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ABSTRACT
Driving with distraction or losing alertness increases the risk of
the tra�c accident. �e emerging Internet of �ings (IoT) systems
for smart driving hold the promise of signi�cantly reducing road
accidents. In particular, detecting the unsafe hand motions and
warning the driver using smart sensors can improve the driver’s
self-alertness and the driving skill. However, due to the impact
from the vehicle’s movement and the signi�cant variation across
di�erent driving environments, detecting the position of the dri-
ver’s hand is challenging. �is paper presents SafeWatch – a system
that employs commodity smartwatches and smartphones to detect
the driver’s unsafe behaviors in a real-time manner. SafeWatch
infers driver’s hand motions based on several important features
such as the posture of the driver’s forearm and the vibration of the
smartwatch. SafeWatch employs a novel adaptive training algo-
rithm which keeps updating the training dataset at runtime based
on inferred hand positions in certain driving conditions. �e evalua-
tion with 75 real driving trips from 6 subjects shows that SafeWatch
achieves over 97.0% recall and precision rates in detecting of the
unsafe hand positions.
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1 INTRODUCTION
Recent studies revealed that the distractions and the secondary
tasks occurring inside the vehicle increase the risk of a road acci-
dent by 2 to 10 times [19]. Examples of secondary tasks include
using a mobile phone, adjusting air conditioners, operating the
on-vehicle entertainments, eating and drinking, etc [8] [15]. Relax-
ing due to the boredom may also lead to unsafe driving behavior,
e.g., one hand unconsciously moved away from the steering wheel.
When the drivers are distracted or losing alertness, their braking
response time is signi�cantly longer than usual, and they could
fail to maintain the control of the vehicle [22]. It is shown that
similar to aggressive driving and risky driving, lost concentration
and minor loss of control are among the top conditions related to
tra�c accidents [11].

It is recommended by theAmericanAutomobile Association (AAA),
a driver should hold the steering wheel �rmly with both hands at
the 9 o’clock and 3 o’clock positions [2]. However, it is di�cult
for a driver to maintain self-awareness of their hand positions due
to boredom or drowsiness of a relatively long trip [34] [33]. Stim-
ulation like music may improve the alertness of the driver while
sometimes causing distraction and increasing their mental e�orts
[35]. Research shows that a system that accurately detects the in-
coming danger and warns the driver can not only invoke driver’s
alertness but also enable them to self-improve their driving skills
[4]. Recently, the emerging Internet of �ings (IoT) systems for
smart driving provide a promising solution. Several methods have
been developed to detect the driver’s dangerous actions [21] [20]
[23] [24] [25]. However, these designs require additional devices
such as cameras, PPG sensors or pressure sensors, presenting the
barrier to wide adoption. More recently, several systems are de-
veloped to track the user’s hand movement with smartwatches
[38][30]. However, they o�en yield unreliable performance while
driving due to the impact of the vehicle’s movement. Some studies
show that the smartwatches can be used to detect several impor-
tant driving behaviors like the angle of the steering wheel [27] [18].
However, the performances of these systems are not e�ective in
some cases, especially when the hands rest at positions other than
the steering wheel.

Several major challenges must be addressed in the design of high-
performance driving monitoring systems based on wearable devices.
�e motion sensor samples from a smartwatch in a moving vehicle
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not only contain the hand’s movement, but also include impacts
from the vehicle’s acceleration, turning, and Noise, Vibration, and
Harshness (NVH) from the engine and the road condition. Due
to the signi�cant variation across di�erent devices, drivers, and
vehicles, it is di�cult to design a robust classi�cation algorithm
to detect the hand’s position based on motion features. Moreover,
the driver may switch postures during a driving trip, resulting in
di�erent pa�erns of motion data.

To address these challenges, we introduce SafeWatch – a system
based on wearables and smartphones that can accurately detect
the driver’�s hand motions and identify unsafe driving behaviors.
SafeWatch samples and processes the data captured by the built-
in motion sensors on the smartwatch worn by the driver and the
smartphone in the vehicle. It detects whether a hand is holding the
steering wheel based on several select features from the motion data,
such as posture of the driver’s forearm, vibration of the vehicle’s
body, and the vehicle’s turning. SafeWatch employs a novel training
algorithm to deal with the signi�cant variation of motion features
across devices, drivers, vehicles, roads, and di�erent driving trips.
�e key idea is based on the observation that the driver’s hand must
be on the steering wheel to perform a turning, providing ground
truth feedback around the moment of turning for training. �e
performance of Sa�Watch is evaluated by 75 real driving trips by
6 subjects. Our results show that, the accuracy of SafeWatch is
over 97.0% for both recall and precision in detecting hand positions
when the condition lasts more than 6.0s , and over 97.1% recall and
over 91.0% precision in detecting the unsafe hand movements when
it lasts more than 2.5s. SafeWatch can be integrated with other
driving systems to trigger alerts or log unsafe driving behavior for
driver training.

