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Abstract—The uncertainty and variability of renewable gener-
ation pose significant challenges to reliable power-grid operations.
This paper designs robust online strategies for jointly operating
energy storage units and fossil-fuel generators to achieve provably
reliable grid operations at all times under high renewable uncer-
tainty, without the need of renewable curtailment. In particular,
we jointly consider two power system operations, namely day-
ahead reliability assessment commitment (RAC) and real-time
dispatch. We first extend the concept of “safe-dispatch sets” to
our setting. While finding such safe-dispatch sets and checking
their non-emptiness provide crucial answers to both RAC and
real-time dispatch, their computation incurs high complexity in
general. To develop computationally-efficient solutions, we first
study a single-bus case with one generator-storage pair, where
we derive necessary conditions and sufficient conditions for the
safe-dispatch sets. Our results reveal fundamental trade-offs
between storage capacity and generator ramp-up/-down limits
to ensure grid reliability. Then, for the more general multi-
bus scenario, we split the net-demand among virtual generator-
storage pairs (VGSPs) and apply our single-bus decision strategy
to each VGSP. Simulation results on an IEEE 30-bus system show
that, compared with state-of-art solutions, our scheme requires
significantly less storage to ensure reliable grid operation without
any renewable curtailment.

I. INTRODUCTION

While renewable energy is considered crucial for a sustain-
able energy future, its uncertainty and variability pose signifi-
cant challenges to the reliable operations of power systems [1].
In electricity grids, the demand and supply must be balanced
at all time, subject to various physical limits on generation
and transmission. The higher uncertainty and variability of
renewable resources makes it challenging to determine how
many generation resources need to be committed ahead of
time, and how to dispatch them in real time, to meet the
demand. Energy storage can be a key resource to improve
grid reliability in this situation because it can shift demand and
supply in time [2]. However, storage also has it own operation
limits, and hence adding storage into the resource pool also
introduces new questions on how to operate both generators
and storage units to maintain reliable grid operations at all
times.

In this paper, we study these questions at the Independent
System Operator (ISO) level. An ISO is responsible for
maintaining reliable grid operations in a large geographic area
[3]. An ISO operates the wholesale electricity market, which
usually includes a day-ahead market and a real-time market
[4] [5]. The day-ahead market is a forward market that allows
market participants to commit the amount of energy to buy or

sell in each hour of the following day. A key part of the day-
ahead operation, including both market clearance and the later
RAC1 (Reliability Assessment and Commitment) stage, is to
set aside enough resources ahead of time to meet the demand
in the next day. Then, when the operating day comes, the real-
time market dispatches resources every 5 minutes to match the
supply to any demand deviation from day-ahead predictions.
Thus, in this paper we aim to provide solutions, both for RAC
and real-time dispatch, to the problem of managing generators
and storage to provably ensure reliable grid operations under
high renewable uncertainty.

One key challenge to this problem is the multi-stage nature
of the operation decisions. In practice, the availability of
uncertain renewable supply is revealed sequentially over time.
The ISO only knows the information up to the present time,
yet decisions must be made despite future uncertainty. This
causality (also known as non-anticipativity) requirement can-
not be violated during the decision making process. However,
a large body of existing literature uses a two-stage assumption,
which does not respect this multi-stage nature. Under such a
two-stage assumption, one assumes that there is a second stage
where uncertainty is completely revealed [6] [7]. In practice,
such a second stage with perfect information does not exist.
As a result, such a two-stage approach can significantly under-
estimate the resource requirement for reliability [8] [9] [10].

There is a limited body of work that directly deals with
this multi-stage problem, with or without energy storage. In
[8], the authors use affine policies to solve this multi-stage
decision problem using only generators. This approach is
further extended in [9] to work with storage units. However, a
common weakness in [8] and [9] is that such an affine policy
treats resources with different capabilities in the same manner,
which tends to be overly conservative (see further discussion
in Section III-C). Partly due to this reason, [9] must assume
renewable curtailment so that the demand-supply balance can
always be met despite this inefficiency. In our prior work
[10], we show that, by pairing generators of different ramping
speeds, one can support reliable grid operations at a higher
level of uncertainty than what affine policies allow. On the
other hand, [10] does not deal with energy storage. As the
reader will see in Section III, the operation characteristics

1Note that RAC can also be performed during real-time operation when
future operating conditions change significantly, for which our proposed
methodology can also be applied. We mainly focus on day-ahead RAC because
a “late” RAC usually needs to commit more-expensive fast generation.



of energy storage are very different from generators. Thus,
the following open question remains: if one does not allow
renewable curtailment, how can generators and storage be
used together in a complementary manner to maintain reliable
multi-stage grid operations under high renewable uncertainty?

To address this open question, in this paper we develop
new efficient methods to manage generators and storage units
in both RAC and real-time dispatch that can provably ensure
reliable grid operations at all times without the need of
renewable curtailment. Specifically, in Section II we extend the
notion of “safe dispatch sets” of [10], which contain decision
points at the current time that can guarantee grid safety2 at all
times in the future. By definition, verifying the non-emptiness
of the safe dispatch set at day-ahead RAC ensures grid safety
for the entire next day, and real-time dispatch can simply pick
dispatch decisions from the safe dispatch set at each time (see
[10] and Section II-D). However, the computation of such safe
dispatch sets incurs high complexity in general. To develop
computationally efficient solutions, in Section III we first focus
on a single-bus system with one generator and one storage
unit, and study how their different operation characteristics
complement each other. We derive both necessary conditions
and sufficient conditions for grid safety, which are tight under
certain circumstances. Thus, our results reveal fundamental
trade-offs between storage capacity and generator ramp-up/-
down limits to ensure reliability. Further, our key technical
contribution is to identify a “flat-top/flat-bottom” property (see
Section III-B), which breaks down the dependency across
stages, and leads to easy-to-verify sufficient conditions for
the safe dispatch sets. Then, for the more general multi-
bus scenario in Section IV, we optimize affine demand split-
ting to “virtual generator-storage pairs” (VGSPs) to obtain a
computationally-efficient characterization of a provable subset
of the true safe dispatch set. Numerical results in Section
V demonstrate that, compared to [9], our approach requires
significantly less storage to ensure reliable grid operations
when renewable curtailment is not allowed, especially when
the decision horizon is large. Even if curtailment is allowed as
in [9], our solution tends to utilize a higher level of renewable
supply.

