4, we show that proactive serving is very powerful in improving

user delay experience which can decrease the average user delay exponentially

as a function of the prediction window size. The further we explore the

future, the more we can decrease the average user delay and improve the

user experience. While, on the other hand, the prediction algorithm needs

more computation resources as predicting further and thus the prediction

40

CHAPTER 8. UTILITY OPTIMIZATION

cost increases. For system designers, it is necessary to balance the trade-off

between the benefit and cost incurred by future prediction and decide how

many resources are dedicated to proactive serving.

To understand how many resources should be dedicated to proactive serv-

ing from the optimization point of view, we consider the M/M/1[ω] system

which was studied in section 4.1. Let λ and µ denote the mean request arrival

rate and the mean service rate respectively. Recall that for the traditional

M/M/1 system without proactive serving, the average user delay is 1
µ−λ

.

For the M/M/1[ω] system, as shown by Theorem 1, the average user delay

is 1
µ−λ

e−(µ−λ)ω when the system can predict future requests ω time ahead.

Thus the delay improvement due to proactive serving is 1
µ−λ

− 1
µ−λ

e−(µ−λ)ω.

Let the function U(1
µ−λ

− 1
µ−λ

e−(µ−λ)ω) denote the benefit of proactive serv-

ing in delay reduction, and the function C(ω) denote the cost of predicting

future requests ω time ahead. Assume that U(x) is an increasing and twice

differentiable concave function in variable x and C(y) is an increasing and

differentiable convex function in variable y.

Based on the above model, we can formulate the problem that how many

resources should be dedicated to proactive serving as follows.

PS-Only:max
ω≥0

U(
1

µ− λ
− 1

µ− λ
e−(µ−λ)ω)− C(ω), (8.1)

where the objective function measures the net benefit due to proactive serv-

ing. The solution of this optimization problem tells how far the system should

predict so that the net benefit gets maximized. The solution can be used to

guide system designers in designing the request prediction algorithm.

Because U(x) is an increasing and twice differentiable concave function

in variable x and 1
µ−λ

− 1
µ−λ

e−(µ−λ)ω is concave in ω, by [12], U(1
µ−λ

−
1

µ−λ
e−(µ−λ)ω) is concave in ω. Consequently, the overall objective function in

(8.1) is concave in ω.

Let U
′
(·) and C

′
(·) denote the derivative of U(·) and C(·) respectively.

41

CHAPTER 8. UTILITY OPTIMIZATION

0 2 4 6 8 10
0

20

40

60

80

100

ω

ob
je

ct
iv

e
va

lu
e

ω*=3.42

Figure 8.1: An illustrating example of the optimization problem (8.1) where

U(x) = 100 · ln(x+ 1) and C(x) = x2. The optimal solution is ω∗ = 3.42.

Define

F (ω) = U
′
(

1

µ− λ
− 1

µ− λ
e−(µ−λ)ω) · e−(µ−λ)ω − C

′
(ω). (8.2)

The function F (ω) is the derivative of the objective function in (8.1) in ω.

The concave problem (8.1) can be solved by studying F (ω) in three different

cases.

Case 1: When F (ω) > 0 for all ω ≥ 0, the objective function in (8.1) is

an increasing function of ω, which means that the benefit of proactive serving

outweighs the cost. Therefore, the system should predict future arrivals as

far as possible.

Case 2: When F (ω) < 0 for all ω ≥ 0, the objective function in (8.1)

is a decreasing function of ω, which means that the cost of proactive serv-

ing outweighs the benefit. Therefore, the system should not predict future

arrivals at all.

Case 3: When there exists ω∗ ≥ 0 such that F (ω∗) = 0, then ω∗ is the

solution of (8.1). Then, the system should predict ω∗ time ahead so that the

net utility of the system gets maximized.

As an illustrating example, we choose U(x) = 100·ln(x+1) and C(x) = x2.

42

CHAPTER 8. UTILITY OPTIMIZATION

We plot the value of the objective function in ω in Fig. 8.1. As seen, this

example belongs to Case 3 and the maximum net utility is taken when the

system predicts ω∗ = 3.42 time units ahead.

8.2 Trade-off Between Proactive Serving and

Capacity Boosting

In chapter 5, we show that system designers can utilize both capacity boost-

ing and proactive serving to improve user delay experience. Different combi-

nations of capacity boosting and proactive serving can achieve the same delay

performance. However, different combinations of two mechanisms may incur

different operation costs. Then a natural question for the system designers

is, given the average user delay requirement, how to choose the combination

of two mechanisms so that the total cost is minimized?

To understand how to combine capacity boosting and proactive serving

to meet the delay requirement from the optimization point of view, we con-

sider the M/M/1[ω] system as in section 8.1. Let λ and µ denote the mean

request arrival rate and the mean service rate respectively. When the server

capacity is boosted by m − 1 (m ≥ 1) times, the mean service rate will in-

crease to mµ. Under the boosted server capacity, the average user delay is

1
mµ−λ

e−(mµ−λ)ω when the system predicts future requests ω time ahead. Let

the function Cµ(m) denote the cost incurred by boosting the server capacity

by m− 1 times. Let the function Cω(ω) denote the cost incurred by predict-

ing future requests ω time ahead. Assume that Cµ(x) is an increasing and

differentiable convex function in variable x and Cω(y) is an increasing and

twice differentiable convex function in variable y. Let d be the given average

user delay requirement. Assume d < 1
µ−λ

which says that the requirement is

unsatisfied without capacity boosting and proactive serving.

Based on the above model, the problem that how to combine capacity

43

CHAPTER 8. UTILITY OPTIMIZATION

boosting and proactive serving to meet the delay requirement can be formu-

lated as follows.

CB-PS: min
ω≥0,m≥1

Cµ(m) + Cω(ω) (8.3)

s.t.
1

mµ− λ
e−(mµ−λ)ω = d, (8.4)

where the objective function represents the total cost introduced by capacity

boosting and proactive serving, and the constraint is to satisfy the delay

requirement d. The solution of this optimization problem tells how far the

system should predict and how many times the system capacity should be

increased to satisfy the delay requirement while at the same time minimizing

the total cost. The solution can be used to guide system designers in the

request prediction algorithm design and server provision of the system.

Under the constraint in (8.4), the variable ω can be expressed as a function

of m as follows

ω = − 1

mµ− λ
ln [(mµ− λ)d] , (8.5)

which is convex in m because its second derivative in m is positive. Since Cω

is an increasing and twice differentiable convex function, by [12], Cω(ω) is

convex in m. Consequently, the overall objective function in (8.3) is convex

in m.

Let C
′
µ(·) and C

′
ω(·) denote the derivative of Cµ(·) and Cω(·) respectively.

Let m∗ and ω∗ be the solution of (8.3). Define

F (m) = C
′

µ(m) + C
′

ω(−
1

mµ− λ
ln [(mµ− λ)d]) · (ln [(mµ− λ)d]− 1)µ

(mµ− λ)2
.

(8.6)

Since the objective function in (8.3) is convex in m, we can find m∗ and then

ω∗ by studying its derivative F (m) in three different cases.

Case 1: F (m) > 0 for all m ≥ 1. Then the objective function in (8.3) is

an increasing function of m. This means that, under the delay requirement,

the cost of pure proactive serving is lower than that of any combination of

44

CHAPTER 8. UTILITY OPTIMIZATION

proactive serving and capacity boosting. As a result, the solution under this

case is m∗ = 1 and ω∗ = − 1
µ−λ

ln [(µ− λ)d], which indicates that the system

should solely rely on proactive serving to satisfy the delay requirement.

Case 2: F (m) < 0 for all m ≥ 1. Then the objective function in (8.3) is

a decreasing function of m. This means that, under the delay requirement,

the cost of pure capacity boosting is lower than that of any combination of

proactive serving and capacity boosting. As a result, the solution under this

case is m∗ = 1
µd

+ λ
µ
and ω∗ = 0, which indicates that the system should

solely rely on capacity boosting to satisfy the delay requirement.

Case 3: There exists m̄ ≥ 1 such that F (m̄) = 0. If m̄ > 1
µd

+ λ
µ
, then

m∗ = 1
µd
+λ

µ
and ω∗ = 0. Otherwise,m∗ = m̄ and ω∗ = − 1

m∗µ−λ
ln [(m∗µ− λ)d].

Different from Case 1 and Case 2, the cost of combination of proactive serv-

ing and capacity boosting is lower than that of either pure approach. This

indicates that the system needs both proactive serving and capacity boosting

to satisfy the delay requirement under this case.

As an illustrating example, let µ = 1, Cµ(m) = (m−1)2 and Cω(ω) = ω2.

Define d0 = 1
µ−λ

. We summarize the solutions of the optimization problem

(8.3) under different average request arriving rates λ and average user delay

requirements d in Tab 8.1. In Fig. 8.2, 8.3, 8.4, we show the derivative of

the objective function in ω and m respectively when d = 1
10
d0 under different

λ. Two variables ω and m are correlated by the constraint in (8.3). When

calculating the derivative in ω, we consider m as a function of ω. Similarly,

when calculating the derivative in m, we consider ω as a function of m. From

the table and figures, we can obtain the following insights.

• Under different workload levels (corresponding to different values of λ
µ
),

to achieve the relatively similar delay target, system designers should

use different combinations of capacity boosting and proactive serving

so that the total cost gets minimized.

• When workload level is low (small λ
µ
), as shown by Fig. 8.2, the deriva-

45

CHAPTER 8. UTILITY OPTIMIZATION

d = 1
2
d0 d = 1

10
d0 d = 1

100
d0

λ = 0.1 m∗ = 1.31, ω∗ = 0.33 m∗ = 1.84, ω∗ = 0.95 m∗ = 2.40, ω∗ = 1.60

λ = 0.5 m∗ = 1.34, ω∗ = 0.21 m∗ = 1.94, ω∗ = 0.87 m∗ = 2.55, ω∗ = 1.56

λ = 0.9 m∗ = 1.1, ω∗ = 0 m∗ = 1.68, ω∗ = 0.33 m∗ = 2.45, ω∗ = 1.21

Table 8.1: Solutions (m∗, ω∗) of (8.3) under different average request arriving

rates λ and average user delay requirements d. d0 =
1

µ−λ
and µ = 1.

tive value of the objective function in ω when ω is small is much smaller

than that in m. So under the delay requirement, increasing ω can lead

to more cost reduction. This suggests that system designers should rely

more on proactive serving than capacity boosting to guarantee the de-

lay performance while minimizing the operation costs. When workload

level is high (large λ
µ
), in contrast, as shown by Fig. 8.4, the derivative

value of the objective function in m when m is small is much smaller

than that in ω. This suggests that system designers should rely more

on capacity boosting than proactive serving. From Tab. 8.1, we can

also get the same observation. The reason behind the observation is

quite intuitive: When the workload level is high, the server will be

busy most of time with serving requests that have been waiting in the

system. Thus the probability that a request get pre-served is small.

As a result, the delay improvement by proactive serving is small. In

contrast, when the workload level is low, the delay improvement by

proactive serving is prominent because the server proactively serves fu-

ture requests most of time. Therefore, when the workload level is high,

capacity boosting is more effective than proactive serving in decreas-

ing request delay. When the workload level is low, proactive serving is

more effective than capacity boosting in decreasing request delay.

46

CHAPTER 8. UTILITY OPTIMIZATION

0 1 2
−1.5

−1

−0.5

0

0.5

ω

df
/d

ω

2 4 6
−30

−20

−10

0

10

m
df

/d
m

x103

Figure 8.2: The left plot is the derivative of the objective function in ω.

The right plot is the derivative of the objective function in m. The delay

requirement d = 1
10
d0. The request arriving rate λ = 0.1.

0 2 4
−3

−2

−1

0

1

ω

df
/d

ω

1 3 5
−1.5

−1

−0.5

0

0.5

m

df
/d

m

x102x102

Figure 8.3: The left plot is the derivative of the objective function in ω.

The right plot is the derivative of the objective function in m. The delay

requirement d = 1
10
d0. The request arriving rate λ = 0.5.

47

CHAPTER 8. UTILITY OPTIMIZATION

0 2 4
−5

0

5

10

ω

d
f/
d
ω

1 1.4 1.8
−2

−1

0

1x 10
4

m

d
f/
d

m

Figure 8.4: The left plot is the derivative of the objective function in ω.

The right plot is the derivative of the objective function in m. The delay

requirement d = 1
10
d0. The request arriving rate λ = 0.9.

48

Chapter 9

Delay Reduction for M/M/k[ω]

and Markovian/Geo/1[ω] under

Proactive Serving

In this chapter, we provide results about user delay for two queuing mod-

els: M/M/k[ω], and Markovian/Geo/1[ω]. M/M/k[ω] extends M/M/1[ω] from

single server to multiple servers. Markovian/Geo/1[ω] can be used to model

flash crowd arrivals in practical systems [13].

9.1 M/M/k[ω]

In an M/M/k[ω] system, there are k identical servers. User requests arrive

according to a Poisson process {A(t)}t with rate λ, and service times of

requests are independent and identically distributed according to an expo-

nential distribution with parameter µ. The system can predict future arrivals

ω time ahead and serve them proactively. A user request can be served by

any server. A server is dedicated to one request at any given time. Such

model can be used to model task management systems of smartphones with

multi-core processor where each core represents a server to satisfy application

49

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

requests.

9.1.1 Average User Delay

Recall that ρ = λ
µ
. Define

q0 = 1− ρk

ρk + k!(1− ρ
k
)
∑k−1

i=0 ρ
i 1
i!