2 RELATEDWORK
�e dangerous action by the driver is mainly caused by drowsi-
ness and distraction [17]. To keep the driver concentrating on
the driving, the e�ective methods include alerting the driver for
the incoming danger [4] or giving feedback for the driver’s level
of drowsiness [1]. �ese methods require a way to monitor the
driver’s mental or physical status. �e driver’s behavior can be
recorded by a camera. However, the video-recording raises the
privacy concerns. Another approach is to leverage various sensors
including motion sensors, barometers, and GPS on the smartphone
to monitor the driving style (e.g. risky or aggressive), track the
vehicle, and learn the road condition [16] [10] [14] . However,
this approach only analyzes the vehicle’s movement, and it cannot
acquire knowledge about the driver’s behavior inside the vehicle.
Several e�orts a�empt to monitor the drivers’ drowsiness with
proprietary biomedical sensors (e.g. heart rate sensors) [26][7] .
However, these sensors are not readily available on o�-the-shelf
mobile devices.

In recent years, several approaches are proposed to detect the
driver’s hand position. For example, using the sensors around the
steering wheel, the driver will be alerted when his or her hand is
not holding the steering wheel due to drowsiness or distraction
[21] [20] . Another viable method is to detect the grip strength of
the hands with pressure sensors on gloves [23] . However, these

methods require additional equipments and raise the burden of
usage.

Hand posture recognition using motion sensors on wearables or
smartphones has been studied extensively. For instance, the user’s
�nger-writing [37] and the hand gesture [38][30] can be classi�ed
using motion features. A common limitation of these methods is
that they assume the movement of the user’s arm or hand is the only
cause of the smartwatch’s movement. However, in our case, the
vehicle’s movement continuously impacts the motion data captured
by any device inside the vehicle, and thus those methods cannot
be applied here. If the hand is always on the steering wheel, the
turning operation can be traced by the smartwatch, including the
starting and ending position [27] . A recent study shows that, by de-
tecting the direction of the hand’s movement, when the hand leaves
from or returns to the steering wheel can be inferred [25]. However,
these methods require a precise alignment between the coordinate
systems among multiple devices based on magnetometer and com-
pass. �ose sensors are o�en highly inaccurate or unavailable on
some devices. Moreover, the direction of the hand’s movement only
provides partial information about the hand’s position. For exam-
ple, if the driver is handling a complex task like eating, drinking
or grabbing an item, the hand’s movement will contain a series of
di�erent directions, resulting in di�culty to infer when the hand
returns to the steering wheel.

Another study of ours shows that the secondary task while driv-
ing can be classi�ed by the angle of the driver’s forearm rotation
[32]. Although this method is e�ective to detect the driver’s be-
havior, it still needs to know when the hand is on the steering
wheel, because the classi�cation is based on the assumption that
the hand’s movement always starts there.

3 REQUIREMENTS AND CHALLENGES
SafeWatch is designed to help drivers keep concentrated on driving.
Speci�cally, it detects whether the driver holds the steering wheel
with both hands, and reports the dangerous actions, e.g. one hand
is away from the steering wheel or keeping moving.

SafeWatch needs to meet the following requirements: 1) As it
operates in parallel with driving, it must be unobtrusive to use. It
cannot interfere with the driver’s activity or require any manual
input by the drivers at runtime. (2) To ensure wide adoption in
practice, the training process of system should be intuitive and
require the minimum amount of e�orts/time. (3) It needs to detect
the positions of hands relative to the steering wheel in a robust
way, i.e., across di�erent drivers, vehicles, and smartwatches.

To meet these requirements, three challenges need to be ad-
dressed. First, SafeWatch must be able to detect hand motions using
accelerometer and gyroscope readings in the presence of signi�-
cant interference from the movement of the vehicle. For example,
the gyroscope on the smartwatch produces highly similar motion
features when the vehicle is turning le� or the driver is rotating
the arm towards le�. As a result, the driver hand motion may be
falsely classi�ed due to the impact of vehicle movement.