II. SYSTEM MODEL

We now present the system model for reliable grid op-
erations with energy storage, when renewable curtailment is
not allowed. There is a set of Nb buses B = {1, 2, . . . , Nb}
that are inter-connected by a set of Nl transmission lines
L = {1, 2, . . . , Nl}. There could be multiple generators,
renewable sources, storage units, and/or loads on each bus.

We adopt a discrete-time model for decision making. During
real-time operation, at the beginning of each time slot, the ISO
needs to make a decision that is going to last for the entire
time slot. Assume that the operation horizon is divided into
T time slots. To model the day-ahead decision, we assume

2In this paper, we use the term “safety” and “reliability” interchangeably,
which both mean that demand and supply have to be balanced at all time
subject to physical limits (also related to “resource adequacy”).

that a set of generators and storage are already committed,
our goal is to check if this set of resources are sufficient for
reliable grid operations for the entire horizon. Note that this is
part of the RAC decision. (The other part is to decide which
units to commit.) In the following paragraphs, we introduce the
notations and characteristics of various system components.

A. Demand Side

On each bus b, we take renewable supply as negative load,
and define the uncertain net-demand Db(t) at bus b at time
t as the load minus the renewable supply. Let Db(t1 : t2)
denote the net-demand sequence at bus b from time t1 to t2.
Let D(t1, t2) denote the collection of net-demand sequences
Db(t1, t2) on all buses. Note that here we implicitly assume
that renewable is not curtailed. There are two motivations
that justify this assumption. First, if the renewable supply is
“behind-the-meter,” e.g., as in the case of rooftop solar, it is
not under the control of the ISO and thus cannot be easily
curtailed. Second, since renewable supply often has lower
daily operation cost than fossil-fuel generation, it is desirable
to utilize renewable energy as much as possible. Thus, even
though curtailing renewable energy may help to ensure reliable
grid operation in some cases, it does so at the cost of
efficiency and economy. Hence, it would still be interesting,
and practically useful, to study how to ensure reliable grid
operations without the need of renewable curtailment.

Next, we model the uncertainty of net-demand. We define
the uncertainty set D as the set of all net-demand sequences
D(1 : T ) for which we wish to ensure reliable grid operations.
Throughout this paper, we are interested in an uncertainty set
of the following form:

Dmin
b (t) ≤ Db(t) ≤ Dmax

b (t), for all t, (1)

|Db(t1)−Db(t2)| ≤ ∆b|t1 − t2|, for all t1, t2, (2)

where the parameters Dmin
b (t) and Dmax

b (t) represent the
lower and upper bounds, respectively, for the net-demand on
bus b at time t. ∆b ≥ 0 denotes the maximum rate of change in
net-demand on bus b. The constraint in (2) models that renew-
able supply does not change arbitrarily fast. These parameters
can be obtained from historical data and day-ahead prediction
[11]. Notice that, although the uncertainty set D contains net-
demand sequences for the entire time horizon, at time t the
ISO only sees the realization of net-demand up to t. Unlike a
two-stage model where the entire net-demand is revealed at a
second stage [6] [7], here the future values of D(t+1 : T ) are
still unknown to the ISO. Nonetheless, the constraint in (2) can
be used to refine the future uncertainty based on the revealed
history, which can be viewed as some form of “near-term
prediction.” Specifically, given D(1 : t), the set of possible
future net-demand trajectories D(t1, t2), t1, t2 > t, tends to
be smaller, which we denote by

D[t1:t2]|D(1:t) =
{
D(t1 : t2)| there exist D′(1 : T ) ∈ D,

such that D′(1 : t) = D(1 : t), and D′(t1 : t2) = D(t1 : t2)
}
.



B. Supply Side

Next, we formulate the mathematical models for generators
and storage units, which the ISO dispatches to balance the
uncertain net-demand at all time.

1) Generators: We restrict the term “generators” to dis-
patchable fossil-fuel generation units. (Recall that renewable
generation is treated as negative load.) Let G = {1, 2, ..., Ng}
be the set of generators in the system, and Pg(t) be the power
level of generator g ∈ G at time t. Each generator has to
operate within its capacity range, i.e.,

Pmin
g ≤ Pg(t) ≤ Pmax

g ,∀g ∈ G, t = 1, 2, . . . , T, (3)

where Pmin
g and Pmax

g denote the lower and upper power lim-
its, respectively, of generator g. Since storage alone will not be
able to sustain extended periods of demand-supply imbalance,
we assume that Pmax

g ≥ Dmax(t) and Pmin
g ≤ Dmin(t) for

all time t. Further, the generator dispatch decisions have to
satisfy the following ramping constraint:

−Rg ≤ Pg(t+ 1)− Pg(t) ≤ Rg, t = 1, 2, . . . , T − 1, (4)

where Rg is the ramping speed of generator g. We use Gb ⊆ G
to denote the set of generators at bus b ∈ B.

