
1

When Backpressure Meets Predictive Scheduling
Longbo Huang, Shaoquan Zhang, Minghua Chen, Xin Liu

Abstract—Motivated by the increasing popularity of learning
and predicting human user behavior in communication and
computing systems, in this paper, we investigate the fundamental
benefit of predictive scheduling, i.e., predicting and pre-serving
arrivals, in controlled queueing systems. Based on a lookahead-
window prediction model, we first establish a novel queue-
equivalence between the predictive queueing system with a fully-
efficient scheduling scheme and an equivalent queueing system
without prediction. This result allows us to analytically demon-
strate that predictive scheduling necessarily improves system
delay performance and drives it to zero with increasing prediction
power. It also enables us to exactly determine the required
prediction power for different systems and study its impact on
tail delay.

We then propose the Predictive Backpressure (PBP) algo-
rithm for achieving optimal utility performance in such predictive
systems. PBP efficiently incorporates prediction into stochastic
system control and avoids the great complication due to the
exponential state space growth in the prediction window size. We
show that PBP achieves a utility performance that is within O(ε)
of the optimal, for any ε > 0, while guaranteeing that the system
delay distribution is a shifted-to-the-left version of that under
the original Backpressure algorithm. Hence, the average delay
under PBP is strictly better than that under Backpressure, and
vanishes with increasing prediction window size. This implies that
the resulting utility-delay tradeoff with predictive scheduling can
beat the known optimal [O(ε), O(log(1/ε))] tradeoff for systems
without prediction. We also develop the Predictable-Only PBP
(POPBP) algorithm and show that it effectively reduces packet
delay in systems where traffic can only be predicted but not
pre-served.

Index Terms—Prediction, Queueing, Optimal Control, Back-
pressure

I. INTRODUCTION

Due to the rapid development of powerful handheld devices,
e.g., smartphones or tablet computers, human users now inter-
act much more easily and frequently with the communication
and computing infrastructures, e.g., E-commerce websites,
cellular networks, and crowdsourcing platforms. Thus, in order
to provide high level quality-of-service, it is important to
understand human behavior features and to utilize such infor-
mation in guiding system control algorithm design. Therefore,
various studies have been conducted to learn and predict
human behavior patterns, e.g., online social networking [1],
online searching behavior [2], and online browsing [3].

Longbo Huang (http://www.iiis.tsinghua.edu.cn/∼huang) is with the Insti-
tute for Interdisciplinary Information Sciences, Tsinghua University, Beijing,
China.

Shaoquan Zhang and Minghua Chen ({zsq008, minghua}@ie.cuhk.edu.hk)
are with the Dept. of Information Engineering at the Chinese University of
Hong Kong, Shatin, Hong Kong.

Xin Liu (liuxin@microsoft.com) is with Microsoft Research at Asia,
Beijing, China.

This paper will be presented in part at the 15th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Philadelphia, PA, USA, August 2014.

In this paper, we take one step further and ask the following
important question: What is the fundamental system benefit of
having such user-behavior information? Our objective is to
obtain a theoretical quantification of this gain. To mathemat-
ically carry out our investigation, we consider a multi-user
single-server queueing system. At every time, user workload
arriving at the system will first be queued at corresponding
buffer space. Then, the server allocates resources and decides
the scheduling for serving the jobs. These operations allow
the server to serve certain amount of workload for each user,
but also result in a system cost due to resource utilization.
Different from most existing work in multi-queue systems,
here we assume that the server can predict and serve future
arrivals before they arrive at the system. Hence, at every time,
the server updates his prediction of future arrivals and adapts
his control action. The objective is to serve all user workload
with minimum cost, and to ensure small job latency for each
user.

This is an important problem and can be used to model
many practical systems where traffic prediction and pre-
serving can be performed. The first example is scheduling in
cellular networks. In this case, the base station handles users’
data demand. Instead of waiting for the users to submit their
requests, and suffering from a potentially big burst of traffic,
which can lead to a large service latency, the base station
can “push” the information to the users beforehand, e.g., push
the news information at 7am in the morning. The second
example scenario is prefetching in computing systems, e.g.,
[4] [5]. Here, data or instructions are preloaded into memory
before they are actually requested. Doing so enables faster
access or execution of the commands and enhances system
performance. Another example is computing management,
e.g., in computers. In this case, each user represents a software
application and the server represents a workload management
unit. Then, according to the needs of the applications, the
managing unit pre-computes some information in case some
later applications request them, e.g., branch prediction in
computer architecture [6] [7].