,

which is the steady-state probability that the queue is empty in the M/M/k

system. Following the same procedure as we develop Theorem 1, we obtain

the average user delay of M/M/k[ω] as follows.

Lemma 5. Assume ρ = λ/µ < k. The average user delay of M/M/k[ω] with

perfect prediction is given by

E [Dω] =



(
2−q0
µ

+ (1− q0)ω
)
e−µω, if ρ = k − 1;

η1 · e−µω + η2 · e−µ(k−ρ)ω, if 0 ≤ ρ < k

and ρ ̸= k − 1,

(9.1)

where η1 =
ρ+q0−k
µ[ρ+1−k]

and η2 =
1−q0

µ(k−ρ)[ρ+1−k]
.

Proof. See Appendix A.11.

It is straightforward to verify that the expression of E [Dω] for ω = 0

reduces to the one for the classical M/M/k system [8].

We observe that E [Dω] in (9.1) has different closed-form expressions, de-

pending on the relationship between ρ and k. This is due to the fact that the

probability distribution of D0 (user delay in M/M/k) is case-dependent [8],

and consequently the distribution of Dω = max (0, D0 − ω) and its expecta-

tion are also case-dependent.

From (9.1), it is not immediately clear that E [Dω] decays exponentially

in ω. For example, when ρ < k − 1, η1 > 0 and η2 < 0. The sum of two

exponential functions with different signs may be increasing and thus may

50

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

not be an exponential function. In the following lemma, we show that E[Dω]

indeed decreases exponentially in ω by deriving upper and lower bounds of

E[Dω] which decrease exponentially in ω.

Lemma 6. Define η3 =
1+k−q0−ρ
(k−ρ)µ

.

• When 0 ≤ ρ < k − 1, we have η1 > 0, η3 > 0, and

η3 · e−µω < E[Dω] < η1 · e−µω.

• When ρ = k − 1, there exists 0 < ϵ < e−1
e

such that

2− q0
µ

· e−µω < E[Dω] <
3− 2q0

µ
· e−ϵµω.

• When k − 1 < ρ < k − q0, we have η2 > 0, η3 > 0, and

η3 · e−µ(k−ρ)ω < E[Dω] < η2 · e−µ(k−ρ)ω.

• When k − q0 ≤ ρ < k, we have η1 > 0, η2 > 0, and

(η1 + η2) · e−µω < E[Dω] < (η1 + η2) · e−µ(k−ρ)ω.

Proof. See Appendix A.12.

We plot the average user delay in (9.1) as a function of ω for M/M/5[ω]

system under different workload levels (corresponding to different values of

ρ/k) in Fig. 9.1. The results confirm that the average user delay decreases

exponentially in the prediction window size ω.

9.1.2 Variance of User Delay

Similar to obtain Lemma 5, for the M/M/k[ω] system, we have the following

lemma for the delay variance V ar[Dω].

51

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

0 2 4 6 8 10
0

1

2

3

ω

av
er

ag
e

de
la

y

M/M/5[ω]

ρ/5=0.5
ρ/5=0.9

Figure 9.1: The average user delay vs how far we predict the future under

perfect prediction: Under different workload levels, the average user delay

decreases exponentially as the system predicts further.

Lemma 7. Assume that ρ = λ
µ
< k. The variance of user delay in M/M/k[ω]

is given by

V ar[Dω]

=
e−µω

µ

[
6− 4q0

µ
− (2− q0)

2

µ
e−µω − (2− q0)(1− q0)ωe

−µω

]
+

ωe−µω

[
2(1− q0)

µ
− (2− q0)(1− q0)

µ
e−µω − (1− q0)

2ωe−µω

]
when ρ = k − 1;

V ar[Dω]

= η1e
−µω

[
2

µ
− η1e

−µω − η2e
−µ(k−ρ)ω

]
+

η2e
−µ(k−ρ)ω

[
2

µ(k − ρ)
− η1e

−µω − η2e
−µ(k−ρ)ω

]
when 0 ≤ ρ < k and ρ ̸= k − 1. And V ar[Dω] decreases exponentially in ω.

Proof. See Appendix A.13.

The lemma shows that proactive serving decreases the delay variance ex-

ponentially as we observed in Lemma 3 for the M/M/1[ω] system. The reason

52

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

why the delay variance has different closed-form expressions depending on

the relationship between ρ and k is the same as that for the average user

delay.

9.1.3 Tail of User Delay

Similar to obtain Lemma 5, for the M/M/k[ω] system, we have the following

lemma for the delay tail DT ω(d).

Lemma 8. Assume that ρ = λ
µ
< k. The tail of user delay in M/M/k[ω] is

given by

DT ω(d)

=

q0e
−µ(ω+d) + (1− q0)(µd+ µω + 1)e−µ(ω+d) ρ = k − 1

η1µe
−µ(ω+d) + η2µ(k − ρ)e−µ(k−ρ)(ω+d) 0 ≤ ρ < k and ρ ̸= k − 1

,

which decreases exponentially in ω.

Proof. See Appendix A.14.

The lemma shows that proactive serving decreases the delay tail exponen-

tially as we observed in Lemma 4 for the M/M/1[ω] system. Due to the same

reasons, the delay tail has different closed-form expressions as the average

user delay and the delay variance.

9.1.4 Comparison With Capacity Boosting

For the M/M/k system without proactive serving, the average user delay

with service capacity m is given by

1− q
(m)
0

µ(mk − ρ)
+

1

mµ

where q
(m)
0 = 1 − (ρ

m
)k

(ρ
m
)k+k!(1− ρ

mk
)
∑k−1

i=0 (ρ
m
)i 1

i!

. To achieve the same delay reduc-

tion as boosting the capacity by m times, based on Lemma 6, we have the

following theorem for ω∗(m).

53

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

1 25 50 75 100
0

5

10

15

20

m

ω
*(

m
)

M/M/5[ω]

ωl, ρ=0.5

ωu, ρ=0.5

ωl, ρ=0.9

ωu, ρ=0.9

Figure 9.2: How far do we need predict in order to achieve the same delay

performance as compared to the server capacity being increased by m times

in the M/M/k[ω] system?

Lemma 9. Assume ρ = λ
µ
< k. Define ∆ =

1−q
(m)
0

µ(mk−ρ)
+ 1

mµ
. For the M/M/k[ω]

system with perfect prediction, ω∗(m) (m ≥ 1) is given by

ωl
1 < ω∗(m) < ωu

1

where ωl
1 = − 1

µ
ln
(

△
η3

)
and ωu

1 = − 1
µ
ln
(

∆
η1

)
when 0 ≤ ρ < k − 1;

ωl
2 < ω∗(m) < ωu

2

where ωl
2 = − 1

µ
ln
(

µ△
2−q0

)
and ωu

2 = − 1
ϵµ
ln
(

µ∆
3−2q0

)
when ρ = k − 1;

ωl
3 < ω∗(m) < ωu

3

where ωl
3 = − 1

µ(k−ρ)
ln
(

△
η3

)
and ωu

3 = − 1
µ(k−ρ)

ln
(

∆
η2

)
when k − 1 < ρ <

k − q0;

ωl
4 < ω∗(m) < ωu

4

where ωl
4 = − 1

µ
ln
(

△
η1+η2

)
and ωu

4 = − 1
µ(k−ρ)

ln
(

∆
η1+η2

)
when k− q0 ≤ ρ < k.

Proof. See Appendix A.15.

54

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

We plot the ω∗(m) as a function of m in Fig. 9.2 under different workload

levels (represented by different values of ρ).

Discussion: The above results we get show that the effect of proactive

serving on the user delay in M/M/k[ω] system is similar to that in M/M/1[ω]

system. This observation suggests that the delay-reduction benefit of proac-

tive serving is robust to resource pooling (i.e., a system makes a collection

of resources behave like a single pooled resource).

9.2 Markovian/Geo/1[ω]

In this section, we investigate the delay-reduction benefit of proactive serving

for a discrete-time Markovian/Geo/1[ω] queuing system with one server. The

time is slotted, the service process is a Bernoulli process with parameter µ.

In every time slot, with probability µ, the single server can serve a request

in the system. The arrival process {A(t)}t is a two-state Markovian process

with mean arrival rate λ = α
α+β

, as shown in Fig. 9.3. We assume that user

request arrives at the system at the end of each time slot. For the Markovian

process, when α and β are small, user requests arrive in a bursty manner.

Such process can be used to model flash crowd scenarios where a large number

of user requests arrive at the system in a small time window. Flash crowds

are common in practice. For example, in video on demand systems, views of

TV show videos usually skyrocket once they get released and then decrease

rapidly after a few days. Flash crowd creates bursty arrivals and is difficult to

serve with satisfactory quality of service in practice. To accommodate bursty

arrivals, a common exercise is to provision enough servers according to the

peak arrival rate. Due to the highly-irregular arrival pattern, servers remain

idle most of time after serving bursty requests, which leads to substantial

resource and energy wastage.

55

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

0 1

α

β 1− β

1− α

Figure 9.3: On-Off Markovian Arrival: The state of the Markov chain is

A(t). A(t) = 1 means that there is one request arrival at slot t. A(t) = 0

means that there is no request arriving at the system. The mean arrival rate

is λ = α
α+β

.

9.2.1 Average User Delay

Similar to the analysis for M/M/1[ω] system, we first obtain the user delay

distribution of Markovian/Geo/1 system, then “shift” it to obtain the user

delay distribution of Markovian/Geo/1[ω] system, and finally compute the

average user delay as shown in the following theorem.

Lemma 10. The average user delay of discrete-time Markovian/Geo/1[ω]

system with perfect prediction is given by

E [Dω] =
1− µ

(α + β)(µ− λ)

[
1− µ

(1− µ) + (α + β)(µ− λ)

]ω−1

, (9.2)

where λ = α
α+β

< µ and α, β, and µ are all in (0, 1).

Proof. See Appendix A.16.

From (9.2), we see that the average user delay decreases exponentially in

the prediction window size ω, as also demonstrated in Fig. 9.4 for different

mean arrival rates (corresponding to λ = α/(α + β) and different degrees of

bursty arrivals (corresponding to different combinations of α and β).

9.2.2 Variance of User Delay

Similar to obtain Lemma 10, for the Markovian/Geo/1[ω] system, we have

the following lemma for the delay variance V ar[Dω].

56

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

0 2 4 6 8 10
0

1

2

3

ω

av
er

ag
e

de
la

y

Markovian/Geo/1[ω]

α=0.1,β=0.1,µ=0.9
α=0.5,β=0.5,µ=0.9
α=0.9,β=0.2,µ=0.9

Figure 9.4: The average user delay vs how far we predict the future under

perfect prediction: Under different workload levels, the average user delay

decreases exponentially as the system predicts further.

Lemma 11. Assume that λ = α
α+β

< µ and α, β and µ are all in (0, 1).

The variance of user delay in Markovian/Geo/1[ω] is given by

V ar[Dω]

= V ar[D0]

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω (
2(1− µ) + (α + β)(µ− λ)

1− µ

−1− µ+ (α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω)
,

which decreases exponentially in ω.

Proof. See Appendix A.17.

The lemma shows that proactive serving decreases the delay variance

exponentially.

As shown in the proof, we have

V ar[Dω] ≤ V ar[D0]
2(1− µ) + (α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω
(9.3)

and

V ar[Dω] ≥ V ar[D0]

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω
. (9.4)

57

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

As seen, the decaying rate of the delay variance is dominated by

ln [(1− µ)/ (1− µ+ (α + β)(µ− λ))] (9.5)

which is the same as that of the average user delay.

9.2.3 Tail of User Delay

Similar to obtain Lemma 10, for the Markovian/Geo/1[ω] system, we have

the following lemma for the delay tail DT ω(d).

Lemma 12. Assume that λ = α
α+β

< µ and α, β and µ are all in (0, 1).

The tail of user delay in Markovian/Geo/1[ω] is given by

DT ω(d) =

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω
DT 0(d),

which decreases exponentially in ω.

Proof. See Appendix A.18.

The lemma shows that proactive serving decreases the delay tail expo-

nentially.

As seen, the decaying rate of the delay tail is

ln [(1− µ)/ (1− µ+ (α + β)(µ− λ))] (9.6)

which is the same as that of the average user delay and the delay variance.

9.2.4 Comparison With Capacity Boosting

For the Markovian/Geo/1 system without proactive serving, the average user

delay with service capacity m is given by

1−mµ

(α+ β)(mµ− λ)
+ 1.

To achieve the same delay reduction as boosting the capacity by m times,

based on (9.2), we have the following theorem for ω∗(m).

58

CHAPTER 9. DELAY REDUCTION FOR M/M/K [ω] AND
MARKOVIAN/GEO/1[ω] UNDER PROACTIVE SERVING

1 1.1 1.2
0

1

2

3

4

m

ω
*(

m
)

Markovian/Geo/1[ω]

ρ=0.5
ρ=0.9

Figure 9.5: How far do we need predict in order to achieve the same delay

performance as compared to the server capacity being increased by m times

in the Markovian/Geo/1[ω] system?

Lemma 13. Assume λ = α
α+β

< µ. For the Markovian/Geo/1[ω] system

with perfect prediction, ω∗(m) (1 ≤ m < 1
µ
) is given by

ω∗(m) =
ln
(

(α+β)(µ−λ)
1−µ

[
1−mµ

(α+β)(mµ−λ)
+ 1

])
ln
(

1−µ
1−µ+(α+β)(µ−λ)

) + 1.