Second, it is challenging to design the training process due to
several reasons. First, in order to detect �ne-grained hand motions,
a training process is necessary for each combination of driver and
vehicle. However, the ground truth is di�cult to collect without
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Figure 1: �e overview of the system.

user’s manual input or video-recording equipments. Moreover,
traditional machine learning algorithms require the training set
to contain data from both positive and negative classes. �at is,
SafeWatch should record the motion data not only when the driver’s
hands are holding the steering wheel, but also when the driver’s
hands are away from the steering wheel.Such a process is not
feasible as it poses potential dangers for drivers. Furthermore, the
driver may handle various secondary tasks during driving. �us
the distribution of motion data is highly unpredictable when a hand
is away from the steering wheel, presenting challenges for training
an accurate classi�er. .

�ird, the motion data captured by the smartwatch is highly de-
pendent on how it is worn. A typical issue is that the position of the
smartwatch on the user’s wrist might change due to the hand/arm
movement. Moreover, the driver’s posture also can change during
one driving trip. SafeWatch must adapt itself to such dynamics in
order to maintain the accuracy of detection.

4 SYSTEM DESIGN
4.1 System Overview
SafeWatch is a wearable sensing system that can accurately track
distracted driver hand gestures. Speci�cally, it detects if the driver’s
hands are on/o� the steering wheel, which is an enabling primi-
tive for various applications of smart driving and has important
implications for improving driving safety. To this end, SafeWatch
senses the motion of the vehicle and the driver’s hands using a
smartphone placed in the vehicle, along with the smartwatch(s)
worn on the driver’s le� and right wrist, respectively. A detector
running on the smartphone collects sensing data from di�erent
devices and accurately classi�es driver hand gestures despite the
strong interference introduced by the vehicle’s acceleration and
turning, as well as noise, vibration, and harshness from engine and
road conditions.

Fig. 1 illustrates the architecture of SafeWatch’s sensing pipeline.
SafeWatch continuously samples and processes the built-in ac-
celerometers and gyroscopes of smartwatches and smartphone.
Samples collected from di�erent devices are fused at a hand move-
ment detector, which �rst mitigates interference introduced by the
move of the vehicle, and then detects hand movement based on the
processed motion signals. When the hand is moving, SafeWatch
detects driver distraction by inferring whether the gesture is a steer-
ing wheel manipulation or a behavior related to secondary tasks

such as drinking/eating, tuning radio, etc. When the hand is still,
SafeWatch classi�es hand postures based on two features, includ-
ing the posture of the driver’s forearm learned from the gravity
direction of smartwatch, and the vibration sensed on the driver’s
wrist, which manifests distinct magnitudes when the hand is on/o�
the steering wheel. In practice, the above features may exhibit
di�erent characteristics depending on various factors including the
user’s driving habits, the posture of the smartwatch, as well as the
model of engine that may a�ect the vibration magnitude of the
car body. To maintain robust detection accuracy across di�erent
environments, SafeWatch employs an auto-calibrator that lever-
ages sensing data collected while driving to train the hand posture
classi�er at run-time. In the following, we will describe the design
of SafeWatch components in details.

4.2 Sensor Sampling
In SafeWatch, the smartphone placed in the vehicle is employed
to monitor the vehicle’s movement, while the smartwatches on
the driver’s wrists track the motion and posture of the driver’s
hands. In the discussion herea�er, we assume the driver wears
a watch on each hand. When the driver wears only one watch,
SafeWatch tracks the motion of that hand only. To collect motion
data, SafeWatch continuously samples the built-in accelerometers
and gyroscopes on the smartphones and the smartwatches. �e
sampling rate is set to 50Hz. Each sample contains an acceleration
vector −→a and a rotation vector −→w. A sliding window containing 1
second of data is built for every 0.5 seconds. �e window size is
determined based on two observations. First, it is not necessary
to trigger an alert when the driver’s hand is only away from the
steering wheel less than 1.0s , because the unsafe actions last more
than 2.5s as de�ned by the American Society of Safety Engineers
(ASSE) [5]. Second, if we wish to trigger the alert when the hand is
away from the steering wheel for a relatively long time, e.g. 5.0s ,
we wish to analyze the motion data from a considerable amount
of previous windows. �us, we select the length of the window as
1.0s for each 0.5s , in order to capture the detailed motion of driver’s
hand while minimizing the computing overhead.