2) Storage units: Let S = {1, 2, ..., Ns} be the set of
storage units (e.g., battery and pumped hydro) in the system,
and each storage unit s ∈ S has a finite capacity Qmax

s . We use
Qs(t) to denote the energy storage level (also known as state
of charge) of storage s at the end of time-slot t, and Qs(0) is
the initial storage level of unit s. Without loss of generality,
we assume that the minimum storage level for each unit is
zero. Thus, the storage levels of all units at all time need to
satisfy the following capacity constraints:

0 ≤ Qs(t) ≤ Qmax
s ,∀s ∈ S, t = 0, 1, ..., T. (5)

One key difference between energy storage units and genera-
tors is that the charging/discharging actions are coupled across
time. The power provided by storage unit s during time-slot t
can be expressed as follows:

Φs(t) = Qs(t− 1)−Qs(t), t = 1, 2, ..., T, (6)

where positive (or negative) signs of Φ(t) correspond to the
storage providing (or absorbing) energy. Note that here we
have assumed that charging/discharging has no efficiency loss.
We will discuss briefly at the end of Section III-B how to
generalize our analysis to the case with efficiency loss. Further,
for ease of exposition, we have assumed that each slot is of
unit length. Thus, the units of Q and Φ are kWh and kWh/slot,
respectively. Finally, each storage unit s may also have a power
limit Φs such that |Φ(t)| ≤ Φs for all time t. Let Sb denote
the set of storage units on bus b.

C. Demand-supply Balance & Transmission Constraints

In this work, we assume a DC power flow model [12] and
ignore the transmission loss in the system. For reliable grid
operations, the total net-power provided by generators and

storage units must be equal to the total net-demand at all time,
i.e.,∑

g∈G
Pg(t) +

∑
s∈S

Φs(t) =
∑
b∈B

Db(t), t = 1, 2, . . . , T. (7)

Further, the transmission-line limits must be obeyed at all time.
The DC model formulates the transmission-line constraints
using a shift-factor matrix S = [Sl,b], each element of which
characterizes the contribution from bus b to the power-flow
on line l. Thus, the power flow going through line l at time t
cannot exceed a value TLl, which can be written as∣∣∣∣ Nb∑

b=1

Sl,b

(
Db(t)−

∑
g∈Gb

Pg(t)−
∑
s∈Sb

Φ(t)

)∣∣∣∣ ≤ TLl,

∀t = 1, 2, . . . , T ;∀l ∈ L.

(8)

D. Objectives of Online Multi-stage Decisions

We first introduce the following definitions.

Definition 1 (Causality). Given an uncertainty set D, a real-
time dispatch algorithm π(D) is causal if, for every time t,
the algorithm only uses D(1 : t) in producing the dispatch
decision Pπ(D)(t) =

[(
P
π(D)
g (t), Q

π(D)
s (t)

)
|g ∈ G, s ∈ S

]
.

Definition 2 (Robustness). A causal real-time dispatch al-
gorithm π(D) is robust if and only if, for all net-demand
sequence D(1 : T ) ∈ D and at all time t, the dispatch
decision Pπ(D)(t) produced by algorithm π(D) satisfies all
physical constraints (3)-(8). Further, a causal real-time dis-
patch algorithm π is robust given D(1 : t) and P(t) if
and only if, for any possible future net-demand sequence
D(t + 1 : T ) ∈ D[t+1:T ]|D(1:t), the dispatch output Pπ(t1)
produced by π will satisfy all constraints (3)-(8), for all t1 > t.

The objectives of this work are the following: (i) At RAC,
given the uncertainty set D, determine whether there exists
a causal and robust real-time dispatch algorithm π(D); (ii)
At each time t, find the real-time dispatch algorithm π(D) to
dispatch the generators and storage units based on D(1 : t) to
meet all physical constraints.

Note that the causality requirement differentiates our online
multi-stage decisions from two-stage formulations in the lit-
erature. (Readers may refer to [8] and [10] for the limitation
of two-stage formulations.) In [10], we introduced the notion
of safe-dispatch sets, which we extend to our setting. Let
P(t) = [Pg(t), g ∈ G] and Q(t) = [Qs(t), s ∈ S]. Note
that Q(t−1) corresponds to the storage levels both at the end
of time-slot t− 1 and at the beginning of time-slot t.

Definition 3 (Safe Dispatch Set). Given past demand sequence
D(1 : t), the safe dispatch set F

(
D(1 : t)

)
is defined as

F
(
D(1 : t)

)
=
{

[P(t),Q(t− 1)]
∣∣ starting from P(t) and

Q(t− 1), there exists a causal algorithm π that both can
balance the demand D(t) subject to the condition (3),

(5)-(8), and is robust given D(1 : t)
}
. (9)
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As argued in [10], once the safe dispatch sets are known,
both the RAC and real-time decisions are straight-forward.
At RAC, one simply checks whether the safe dispatch set
without any revealed net-demand F(∅) is non-empty. Note that
by definition, F(∅) 6= ∅ at day-ahead RAC also implies that
F(D(1 : t)) will be non-empty at all time t during real-time
operation. At real-time dispatch at time t, the causal algorithm
π can simply pick any P(t) such that [P(t),Q(t − 1)] ∈
F(D(1 : t)) that can be reached from P(t − 1), which
implies that all physical constraints can be met in the future.
Further, such decisions are known to be “maximally-robust,”
i.e., if these decisions cannot meet all physical constraints,
no other algorithms can do under the same uncertainty set
D. [10] demonstrates that the true safe-dispatch sets can be
calculated via backward induction. However, such a backward
induction incurs exponential complexity in the problem size.
Thus, our goal in this paper is to develop computationally-
efficient methods to characterize the safe-dispatch sets.

III. SINGLE BUS W/ ONE GENERATOR-STORAGE PAIR

Towards this end, we first focus on a simpler scenario with
one bus, one generator g, and one energy storage unit s. For
simplicity, we will drop the subscript b for the net-demand
because the net-demand D(t) becomes a scalar. Although, we
still retain the subscripts g and s to differentiate generator g
from storage unit s. Note that in this scenario the safe-dispatch
set becomes a set of vectors (Pg(t), Qs(t− 1)). This scenario
can be compared to the scenario of one fast generator plus
one slow generator in [10]. However, the safe-dispatch set for
the case in [10] only contains the power level of the slow
generator, and thus becomes one dimensional. In contrast, our
safe-dispatch set is two dimensional and thus much harder to
characterize. In the rest of this section, we fix t and D(1 : t).
We will proceed by proposing the necessary conditions that
the generator-storage pair needs to satisfy for reliability. Then,
we continue to derive the sufficient conditions. Furthermore,
we show that the sufficient conditions are tight under certain
circumstances.