There have been many previous works studying multi-queue
system scheduling with utility optimization. [8] studies the
fundamental tradeoff between energy consumption and packet
delay for a single-queue system. [9] extends the results to a
downlink system and designs algorithms to achieve the optimal
tradeoff. [10] designs algorithms for minimizing energy con-
sumption of a stochastic network. [11] designs energy optimal
scheme for satellites. [12] looks at the problem of quality-
of-service guaranteed energy efficient transmission using a
calculus approach. [13] studies the tradeoff between energy
and robustness for downlink systems. [14] and [15] develop
algorithms for achieving the optimal utility-delay tradeoff in
multihop networks.

2

However, we note that all the aforementioned works assume
that the system only takes causal scheduling actions, i.e.,
the server will start serving packets only after they enter the
system. While this is necessary in many systems, pre-serving
future traffic can actually be done in systems that have highly
predictable traffic. While predictive scheduling approaches
have been investigated, e.g., [7], not much analytical study
has been conducted. Closest to our work are [16], [17],
which study the benefit of proactive scheduling, and [18],
which studies the impact of future arrival information on
queueing delay in M/M/1 queues. However, we note that
[16] and [17] do not consider the effect of queueing, which
very commonly appears in communication and computing
systems, whereas [18] does not consider controllable rates and
scheduling. Indeed, due to the joint existence of prediction
and controlled queueing, the problem considered here is very
complicated. Delay problems in stochastic controlled queueing
systems are known to be hard. Moreover, arrival prediction
advances in a sliding-window pattern over time, i.e., at every
time, the system can predict slightly further into the future.
Designing control algorithms for such systems often involves
dynamic programming (DP). However, since the state space
size grows exponentially with the prediction window size, the
DP approach may not be computationally practical even for
small systems. Even without prediction, the complexity of DP
can still be very high due to the large queue state space.
Moreover, since the system prediction evolves according to
a sliding-window pattern, it is also not possible to apply the
frame-based Lyapunov technique as in [19] and [20].

To resolve the above difficulties, we first establish a novel
equivalence between the queueing system under prediction
and a class of fully-efficient scheduling scheme and a queue-
ing system without prediction but with a different initial
condition and an equivalent scheduling policy. This connec-
tion is made by carrying out a sample-path queueing argu-
ment and enables us to analytically quantify the delay gain
due to predictive scheduling for general multi-queue single-
server systems. Our result shows that for such systems, the
packet delay distribution is shifted-to-the-left under predictive
scheduling. Hence, the average delay necessarily decreases
and approaches zero as the prediction window size increases.
Based on this result, we further propose a low-complexity
Predictive Backpressure (PBP) scheduling policy for util-
ity maximization in such predictive systems. PBP retains all
desired features of the original Backpressure algorithm [21],
e.g., greedy, does not require statistical information of the
system dynamics, and has strong theoretical performance
guarantee. We prove that the PBP algorithm can achieve
an average cost that is O(ε) of the minimum cost for any
ε > 0, while guaranteeing an average delay that is strictly
smaller than that under the original Backpressure algorithm.
Hence, the resulting utility-delay tradeoff with predictive
scheduling can beat the known optimal [O(ε), O(log(1/ε))]
tradeoff for systems without prediction. We also demonstrate
analytically and numerically with real data trace that when
the first-in-first-out (FIFO) queueing discipline is used, PBP
achieves an average packet delay reduction that is linear in
the prediction window size, and that when the last-in-first-

out (LIFO) discipline is used, the average packet delay under
PBP decreases exponentially in the window size. These results
demonstrate the power of predictive scheduling and provide
explicit quantification of the benefits, which also provides
useful guidelines for predictive algorithm design.

The rest of the paper is organized as follows. In Section II,
we present our system model and problem formulation. We
develop the Predictive Backpressure (PBP) algorithm in
Section III. The analysis of delay performance under general
predictive scheduling and PBP is given in Section IV. We
extend the results to predictable-only systems in Section V.
Predictive scheduling in multi-stage processing networks are
considered in Section VI. Simulation results are presented in
Section VII, followed by the conclusions in Section VIII.