4.3 Hand Movement Detection
�e goal of hand movement detection is to determine whether the
driver’s hand is moving. Although the variance of −→a is e�ective to
detect whether a device is moving at a constant speed or at rest,
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Figure 2: �e 3-axis coordinate system for the accelerome-
ters and gyroscopes on the smartwatches. �e most impor-
tant fact is, the X-axis is always parallel to the arm, and its
direction for the le� and right arm is opposite to each other.

it cannot be used for detecting whether a device is moving in a
driving environment, where −→a is interfered by the movement of the
vehicle. SafeWatch addresses this challenge by comparing −→a from
the smartwatch and −→a from the smartphone. Since the coordinates
of the smartphone and the smartwatches are not aligned, we cannot
directly compare the direction of −→a from those devices. However,
an important observation is that |−→a | from those devices should be
similar if no relative movement exists between them. Based on this
observation, SafeWatch determines if the driver’s hand is moving
by comparing |−→a | from each devices, and examining the following
inequality,

l∑
i=1
| |
−−−−−−−→ai,watch | − |

−−−−−−−→ai,phone | |

l
≤ ϵ (1)

where l is the length of the window. When the inequality is satis�ed,
SafeWatch claims that there is a relative movement between the
driver’s hand and the vehicle. �e performance of the detector
given in Eq. 1 depends on the choice of ϵ . Speci�cally, a small ϵ
may degrade the classi�er’s robustness in the presence of noise
motion signals, resulting in an increased false alarm rate. If ϵ is
too large, SafeWatch may fail to recognize the movement of the
hand, reducing the detection rate. We optimize the performance
of the detector shown in Eq. 1 by choosing ϵ based on empirical
measurements. Fig. 3 illustrates detection accuracy for di�erent
values of ϵ . According to our experiment, ϵ = 1.0m/s2 can be
common se�ings for most cases, considering the native o�set of
the sensors across various devices.

According to a study by ASSE, such distracted movements usu-
ally last for longer than 2.5s [5]. SafeWatch checks the hand move-
ment in L consecutive sample windows and whether these windows
contains operation of the steering wheel. If the steering wheel is
detected as not operated by the method introduced in Section 4.8,
but the hand keeps moving, an unsafe action will be detected. �e
performance of the detection can be adjusted by the di�erent choice
of L. �e hand movement for a short time can be detected as unsafe
when L is small. If L is large, SafeWatch will only detect the un-
safe action when the hand movement lasts for a long time. In our
design, SafeWatch provides an open interface for choosing L. We

recommend this value to be chosen by the professionals of safety
engineering.
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Figure 3: Accuracy of detecting themovement of a hand. �e
parameter ϵ is selected between 0.4 to 1.3.

4.4 Gravity Extraction
�e goal of the gravity extraction module is to learn the a�itudes
of a device. Moreover, and separates the real acceleration of the
device from the e�ect of the gravity. Since the measurement data
−→a from the accelerometer is always interfered by the gravity, two
acceleration vectors can be obtained by decomposing −→a . �e �rst
one is a virtual acceleration that neutralizes the impact of gravity,
which is denoted as −→g . �e other one is the real acceleration, which
is denoted as −→aL . According to the characteristics of the gravity, we
have:

|
−→g | ≈ 9.8, −→a = −→g + −→aL (2)

Here, −→g indicates the orientation of the device, and −→aL can be
used to track the movement. Fig.4(a) and Fig.4(b) illustrate the
components of −→a . Traditionally, −→g can be derived by applying a
low-pass �lter on −→a [12]. �e idea is, while the device is moving
at a constant speed or at rest, −→aL is close to 0, and −→a is close to −→g .
If the variance of −→a is low and −→a is close to 9.8m/s2 in a period of
time, the low-pass �lter is the most e�ective method to calculate
−→g .

Due to the movement of the vehicle or the driver’s action, we
cannot expect the variance of −→a is always low. When the device
is moving at non-uniform speed, the variance of −→a will be high.
For example, the variance of −→a of the smartwatch is usually high
when the driver is moving his or her hand. To solve this, we apply
Kalman Filter and leverage the rotation data −→w measured by the
gyroscope [29][6][28]. A typical movement can be described as
three phrases, which are the start, the moving, and the end. Before
the movement starts, the device is at rest, which means −→a has a low
variance and −−−−−−→gbef ore can be calculated by the low-pass �lter as a
prior knowledge state. It is the same a�er the movement ends, and
−−−−−→gaf ter can also be calculated as an observed state. �e states when
the device is moving are hidden. However, the control input for
each state is known, which is the rotation of the device, represented
as −→w. �erefore, the −→g at each certain time during this movement
can be calculated by the maximum-likelihood estimation.
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Figure 4: �e components of the measurement from the
accelerometer. (a) �e measurement data a from the ac-
celerometer is always interfered by the gravity G, which
causes a virtual acceleration g. (b) a is the sum of g and real
acceleration aL . (c) aL can be decomposed as a vertical accel-
eration aV and a horizontal acceleration aH .