Proof. See Appendix A.15.

We plot the ω∗(m) as a function of m in Fig. 9.5 under different workload

levels (represented by different values of ρ).

Discussion: Unlike the results of M/M/1[ω] and M/M/k[ω] systems, the

effect of proactive serving on the user delay of Markovian/Geo/1[ω] system

depends not only on the mean arrival rate λ, but also on α and β, i.e., the two

transition probabilities that control the arrival burstiness. Specifically, the

decaying rate in ω in Lemma 10, 11 and 12 is ln [(1− µ)/ (1− µ+ (α+ β)(µ− λ))].

For the same µ and λ, the decaying rate is small when α and β are small,

and is large with large α and β. These results match our intuitions that it is

difficult to decrease user delay via proactive serving for bursty arrivals (such

as flash crowd).

59

Chapter 10

Simulations

We carry out simulations to study the impact of proactive serving on de-

creasing the average user delay under different practical request arrivals and

settings. Our objective is to evaluate: (i) How is the delay performance of

the system with proactive serving? (ii) How does prediction error impact the

effect of proactive serving? (iii) How about comparing with system capacity

boosting?

10.1 Parameters and Settings

In our simulations, we consider three different data traces. Under each data

trace, the simulation settings are as follows.

Synthetic Data Trace: We generate the data based on different dis-

tributions. We consider four different settings. In the first case, the request

inter-arrival time follows Exponential distribution and the request service

time follows Uniform distribution. In the second case, the request inter-

arrival time follows Uniform distribution and the request service time follows

Uniform distribution. In the third case, the request inter-arrival time follows

Exponential distribution and the request service time follows Weibull dis-

tribution. In the fourth case, the request inter-arrival time follows Uniform

60

CHAPTER 10. SIMULATIONS

distribution and the request service time follows Weibull distribution. Under

the four settings, the mean arrival rate is λ = 0.4 and the mean service rate

is µ = 0.5. For the Uniform distribution, boundaries are 0 and double mean.

For the Weibull distribution, the scale parameter is equal to 1. There is a

single server in the system under four settings. The server adopts FCFS as

its service policy.

Youku Data Trace: We collected the data of a weekly TV show video

[1] from Youku [6]. Fig. 10.1 shows how the view number changes since

its first release. As seen, on the first day after its release, the view number

skyrockets. Then the view number decreases sharply and maintains relatively

low afterwards. Such view request process is a typical bursty arrival process.

For ease of the simulation, we set the number of servers to be 2500 in

the system. In one second, a single server can serve a video of 100MB which

is about 10% of the observed video. Such setting is chosen to make sure

that the average user delay is at reasonable level. To better model practical

situation, the system adopts the Processor-Sharing (PS) service policy where

each request is served by all the servers simultaneously.

Youtube Data Trace: We collected the data from YouTube [7], which

covers 1000 different videos and their view numbers during one week. The

average video duration are 456 seconds. The view process of all videos is

shown in Fig. 10.2. Compared to the request arrival process in Fig. 10.1,

this process is more uniform.

In the simulation, we set the number of servers to be 1000 in the system.

In one second, a single server can serve a video of 700 seconds which is about

100MB. Such setting is chosen to make sure that the average user delay is at

reasonable level. As in the setting under the Youku trace, the system adopts

the Processor-Sharing (PS) service policy.

Common Setting: To investigate the impact of prediction errors, we

model the miss detections and false alarms in the simulation as follows. Each

61

CHAPTER 10. SIMULATIONS

0 1 2 3
0

2

4

6

x 10
5

time (day)

vi
ew

 n
um

be
r

Figure 10.1: The number of views of

a weekly TV show video in Youku

during 3 days since its first release.

0 1 2 3 4 5 6 7
0

5

10x 10
6

time (day)

vi
ew

 n
um

be
r

Figure 10.2: The number of views of

1000 different videos in YouTube dur-

ing one week.

time unit, q fraction of the request arrivals are miss detections, and 1−p
p

fraction of the rest request arrivals are false alarms. Therefore, fraction 1−q
p

of all requests are predicted arrivals, which can be served proactively. Larger

q means more miss detections, and smaller p means more false alarms in the

system. For perfect prediction, q = 0 and p = 1.

10.2 Delay Reduction by Proactive Serving

Under synthetic data trace, the simulation results are shown in Fig. 10.3,

10.4, 10.5 and 10.6 respectively. We can see that the average user request

delay decays significantly in ω, which is the same as what we observed in

chapter 4. Under the YouTube data trace, the simulation results are shown

in Fig. 10.7. As seen, under perfect prediction, the user request delay can be

decreased by 50% when the system only predicts about 100 seconds ahead.

Under the Youku data trace, the simulation results are shown in Fig. 10.8.

When the system can predict perfectly about 12 mins ahead, the user request

delay is decreased by 50%. The above simulation results all suggest that the

system can improve user delay experience significantly by proactive serving.

The reason why the system needs to predict further under the Youku

62

CHAPTER 10. SIMULATIONS

0 50 100
0

4

8

ω

av
er

ag
e

de
la

y

p=1, q=0
q=0.5, p=0.95
q=0.05, p=0.75
q=0.2, p=0.85

Figure 10.3: The average user re-

quest delay vs how far we predict the

future when the request inter-arrival

time follows Exponential distribu-

tion and the request service time fol-

lows Uniform distribution.

0 50 100
0

4

8

ω

av
er

ag
e

de
la

y

p=1, q=0
q=0.5, p=0.95
q=0.05, p=0.75
q=0.2, p=0.85

Figure 10.4: The average user re-

quest delay vs how far we predict

the future when the request inter-

arrival time follows Uniform distri-

bution and the request service time

follows Uniform distribution.

data trace compared to the YouTube data trace is due to the structure of

bursty arrivals. In bursty arrivals, when flash crowd arrives, servers are busy

most of time and hardly have spare capacity to server future requests. When

flash crowd leaves, few future requests can be pre-served because there is

almost no request coming. So, proactive serving is less effective under bursty

arrivals. This aligns with the results in section 9.2.

In Fig. 10.9, 10.10, 10.11, 10.12, 10.13 and 10.14, we show the delay

distributions without prediction and with perfect prediction. As seen from

the figures, the delay distribution under proactive serving can be obtained by

shifting the delay distribution without prediction ω units left, which aligns

with Lemma 2 and Corollary 1 in section 4.1.

10.3 Impact of Miss Detections and False Alarms

The simulation results are shown in Fig. 10.3, 10.4, 10.5, 10.6, 10.7 and 10.8.

As seen, both miss detection and false alarm weaken the effect of proactive

63

CHAPTER 10. SIMULATIONS

0 50 100
0

10

20

30

ω

av
er

ag
e

de
la

y

p=1, q=0
q=0.5, p=0.95
q=0.05, p=0.75
q=0.2, p=0.85

Figure 10.5: The average user re-

quest delay vs how far we predict the

future when the request inter-arrival

time follows Exponential distribu-

tion and the request service time fol-

lows Weibull distribution.

0 50 100
0

10

20

30

ω

av
er

ag
e

de
la

y

p=1, q=0
q=0.5, p=0.95
q=0.05, p=0.75
q=0.2, p=0.85

Figure 10.6: The average user re-

quest delay vs how far we predict

the future when the request inter-

arrival time follows Uniform distri-

bution and the request service time

follows Weibull distribution.

0 100 200 300 400
0

20

40

60

ω (sec)

av
er

ag
e

de
la

y
(s

ec
)

q=0, p=1
q=0.5, p=0.95
q=0.05, p=0.75
q=0.2, p=0.85

Figure 10.7: The average user re-

quest delay vs how far we predict the

future under the YouTube data trace.

500 1500 2500
0

200

400

600

800

ω (sec)

av
er

ag
e

de
la

y
(s

ec
)

q=0, p=1
q=0.5, p=0.95
q=0.05, p=0.75
q=0.2, p=0.85

Figure 10.8: The average user re-

quest delay vs how far we predict the

future under the Youku data trace.

serving on delay reduction. But proactive serving can still decrease user delay

significantly under the impact of prediction errors.

Under all the data traces, proactive serving is more sensitive to false

alarms than miss detections, which matches what we observed in section

7.4. When there are few miss detections and many false alarms, the effect

64

CHAPTER 10. SIMULATIONS

10 20 30
0

0.05

0.1

delay

fr
ac

tio
n

ω=0
ω=4
ω=8

Figure 10.9: Delay distributions

when the request inter-arrival time

follows Exponential distribution and

the request service time follows Uni-

form distribution.

5 10 15 20
0

0.05

0.1

0.15

0.2

delay

fr
ac

tio
n

ω=0
ω=4
ω=8

Figure 10.10: Delay distributions

when the request inter-arrival time

follows Uniform distribution and the

request service time follows Uniform

distribution.

20 40 60
0

0.01

0.02

0.03

0.04

delay

fr
ac

tio
n

ω=0
ω=4
ω=8

Figure 10.11: Delay distributions

when the request inter-arrival time

follows Exponential distribution and

the request service time follows

Weibull distribution.

20 40 60
0

0.01

0.02

0.03

0.04

delay

fr
ac

tio
n

ω=0
ω=4
ω=8

Figure 10.12: Delay distributions

when the request inter-arrival time

follows Uniform distribution and the

request service time follows Weibull

distribution.

of proactive serving on delay reduction has a sudden change when ω exceeds

some value under bursty arrivals in Fig. 10.8. This is different from the other

two cases. We believe that this is related to the statistics of bursty arrivals,

which needs future investigations.

65

CHAPTER 10. SIMULATIONS

0 1 2 3
0

0.2

0.4

0.6

0.8

delay(s)

fr
ac

tio
n

ω=0
ω=1
ω=2

Figure 10.13: Delay distributions un-

der the YouTube data trace.

0 5 10 15
0

.05

0.1

delay(s)

fr
ac

tio
n

ω=0
ω=2
ω=4

Figure 10.14: Delay distributions un-

der the Youku data trace.

ω∗(sec.) # of servers ↑ utilization ↓ average delay ↓

120 10% 9.1% 54.1%

219 20% 16.7% 75.3%

300 30% 23.1% 89.9%

Table 10.1: Comparison with system capacity boosting under the Youtube

data trace: The first column is how far the system serves proactively with

perfect prediction. The second column is how many percent the number of

servers is increased to achieve the same delay performance under proactive

serving. The third column is percentage of the decrement of the utilization

rate of each server, when the total number of servers increases. The forth col-

umn is how many percent the average user delay is decreased. For example,

the first row says, serving proactively 120 seconds ahead can decrease the

average user delay by 54.1%. To achieve the delay performance, the system

can instead increase the number of servers by 10%, which results in that the

utilization rate of each server is decreased by 9.1%.

10.4 Comparison with Capacity Boosting

We compare proactive serving under perfect prediction with system capacity

boosting under real data traces. The results are shown in Tab. 10.1 and

66

CHAPTER 10. SIMULATIONS

ω∗(min.) # of servers ↑ utilization ↓ average delay ↓

10 10% 9.1% 42.6%

18.3 20% 16.7% 66.2%

25 30% 23.1% 81.8%

31.5 40% 28.6% 90.1%

Table 10.2: Comparison with system capacity boosting under the Youku

data trace: The meaning of each column is the same as Tab. 10.1. For

example, the first row says, serving proactively 10 minutes ahead can decrease

the average user delay by 42.6%. To achieve the delay performance, the

system can instead increase the number of servers by 10%, which results in

that the utilization rate of each server is decreased by 9.1%.

10.2. We first observe that, when the system capacity is boosted, the rate of

ω∗ increasing slows down, where ω∗ is how far the system should predict to

achieve the same delay performance as capacity boosting. This agrees with

what we observed in Fig. 5.1. This suggests that proactive serving is more

effective than capacity boosting to achieve low delay, which is very critical for

online service systems. Specifically, under the Youtube data trace, boosting

the capacity by 30% is equivalent to predicting 300 seconds ahead, which

both decrease the average user delay by about 90%. Under the Youku data

trace, boosting the capacity by 40% is equivalent to predicting 31.5 minutes

ahead, which both decrease the average user delay by about 90%.

As discussed in chapter5, when the system employs more servers in the

system, the server utilization is lower, which leads to resource waste. As

observed in Tab. 10.1 and 10.2 under both data traces, the server utilization

decreases inverse-proportionally when the system capacity increases.

67

Chapter 11

Conclusions

In this thesis, we investigate the fundamentals of proactive serving from a

queuing theory perspective. We show that for service systems with proactive

serving capability, the average user delay decreases exponentially in the pre-

diction window size. More importantly, the delay reduction is robust against

prediction errors. We also show that proactive serving decreases both the

variance of user delay and the tail of user delay exponentially.

By comparing with conventional capacity boosting mechanism, we show

that proactive serving is more effective in decreasing user delay in light work-

load regime. In particular, the average user delay decays inverse-proportionally

in system capacity, but exponentially in the prediction window size under

proactive serving.

From a optimization point of view, we demonstrate how to leverage proac-

tive serving when designing systems. The results provide useful insights to

system designers.

Our trace driven evaluation results demonstrate the practical power of

proactive serving, e.g., under the YouTube data trace of 1000 different videos,

user delay can be decreased by 50% when the system can predict 100 seconds

ahead. Our study applies to general online service models with prediction,

such as preloading of interested content on mobile devices and prefetching of

68

CHAPTER 11. CONCLUSIONS

Youtube videos. Thus, we believe that our results can be used to guide the

design of proactive serving in practical online service systems.