A. Necessary Conditions for (Pg(t), Qs(t−1)) ∈ F(D(1 : t))

We first derive necessary conditions based on the capacity
limit Qmax

s of the storage. Suppose that the generator is
operated at Pg(t) at time t. Due to the ramp limit Rg of
the generator, its future power level at t′ ≥ t is bounded by
P eff
g (t′) ≤ Pg(t′) ≤ P

eff

g (t′), where

P
eff

g (t′) = min{Pg(t) + (t′ − t)Rg, Pmax
g }, (10)

P eff
g (t′) = max{Pg(t)− (t′ − t)Rg, Pmin

g }. (11)

Thus, to balance demand at t′, we must have

P
eff

g (t′) + Φs(t
′) ≥ max

D(t′)∈Dt′|D(1:t)

{D(t′)}, (12)

P eff
g (t′) + Φs(t

′) ≤ min
D(t′)∈Dt′|D(1:t)

{D(t′)}. (13)

Replacing t′ in (12) by τ , and summing (12) for τ from t to
t′ with Φ(τ) = Q(τ − 1) − Q(τ), we obtain the following
necessary condition:

t′∑
τ=t

P
eff

g (τ)+Qs(t−1)−Qs(t′) ≥
t′∑
τ=t

max
D(τ)∈Dτ|D(1:t)

{D(τ)}.

(14)

As Qs(t′) ∈ [0, Qmax
s ], we must have, for ∀t′ ≥ t,

Qs(t−1) ≥ −
t′∑
τ=t

[Pg(t)+(τ−t)Rg]+
t′∑
τ=t

max
D(τ)∈Dτ|D(1:t)

{D(τ)}.

(15)
This condition is shown in Fig. 1a, where D(t) grows at the
fastest rate ∆ to reach net-demand upper bound Dmax(t′), and
Pg(t) also grows at the fastest rate to meet demand. The area
between these two lines gives a lower bound on the storage
level Qs(t−1). Note that (15) for each t′ is a linear constraint
in (Pg(t), Qs(t − 1)) (see yellow dotted lines in Fig. 1b).
Intersection of (15) over all t′ thus gives a convex constraint,
which is shown by the lower blue solid curve in Fig. 1b.
Every point on the blue solid curve represents an operation
point where the storage has just enough energy to support the
fastest increasing demand. Similarly, from (13) we must have:

Qs(t− 1) ≤ −
t′∑
τ=t

[Pg(t)− (τ − t)Rg]

+

t′∑
τ=t

min
D(τ)∈Dτ|D(1:t)

{D(τ)}+Qmax
s . (16)

Intersection of (16) over all t′ ≥ t gives the upper red solid
curve in Fig. 1b. (15) and (16) combined thus produce a
convex outer bound of the safe-dispatch set (see Fig.1b), which
we refer to as the “leaf-region” at time t given D(t). Further,
we can rearrange (15) and (16) to get, ∀t1, t2 ≥ t,

ξmin
t1 (D(1 : t), Qs(t−1)) ≤ Pg(t) ≤ ξmax

t2 (D(1 : t), Qs(t−1)),

where

ξmin
t1 (D(1 : t), Qs(t− 1)) =

1

t1 − t+ 1

(
−

t1∑
τ=t

(τ − t)Rg

−Qs(t− 1) +

t1∑
τ=t

max
D(τ)∈Dτ|D(1:t)

{D(τ)}
)
, (17)

ξmax
t2 (D(1 : t), Qs(t− 1)) =

1

t2 − t+ 1

( t2∑
τ=t

(τ − t)Rg

−Qs(t− 1) +Qmax
s +

t2∑
τ=t

min
D(τ)∈Dτ|D(1:t)

{D(τ)}
)
. (18)

For example, the points A and B in Fig. 1b correspond
to mint2≥t ξ

max
t2 (D(1 : t), Qmax

s ) and maxt1≥t ξ
min
t1 (D(1 :

t), Qmax
s ), respectively. Thus, a necessary condition for
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(a) (b) (c)

Fig. 1. (a) If the generator operates at Pg(t), the storage unit needs to supply at least the energy represented by the shaded area.
(b) An outer bound of the safe-dispatch set given by the intersection of constraints (15) and (16). (Each yellow line corresponds to (15) for some t′ ≥ t.)
(c) An illustration of the storage size needed for meeting the fastest change of demand.

F(D(1 : t)) 6= ∅ is that there must exist some Q(t − 1) ∈
[0, Qmax

s ] such that

max
t1≥t

ξmin
t1 (D(1 : t), Q(t−1)) ≤ min

t2≥t
ξmax
t2 (D(1 : t), Q(t−1)).

Using similar techniques, we can obtain another set of
necessary conditions based on the power limit Φs of the
storage. Specifically, using |Φ(t′)| ≤ Φs in (12) and (13),
we get, for all t1, t2 ≥ t,

Pg(t) + (t1 − t)Rg + Φs ≥ max
D(t1)∈Dt1|D(1:t)

{D(t1)}, (19)

Pg(t)− (t2 − t)Rg − Φs ≤ min
D(t2)∈Dt2|D(1:t)

{D(t2)}. (20)

Thus, we have

max
t1≥t

γmin
t1 (D(1 : t)) ≤ Pg(t) ≤ min

t2≥t
γmax
t2 (D(1 : t)),

where

γmin
t1 (D(1 : t)) = max

D(t1)∈Dt1|D(1:t)

{D(t1)} − (t1 − t)Rg − Φs,

γmax
t2 (D(1 : t)) = min

D(t2)∈Dt2|D(1:t)

{D(t2)}+ (t2 − t)Rg + Φs.

A necessary condition for F(D(1 : t)) 6= ∅ is then
maxt1≥t γ

min
t1 (D(1 : t)) ≤ mint2≥t γ

max
t2 (D(1 : t)). Note that

this condition further reduces the safe-dispatch set (see the
vertical dashed lines in Fig. 1b). We will thus refer to the part
of the leaf-region between these two vertical dashed lines as
the “cropped leaf-region” at time t given D(t).