4.5 Forearm Posture Detection
In a typical driving scenario, the driver’s forearm postures will
remain unchanged when the driver’s hands are holding the steering
wheel. As shown in Fig. 5, for a typical driving posture, both the
driver’s arms will be stretching forward, and the elbows will be
naturally lying down, yielding a unique pa�ern when measuring
the posture of the smartwatch wearing on the driver’s wrist. When
a hand is taken o� from the steering wheel, the posture of the
forearms is di�cult to predict. For example, the hand can hold
something (mobile phone, food, etc.) or stay on the leg. However,
those postures are rarely same as the posture as when the hands
are holding the steering wheel. �us, in order to detect whether
the hands are on the steering wheel, the posture of the driver’s
forearms can be used as a feature.

G

g

gX

X-axis

Figure 5: A typical driving posture. �e X-axis of the smart-
watch is shown is the �gure, and the value of g on the X-axis
is denoted as дX .

Since the orientation of X-axis on the smartwatch is always
parallel to the forearm, the average value on X-axis of −−−−−−→gwatch in

a window, which is denoted as дX ,watch , can be used to charac-
terize the posture of forearm. Speci�cally, di�erent forearm pos-
tures will yield di�erent pa�erns of дX ,watch measurements. For
example, as shown in Fig. 6, when driver is holding the steer-
ing wheel, дX ,watch of the smartwatch on the right hand will be
around −3.5m/s2. When the driver is holding something in hand,
the forearm rises up, and the дX ,watch will be around −8.2m/s2. If
the driver puts the hand on the leg, the forearm falls downward,
and the дX ,watch will be around2.5m/s2. To further validate this
assumption, we record the driving behaviors of 2 subjects using
video cameras and log the trace ofдX ,watch measured by the smart-
watches worn on the driver’s wrist. Fig.7 shows the Probability
Density Function (PDF) of дX ,watch . It can be seen that дX ,watch
distributes in a narrow space when the hand is holding the steering
wheel.
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Figure 6: �e three typical actions during driving and their
motion features. �e motion features include дX and aV of
the smartwatch on the right hand.

4.6 Vibration-based Hand Position Detection
When the engine of a vehicle is on, a continuous vibration along
vertical direction will be generated and radiated into the cabin, and
then be sensed at the steering wheel and the seat [3]. If the hand
is holding the steering wheel, the vibration will be conducted to
the driver’s wrist, resulting in an increased magnitude of vibra-
tion sensed by the smartwatch. Otherwise, vibration conducted to
the driver’s wrist will be much weaker, because of the signi�cant
a�enuation when it is transmi�ed from the seat via the driver’s
body.

Based on the above observation, SafeWatch leverages the vibra-
tion sensed by the smartwatch’s accelerometer as another feature
for inferring if the driver’s hand is on/o� the steering wheel when
the hand is still. A key challenge in realizing this idea is to address
the interfering motion signals introduced by the movement of the
vehicle, which is usually orders of magnitude stronger than the
vibration signal of interest. SafeWatch addresses this challenge in
two steps. First, motivated by the observation that the vibration
signal of interest is mainly along the vertical direction, SafeWatch
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Holding an Item On the Steering Wheel Lower Position

Figure 7: Normalized PDF of дX ,watch for three di�erent po-
sitions of the hand. (1) Holding an item: the driver is hold-
ing something (e.g. a bottle, or a phone) in the hand. Sub-
ject 2 does not perform this during our experiment. (2) On
the steering wheel: the hand is holding the steering wheel.
(3)Lower position: the hand is on the leg or on the seat. �is
also includes shi�ing the gear or adjusting the air condi-
tioner.

breaks down the measured signal using the approach shown in Fig.
4(c), and then discards the horizontal component to mitigate the
interference introduced by the vehicle’s horizontal moves such as
acceleration, brake, and turning, etc.. Second, SafeWatch cleans
the vertical signal component, by using accelerometer data col-
lected from the smartphone to cancel the interference caused by
the vehicle’s vertical move such as bumping due to road condition.