We now conclude by discussing possible future directions. First, in section

4.2, we know that the exact impact of the moments of inter-arrival time

and service time on delay reduction in G/G/1[ω] system is open. How to

investigate this impact can be an interesting future topic. Second, in our

model in section 3.2, we assume that the system has no knowledge of the

workload of each user request. A future direction can be how to design the

queuing policy to optimize the delay performance if the workload information

can be predicted. Third, in section 3.2, besides based on actual prediction

algorithms, the system can predict future user requests by users indicating

their requests ahead of time. How to design the incentive mechanism to

encourage users to report their requests ahead of time can be investigated in

the future.

69

Appendix A

Proofs

In this chapter, we present the detailed proofs of lemmas and theorems in

previous chapters.

A.1 Proof of Lemma 1

Under the condition of Qp(0) = |A(0 : ω)|+Q0(0), Q
sum(0)

= Qp(0). Now consider any time point t. Up time t, Qsum(t) and Qp(t) accept

the same set of arrivals. Because both queues contain the same set of arrivals

and adopt the same queuing discipline, Qsum(t) and Qp(t) have the same

sequence of departures up to time t. As a result, at time t, Qsum(t) = Qp(t).

A.2 Proof of Lemma 2

Because the arrival process A(t) is stationary, the delay distribution of ar-

rivals in Qp is the same as that of M/M/1 which is (4.2).

By Lemma 1, Qsum(t) = Qp(t) for any t. Then a same request in A(t)

spends the same amount of time in Qsum and Qp. As shown in Fig. 7.1, if

not getting served beforehand, a request goes through the prediction window

Wω(t) before it enters Q0, which costs ω time. If a request spends T time in

70

APPENDIX A. PROOFS

Qp, it will spend [T − ω]+ slots in Q0. ([T − ω]+ = 0 means the request gets

pre-served by the system.) Therefore, the delay distribution of requests in

Q0 is a shifted version of that of Qp.

A.3 Proof of Theorem 1

Based on Lemma 2,

E[Dω] =

ˆ ∞

0

t · f(t+ ω)dt =
1

µ− λ
e−(µ−λ)ω.

Discussion: An alternative approach to obtain E[Dω] in Theorem 1 is

applying the Markov chain model, which works as follows. First, we discretize

the system. We chop the time into slots of equal length. Let δ denote the

slot length. At time slot t, A(t) becomes a Bernoulli random variable with

probability λ ·δ. Each time slot, the server is on with probability µ ·δ and off

with probability 1−µ ·δ. When the server is on, it can serve a request in one

slot. Q0(t) stores requests that are waiting in the system for service at slot

t. The prediction window Wω(t) is chopped to ω/δ small windows which are

denoted by {wi(t)}1≤i≤ω/δ. Each request first goes through a pipeline of these

small windows from wω/δ(t) to w1(t) before entering Q0(t). If A(t + iδ) =

1, then the system can observe a request in the window wi(t), which can

be served proactively. Then, based on the efforts in the above step, the

system can be modeled by a multi-dimensional Markov chain with state being(
wω/δ(t), wω/δ−1(t), ..., w1(t), Q0(t)

)
. By solving the stationary distribution of

the Markov chain, we can obtain the average user delay of the discretized

system by applying Little’s Law. Then, by taking limit in δ, we finally get

E[Dω]. Remark that the structure of the Markov chain is very complicated

which makes the derivation of the stationary distribution highly involved.

Compared to the approach we used in the thesis, the above approach is

complicated and cannot provide intuitive insights. At the same time, the

approach is hard to be generalized to more complex models. For example,

71

APPENDIX A. PROOFS

)(tQ g server)(ω+tA

Figure A.1: G/G/1: The arrival process is {A(t + ω)}t. Service times of

requests are independent and identically distributed with mean 1/µ. The

initial value Qg(0) is |A(0 : ω)|+Q0(0). The service policy is FCFS.

for the system in chapter 7, the Markov chain that models the discretized

system is much more complex, which is rather challenging to solve.

A.4 Proof of Corrolary 1

Consider a general queuing system as shown in Fig. 3.3. We can always

find a queuing system without proactive serving as in Fig. A.1, where the

arrival process is delayed ω units, the initial value of queue is equal to |A(0 :

ω)| + Q0(0) and the service policy is the same as adopted in the general

queuing system. As such, we can get the same equivalence between two

systems as Lemma 1. Based on how fG
D0(t) is derived in [29], the delay

distribution of the system in Fig. A.1 is the same as fG
D0(t). This is because

that we consider the delay distribution when the system is in steady state.

Then the initial value of Qg (which is bounded) and the shifted arrival process

will not alter the delay distribution. Then, based on the same argument as

in Lemma 2, we can show that the delay distribution under proactive serving

can be obtained by shifting the delay distribution without proactive serving

left by ω units.

A.5 Proof of Theorem 2

Let fQDω denote the distribution of QDω. Let QD0 denote the queuing delay

and fQD0 denote the corresponding distribution without proactive serving.

72

APPENDIX A. PROOFS

First, we show that the distribution of QDω can be obtained by shifting that

of QD0 by ω unit.

Although Corollary 1 is established for the distribution of user delay, it

can be easily extended to the distribution of queuing delay based on the same

proof. We can have

fQDω(t) = fQD0(t+ ω) for t > 0 and Pr(QDω = 0) =

ˆ ω

0

fQD0(t)dt.

Now we are ready to show that the average queuing delay decreases ex-

ponentially in ω. From [30], we have the following about the tail of the

distribution of QD0

Pr(QD0 ≥ t) ≤ e−s0t. (A.1)

Then we have

E[QDω]

=

ˆ ∞

0

Pr(QDω ≥ t)dt

=

ˆ ∞

0

ˆ ∞

t

fQDω(τ)dτdt

=

ˆ ∞

0

ˆ ∞

t

fQD0(τ + ω)dτdt

=

ˆ ∞

0

ˆ ∞

t+ω

fQD0(τ)dτdt

=

ˆ ∞

0

Pr(QD0 ≥ t+ ω)dt

≤
ˆ ∞

0

e−s0(t+ω)dt

=
1

s0
e−s0ω.

A.6 Proof of Theorem 3

For the M/M/1 system without proactive serving, the average user delay is

1
mµ−λ

when the service capacity ism. To achieve the same delay performance,

73

APPENDIX A. PROOFS

ω∗(m) should satisfy

E[Dω∗(m)] =
1

µ− λ
e−(µ−λ)ω∗(m).

Then we obtain ω∗(m) = 1
µ−λ

ln m−ρ
1−ρ

where ρ = λ
µ
.

A.7 Proof of Lemma 3

From Lemma 2, the distribution of user delay Dω is, for t > 0,

fDω(t) = (µ− λ)e−(µ−λ)(t+ω).

Then the variance of Dωis

V ar[Dω]

=

ˆ ∞

0

t2(µ− λ)e−(µ−λ)(t+ω)dt− 1

(µ− λ)2
e−2(µ−λ)ω

=
2

(µ− λ)2
e−(µ−λ)ω − 1

(µ− λ)2
e−2(µ−λ)ω

= V ar[D0] · e−(µ−λ)ω ·
[
2− e−(µ−λ)ω

]
.

Since 1 ≤ 2− e−(µ−λ)ω ≤ 2, we have the upper and lower bounds of V ar[Dω]

as follows

1

(µ− λ)2
· e−(µ−λ)ω ≤ V ar[Dω] ≤ 2

(µ− λ)2
· e−(µ−λ)ω·

The upper bound and the lower bound both decrease exponentially in ω. So

V ar[Dω] decreases exponentially in ω.

A.8 Proof of Lemma 4

From Lemma 2, the distribution of user delay Dω is, for t > 0,

fDω(t) = (µ− λ)e−(µ−λ)(t+ω).

74

APPENDIX A. PROOFS

Then the tail of user delay is

DT ω(d)

=

ˆ ∞

d

(µ− λ)e−(µ−λ)(t+ω)dt

= e−(µ−λ)ωDT 0(d),

which decreases exponentially in ω.

A.9 Proof of Theorem 4

We apply the same idea as we prove Theorem 1.

First, we alter the queuing policy of Q0. Instead of FCFS, the system

gives preemptive priority to the requests of A1, and within the same arrival

process FCFS is adopted. The reasons for doing this are as follows. First,

it can simplify the proof of the theorem. Second, most importantly, the

average size of Q0 stays the same and so is the average user delay. Because

the average service times of requests in A1 and A2 are same, it costs the

server the same amount of time to serve a request of A1 or A2 on average.

During the same amount of time, same amount of new requests enter Q0 on

average. So, under the new queuing policy of Q0, the average size of Q0 stays

the same. Note that the queuing policy of Wω stays unchanged.

Under the new queuing policy, Qsum(t) = Q0(t)+Wω(t) evolves the same

as the system in Fig. A.2. The proof is similar to that of Lemma 1 and thus

omitted. Consider a request of A2. Similar to Lemma 2, if it spends T time

in Qm, it will spend [T − ω]+ in Q0. Then the distribution of delay that A2

requests spend in Q0 can be obtained by shifting that in Qm left by ω units.

Let fω
2 (t) and fm

2 (t) be the density function of delay that A2 requests spend

in Q0 and Qm respectively. We have fω
2 (t) = fm

2 (t+ ω) when t > 0.

Next we first calculate fm
2 (t), and then we can obtain fω

2 (t) easily. Instead

of calculating it directly, based on existing knowledge on busy period of

75

APPENDIX A. PROOFS

)(tQm server)(1 tA

)(2 ω+tA

Figure A.2: M/M/1 with preemptive priority: Two arrival processes are

A1(t) and A2(t + ω) respectively. Service times of requests are independent

and identically exponentially distributed with mean µ. The initial value of

Qm is |A2(0 : ω)|+Q0(0). Requests of A1 have preemptive priority over those

of A2.

M/M/1, we get the Laplace transform of fm
2 (t).

Now we focus on the system in Fig. A.2. Let πm
i be the stationary

probability that the size of Qm is i. By analyzing the Markov chain which

models the evolution of Qm, we can have πp
i = (1− λ1+λ2

µ
)(λ1+λ2

µ
)i. Consider

a request of A2. Let us denote the request by a2. Let T be the time that

a2 spends in the system. Let N be the total number of requests already in

the system when the request enters the system. Let Ti+1 be the time that a2

spends in the system conditioning on N = i. Then we have

P (T ≤ t) =
∞∑
i=0

πiP (T ≤ t|N = i) =
∞∑
i=0

πiP (Ti+1 ≤ t). (A.2)

Ti+1 is equal to the time till the system is empty again, which is usually called

busy period in queuing theory. Denote the probability density functions of

Ti+1 by fi+1(t). By (A.2), we get fm
2 (t) =

∑∞
i=0 πifi+1(t). From [2], we know

that the Laplace transform of fi+1(t) is

Fi+1(s) =

[
1

2λ1

(
λ1 + µ+ s−

√
(λ1 + µ+ s)2 − 4λ1µ

)]i+1

.

76

APPENDIX A. PROOFS

So the Laplace transform of fm
2 (t) is

F (s)

=
∞∑
i=0

πiFi+1(s)

=
2(µ− λ1 − λ2)

µ− λ1 − 2λ2 + s+
√

(λ1 + µ+ s)2 − 4λ1µ
.

By definition, the Laplace transform of fω
2 (t) is

F ω(s)

=

ˆ ∞

0

e−stfm
2 (t+ ω)dt+

ˆ ω

0

fm
2 (t)dt

=esω
ˆ ∞

ω

e−stfm
2 (t)dt+

ˆ ω

0

fm
2 (t)dt

=esω
[
F (s)−

ˆ ω

0

e−stfm
2 (t)dt

]
+

ˆ ω

0

fm
2 (t)dt.

Based on the Laplace transform, we are ready to calculate the average user

delay of A2 requests in Q0, which is denoted by E[Dω
2]. By the definition of

the Laplace transform,

E[Dω
2]

=− dF ω(s)

ds
|s=0

=
µ

(µ− λ1)(µ− λ1 − λ2)
− ω + ω

ˆ ω

0

fm
2 (t)dt−

ˆ ω

0

t · fm
2 (t)dt.

Then the derivative of E[Dω
2] is

dE[Dω
2]

dω
=

ˆ ω

0

fm
2 (t)dt− 1.

Now consider
´ ω

0
fm
2 (t)dt as a function of ω. The Laplace transform of it

is equal to

F (s)

s
=

2(µ− λ1 − λ2)

s
(
µ− λ1 − 2λ2 + s−

√
(λ1 + µ+ s)2 − 4λ1µ

) ,
77

APPENDIX A. PROOFS

which is due to the integration property of the Laplace transform. Next, we

inverse F (s)
s

and get an expression of
´ ω

0
fm
2 (t)dt.

Define s1 = −(
√
µ +

√
λ1)

2, s2 = −(
√
µ −

√
λ1)

2, s3 = λ2(λ1+λ2−µ)
λ1+λ2

, s4 =

0. s1and s2 are branch points of F (s)
s
. s4 is a simple pole of F (s)

s
. When

(λ1+λ2)
2 > λ1µ, s3 is also a simple pole of F (s)

s
. The residue at s3 Res(s3) is

λ1µ−(λ1+λ2)2

λ2(λ1+λ2)
e

λ2(λ1+λ2−µ)
λ1+λ2

ω
. The residue at s4 Res(s4) is 1. Consider the closed

contour L+ CR shown in Fig. A.3.