Based on these necessary conditions, we can obtain useful
necessary conditions on the storage size needed for reliability.
Next, we focus on the case where the net-demand upper/lower
bounds are linear and symmetric. More precisely, the upper
bound Dmax(·) and lower bound Dmin(·) are straight lines
with slope β ≥ 0 and −β ≤ 0, respectively (see Fig.1c). The
following lemma thus gives a lower bound on the required
storage size when the time-horizon is long.

Lemma 4 (Minimum Storage Size). Suppose that the demand
upper/lower bounds are linear and symmetric. For all ε >

0, there exists T0 such that, whenever the time horizon T is
longer than t + T0, in order to have F(D(1 : t)) 6= ∅, the
storage size Qmax

s and power limit Φs must satisfy

Qmax
s ≥ Gap(t)2

2

( 1

Rg − β
− 1

∆− β

)
− ε, (21)

Φs ≥ Gap(t)
∆−Rg
∆− β

− ε, (22)

respectively, where Gap(t) = Dmax(t)−Dmin(t).

We briefly sketch the idea of the proof. Suppose that the
current net-demand is D(t) = Dmin(t). We can show that
there must exist some (Pg(t), Qs(t − 1)) ∈ F(D(1 : t))
such that Pg(t) ≤ Dmin(t). Otherwise, we can show that,
if D(t′) = Dmin(t) for all t′ ≥ t, then all future safe-
dispatch sets F(D(1 : t′)) cannot contain any element with
Pg(t

′) ≤ D(t′). This contradicts F(D(1 : t)) 6= ∅ because the
storage cannot sustain an infinite period with Pg(t′) > D(t′).
Now, consider the case where the future net-demand keeps
increasing at the fastest rate ∆ until it reaches the upper bound
of net-demand (see Fig. 1c). Since Pg(t

′) ≤ Dmin(t′), the
shaded area then gives a lower bound for Qs(t− 1) ≤ Qmax

s ,
which is precisely the right-hand side of (21). Further, the
length of the vertical line in Fig. 1c gives a lower bound of
(22) for Φs. Details are in technical report [13].

B. Sufficient Conditions for F(D(1 : t)) 6= ∅
Next, we turn to sufficient conditions for F(D(1 : t)) 6= ∅.

Based on the analysis in Section III-A, a natural necessary
condition for F(D(1 : t)) 6= ∅ is that, given D(t), the cropped
leaf-region in Fig. 1b is not empty. In other words, there exists
Qs(t − 1) ∈ [0, Qmax

s ] that intersects the cropped leaf-region
horizontally, i.e., h(D(1 : t), Qs(t− 1)) 6= ∅, where

h(D(1 : t), Qs(t− 1)) =[
max

{
max
t1≥t

ξmin
t1 (D(1 : t), Qs(t− 1)),max

t1≥t
γmin
t1 (D(1 : t))

}
,

min
{

min
t2≥t

ξmax
t2 (D(1 : t), Qs(t− 1)),min

t2≥t
γmax
t2 (D(1 : t))

}]
.

(23)



Unfortunately, we can find examples such that this necessary
condition is insufficient for reliability. The reason is that the
value of Qs(t − 1) is determined by the previous decision
Pg(t − 1), i.e., Qs(t − 1) = Qs(t − 2) + Pg(t − 1) −D(t −
1) (cf. (6) and (7)). Thus, even though the “cropped leaf-
region” is non-empty, this particular value of Qs(t − 1) may
not intersect the cropped leaf-region. As a result, no feasible
Pg(t) can ensure future reliability. We note that this situation
is in sharp contrast to [10] where similar necessary conditions
were shown to be sufficient for the two-generator case. A key
difference from [10] is that the safe-dispatch set for the two-
generator case in [10] can be taken as 1-dimensional, while
ours is 2-dimensional, which thus creates new difficulties. Our
key contribution, which is presented below, is to introduce a
new flat-top/flat-bottom property of the cropped leaf-region,
which is useful for checking reliability. Before we present our
sufficient conditions, we introduce the following definitions.

Definition 5 (Flat-top/Flat-bottom). A non-empty “cropped
leaf-region” given by conditions (15)-(16) and (19)-(20) is
“flat-top” if the horizontal line Qs(t − 1) = Qmax

s intersects
the “leaf-region”, i.e.,(23) holds with Qs(t−1) = Qmax

s . Sim-
ilarly, it is “flat-bottom” if the horizontal line Qs(t− 1) = 0
intersects the “leaf-region”, i.e.,(23) holds with Qs(t−1) = 0.

Fig. 1b gives an example of “cropped leaf-region” being
both “flat-top” and “flat-bottom”. Thanks to the convexity of
the “leaf-region”, a direct benefit of being both “flat-top” and
“flat-bottom” is that, for all Qs(t − 1) ∈ [0, Qmax

s ], there
always exists a non-empty set of choices for Pg(t). Thus,
the difficulty described earlier due to the coupling between
Qs(t − 1) and Pg(t − 1) is avoided. The following theorem,
which is the first main result of our work, then shows that this
property is sufficient for reliability.

Theorem 6. Given D(1 : t), if, for all t′ ≥ t and every
D(t′) ∈ Dt′|D(1:t), the “cropped leaf-regions” are both “flat-
top” and “flat-bottom”, there must exist a causal and robust
real-time dispatch algorithm π. Further, the algorithm π may
choose any dispatch decision (Pg(t), Qs(t)) from the following
set

F ′ = {(Pg(t), Qs(t))
∣∣Ps(t) ∈ h(D(1 : t), Qs(t− 1)),

Qs(t) = Pg(t) +Qs(t− 1)−D(t)}, (24)

where h(D(1 : t), Q(t − 1)) is the 1-dimensional interval as
described in (23).