Speci�cally, SafeWatch extracts the vibration-based feature as
follows. First, it derives the vertical signal component by comput-
ing,

aV =
−→g · −→aL
|
−→g |
. (3)

Second, SafeWatch measures the magnitude of vibration by comput-
ing the variance of aV. �ird, it estimates the interference caused
by the vehicle’s movement along vertical direction, by measuring
aV observed on the smartphone. Because the smartphone is placed
in the vehicle, its measurement of aV characterizes the vertical
movement of the vehicle. SafeWatch then mitigates interference by
computing,

RaV =
Var (aV ,watch )

Var (aV ,phone )
. (4)

Fig. 8 and Fig. 9 illustrate the vibration-based feature extraction
algorithm based on two real cases. Generally, when the hand is on
the steering wheel, Var (aV ,watch ) is slightly larger, as shown in
Fig. 8. If the vibration is mainly caused by the movement of the
vehicle,Var (aV ,watch ) will be larger than 0.05, and its distribution
cannot provide evidence for detecting the hand position. However,
if the hand holds the steering wheel �rmly, the vertical movement
of the wrist will be similar to the vehicle. In this case, we have
RaV ≈ 1 as shown in Fig. 9, which means the magnitudes of the
vibrations captured by the smartphone and the smartwatch are
close. For the detection of the hand position, Var (aV ,watch ) and
RaV are both important features.
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Figure 8: Normalized PDF ofVar (aV ,watch ) for subject 1 and
2.
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Figure 9: Normalized PDF of RaV for subject 1 and 2.

4.7 Classi�er
�e classi�er determines if the driver’s hand is on/o� the steering
wheel based on forearm posture and the vibration-based features.
Speci�cally, it builds an vector−→c =< дX ,watch ,Var (aV ,watch ),RaV >
containing three features from previous modules. A training data
set is necessary for this classi�er. As shown in Fig.10, the feature
vector −→c has a narrow distribution when the hand is on the steering
wheel, but it has a board distribution when the hand is away from
the steering wheel. We build a training data set that only includes
the motion samples when the hand is on the steering wheel. For
the test data, the classi�er computes the probability of the test data
��ing into the distribution of the training data set by the statistical
hypothesis testing (e.g. Welch’s t-test [36]).

4.8 Vehicle Turning Detection and Auto
Calibration

A critical challenge for SafeWatch is it requires frequently training,
even during one driving trip. �e driver may switch the posture, and
the smartwatch can be moved to various positions on the wrist. In
order to maintain the high accuracy of the classi�er, SafeWatch must
continually adapt itself into the most recent status. An important
observation is the hand must hold the steering wheel in order to
turn the vehicle. �us, the ground truth feedback can be obtained
around the moment of turning. In order to detect the vehicle’s
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Table 1: Information of the experiment

Subject Watch (Le�) Watch (Right) Phone Driving Trips Total Length of Data
1 Moto 360 2 Moto 360 Moto G 8 132min
2 Moto 360 2 Moto 360 2 Moto G 2 10 125min
3 Sony Smartwatch 3 Sony Smartwatch 3 Moto G 2 4 86min
4 Moto 360 2 Sony Smartwatch 3 Moto G 2 12 124min
5 Moto 360 2 Moto 360 2 Moto G 2 12 118min
6 Moto 360 2 Moto 360 2 Moto G 2 19 179min

gx (m/ s2)
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Figure 10: �e distribution of feature vector c while driving.
When the hand is on the steering wheel, c follows a compact
distribution. Otherwise, c distributes widely in the space.

turning, SafeWatch analyzes the data collected by the gyroscope on
the smartphone [9]. Speci�cally, the rotation around the direction
of the gravity indicates the angle of the vehicle’s turning.

Another question is how the new data should be used to update
the original training data set. �e two methods are: replacing
some of the oldest data or replacing some of the old data with
the longest Mahalanobis Distance to the new data. �e former
idea helps SafeWatch maintaining the most recent training data set
following the timeline. �e la�er idea moves the whole training set
closer to the new data no ma�er each sample is older or newer. �e
performance of the auto-calibration module with these methods
are evaluated respectively in Section 5.2.2.

5 EVALUATION
We evaluate SafeWatch with 75 real driving drips collected from
six subjects. Each subject is provided with two smartwatches and
one smartphone, all installed with apps that run in the background
to record the raw data of motion sensors. In order to obtain the
ground truth of driver’s hand gestures, we collect location data
using the GPS of a smartphone, and then record the driver’s hand
gestures through video-recording. �e details of collected traces
are summarized in Table 1.

5.1 Hand Movement Detection
As we discussed in Section 4.3, the performance of detecting unsafe
hand movement depends on the choice of L. Fig. 11 shows the
accuracy of distraction detection under di�erent values of L. It can
be seen that if the hand movement lasts for more than 2.5s , the
recall is over 97.1% and the precision is over 91.0%. �e detection
accuracy further improves when the hand moves for a longer period
of time.
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Figure 11: Accuracy of detecting unsafe hand movement
with di�erent length of movement event.
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Figure 12: Accuracy of the classi�er with di�erent con�-
dence intervals and sensitivities.