‰
F (s)

s
esωds

=

ˆ
L

F (s)

s
esωds+

ˆ
CR

F (s)

s
esωds

=

ˆ σ+jR

σ−jR

F (s)

s
esωds+

ˆ
CR

F (s)

s
esωds

= lim
r→0

ˆ
Cr

F (s)

s
esωds+ 2πj · Res(s4) + 2πj · Res(s3) · 1(λ1+λ2)2>λ1µ, (A.3)

where the last equality is based on Cauchy’s Theorem. When R → ∞,

1
2πj

´ σ+jR

σ−jR
F (s)
s
esωds becomes the inverse transform of F (s)

s
. According to Jor-

dan’s lemma,
´
CR

F (s)
s
esωds → 0 when R → ∞. Thus, to calculate the inverse

transform of F (s)
s
, we only need to calculate limr→0

´
Cr

F (s)
s
esωds.

lim
r→0

ˆ
Cr

F (s)

s
esωds

= lim
r→0

ˆ π

−π

F (s1 + rejθ)

s1 + rejθ
· e(s1+rejθ)ω · jrejθdθ+

lim
r→0

ˆ π

−π

F (s2 + rejθ)

s2 + rejθ
· e(s2+rejθ)ω · jrejθdθ−

ˆ 4
√
λ1µ

0

2(µ− λ1 − λ2)e
(s2−x)ω

(s2 − x)
(
µ− λ1 − 2λ2 + s2 − x+ j

√
x(4

√
λ1µ− x)

)dx
+

ˆ 4
√
λ1µ

0

2(µ− λ1 − λ2)e
(s2−x)ω

(s2 − x)
(
µ− λ1 − 2λ2 + s2 − x− j

√
x(4

√
λ1µ− x)

)dx
=

ˆ 4
√
λ1µ

0

j(µ− λ1 − λ2)
√
x(4

√
λ1µ− x)e(s2−x)ω

(s2 − x) ·
(
(λ1 + λ2)x+ (

√
λ1µ− λ1 − λ2)2

)dx,
78

APPENDIX A. PROOFS

where, in the first equality, the first two integrals are those around s1and

s2which are equal to 0 and the last two are those from s2 to s1 and from s1

to s2 respectively. By (A.3), we obtain
´ ω

0
fm
2 (t)dt.

Finally, we get

dE[Dω
2]

dω

=

ˆ ω

0

fm
2 (t)dt− 1

=
λ1µ− (λ1 + λ2)

2

λ2(λ1 + λ2)
e

λ2(λ1+λ2−µ)
λ1+λ2

ω · 1(λ1+λ2)2>λ1µ+

1

2π

ˆ 4
√
λ1µ

0

(µ− λ1 − λ2)
√

x(4
√
λ1µ− x)e(s2−x)ω

(s2 − x) ·
(
(λ1 + λ2)x+ (

√
λ1µ− λ1 − λ2)2

)dx. (A.4)

Then we derive the average delay of A2 requests

E[Dω
2]

=
µ

(µ− λ1)(µ− λ1 − λ2)
−

(λ1 + λ2)
2 − λ1µ

λ2
2(µ− λ1 − λ2)

(1− e
λ2(λ1+λ2−µ)

λ1+λ2
ω
) · 1(λ1+λ2)2>λ1µ−

1

2π

ˆ 4
√
λ1µ

0

(µ− λ1 − λ2)
√

x(4
√
λ1µ− x)(1− e(s2−x)ω)

(s2 − x)2 ·
(
(λ1 + λ2)x+ (

√
λ1µ− λ1 − λ2)2

)dx.
Because of preemptive priority, the average delay of A1 requests E[D1] =

1
µ−λ1

. Then, we obtain the average delay of all requests byE[Dω] = λ1

λ1+λ2
E[D1]+

λ2

λ1+λ2
E[Dω

2].

Now consider
dE[Dω

2]

dω
.

1

2π

ˆ 4
√
λ1µ

0

(µ− λ1 − λ2)
√

x(4
√
λ1µ− x)e(s2−x)ω

(s2 − x) ·
(
(λ1 + λ2)x+ (

√
λ1µ− λ1 − λ2)2

)dx
=C · e(−(

√
µ−

√
λ1)2−ξ)ω,

where C is a negative constant and ξ is a constant between 0 and 4
√
λ1µ by

the mean value theorem. So by (A.4), E[Dω
2] decreases exponentially in ω.

Because dE[Dω]
dω

= λ2

λ1+λ2

dE[Dω
2]

dω
, we get that E[Dω] decreases exponentially in

ω.

79

APPENDIX A. PROOFS

1s 2s 3s 4s

RC

rC

Figure A.3: Contour integration: The contour consists of L and CR. s1 and

s2 are branch points. s3 and s4 are simple poles.

80

APPENDIX A. PROOFS

)(2 ω+tA

server

)(0 tQ

)(1 tw

p

)(1 tw −δ
ω

)(tw
δ
ω

Figure A.4: A discrete service system with only false alarms: The request

arrival process A2(t) and the service process are independent Bernoulli pro-

cesses. Each request first goes through a pipeline of these small windows from

wω/δ(t) to w1(t) before entering Q̄0(t). If A2(t+ iδ) = 1, then the system can

observe a request in the window wi(t), which can be served proactively. A

request stays in each small window for exact 1 slot. Each request in {A2(t)}t
is independently an actual request with probability p.

A.10 Proof of Theorem 5

First, we discretize the system as shown in Fig. A.4. We chop the time into

slots of equal length. Let δ denote the slot length. We choose the value of δ

so that ω/δ is an integer. At time slot t, A2(t) becomes a Bernoulli random

variable with probability λ2 · δ. We assume that each request arrives at the

end of the time slot. Note that this assumption does not affect the final

results. Each time slot, the server is on with probability µ · δ and off with

probability 1 − µ · δ. When the server is on, it can serve a request in one

slot. Q̄0(t) stores requests that are waiting in the system for service at slot

81

APPENDIX A. PROOFS

t. The prediction window Wω(t) is chopped to ω/δ small windows which are

denoted by {wi(t)}1≤i≤ω/δ. Each request first goes through a pipeline of these

small windows from wω/δ(t) to w1(t) before entering Q̄0(t). If A2(t+ iδ) = 1,

then the system can observe a request in the window wi(t), which can be

served proactively. A request stays in each small window for exact 1 slot

and then moves to next window. The false alarm will not enter Q̄0(t) and

thus disappear once they leave the window w1(t). Each request in {A2(t)}t
is independently an actual request with probability p. In this case, with

probability p, the request in the window w1(t) will enter Q̄0(t) and with

probability 1− p, it will leave the system. Slightly abusing the notations, we

sometimes use Q̄0(t), wi(t) to denote the number of requests in it.

The FCFS service policy works as follows. At time slot t, when the server

is on, it first checks Q̄0(t). If Q̄0(t) > 0, the server selects the request at

the head of Q̄0(t) and serves it in the slot. Otherwise the server finds the

smallest i such that wi(t) > 0 and serves the request in wi(t) in the slot.

Under the FCFS service policy, the system can be modeled by a multi-

dimensional Markov chain with state being
(
wω/δ(t), wω/δ−1(t), ..., w1(t), Q̄0(t)

)T
where T means transpose. Define λ̄ = λ2 · δ, µ̄ = µ · δ and ω̄ = ω

δ
. Also

define a = λ̄(1 − µ̄), b = (1 − λ̄)µ̄, c = (1 − λ̄)(1 − µ̄), a
′
= pλ̄(1 − µ̄), b

′
=

(1−p)(1−λ̄)µ̄, c
′
= p(1−λ̄)(1−µ̄), d

′
= (1−p)λ̄µ̄, a

′′
= pλ̄µ̄+(1−p)λ̄(1−µ̄)

, b
′′
= (1− λ̄)µ̄+(1−p)(1− λ̄)(1− µ̄), c

′′
= p(1− λ̄)µ̄+(1−p)(1− λ̄)(1− µ̄),

d
′′
= λ̄µ̄+ (1− p)λ̄(1− µ̄).

When we say the Markov chain is in state i at time slot t, we mean

i = Q̄0(t) +
ω̄∑

j=1

wj(t).

Then the state space of the Markov chain is {0, 1, 2, 3, ...}. To calculate the

stationary distribution of the Markov chain, as a first step, we derive the

transition matrix. Now we first define some matrixes which serve as the

82

APPENDIX A. PROOFS

building blocks of the transition matrix. Define

B̄ =

 G

F
′′

 , Ā2 =

 F (ω̄−1)

F
′

 ,

Ā1 =

 E

E
′′

 , Ā0 =

 O(2ω̄−1)

E
′

 ,

where

O(n) =


0 0 0 · · · 0
...

...
...

. . . 0

0 0 0 0 0


n×2ω̄

,

F (n) =



b d 0 0 0 0 0 · · · 0

0 0 b d 0 0 0 · · · 0

0 0 0 0 b d 0 · · · 0
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 b d


2n×2ω̄

,

E =



c a 0 0 0 0 0 · · · 0

0 0 c a 0 0 0 · · · 0

0 0 0 0 c a 0 · · · 0
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 c a


2ω̄−1×2ω̄

,

E
′
=



c
′

a
′

0 0 0 0 0 · · · 0

0 0 c
′

a
′

0 0 0 · · · 0

0 0 0 0 c
′

a
′

0 · · · 0
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 c
′

a
′


2ω̄−1×2ω̄

,

83

APPENDIX A. PROOFS

E
′′
=



c
′′

a
′′

0 0 0 0 0 · · · 0

0 0 c
′′

a
′′

0 0 0 · · · 0

0 0 0 0 c
′′

a
′′

0 · · · 0
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 c
′′

a
′′


2ω̄−1×2ω̄

,

F ’ =



b
′

d
′

0 0 0 0 0 · · · 0

0 0 b
′

d
′

0 0 0 · · · 0

0 0 0 0 b
′

d
′

0 · · · 0
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 b
′

d
′


2ω̄−1×2ω̄

,

F
′′
=



b
′′

d
′′

0 0 0 0 0 · · · 0

0 0 b
′′

d
′′

0 0 0 · · · 0

0 0 0 0 b
′′

d
′′

0 · · · 0
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 b
′′

d
′′


2ω̄−1×2ω̄

,

G =



1− λ̄ λ̄ 0 0 0 0 0 · · · 0

0 0 c a 0 0 0 · · · 0

0 0 0 0 c a 0 · · · 0
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 c a


2ω̄−1×2ω̄

+1{ω̄≥2} ·
∑ω̄−2

m=0


O(2m)

F (m)

O(2ω̄−1−2m+1)

 , where n is a positive integer and 1{·} is

84

APPENDIX A. PROOFS

0
0

1
0

0
1

1
2

1
1

0
2

�������

State 0 State 1 State 2 State 3 State 4 State 5

a’ a’ a’

b’’ d

c’ a

d’’

b

b’

d’

c

c’’

a’’

d

c’ a

b

b’

d’

c

c’’

a’’

b

b’

1-

λ

λ

Figure A.5: State diagram when ω̄ = 1: In each state, the lower value is

the number of requests in Q̄0(t), and the upper is the number of requests in

w1(t). The state number is calculated by 2 · Q̄0(t) + w1(t).

the indicator function. Now, the transition matrix of the Markov chain is

P̄ =



B̄ Ā0 0 0 0 0 · · ·
Ā2 Ā1 Ā0 0 0 0 · · ·
0 Ā2 Ā1 Ā0 0 0 · · ·
0 0 Ā2 Ā1 Ā0 0 · · ·
...

...
...

...
...

...
. . .


.

As an illustrating example, in Fig. A.5, we draw the state diagram of the

Markov chain when ω̄ = 1. The matrix blocks which comprise the transition

matrix are

B̄ =

 1− λ̄ λ̄

b
′′

d
′′

 , Ā0 =

 0 0

c
′

a
′

 ,

Ā2 =

 b d

b
′

d
′

 , Ā1 =

 c a

c
′′

a
′′

 .

Now we are ready to calculate the stationary distribution of the Markov

chain. Let π̄ be the stationary distribution which should satisfy π̄ · P̄ = π̄

and
∑

π̄i = 1. π̄i is the probability that the system is in state i when the

system is stable.