Sketch of Proof. By the flat-top/flat-bottom assumption, the
set h(D(1 : t), Qs(t− 1)), and thus F ′s must be non-empty.
Suppose that a vector (Pg(t), Qs(t)) is chosen from F ′. It
follows from the equality Qs(t) = Pg(t) +Qs(t− 1)−D(t)
that such a decision pair (Pg(t), Qs(t)) can balance the net-
demand D(t) at time t. We next show the reliability for all
future t′ > t by constructing a causal real-time dispatch
algorithm π that is robust given D(1 : t). Algorithm π
essentially picks a dispatch level from the interval h(D(1 :
t′), Qs(t

′− 1)), while satisfying the generator’s ramping con-

straint from Pg(t
′ − 1). The detailed proof for the sufficiency

of the algorithm can be found in technical report [13].

Remark: We note that Theorem 6 is crucial for the rest
of the analysis in this section because it successfully breaks
the coupling between time t and t − 1. Instead, in order to
ensure F(D(1 : t)) 6= ∅, we only need to check the cropped
leaf-region at time t, and we do not need to worry about
what the previous dispatch decisions were. This decoupling
significantly simplifies the analysis. As we will see later, this
only incurs a minor loss of optimality because under certain
circumstances, the resulting sufficient conditions are tight.

We note that the flat-top/flat-bottom property in Theorem 6
is still tedious to check because we need to check it for every
value of D(t′). Next, we return to the special case where the
upper/lower bounds of net-demand are linear and symmetric
(see Lemma 4 and Fig. 1c). Interestingly, here the situation
becomes much simpler.

Theorem 7. Given the uncertainty set D with symmetric
bounds (parameterized by β), the “cropped leaf-region” at
time t for every D(t) is “flat-top” and “flat-bottom” if the
storage size Qmax

s and power limit Φs satisfy the following:
Qmax
s ≥ Gap(t)2

2

(
1

Rg−β −
1

∆−β
)

and Φs ≥ Gap(t)
∆−Rg
∆−β .

The intuition behind Theorem 7 is that in this special setting,
the flat-top/flat-bottom property is most difficult to hold when
D(t) = Dmin(t) (or D(t) = Dmax(t)). Thus, the requirements
in Lemma 4 with ε = 0 become sufficient. The detailed proof
is non-trivial and is available in technical report [13].

For a general uncertainty set with arbitrary upper and
lower bounds, the two extreme cases D(t) = Dmin(t) or
D(t) = Dmax(t) may no longer give the right requirement
on Qmax

s and Φs. However, we can still leverage Theorem
7 to derive a sufficient condition for the flat-top/flat-bottom
property. Specifically, at time t, we find the value of β such
that a larger uncertainty set with linear and symmetric bounds
can contain all possible future trajectories. This value of β can
be found as follows: consider a time-dependent β(t) such that

β(t)
∆
= max{βu(t), βl(t)}, (25)

where

βu(t) = max
{

max
t′>t

Dmax(t′)−Dmax(t)

t′ − t
, 0
}
,

−βl(t) = min
{

min
t′>t

Dmin(t′)−Dmin(t)

t′ − t
, 0
}
.

Plugging β(t) and Gap(t) into (21) and (22), and taking a
maximum over all time t, we then get a sufficient condition
for the storage size and power limit for the general case:

Qmax
s = max

t

[Gap(t)2

2

( 1

Rg − β(t)
− 1

∆− β(t)

)]
, (26)

Φs = max
t

[
Gap(t)

∆−Rg
∆− β(t)

]
. (27)

Remark: Although throughout the paper we assume no
efficiency loss in charging/discharging, we believe that our
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analysis can also be extended to incorporate efficiency loss.
Basically, the quantity Qs(t − 1) − Qs(t

′) in (14) needs to
be either multiplied or divided by the efficiency ratio. Then,
we can still establish a condition similar to Theorem 7 that is
sufficient for reliability. For additional details please see [13].

C. Discussion & Comparison with Prior Work

Comparing Theorem 7 with Lemma 4, we can see that
our characterization of the safe-dispatch set is quite precise.
Indeed, when both Dmax(t) and Dmin(t) are constant (i.e.,
β = 0) and the time horizon approaches infinity, the con-
ditions in Theorem 7 are both sufficient and necessary for
F(D(1 : t)) 6= ∅. To the best of our knowledge, this is the first
time in the literature where storage requirement for reliability
under multi-stage uncertainty is characterized in such a precise
manner. Specifically, note that if there was no storage (i.e.,
only one generator g), its ramp speed Rg must be at least
∆. Storage allows us to use a generator with Rg < ∆, and
the condition in Theorem 7 precisely quantifies the storage
needs. In particular, as Rg decreases and ∆ increases, the
storage capacity Qmax

s also increases. If Φs is very large, as
∆ approaches infinity, the storage capacity Qmax

s approaches
Gap(t)2

2
1

Rg−β , which is still a finite value. These results thus
provide useful and new insights for storage operations in future
power grid with high renewable uncertainty.

A highly desirable feature of the above sufficient conditions
is that they do not depend on the time horizon T . In contrast,
we have found that, if renewable curtailment is not allowed,
using affine policies as in [9] may require storage capacity
that grows linearly in T . To see this, suppose that Gap(t) =
Dmax(t) − Dmin(t) ≥ G for all t. The affine policy in [9]
sends a fixed fraction η of uncertain demand to the storage. If
curtailment is not allowed, the storage size Qmax

s must then
be at least G

2 ηT , so that it will not over-charge or under-
charge under all possible net-demand sequences. If Rg < ∆,
the fraction η cannot be too small. The storage capacity must
then grow linearly with T . Even if curtailment is allowed, the
above analysis suggests that, given Qmax

s , the fraction η has
to be small when T is large. If Rg < ∆, this small η implies
that a considerable fraction of the renewable supply must be
curtailed. These observation will be verified by our simulation
results in Section V.