5.2 Hand Position Classi�cation
5.2.1 Classification Accuracy. When the driver is still, Safe-

Watch employs the hand position classi�er introduced in Section
4.7 to infer if the driver’s hand is on/o� the steering wheel. Speci�-
cally, SafeWatch classi�es hand position by �rst training a Gaussian
model using the approach introduced in Section 4.8, and then ap-
plying Welch’s t-test to check whether the test data collected while
driving �ts into the trained model. Similar to hand movement
detection, the hand posture classi�cation is performed based on
sample windows of 0.5s . SafeWatch reports a distraction event if
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Figure 13: Accuracy of by the classi�er with the auto-
calibration. �e update rate means how many portions of
the training data set is replaced with the new data (e.g. up-
date rate = 0.4 means 40% of the training set should be re-
placed with the new data for each auto-calibration).

the driver’s hand is away from the steering wheel forT consecutive
sample windows. Fig.12 shows the accuracy of distraction detection
for di�erent values of T . As shown in the �gure, for T larger than
6s , both of the precision and recall are higher than 90%.

5.2.2 Auto-calibration. If the posture of the driver changes dur-
ing a driving trip, the training dataset should be calibrated, in order
to adapt into the new environment. As we introduce in Section
4.8, the training data set can be updated when the driver is ma-
nipulating the steering wheel, by replacing oldest original data or
replacing the data with the longest Mahalanobis Distance to the
new data. We evaluate how the errors can be reduced with the
auto-calibration. �e parameters of the classi�er are set to 90%
con�dence interval and 6.0s sensitivity.

�e performance of SafeWatch with auto-calibration is shown
in Fig. 13. With proper setup, the recall and precision rate can
be both higher than 97%. In this case, the errors can be reduced
to less than 1.5 per hour. If the auto-calibration process replaces
the oldest training data, the distribution of the training data set
will extend larger. �is method targets to cover more situations of
“hand is on the steering wheel”, and build a more general model for
it. In this case, less unsafe actions will be detected. If the farthest
data are replaced in this process, the training data set will have a
narrower distribution, and the system will be more sensitive to the
unsafe actions. If we replace too much old data to the new data, the
training set will over�t the new environment, and more detecting
errors appear.

5.3 Micro-scale Driving Behavior Analysis
We next conduct a micro-scale driving behavior analysis using Safe-
Watch. Fig. 14 shows the detection results along with the ground
truth during a 20-minute driving trip, which covers two routes on a
city road and a highway. As shown in Fig. 14, based on the analysis
of motion data collected on the city road route, SafeWatch discovers
a driving habit of the subject when he manipulates the steering
wheel, which consists of a sequence of hand gestures including
‘turning the steering wheel with the right hand, holding the steer-
ing wheel with the le� hand, and then turning the steering wheel
with the right hand”. �e le� hand is only used to hold the steering
wheel, while the right hand is used to turn it. In the highway trace,
we observe that the frequency of the subject’s hand movements
signi�cantly reduces, mainly because there are fewer curves and
turns on the road. In this case, the driver’s right hand moves less

frequently than his le� hand. Meanwhile, the right hand tends to
stay away from the steering wheel, which implies that the right
hand is relaxed. Another observation is that the positions of the
hands keep changing throughout the driving trip. For example, both
hands are on the steering wheel at the beginning of driving, but
they tend to move away from the steering wheel more frequently
a�er the �rst 3 minutes.

In order to study this in detail, we analyze the outputs of our
classi�er for di�erent driving trips of other subjects. Speci�cally,
we check how the roads and the driving time impact the driving
behavior. Fig.15 shows the driving behaviors of four subjects on
di�erent roads. On the city road, the drivers are more likely to hold
the steering wheel �rmly. �e duration of each movement is short,
but the frequency is high. �e reason is that drivers have to adjust
the steering wheel more frequently on city road that has more
turnings. We can also observe that the dominant hand moves more
frequently than the other hand, because drivers tend to user their
dominant hands for operating the steering wheel. SafeWatch also
observes that the subjects we study have di�erent driving habits on
the highway. For example, Subject 1 and 4 tend to frequently put
their non-dominant hands on the leg. Speci�cally, their dominant
hands always hold the top part of the steering wheel, in order to
turn it conveniently towards any direction only with one hand.
For the most of the time, the dominant hand of a subject is the
only hand on the steering wheel, and it rarely moves away from it.
Subject 2 and 3 usually use both hands to hold the steering wheel
at 9 o’clock and 3 o’clock positions. On the highway, they tend to
relax the dominant hands and move them away from the steering
wheel, then hold the steering wheel only with the non-dominant
hands.