85

APPENDIX A. PROOFS

From π̄·P̄ = π̄, for states 0 and 1, we have the following balance equations

(1− λ̄)π̄0 +
ω̄−2∑
j=0

bπ̄2j + b
′′
π̄2ω̄−1 + bπ̄2ω̄ + b

′
π̄2ω̄+2ω̄−1 = π̄0, (A.5)

λ̄π̄0 +
ω̄−2∑
j=0

dπ̄2j + d
′′
π̄2ω̄−1 + dπ̄2ω̄ + d

′
π̄2ω̄+2ω̄−1 = π̄1. (A.6)

For positive integers i and j, we define ij
2
= i

2
+
⌊
j
2

⌋
and ij = i

2
+
⌊
j
2

⌋
where ⌊·⌋

is the floor opeartion. For state i+ j where i = 2ω̄−k and 0 ≤ j < 2ω̄−k(1 ≤
k ≤ ω̄ − 1), we have the following balance equations

π̄i+j = cπ̄ ij
2
+

k∑
l=2

bπ̄ ij
2
+2ω̄−l + b

′′
π̄ ij

2
+2ω̄−1 + bπ̄ ij

2
+2ω̄ + b

′
π̄ ij

2
+2ω̄+2ω̄−1 (A.7)

when j is even;

π̄i+j = aπ̄ ij
2
+

k∑
l=2

dπ̄ ij
2
+2ω̄−l + d

′′
π̄ ij

2
+2ω̄−1 + dπ̄ ij

2
+2ω̄ + d

′
π̄ ij

2
+2ω̄+2ω̄−1 (A.8)

when j is odd. For state i + j where i = n · 2ω̄ and 0 ≤ j < 2ω̄ (n ≥ 1), we

have the following balance equations

π̄i+j = c
′
π̄ij−2ω̄−1 + cπ̄ij + c

′′
π̄ij+2ω̄−1 + bπ̄ij+2ω̄ + b

′
π̄ij+2ω̄+2ω̄−1 (A.9)

when j is even;

π̄i+j = a
′
π̄ij−2ω̄−1 + aπ̄ij + a

′′
π̄ij+2ω̄−1 + dπ̄ij+2ω̄ + d

′
π̄ij+2ω̄+2ω̄−1 (A.10)

when j is odd.

To solve the above equations, three useful lemmas that describe the re-

lationships among states when the system is stable need to be established.

As the first step, based on the equations (A.5)-(A.10), we reveal some direct

relationships among states when the system is stable in the following lemma.

We denote the set of natural numbers and the set of positive natural numbers

by N and N+ respectively.

86

APPENDIX A. PROOFS

Lemma 14. For i = 2ω̄−k (1 ≤ k ≤ ω̄ − 1),

π̄i+j

π̄i+j+2l−1

=
1− λ̄

λ̄

where j = m · 2l (m ∈ N , l ∈ N+) and j < i− 2l−1. For i = n · 2ω̄ (n ∈ N+),

π̄i+j

π̄i+j+2l−1

=
1− λ̄

λ̄

where j = m · 2l (m ∈ N , l ∈ N+) and j < 2ω̄ − 2l−1.

Proof. We conduct the proof by induction. First let’s verify the result when

l = 1. When i = 2ω̄−k (1 ≤ k ≤ ω̄ − 1), based on (A.7) and (A.8), we can

directly get
π̄i+j

π̄i+j+1
= 1−λ̄

λ̄
where j = 2 ·m (m ∈ N) and j < i− 1. Similarly,

when i = n · 2ω̄ (n ∈ N+) , based on (A.9) and (A.10), we get
π̄i+j

π̄i+j+1
= 1−λ̄

λ̄

where j = 2 ·m (m ∈ N) and j < 2ω̄ − 1.

Suppose when 2 ≤ l < l̄

π̄i+j

π̄i+j+2l−1

=
1− λ̄

λ̄
(A.11)

for i = 2ω̄−k or i = n ·2ω̄. Now let l = l̄. Because of the condition j < i−2l̄−1,

ω̄−l̄ < k ≤ ω̄−1 is excluded from 1 ≤ k ≤ ω̄−1. For i = 2ω̄−k (1 ≤ k ≤ ω̄−l̄),

j = m · 2l̄ (m ∈ N) and j < i− 2l̄−1,

π̄i+j+2l̄−1

=cπ̄ ij
2
+2l̄−2 +

k∑
l
′
=2

bπ̄ ij
2
+2ω̄−l

′
+2l̄−2 + b

′′
π̄ ij

2
+2ω̄−1+2l̄−2

+ bπ̄ ij
2
+2ω̄+2l̄−2 + b

′
π̄ ij

2
+2ω̄+2ω̄−1+2l̄−2

=
λ̄

1− λ̄

cπ̄ ij
2
+

k∑
l′=2

bπ̄ ij
2
+2ω̄−l

′ + b
′′
π̄ ij

2
+2ω̄−1 + bπ̄ ij

2
+2ω̄ + b

′
π̄ ij

2
+2ω̄+2ω̄−1


=

λ̄

1− λ̄
π̄i+j,

87

APPENDIX A. PROOFS

where the first and third equality are based on (A.7) and the second equality

is derived from (A.11) when l = l̄ − 1. For i = n · 2ω̄(n ∈ N+), j = m · 2l̄

(m ∈ N) and j < 2ω̄ − 2l̄−1,

π̄i+j+2l̄−1

=c
′
π̄ij−2ω̄−1+2l̄−2 + cπ̄ij+2l̄−2 + c

′′
π̄ij+2ω̄−1+2l̄−2

+ bπ̄ij+2ω̄+2l̄−2 + b
′
π̄ij+2ω̄+2ω̄−1+2l̄−2

=
λ̄

1− λ̄

(
c
′
π̄ij−2ω̄−1 + cπ̄ij + c

′′
π̄ij+2ω̄−1 + bπ̄ij+2ω̄ + b

′
π̄ij+2ω̄+2ω̄−1

)
=

λ̄

1− λ̄
π̄i+j,

where the first and third equality are based on (A.9) and the second equality

is derived from (A.11) when l = l̄ − 1.

When ω̄ = 1, Lemma 14 tells that π̄i

π̄i+1
= 1−λ̄

λ̄
when i is even.

The Lemma 14 can help us simplify
∑

0≤j<2ω̄ π̄i+j for any i = n · 2ω̄

(n ∈ N+) as follows ∑
0≤j<2ω̄

π̄i+j

=
1

1− λ̄

∑
0≤j<2ω̄ :j=2·m,m∈N

π̄i+j

=
1

(1− λ̄)2

∑
0≤j<2ω̄ :j=4·m,m∈N

π̄i+j

= · · ·

=
1

(1− λ̄)ω̄
π̄i. (A.12)

Similarly for any i = 2ω̄−k (1 ≤ k ≤ ω̄ − 1),∑
0≤j<2ω̄−k

π̄i+j =
1

(1− λ̄)ω̄−k
π̄i. (A.13)

As the second step, the following lemma tells the relationship between

state 0 and other states when the system is in steady state.

88

APPENDIX A. PROOFS

Lemma 15. For i = 2ω̄−k (1 ≤ k ≤ ω̄), π̄i = λ̄(1−µ̄)ω̄−k

1−λ̄
π̄0. And π̄2ω̄ =

pλ̄(1−µ̄)ω̄

(1−pλ̄)µ̄
π̄0.

Proof. We prove the first part of the lemma by induction. From (A.5) and

(A.6), we can easily get π̄1 = λ̄
1−λ̄

π̄0. Suppose, when 0 < k̄ < k ≤ ω̄,

π̄2ω̄−k = λ̄(1−µ̄)ω̄−k

1−λ̄
π̄0. Now let k = k̄. From (A.7),

π̄i = cπ̄ i
2
+

k̄∑
l=2

bπ̄ i
2
+2ω̄−l + b

′′
π̄ i

2
+2ω̄−1 + bπ̄ i

2
+2ω̄ + b

′
π̄ i

2
+2ω̄+2ω̄−1 .

At the same time,

π̄1 = λ̄π̄0 +
ω̄−2∑
j=0

dπ̄2j + d
′′
π̄2ω̄−1 + dπ̄2ω̄ + d

′
π̄2ω̄+2ω̄−1 .

From Lemma 14,
π̄
2ω̄−l

π̄ i
2+2ω̄−l

= 1−λ̄
λ̄

when 0 ≤ l ≤ k̄ − 1 and
π̄2ω̄+2ω̄−1

π̄ i
2+2ω̄+2ω̄−1

= 1−λ̄
λ̄
.

So

π̄i

=
cλ̄(1− µ̄)ω̄−k̄−1

1− λ̄
π̄0 + π̄1 − λ̄π̄0 −

ω̄−k̄−1∑
j=0

dπ̄2j

=

[
cλ̄(1− µ̄)ω̄−k̄−1

1− λ̄
+

λ̄2

1− λ̄
− dλ̄

1− λ̄

ω̄−k̄−1∑
j=0

(1− µ̄)j

]
π̄0

=
λ̄(1− µ̄)ω̄−k̄

1− λ̄
π̄0.

From (A.6), we can get π̄2ω̄ = pλ̄(1−µ̄)ω̄

(1−pλ̄)µ̄
π̄0 since

π̄2ω̄

π̄2ω̄+2ω̄−1
= 1−λ̄

λ̄
.

When ω̄ = 1, Lemma (15) tells that π̄2 =
pλ̄(1−µ̄)

(1−pλ̄)µ̄
π̄0.

In the final step, based on Lemma (14) and (15), some hidden relation-

ships among states are disclosed in the following lemma.

Lemma 16. For any 2ω̄−1 ≤ j < 2ω̄,

π̄j

π̄2ω̄+j

=
µ̄(1− pλ̄)

pλ̄(1− µ̄)
.

89

APPENDIX A. PROOFS

For any i = n · 2ω̄ and 0 ≤ j < 2ω̄ (n ∈ N+),

π̄i+j

π̄i+2ω̄+j

=
µ̄(1− pλ̄)

pλ̄(1− µ̄)
.

Proof. We first show that any 2ω̄−1 ≤ j < 2ω̄, we have
π̄j

π̄2ω̄+j
= µ̄(1−pλ̄)

pλ̄(1−µ̄)
. When

j = 2ω̄−1, from Lemma 15, π̄j =
λ̄(1−µ̄)ω̄−1

1−λ̄
π̄0. From Lemma 14,

π̄2ω̄+j =
λ̄

1− λ̄
π̄2ω̄ =

λ̄

1− λ̄
· pλ̄(1− µ̄)ω̄

(1− pλ̄)µ̄
π̄0.

So
π̄j

π̄2ω̄+j
= µ̄(1−pλ̄)

pλ̄(1−µ̄)
. When 2ω̄−1 < j < 2ω̄, based on Lemma 14,

π̄j

π̄2ω̄−1
=

π̄2ω̄+j

π̄2ω̄+2ω̄−1
. Therefore we get

π̄j

π̄2ω̄+j
= µ̄(1−pλ̄)

pλ̄(1−µ̄)
.

Now suppose, any i = n · 2ω̄ and 0 ≤ j < 2ω̄ (n ∈ N+),
π̄i+j

π̄i+2ω̄+j
= µ̄(1−pλ̄)

pλ̄(1−µ̄)
.

Based on (A.9), we have

π̄i+2ω̄+j

=c
′
π̄ij+2ω̄−2ω̄−1 + cπ̄ij+2ω̄ + c

′′
π̄ij+2ω̄+2ω̄−1 + bπ̄ij+2ω̄+2ω̄ + b

′
π̄ij+2ω̄+2ω̄+2ω̄−1

=
pλ̄(1− µ̄)

µ̄(1− pλ̄)
·
(
c
′
π̄ij−2ω̄−1 + cπ̄ij + c

′′
π̄ij+2ω̄−1 + bπ̄ij+2ω̄ + b

′
π̄ij+2ω̄+2ω̄−1

)
=
pλ̄(1− µ̄)

µ̄(1− pλ̄)
π̄i+j

when j is even. When j is odd, we can derive
π̄i+j

π̄i+2ω̄+j
= µ̄(1−pλ̄)

pλ̄(1−µ̄)
in the same

way. So we verify that this relation is indeed true.

When ω̄ = 1, Lemma (16) tells that π̄i

π̄i+2
= µ̄(1−pλ̄)

pλ̄(1−µ̄)
.

With Lemma 14, 15 and 16, we are ready to calculate the stationary

90

APPENDIX A. PROOFS

distribution. We first calculate π̄0 in the following.

∞∑
i=1

π̄i

=π̄0 + π̄1 +
ω̄−1∑
k=1

2ω̄−k−1∑
j=0

π̄2ω̄−k+j +
∞∑
n=1

2ω̄−1∑
j=0

π̄n·2ω̄+j

=π̄0 + π̄1 +
ω̄−1∑
k=1

1

(1− λ̄)ω̄−k
π̄2ω̄−k +

∞∑
n=1

1

(1− λ̄)
π̄n·2ω̄

=π̄0 +
λ̄

1− λ̄
π̄0 +

ω̄−1∑
k=1

1

(1− λ̄)ω̄−k
π̄2ω̄−k + π̄2ω̄

1

(1− λ̄)ω̄

∞∑
n=1

(
pλ̄(1− µ̄)

µ̄(1− pλ̄)

)n−1

=π̄0 +
λ̄

1− λ̄
π̄0 +

λ̄

1− λ̄

ω̄−1∑
k=1

(
1− µ̄

1− λ̄

)ω̄−k

π̄0 +
pλ̄

µ̄− pλ̄

(
1− µ̄

1− λ̄

)ω̄

π̄0

=1,

where the first equality decompose all states into four parts, the second

equality is derived from (A.13) and (A.12), the third and forth equality are

based on Lemma 16 and 15 respectively. Then we get

π̄0 =


µ̄−λ̄
µ̄

1
△ λ̄ ̸= µ̄

(1−λ̄)(µ̄−pλ̄)

(ω̄−1)λ̄µ̄+µ̄−pω̄λ̄2 λ̄ = µ̄
,

where △ =

[
1− (1−p)λ̄

µ̄−pλ̄

(
1−µ̄
1−λ̄

)ω̄
]
. Further the average length of Q̄0(t), i.e.,

91

APPENDIX A. PROOFS

E[Q̄0(t)], is derived as follows.