II. SYSTEM MODEL

We consider a general multi-queue single-server system
shown in Fig. 1. In this system, a server serves N queues,
one for each user that utilizes the service of the server. This
multi-queue system has many applications. For instance, it can
be used to model downlink transmission in cellular networks,
where the server represents the base station and the users are
mobile users. Another example is a task management system
of smartphones, where each user represents an application and
the server represents the operating system that manages all
computing workloads. We assume that the system operates in
slotted time, i.e., t ∈ {0, 1, ...}.

������

A1(t)

AN (t)

Q1(t)

QN (t)

Fig. 1. A multi-queue system where a server is serving workloads for
different users/applications.

A. The Traffic Model

We use An(t) to denote the amount of new workload
arriving at the system at time t (called packets below). Here
the workload can represent newly arrived data units that
need to be delivered to their destinations, or new computing
tasks that the server must fulfill eventually. We use A(t) =
(A1(t), ..., AN (t)) to denote the vector of arrivals at time t.
We assume that A(t) is i.i.d. with E

{
An(t)

}
= λn. 1 We also

assume that for each n, 0 ≤ An(t) ≤ Amax.

B. The Service Rate Model

Every time slot, the server allocates power for serving
the pending packets. 2 However, due to the potential system
dynamics, e.g., channel fading coefficient changes, serving

1The arrivals can be arbitrarily correlated among different users.
2Our results can be extended to the case where the server consumes multiple

types of resources, e.g., power and CPU cycles.

3

different users at different time may result in different resource
consumption and generate different service rates. We model
this fact by assuming that the server connects to each user
n with a time-varying channel, whose state is denoted by
Sn(t). We then denote S(t) = (S1(t), ..., SN (t)) the system
link state. We assume that S(t) is i.i.d. and takes values
in {s1, ..., sK}. 3 We use πsi to denote the probability that
S(t) = si.

The server’s power allocation over link n at time t is denoted
by Pn(t). We denote the aggregate system power allocation
vector by P (t) = (P1(t), ..., PN (t)). Under a system link state
si, we assume that the power allocation vector P (t) must be
chosen from some feasible power allocation set P(si), which
is compact and contains the constraint 0 ≤ Pn(t) ≤ Pmax.
Then, under the given link state S(t) and the power allocation
vector P (t), the amount of backlog that can be served for
user n is determined by µn(t) = µn(S(t),P (t)). We assume
that µn(S(t),P (t)) is a continuous function of P (t) for
all S(t). Also, we assume that there exists µmax such that
µn(S(t),P (t)) ≤ µmax for all n, all time t, and under any
S(t) and P (t).

C. The Predictive Service Model

Different from most previous works, we assume that the
server can predict and serve future packet arrivals. Specifi-
cally, we first parameterize our prediction model by a vector
D = (D1, ..., DN), where Dn ≥ 1 is the prediction window
size of user n. That is, at each time t, the server has
access to the arrival information in the lookahead window
{An(t), ..., An(t + Dn − 1)}, and can allocate rates to serve
the future arrivals in the current time slot. 4 Such a lookahead
window model approximates practical scenarios and was also
used in [18] and [23]. For notation simplicity, we also use
Dn = 0 to denote the case when there is no prediction, in
which case, we will directly work with µn(t) and An(t).

We then use {µ(d)
n (t)}Dn−1

d=0 to denote the rate allocated
to serving the arriving packets in time slot t + d and let
µ

(−1)
n (t) denote the rate allocated for serving the packets

that are already in the system. Note that we always have∑Dn−1
d=−1 µ

(d)
n (t) ≤ µn(t). Fig. 2 shows the slot structure and

the predictive service model.

slot t

Serve what is in
the queue

Serve arrivals in
slot t

Serve arrivals in
slot t+1

Serve arrivals in
slot t+2

slot t+1 slot t+2

service service servicearrival arrival arrival

Fig. 2. The figure shows what happens in a single time slot in the case of
Dn = 3. The server predicts and serves the arrivals in timeslots t, t+1 and
t+ 2, respectively.

3Our results can easily be generalized to the case when both arrivals
and channel conditions are Markovian, using the variable-size drift analysis
developed in [22].

4Since we assume that the arrivals in a time slot can only be served in the
next slot, we also consider An(t) to be future arrivals.