In summary, for the scenario of one generator-storage pair,
we have provided sufficient conditions for F(D(1 : t)) 6= ∅,
which both answer the RAC problem (by checking F(∅) 6= ∅)
and the real-time dispatch problem (by dispatching decisions
according to Theorem 6). We exploit the complementary
characteristics of generator and storage, thus resulting into
more effective use of storage units than purely affine policies
(as in [9]). Next, we discuss the general multi-bus scenario.

IV. THE MULTI-BUS SCENARIO

In the multi-bus scenario, characterizing the exact safe-
dispatch set F(D(1 : t)) is intractable due to high dimen-
sionality. Instead, our focus is on obtaining a subset of the
exact safe dispatch set for the general case. By verifying that

this subset is non-empty, we can then conclude that the true
safe dispatch set F(D(1 : t)) is non-empty.

Similar to the demand splitting idea in [10], we send
fractions of the future net-demand uncertainty to the resources
according to pre-computed splitting factors. However, in con-
trast to [9] where uncertainty is sent to each generator and
storage unit separately, we propose to send uncertainty to a
pair of generator and storage. As we argue in Section III, such
pairing can better utilize the complementary characteristics
of these two types of resources and support a higher level
of uncertainty. However, there may be fewer storage units
(e.g., pumped hydro) than generators. This fact motivates us
to consider the case of storage sharing, where storage units
can be split into multiple virtual storage units to pair up with
generators to form virtual generator-storage pairs (VGSPs).
After the pairing, the future uncertainty is sent to each VGSP,
and its reliability requirement can be checked using our one-
generator-storage-pair result in Section III.

1) Creating VGSPs: In [10], we have proposed the condi-
tions for splitting physical generators into virtual generators.
Using the same approach, we can split generator g into
multiple virtual generators ĝvg,s, one for each storage unit s.
Let Pmax

ĝvg,s
, Pmin

ĝvg,s
and Rĝvg,s denote the capacity and ramp limit

of these virtual generators. Similarly, we split each storage unit
s into multiple virtual storage ŝvg,s, one for each generator g.
Define Qmax

ŝvg,s
, Qinit

ŝvg,s
and Φŝvg,s as the storage capacity, initial

storage level and power limit for the virtual storage ŝvg,s.
Note that the aggregated capabilities (e.g., storage capacity
and power limits, generator capacity and ramp limits) of all
virtual units from the same physical unit cannot exceed the
corresponding physical capability [10]. Each virtual storage
ŝvg,s is then paired with virtual generator ĝvg,s to form a VGSP,
denoted VGSPg,s = (ĝvg,s, ŝ

v
g,s).

2) Demand Splitting for VGSP: Consider the following
affine policy. At each time t′ ≥ t, we separate the net-demand
Db(t

′) into two parts:
i Main part: Dmain

b (t′) = (Dmax
b (t′) +Dmin

b (t′))/2;
ii Uncertain part: Duncer

b (t′) = Db(t
′)−Dmain

b (t′).
Then, we dispatch the VGSPs to meet the two parts of the net-
demand separately. For the main part, denote portion allocated
to VGSPg,s as Pmain

VGSPg,s
(t′). The dispatch policy requires

Nb∑
b=1

Dmain
b (t′) =

Ns∑
s=1

Ng∑
g=1

Pmain
VGSPg,s(t

′). (28)

For the uncertain part, we introduce a splitting factor
{ηb,g,s}b∈B,g∈G . For each bus b, ηb is a vector where each
element is the fraction of uncertain net-demand to be sent to
VGSPg,s. The split is valid when ηb satisfies∑

s∈S

∑
g∈G

ηb,g,s = 1,∀b ∈ B. (29)

Therefore, the total amount of net-demand allocated to
VGSPg,s would be

DVGSPg,s(t
′) = Pmain

VGSPg,s(t
′)+
∑
b∈B

ηb,g,s(Db(t
′)−Dmain

b (t′)).



3) Transmission-line Constraints with VGSP: The trans-
mission constraint (8) must hold for all net-demand at all
t′ > t. It turns out that this constraint is convex with respect
to the virtualization and splitting decisions, and hence can be
converted to a linear form. See technical report [13] for details.

4) Safe Dispatch Subset FVGSP(D(1 : t)): We are now
ready to define safe dispatch subset FVGSP(D(1 : t)). So
far, we have obtained the parameters to characterize all the
splitting among VGSPs. Denote A(t) as the set of parameters
to identify the VGSPs and their associated splitting, i.e.,

{ηb,g,s, Pmax
ĝvg,s

, Pmin
ĝvg,s

, Rĝvg,s , Q
max
ŝvg,s

, Qinit
ŝvg,s

,Φŝvg,s , P
main
VGSPg,s(t

′)}.

Then, we can use the sufficient conditions (15)-(16), (19)-(20)
and (25)-(27) to check whether the safe dispatch set for each
VGSPg,s, denoted by FA(t)

g,s (D(1 : t)), is non-empty. Notice
that each of this FA(t)

g,s (D(1 : t)) is a collection of 2-tuples
(Pĝvg,s(t), Qŝvg,s(t− 1)), where the second entry is the storage
level of the virtual storage associated with virtual generator
ĝvg,s at the beginning of time t.

After obtaining a non-empty safe dispatch set for each
VGSP, we need to perform an additional step to map the
dispatch decisions of all virtual generators and storage units
back to the physical units through

∑
g∈G Qŝvg,s(t) = Qs(t) and∑

s∈S Pĝvg,s(t) = Pg(t). In this way, the dispatch decision of
all physical units {Pg(t), Qs(t)|g ∈ G, s ∈ S} after mapping
will provide the same power output to the grid to balance the
demand. Therefore, the safe dispatch subset FVGSP(D(1 : t))
can be defined as follows:

FVGSP(D(1 : t)) = {[P(t),Q(t− 1)]|there exists A(t) sati-
sfying all conditions (28)-(29) and transmission constraints,

and there exists (Pĝvg,s(t), Qŝvg,s(t− 1)) ∈ FA(t)
g,s (D(1 : t))

for all g ∈ G, satisfying the mapping in previous paragraph}.