E[Q̄0(t)]

=
∞∑
n=1

n ·
2ω̄−1∑
j=0

π̄n·2ω̄+j

=
1

(1− λ̄)ω̄
π̄2ω̄

∞∑
n=1

n

(
pλ̄(1− µ̄)

µ̄(1− pλ̄)

)n−1

=
pλ̄(1− pλ̄)µ̄

(µ̄− pλ̄)2

(
1− µ̄

1− λ̄

)ω̄

π̄0

=


pλ̄(1−pλ̄)(µ̄−λ̄)

(µ̄−pλ̄)2

(
1−µ̄
1−λ̄

)ω̄
1
△ λ̄ ̸= µ̄

pλ̄(1−λ̄)(1−pλ̄)µ̄

(µ̄−pλ̄)((ω̄−1)λ̄µ̄+µ̄−pω̄λ̄2)
λ̄ = µ̄

.

Now we consider the system before discretization. The average length of

Q0(t), i.e., E[Q0(t)], is given by

E[Q0(t)]

= lim
δ→0

E[Q̄0(t)]

=


λ(µ−λ2)
(µ−λ)2

1

e(µ−λ2)ω−λ2−λ
µ−λ

λ2 ̸= µ

λ
(µ−λ)[(µ−λ)ω+1]

λ2 = µ

.

Then by Little’s Law, the average user delay

E[Dω] =


µ−λ2

(µ−λ)2
1

e(µ−λ2)ω−λ2−λ
µ−λ

λ2 ̸= µ

1
(µ−λ)[(µ−λ)ω+1]

λ2 = µ

.

To show that E[Dω] decreases exponentially in ω, we need the following

inequalities

µ− λ2

µ− λ
e(µ−λ2)ω < e(µ−λ2)ω − λ2 − λ

µ− λ
< e(µ−λ2)ω

when µ > λ2, and

λ2 − µ

λ2 − λ
e(λ2−µ)ω < e(λ2−µ)ω − µ− λ

λ2 − λ
< e(λ2−µ)ω

92

APPENDIX A. PROOFS

when µ < λ2. Then based on the first equality, we have

µ− λ2

(µ− λ)2
e−(µ−λ2)ω < E[Dω] <

1

µ− λ
e−(µ−λ2)ω

when µ > λ2. When µ < λ2,

E[Dω]

=
λ2 − µ

(µ− λ)(λ2 − λ)
+

λ2 − µ

(λ2 − λ)2
1

e(λ2−µ)ω − µ−λ
λ2−λ

.

Based on the second equality, we have

E[Dω] >
λ2 − µ

(µ− λ)(λ2 − λ)
+

λ2 − µ

(λ2 − λ)2
e−(λ2−µ)ω

and

E[Dω] <
λ2 − µ

(µ− λ)(λ2 − λ)
+

1

λ2 − λ
e−(λ2−µ)ω.

Now we have obtained a lower and upper bound of E[Dω] which both decrease

exponentially in ω. Therefore, E[Dω] decreases exponentially in ω when

µ ̸= λ2.

A.11 Proof of Lemma 5

In the same way as we prove Theorem 1, we can find a M/M/k system with a

properly initialized queue so that the total time that a user request spends in

the M/M/k[ω] system is statistically the same as that in the M/M/k system.

As a result, the delay distribution of M/M/k[ω] is a “shifted” version of that

of M/M/k.

The delay distribution of M/M/k is given by, for t ≥ 0,

fD0(t)

=

q0µe
−µt + (1− q0)µ

2te−µt ρ = k − 1

η1µ
2e−µt + η2µ

2(k − ρ)2e−µ(k−ρ)t 0 ≤ ρ < k and ρ ̸= k − 1
.

93

APPENDIX A. PROOFS

Then the distribution of Dω is, for t > 0,

fDω(t) = fD0(t+ ω),

and Pr(Dω = 0) =
´ ω

0
fD0(t)dt. So the average user delay, i.e., E[Dω] is

calculated as follows

E[Dω]

=

ˆ ∞

0

t · fDω(t)dt

=

(2−q0
µ

+ (1− q0)ω)e
−µω ρ = (k − 1)

η1e
−µω + η2e

−µ(k−ρ)ω 0 ≤ ρ < k and ρ ̸= k − 1
.

A.12 Proof of Lemma 6

First, it is easy to show that there exists 0 < ϵ < e−1
e

such that µω < e(1−ϵ)µω.

Then, when ρ = k − 1, we have

E[Dω] <
2− q0
µ

e−µω +
1− q0
µ

e−ϵµω <
3− 2q0

µ
e−ϵµω.

Because 0 < q0 < 1, a lower bound of E[Dω] is 2−q0
µ

e−µω.

When ρ ̸= k − 1, we derive the following relationship between η1and η2.

η1 + η2 =
1 + k − q0 − ρ

(k − ρ)µ
> 0,

where the inequality is due to the fact that 0 < q0 < 1 and ρ < k. Now we

consider three different scenarios separately.

When ρ < k − 1, we have η1 > 0 and η2 < 0. So we can get a upper

bound of E[Dω] as follows

E[Dω] < η1e
−µω.

On the other hand, because e−µ(k−ρ)ω < e−µω, we have η2e
−µ(k−ρ)ω > η2e

−µω.

Then we get a lower bound of E[Dω] as follows:

E[Dω] > η1e
−µω + η2e

−µω = η3e
−µω.

94

APPENDIX A. PROOFS

When k − 1 < ρ < k − q0, we have η1 < 0 and η2 > 0. So we can get a

upper bound of E[Dω] as follows

E[Dω] < η2e
−kµ(1−ρ)ω.

On the other hand, because e−µω < e−µ(k−ρ)ω, we have η1e
−µω > η1e

−µ(k−ρ)ω.

Then we get a lower bound of E[Dω] as follows:

E[Dω] > η1e
−µ(k−ρ)ω + η2e

−µ(k−ρ)ω = η3e
−µ(k−ρ)ω.

When k − q0 ≤ ρ < k, we have η1 ≥ 0, η2 > 0 and e−µω < e−µ(k−ρ)ω.

Then we can obtain

(η1 + η2)e
−µω < E[Dω] < (η1 + η2)e

−µ(k−ρ)ω.

A.13 Proof of Lemma 7

From Theorem 5, the distribution of user delay Dω is, for t > 0,

fDω(t) =

q0µe
−µ(t+ω) + (1− q0)µ

2(t+ ω)e−µ(t+ω) ρ = k − 1

η1µ
2e−µ(t+ω) + η2µ

2(k − ρ)2e−µ(k−ρ)(t+ω) 0 ≤ ρ < k and ρ ̸= k − 1
.

Then we calculate the variance of Dωas follows.

When 0 ≤ ρ < k and ρ ̸= k − 1,

V ar[Dω]

=

ˆ ∞

0

t2
[
η1µ

2e−µ(t+ω) + η2µ
2(k − ρ)2e−µ(k−ρ)(t+ω)

]
dt− E2[Dω]

= η1e
−µω

[
2

µ
− η1e

−µω − η2e
−µ(k−ρ)ω

]
+

η2e
−µ(k−ρ)ω

[
2

µ(k − ρ)
− η1e

−µω − η2e
−µ(k−ρ)ω

]
.

We can easily get a upper bound of V ar[Dω], which is

V ar[Dω] ≤ 2η1
µ

e−µω · 1η1>0 +
2η2

µ(k − ρ)
e−µ(k−ρ)ω · 1η2>0.

95

APPENDIX A. PROOFS

The upper bound decreases exponentially in ω.

On the other hand, we have

V ar[Dω] ≥ η1e
−µω

[
2

µ
− η1 − η2

]
+ η2e

−µ(k−ρ)ω

[
2

µ(k − ρ)
− η1 − η2

]
.

Define η4 =
2
µ
− η1 − η2 and η5 =

2
µ(k−ρ)

− η1 − η2. Then we have

η1η4 + η2η5

=
ρ+ q0 − k

µ(ρ+ 1− k)

[
2

µ
− 1 + k − q0 − ρ

(k − ρ)µ

]
+

1− q0
µ(k − ρ)(ρ+ 1− k)

[
2

µ(k − ρ)
− 1 + k − q0 − ρ

(k − ρ)µ

]
=

1

µ2(k − ρ)2(ρ+ 1− k)
[(ρ+ q0 − k)(ρ− q0 − k + 1)(ρ− k)

+(ρ+ q0 − k + 1)(1− q0)]

=
1

µ2(k − ρ)2
[
(ρ− k)2 + (1− q20)

]
> 0.

Now we consider different scenarios separately.

When ρ < k − 1 − q0, we have η1η4 > 0, η2η5 > 0 and e−µ(k−ρ)ω < e−µω.

Then we obtain a lower bound of V ar[Dω] as follows

V ar[Dω] > (η1η4 + η2η5)e
−µ(k−ρ)ω.

When k − 1 − q0 ≤ ρ < k − 1, we have η1η4 > 0, η2η5 ≤ 0. On the other

hand, because e−µ(k−ρ)ω < e−µω, we have η2η5e
−µ(k−ρ)ω ≥ η2η5e

−µω . Then

we obtain a lower bound of V ar[Dω] as follows

V ar[Dω] ≥ (η1η4 + η2η5)e
−µω.

When k − 1 < ρ < k − q0, we have η1η4 < 0, η2η5 > 0. On the other hand,

because e−µ(k−ρ)ω > e−µω, we have η1η4e
−µω > η1η4e

−µ(k−ρ)ω. Then we obtain

a lower bound of V ar[Dω] as follows

V ar[Dω] > (η1η4 + η2η5)e
−µ(k−ρ)ω.

96

APPENDIX A. PROOFS

When k−q0 ≤ ρ < k−1+q0, we have η1η4 ≥ 0, η2η5 > 0 and e−µ(k−ρ)ω > e−µω.

Then we obtain a lower bound of V ar[Dω] as follows

V ar[Dω] > (η1η4 + η2η5)e
−µω.

Note that here we only consider the case when k − q0 < k − 1 + q0. Similar

result holds when k − q0 ≥ k − 1 + q0.

When k − 1 + q0 ≤ ρ < k, we have η1η4 ≤ 0, η2η5 > 0. On the other

hand, because e−µ(k−ρ)ω > e−µω, we have η1η4e
−µω ≥ η1η4e

−µ(k−ρ)ω. Then we

obtain a lower bound of V ar[Dω] as follows

V ar[Dω] ≥ (η1η4 + η2η5)e
−µ(k−ρ)ω.

As seen, the lower bound of V ar[Dω] decreases exponentially in ω.

When ρ = k − 1,

V ar[Dω]

=

ˆ ∞

0

t2
[
q0µe

−µ(t+ω) + (1− q0)µ
2(t+ ω)e−µ(t+ω)

]
dt− E2[Dω]

=
e−µω

µ

[
6− 4q0

µ
− (2− q0)

2

µ
e−µω − (2− q0)(1− q0)ωe

−µω

]
+

ωe−µω

[
2(1− q0)

µ
− (2− q0)(1− q0)

µ
e−µω − (1− q0)

2ωe−µω

]
.

We can easily get that

V ar[Dω] ≤ 6− 4q0
µ2

e−µω +
2(1− q0)

µ
ωe−µω.

From Lemma 6, we know that there exists 0 < ϵ < e−1
e

such that µω <

e(1−ϵ)µω. Then we have

V ar[Dω] ≤ 6− 4q0
µ2

e−µω +
2(1− q0)

µ2
e−ϵµω ≤ 8− 6q0

µ2
e−ϵµω,

which decreases exponentially in ω.

On the other hand, because the maximum value of ωe−µω is 1
eµ
, we have

V ar[Dω] ≥ e−µω

µ2

[
2− q20 −

(2− q0)(1− q0)

e

]
+

ωe−µω

µ

[
q0 − q20 −

(1− q0)
2

e

]
.

97

APPENDIX A. PROOFS

Define η6 = 2−q20−
(2−q0)(1−q0)

e
and η7 = q0−q20−

(1−q0)2

e
. Because 0 < q0 < 1,

we can get that η6 > 0. At the same time,

η6 + η7

= 2− 3

e
+ q0

[
1 +

5

e
− (2 +

2

e
)q0

]
> 2− 3

e
+ q0(

3

e
− 1)

> 0.

When 1
e+1

≤ q0 < 1, we have η7 ≥ 0. Then we obtain a lower bound of

V ar[Dω] as follows

V ar[Dω] ≥ η6e
−µω

µ2
.

When 0 < q0 <
1

e+1
, we have η7 < 0. As a result, we have η7ω

µ
e−µω > η7

µ2 e
−ϵµω.

Then we obtain a lower bound of V ar[Dω] as follows

V ar[Dω] >
η6
µ2

e−µω +
η7
µ2

e−ϵµω >
η6 + η7
µ2

e−µω.

As seen, the lower bound of V ar[Dω] decreases exponentially in ω.

A.14 Proof of Lemma 8

From Theorem 5, the distribution of user delay Dω is, for t > 0,

fDω(t) =

q0µe
−µ(t+ω) + (1− q0)µ

2(t+ ω)e−µ(t+ω) ρ = k − 1

η1µ
2e−µ(t+ω) + η2µ

2(k − ρ)2e−µ(k−ρ)(t+ω) 0 ≤ ρ < k and ρ ̸= k − 1
.

Then we calculate the tail of user delay as follows.

When 0 ≤ ρ < k and ρ ̸= k − 1,

DT ω(d)

=

ˆ ∞

d

η1µ
2e−µ(t+ω) + η2µ

2(k − ρ)2e−µ(k−ρ)(t+ω)dt

= η1µe
−µ(ω+d) + η2µ(k − ρ)e−µ(k−ρ)(ω+d).