D. Queueing

Denote Qn(t) the number of packets queued at the server
for user n. We assume the following queueing dynamics:

Qn(t+ 1) =

[
Qn(t)− µ(−1)

n (t)

]+

+A(−1)
n (t). (1)

Here A
(−1)
n (t) denotes the number of packets that actually

enter the queue after going through a series of predictive
service phases, i.e., for all −1 ≤ d ≤ Dn − 2,

A(d)
n (t) = [A(d+1)

n (t)− µ(d+1)
n (t− d− 1)]+, (2)

and A(Dn−1)
n (t) = An(t). In this paper, we say that the system

is stable if the following condition holds:

Qav , lim sup
t→∞

1

t

t−1∑
τ=0

∑
n

E
{
Qn(τ)

}
<∞. (3)

E. System Objective

In every time slot, the server spends certain cost due to
power expenditure. We denote this cost by f(S(t),P (t)). One
simple example is f(S(t),P (t)) =

∑
n Pn(t), which denotes

the total power consumption. We assume that under any state
S(t), there exists a constant fmax such that f(S(t),P (t)) ≤
fmax. The special case when f(S(t),P (t)) is independent of
P (t) corresponds to the stability scheduling problem [21].

The system’s objective is to find a power allocation and
scheduling scheme for minimizing the time average cost,
defined as:

fav , lim sup
t→∞

1

t

t−1∑
τ=0

E
{
f(τ)

}
, (4)

subject to the constraint that the queues in the system must
be stable, i.e., (3) holds. We use fD∗av to denote the mini-
mum average cost under any feasible predictive scheduling
algorithm with prediction vector D, i.e., those that predict
the arrivals for Dn slots and allocates service rates to serving
the arrivals within the window [t, t + Dn − 1] for each user
n. We then use f∗av to denote the minimum average power
consumption incurred under any non-predictive scheduling
policy, i.e., Dn = 0, ∀n.

F. Discussion of the Model

Note that the lookahead-window model is an idealized
model which assumes that the system can perfectly predict
future arrivals. Because of this, our results can be viewed
as upper bounds of the fundamental benefit of predictive
scheduling, which provide important criteria for evaluating
predictive control algorithms. We also investigate the impact
of prediction error in Section VII.

We also note that our model is very different from previous
controlled queueing system works, which almost all assume
that the system operates in a causal manner, i.e., only serves
packets after they arrive at the system. Our model is motivated
by pre-fetching techniques used in memory management [4],
branch prediction in computer architecture [6], as well as
recent advancement in data mining for learning user behavior
patterns [3].

4

Our model is most relevant for modeling problems where
future workload can be predicted and served before they
enter the system. One such application scenario is in mobile
networks, where the base station handles users’ demand.
Since each user typically requests certain news information
at specific times, e.g., 7am in the morning. Instead of waiting
for the all the users to submit their requests at the same time,
which can lead to a large service latency and high power
consumption, one can “push” some information to the users
beforehand at times when the link condition is good.

Without such predictive control, the cost minimization prob-
lem has been extensively studied and algorithms have been
proposed, e.g., [10]. However, very little is known about
the fundamental impact of prediction on system performance,
let alone finding optimal control policies for such predictive
queueing systems. Moreover, due to the existence of prediction
windows and the fact that arrival processes are stochastic, the
system naturally evolves according to a Markov chain whose
state space size grows exponentially in the prediction window
size. Thus, this problem is challenging to solve.

III. PREDICTIVE BACKPRESSURE

In this section, we present our algorithm, which is designed
by incorporating prediction information into the Backpressure
technique [21]. Note that since future arrival information is
made available in a sliding-window form, prediction couples
the current action with future arrivals in every time slot. This
prohibits the use of frame-based Lyapunov technique [22],
and makes the problem complicated. Fortunately, as we will
see, with the development of a novel queue-equivalence result,
one can incorporate prediction into system control cleanly and
significantly reduce the complexity in both algorithm design
and analysis.