We note that most of the constraints in the above definition are
convex except (21) and (22), for which we develop another
convexification method to obtain a sufficient condition for
FV GSP (D(1 : t)) 6= ∅. For details, see [13].

5) RAC and Real-time Dispatch: With the above character-
ization of the subset FVGSP(D(1 : t)), we can then perform
both RAC and real-time dispatch as described in Section III-C.

V. SIMULATION RESULTS

In this section, we conduct MATLAB simulation to evaluate
the performance of our proposed algorithm on a standard IEEE
30-bus power system [14]. The system contains 24 fossil-fuel
generators, 1 wind farm (at Bus 3), 1 hydroelectric energy
storage unit (at Bus 3), 2 loads (at Bus 2 and Bus 3), and
41 transmission lines. The 24 traditional generators are of 4
different types. Their capabilities are listed in Table I. (See
technical report [13] for further details.)

We use the load data and wind data from the grid database
of Elia, Belgium’s electricity transmission system operator
[11]. For the load (around 7200MW), we evenly split the
load data into two parts, and then feed into Bus 2 and Bus
3 accordingly. For the renewable, we feed Bus 3 with wind

Table I. LISTS OF GENERATORS

Type Generator Limit Ramping Rate Energy Price
A 540-1080MW 4.05MW/15min 48$/MWh
B 378-540MW 0.675MW/15min 40$/MWh
C 342-810MW 4.05MW/15min 48$/MWh
D 0-180MW 13.5MW/15min 60$/MWh

Fig. 2. The uncertainty bounds for wind.

data for the same time period. As load data is generally more
predictable than wind data in the scale of ISO operation, we
assume that the load is perfectly known at the RAC stage, and
the uncertainty is entirely from wind availability. The uncer-
tainty set is modeled by (1) and (2), where the uncertainty
parameters are derived from Elia’s day-ahead prediction data.
Specifically, the wind uncertainty bounds are shown in Fig. 2.
(See technical report [13] for detailed simulation data.) Our
data for transmission line limits are originally from Matpower
5.1 IEEE 30-bus case file [15]. In order to fit in the scale
of renewable and load data (i.e., that of an entire ISO), we
increase the limit for each transmission line by 50 times.

In the rest of the section, we conduct our numerical study on
two scenarios: one with renewable curtailment and the other
without. As system safety is our top concern, we compare our
approach with the state-of-art affine policy from [9].

1) When Renewable Curtailment is not Allowed: As men-
tioned earlier, curtailment of renewable energy wastes natural
resources and degrades system economy. Thus, in this section,
we assume that renewable curtailment is not allowed. We then
use the proposed method to calculate the minimum storage
capacity needed so that FV GSP (∅) 6= ∅. We also modified
the formulation of [9] to disallow renewable curtailment, and
find the minimum storage capacity so that there exists an affine
policy that satisfies all robust constraints. Fig. 3a compares the
minimum storage size needed to ensure reliable grid operations
with varying time horizons. For the affine policy [9], we
clearly see a drastic increase in storage size as the operation
horizon increases. While the storage size needed for VGSP
algorithm is rather stable. This result is consistent with our
previous discussion (see Section III-C) that storage is better
utilized when paired with generators.

2) When Renewable Curtailment is Allowed: When renew-
able curtailment is allowed, the storage need of the affine
policy in [9] will decrease. However, this reduction is usually



(a) (b) (c)

Fig. 3. (a) The minimum storage size comparison, without renewable curtailment. (b) Renewable utilization levels with curtailment under the affine policy
[9]. (c) The fraction of renewable uncertainty sent to storage unit is low under the affine policy [9].

at the cost of significant renewable curtailment. To illustrate
this, we set the storage capacity to be 1250MWh, which is
sufficient for reliable grid operations under VGSP algorithm.
We then simulate the affine policy of [9] with renewable
curtailment. Fig. 3b shows the renewable utilization level for
each time slots under two possible trajectories of renewable
realization: one where renewable stays at the upper bound
and the other where renewable stays at the lower bound. We
can clearly see that, if renewable realization is at its upper
bound, the renewable utilization is about 60% most of the
time, while all renewable can be utilized if the renewable
realization is at the lower bound. This observation suggests
that the affine policy in [9] essentially reduces the renewable
uncertainty by curtailing renewable when the supply is high.
While this curtailment enhances grid reliability, it wastes
renewable energy. As we explained in Section III, this problem
will likely be more severe when the time-horizon is long. This
observation is further confirmed in Fig. 3c, where we show the
fraction of the uncertain part of renewable output that is sent
to storage according to the affine policy in [9]. This fraction
is close to zero for most time-slots, indicating that the storage
is not utilized effectively to overcome renewable uncertainty.
In contrast, at the same storage level, our proposed approach
can ensure grid reliability with no curtailment. Finally, Table
II show that, even with a simple economy dispatch algorithm,
our proposed VGSP algorithm leads to lower fuel costs.

Table II. Total Dispatch Fuel Cost vs Renewable Scale

Renewable Scale 0.5 0.8 1
Affine($) 853,304 798,373 760,119
VGSP($) 827,494 762,156 723,128
Savings 3.02% 4.54% 4.86%

VI. CONCLUSION

We study robust online multi-stage strategies under high
renewable uncertainty for power systems with both gener-
ators and storage units. For a single-bus system with one
generator-storage pair, we characterize necessary conditions
and sufficient conditions of “safe dispatch set,” which are tight
under certain circumstances. For the more general multi-bus
scenario, we develop a computationally-efficient approach to

obtain a proper subset of the exact safe dispatch set using the
idea of VGSP pairing and demand splitting. Our numerical
study shows that the proposed VGSP algorithm outperforms
the state-of-the-art affine policy in [9]. For future work, we
will extend the approach to more general system settings, e.g.,
with time-varying ramping limits. Further, we will study how
to directly account for economy in the online decisions for
both unit-commitment and economic dispatch.
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