98

APPENDIX A. PROOFS

First note that

η1µ+ η2µ(k − ρ)

=
ρ+ q0 − k

ρ+ 1− k
+

1− q0
ρ+ 1− k

= 1.

Then when ρ < k − 1, we have η1µ > 0 and η2µ(k − ρ) < 0. So a upper

bound of DT ω(d) is given by

DT ω(d) < η1µe
−µ(ω+d).

On the other hand, because e−µ(k−ρ)(ω+d) < e−µ(ω+d), we have η2µ(k−ρ)e−µ(k−ρ)(ω+d) >

η2µ(k − ρ)e−µ(ω+d). Then we get a lower bound of DT ω(d) as follows

DT ω(d) > e−µ(ω+d).

When k − 1 < ρ < k − q0, we have η1µ < 0 and η2µ(k − ρ) > 0. So a upper

bound of DT ω(d) is given by

DT ω(d) < η2µ(k − ρ)e−µ(k−ρ)(ω+d).

On the other hand, because e−µ(k−ρ)(ω+d) > e−µ(ω+d), we have η1µe
−µ(ω+d) >

η1µe
−µ(k−ρ)(ω+d). Then we get a lower bound of DT ω(d) as follows

DT ω(d) > e−µ(k−ρ)(ω+d).

When k − q0 ≤ ρ < k, we have we have η1µ ≥ 0, η2µ(k − ρ) > 0 and

e−µ(k−ρ)(ω+d) > e−µ(ω+d). Then we get a upper bound and a lower bound of

DT ω(d) as follows

e−µ(ω+d) < DT ω(d) < e−µ(k−ρ)(ω+d).

When ρ = k − 1,

DT ω(d)

=

ˆ ∞

d

q0µe
−µ(t+ω) + (1− q0)µ

2(t+ ω)e−µ(t+ω)dt

= q0e
−µ(ω+d) + (1− q0)(µd+ µω + 1)e−µ(ω+d).

99

APPENDIX A. PROOFS

We can easily get a lower bound of DT ω(d) as follows

DT ω(d) > [q0 + (1− q0)(µd+ 1)] e−µ(ω+d).

From Lemma 6, we know that there exists 0 < ϵ < e−1
e

such that µω <

e(1−ϵ)µω. Then we have

DT ω(d) < [q0 + (1− q0)(µd+ 1)] e−µ(ω+d)+e−ϵµω+µd < [2 + (1− q0)µd] e
−ϵµω+µd.

We can see that the lower and upper bound of DT ω(d) both decrease expo-

nentially in ω. Therefore, DT ω(d) decreases exponentially in ω.

A.15 Proof of Lemma 9 and 13

In the same way as we prove Theorem 3, we can get the ω∗(m) for M/M/k[ω]

and Markovian/Geo/1[ω] as shown in Lemma 9 and 13 respectively.

A.16 Proof of Lemma 10

Similar to the way that we prove Theorem 1 and 5, we can find a Marko-

vian/Geo/1 system with a properly initialized queue so that the total time

that a user request spends in the Markovian/Geo/1[ω] system is statisti-

cally the same as that in the Markovian/Geo/1 system. As a result, the

delay distribution of Markovian/Geo/1[ω] is a “shifted” version of that of

Markovian/Geo/1.

The delay distribution of Markovian/Geo/1 is given by, for i ∈ N+,

Pr(D0 = i) =
(α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]i
.

Then the distribution of Dω is, for i ∈ N+,

Pr(Dω = i) = Pr(D0 = i+ ω),

100

APPENDIX A. PROOFS

and Pr(Dω = 0) =
∑ω

i=1 Pr(D
0 = i). So the average user delay, i.e., E[Dω]

is calculated as follows

E[Dω]

=
∞∑
i=1

i · Pr(Dω = i)

=
1− µ

(α + β)(µ− λ)

[
1− µ

(1− µ) + (α + β)(µ− λ)

]ω−1

.

A.17 Proof of Lemma 11

From Lemma 10, the distribution of user delay Dω is, for i ∈ N+,

Pr(Dω = i) =
(α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]i+ω

.

Then the variance of Dωis

V ar[Dω]

=
∞∑
i=1

i2
(α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]i+ω

− E2[Dω]

=
(1− µ) [2(1− µ) + (α + β)(µ− λ)]

(α + β)2(µ− λ)2

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω−1

− (1− µ)2

(α+ β)2(µ− λ)2

[
1− µ

1− µ+ (α + β)(µ− λ)

]2ω−2

= V ar[D0]
2(1− µ) + (α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α+ β)(µ− λ)

]ω
−V ar[D0]

1− µ+ (α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α+ β)(µ− λ)

]2ω
= V ar[D0]

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω (
2(1− µ) + (α + β)(µ− λ)

1− µ

−1− µ+ (α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω)
.

101

APPENDIX A. PROOFS

Similar to Lemma 3, we have the upper and lower bounds of V ar[Dω] as

follows

V ar[Dω] ≤ V ar[D0]
2(1− µ) + (α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω
and

V ar[Dω] ≥ V ar[D0]

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω
.

The upper bound and the lower bound both decrease exponentially in ω. So

V ar[Dω] decreases exponentially in ω.

A.18 Proof of Lemma 12

From Lemma 10, the distribution of user delay Dω is, for i ∈ N+,

Pr(Dω = i) =
(α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]i+ω

.

Then the tail of user delay is

DT ω(d)

=
∞∑
d+1

(α + β)(µ− λ)

1− µ

[
1− µ

1− µ+ (α + β)(µ− λ)

]i+ω

=

[
1− µ

1− µ+ (α + β)(µ− λ)

]ω
DT 0(d),

which decreases exponentially in ω.

102

Bibliography

[1] http://v.youku.com/v_show/id_XNjI2MzU5ODYw.html.

[2] http://www.win.tue.nl/~iadan/que/h4.pdf.

[3] Branch cut. http://en.wikipedia.org/wiki/Branch_point.

[4] Kindle fire. http://www.amazon.com/gp/product/b0051vvob2.

[5] Residue theorem. http://en.wikipedia.org/wiki/Residue_theorem.

[6] Youku. http://www.youku.com.

[7] Youtube. http://www.youtube.com.

[8] A. O. Allen. Probability, statistics, and queueing theory: with computer

science applications. Gulf Professional Publishing, 1990.

[9] T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, M. Kyr-

iakakos, and A. Kalousis. Predicting the location of mobile users: a

machine learning approach. In International Conference on Pervasive

Services, 2009.

[10] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,

and P. Whiting. Scheduling in a queuing system with asynchronously

varying service rates. Probability in the Engineering and Informational

Sciences, 2004.

103

BIBLIOGRAPHY

[11] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and

R. Vijayakumar. Providing quality of service over a shared wireless link.

IEEE Communications Magazine, 2001.

[12] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge uni-

versity press, 2004.

[13] B. Chandrasekaran. Survey of network traffic models. Informe téc, 2009.

[14] C. Chen and S. J. Baek. Reducing delays by network coding for wireless

broadcasting in networks using relay stations. In International Sympo-

sium on Personal Indoor and Mobile Radio Communications, 2012.

[15] X. Chen and X. Zhang. A popularity-based prediction model for web

prefetching. IEEE Computer, 2003.

[16] X. Chen and X. Zhang. Coordinated data prefetching for web contents.

Computer Communications, 2005.

[17] B. Cheng, X. Liu, Z. Zhang, and H. Jin. A measurement study of a

peer-to-peer video-on-demand system. In Proc. IPTPS, 2007.

[18] B. Coleman. Quality vs. performance in lookahead scheduling. In JCIS,

2006.

[19] V. de Nitto Personè, V. Grassi, and A. Morlupi. Modeling and evalu-

ation of prefetching policies for context-aware information services. In

International Conference on Mobile Computing and Networking, 1998.

[20] A. Eryilmaz, A. Ozdaglar, and M. Medard. On delay performance gains

from network coding. In Annual Conference on Information Sciences

and Systems, 2006.

104

BIBLIOGRAPHY

[21] A. Eryilmaz, A. Ozdaglar, M. Médard, and E. Ahmed. On the delay

and throughput gains of coding in unreliable networks. IEEE Trans.

Information Theory, 2008.

[22] M. U. Farooq and L. K. John. Store-load-branch (slb) predictor: A com-

piler assisted branch prediction for data dependent branches. In Pro-

ceedings of International Symposium on High Performance Computer

Architecture, 2013.

[23] G. Gursun, M. Crovella, and I. Matta. Describing and forecasting video

access patterns. In Proc. INFOCOM, 2011.

[24] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson.

Informed mobile prefetching. In Proc. MobiSys, 2012.

[25] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran. Codes can reduce

queueing delay in data centers. In Proc. ISIT, 2012.

[26] W. J. Jeon and K. Nahrstedt. Peer-to-peer multimedia streaming and

caching service. In Proc. ICME, 2002.

[27] B. Ji, C. Joo, and N. B. Shroff. Delay-based back-pressure scheduling

in multi-hop wireless networks. In Proc. INFOCOM, 2011.

[28] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload characterization

and prediction in the cloud: A multiple time series approach. In IEEE

Network Operations and Management Symposium, 2012.

[29] L. Kleinrock. Queueing systems. volume 1: Theory. Wiley-Interscience,

1975.

[30] L. Kleinrock. Queueing systems, volume II: Computer applications.

Wiley-Interscience, 1976.

105

BIBLIOGRAPHY

[31] R. Kohavi and R. Longbotham. Online experiments: Lessons learned.

IEEE Computer, 2007.

[32] D. Kotz and C. S. Ellis. Practical prefetching techniques for parallel file

systems. In Parallel and Distributed Information Systems, 1991.

[33] J. R. Larus and T. Ball. Branch prediction for free. In SIGPLAN Con-

ference on Programming Language Design and Implementation, 1993.

[34] J. Lee, H. Kim, and R. Vuduc. When prefetching works, when it doesn’t,

and why. ACM Trans. Architecture and Code Optimization, 2012.

[35] D. E. Lucani, M. Médard, and M. Stojanovic. On coding for delay–

network coding for time-division duplexing. IEEE Trans. Information

Theory, 2012.

[36] M. Mandelbaum and D. Shabtay. Scheduling unit length jobs on parallel

machines with lookahead information. Journal of Scheduling, 2011.

[37] W. Mao and R. K. Kincaid. A look-ahead heuristic for scheduling jobs

with release dates on a single machine. Computers & operations research,

1994.

[38] R. Mayrhofer, H. Radi, and A. Ferscha. Recognizing and predicting

context by learning from user behavior. In The International Conference

On Advances in Mobile Multimedia, 2003.

[39] M. J. Neely. Delay-based network utility maximization. In Proc. INFO-

COM, 2010.

[40] A. J. Nicholson and B. D. Noble. Breadcrumbs: forecasting mobile

connectivity. In International Conference on Mobile Computing and

Networking, 2008.

106

BIBLIOGRAPHY

[41] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to

improve world wide web latency. ACM SIGCOMM Computer Commu-

nication Review, 1996.

[42] M. Palmer and S. B. Zdonik. Fido: A cache that learns to fetch. Brown

University, Department of Computer Science, 1991.

[43] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.

Informed prefetching and caching. ACM, 1995.

[44] B. Sadiq and G. De Veciana. Throughput optimality of delay-driven

maxweight scheduler for a wireless system with flow dynamics. InAnnual

Allerton Conference on Communication, Control, and Computing, 2009.

[45] S. Shakkottai and A. L. Stolyar. Scheduling for multiple flows shar-

ing a time-varying channel: The exponential rule. Translations of the

American Mathematical Society-Series 2, 2002.

[46] S. Sigg. Development of a novel context prediction algorithm and analysis

of context prediction schemes. Kassel University Press, 2008.

[47] J. Spencer, M. Sudan, and K. Xu. Queueing with future information.

arXiv:1211.0618, 2012.

[48] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive data download

and user demand shaping for data networks. under submission.

[49] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive resource allocation:

harnessing the diversity and multicast gains. IEEE Trans. Information

Theory, 2013.

[50] V. S. Tseng and K. W. Lin. Efficient mining and prediction of user

behavior patterns in mobile web systems. Information and Software

Technology, 2006.

107

BIBLIOGRAPHY

[51] Y. Wang, X. Liu, A. Nicoara, T.-A. Lin, and C.-H. Hsu. Smarttrans-

fer: transferring your mobile multimedia contents at the right time. In

NOSSDAV, 2012.

[52] T. Watson. Application design for wireless computing. In Mobile Com-

puting. Springer, 1996.

[53] D. Wischik, M. Handley, and M. B. Braun. The resource pooling prin-

ciple. ACM SIGCOMM Computer Communication Review, 2008.

[54] Y. Xu, M. Lin, H. Lu, G. Cardone, N. Lane, Z. Chen, A. Campbell, and

T. Choudhury. Preference, context and communities: a multi-faceted

approach to predicting smartphone app usage patterns. In Proc. ISWC,

2013.

[55] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: avoiding long

tails in the cloud. In Proc. USENIX Conference on Networked Systems

Design and Implementation, 2013.

[56] H. Yu and G. Kedem. Dram-page based prediction and prefetching. In

IEEE Computer Design, 2000.

[57] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail: reducing

the flow completion time tail in datacenter networks. ACM SIGCOMM

Computer Communication Review, 2012.

108