Fig.16 shows the driving behaviors of the subjects along with the
driving time. At the �rst minute of driving, the vehicle usually is
being moved out of the parking lot. A series of jobs are completed
during this time, such as shi�ing the gear, adjusting the A/C, playing
the music, etc. �e hands stay on the steering wheel at the most
of the time during the 2nd to the 3rd minute. We assume that the
driver just enters a good status, and the alertness is very high at
this moment. However, a�er 3 minutes, the hands begin to move
away from the steering wheel, which corresponds to the driver’s
lower alertness. Another study shows the same observation with
the electroencephalogram (EEG) monitoring [31].

6 DISCUSSION & FUTUREWORK
Our results show that SafeWatch can log shows most of the subjects’
driving habits, such as the favorite position of the hand on the
steering wheel. We provide the subjects intuitive summaries of
their driving behaviors like “the le� hand is more likely to be away
from the steering wheel”, or “the right hand is more active when
turning”. Interestingly, most subjects can only partially con�rm
these, and they are not very con�dent about what they did during
driving. When they reviewed the recorded videos, they expressed
that they are not aware of when they moved the hand away from
the steering wheel while driving, and they had never considered
about their unsafe driving behaviors. �is fact demonstrates that
SafeWatch can e�ectively improve the driver’s self-awareness of
unsafe driving behaviors.
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Figure 14: A 20-minute driving trip by Subject 3. �e detected actions of the hand are presented. �e hand movements shown
in the �gure include short movements, which may not be detected as unsafe.
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Figure 15: �e driving behaviors of the subjects on di�er-
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Figure 16: �e driving behaviors of the subjects along with
the driving time. �e frequencies of “hand is away from the
steering wheel” are shown in the �gure.

Some e�ective methods were developed to warn the driver for the
unsafe behaviors [13]. A common method is to play a ring tone from
the smartphone. However, wearables can provide more natural
ways of alerting the driver, such as through vibration feedback.
Furthermore, we plan to study the e�ectiveness of such feedback
through monitoring the response from drivers. For example, if the
motion samples show that the driver’s hand returns to the steering
wheel a�er the alert, the alert may be accurate and e�ective.

7 CONCLUSION
�is paper presents SafeWatch – a wearable sensing system that ac-
curately detects driver’s hand motions and identi�es unsafe driving

behaviors. SafeWatch detects whether a driver’s hand is on/o� the
steering wheel based carefully designed features from motion data,
such as the posture of the driver’s forearm and the vibration of
the wrist-worn smartwatch. SafeWatch employs a novel adaptive
training algorithm which deals with the signi�cant variation of
motion features across drivers, vehicles, and di�erent driving trips.
�e evaluation with 75 real driving trips from 6 subjects shows
that SafeWatch has a high accuracy over 97.0% for both recall and
precision in detecting the unsafe hand positions when the condition
lasts over 6.0s , and over 97.1% recall and over 91.0% precision in
detecting the unsafe hand movements when it lasts for more than
2.5s .
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[35] Ayça Berfu Ünal, Dick de Waard, Kai Epstude, and Linda Steg. 2013. Driving
with music: E�ects on arousal and performance. Transportation research part F:
tra�c psychology and behaviour 21 (2013), 52–65.

[36] Bernard L Welch. 1947. �e generalization ofstudent’s’ problem when several
di�erent population variances are involved. Biometrika 34, 1/2 (1947), 28–35.

[37] Chao Xu, Parth H Pathak, and Prasant Mohapatra. 2015. Finger-writing with
smartwatch: A case for �nger and hand gesture recognition using smartwatch.
In Proceedings of the 16th International Workshop on Mobile Computing Systems
and Applications. ACM, 9–14.

[38] Yixin Zhao, Parth H Pathak, Chao Xu, and Prasant Mohapatra. 2015. Demo:
Finger and Hand Gesture Recognition using Smartwatch.. In MobiSys. 471.

http://dx.doi.org/10.1109/INFOCOM.2016.7524544
http://dx.doi.org/10.1109/JSEN.2015.2447012

	Abstract
	1 Introduction
	2 Related Work
	3 Requirements and Challenges
	4 System Design
	4.1 System Overview
	4.2 Sensor Sampling
	4.3 Hand Movement Detection
	4.4 Gravity Extraction
	4.5 Forearm Posture Detection
	4.6 Vibration-based Hand Position Detection
	4.7 Classifier
	4.8 Vehicle Turning Detection and Auto Calibration

	5 Evaluation
	5.1 Hand Movement Detection
	5.2 Hand Position Classification
	5.3 Micro-scale Driving Behavior Analysis

	6 Discussion & Future Work
	7 Conclusion
	Acknowledgments
	References