A. Prediction Queues

For our algorithm development and analysis, we now in-
troduce the notion of a prediction queue, which records the
number of residual arrivals in every slot in time window
[t, t+Dn− 1]. Specifically, we denote Q(d)

n (t) the number of
remaining arrivals currently in future slot t+d, i.e., d slots into
the future, and denote Q(−1)

n (t) the number of packets already
in the system. We see then the queues evolve according to the
following dynamics:

1) If d = Dn − 1, then:

Q(d)
n (t+ 1) = An(t+Dn). (5)

2) If 0 ≤ d ≤ Dn − 2, then:

Q(d)
n (t+ 1) =

[
Q(d+1)
n (t)− µ(d+1)

n (t)
]+
. (6)

3) For Q(−1)
n (t), we have:

Q(−1)
n (t+ 1) (7)

=

[
Q(−1)
n (t)− µ(−1)

n (t)

]+

+
[
Q(0)
n (t)− µ(0)

n (t)
]+
,

with Q(−1)
n (0) = 0.

Fig. 3 shows the definition of the prediction queues. One can
see that {Q(d)

n (t)}Dn−1
d=0 are not really queues. They simply

record the residual arrivals going through the timeline, whereas
Q

(−1)
n (t) records the true backlog in the system. Notice that

Q
(−1)
n (t) is exactly the same as Qn(t) in (1). Since Q(−1)

n (t)
is the only actual queue, the system is stable if and only if
Q

(−1)
n (t) is stable.

µ(�1)
n (t)An(t + Dn)

Q(�1)
n (t)Q(Dn�1)

n (t) Q(0)
n (t)

Time t+Dn-1 Time t+1 Time t

µ(0)
n (t)µ(Dn�1)

n (t)

Fig. 3. The prediction queues that describe the system evolution.

B. Predictive Backpressure

Here we construct our algorithm based on the above pre-
diction queues and Backpressure. Our main idea is to use the
sum of all the queues Qsum

n ,
∑Dn−1
d=−1 Q

(d)
n (t) for decision

making.
To describe the algorithm in details, we define the notion of

queueing discipline for the predictive system, i.e., how to se-
lect packets to serve from queues {Q(d)

n (t)}Dn−1
d=−1 . Specifically,

we order the packets in Q
(d)
n (t) with labels p∑

d′<dQ
d′
n (t)+1,

..., p∑
d′≤dQ

d′
n (t). Then, all the packets in {Q(d)

n (t)}Dn−1
d=−1

are ordered from p1 to pQsum
n (t). When a particular queueing

discipline is applied in the predictive system, we select packets
to serve according to the discipline using the order of the
packets. For instance, if FIFO is used, then the server will
serve the packets p1, ..., pmin[µn(t),Qsum

n (t)] from the queues
every time. We now also define the notion of a fully-efficient
predictive scheduling policy.

Definition 1: A predictive scheduling policy is called fully-
efficient if for every user n, we have: (i)

∑
d µ

(d)
n (t) = µn(t),

and (ii) whenever there exists any −1 ≤ d ≤ Dn − 1 such
that µ(d)

n (t) > Q
(d)
n (t), µd

′

n (t) ≥ Qd′n (t), ∀ d′ 6= d. 3
In other words, if a policy is fully-efficient, it will always try to
utilize all service opportunities and not allocate more service
rate to serve any queue unless all other queues are already
fully served. 5 Hence, it will not waste any service opportunity
unless there are more. With this definition, we now present
our algorithm, in which V ≥ 1 is a control parameter used to
tradeoff utility performance and system delay (See Theorem
5).
Predictive Backpressure (PBP): In every time slot,

compute Qsum
n (t) =

∑Dn−1
d=−1 Q

(d)
n (t) for all n. Then, observe

the current channel state vector S(t) and perform:
• Choose the power allocation vector P (t) to solve the

following problem:

min : V f(S(t),P (t))−
∑
n

Qsum
n (t)µn(S(t),P (t)) (8)

s.t. P (t) ∈ P(S(t)). (9)

Then, allocate the service rates {µ(d)
n (t)}Dn−1

d=−1 to the
queues {Q(d)

n (t)}Dn−1
d=−1 in a fully-efficient manner accord-

ing to any pre-specified queueing discipline.

5It is equivalent to work-conserving in queue scheduling.

5

• Update the queues according to (5), (6) and (7). 3
Remark 1: Notice that the PBP algorithm has a very clean

format. Indeed, PBP can be viewed as weighting the predicted
future arrivals for different users into current system control.
It is worth emphasizing that such a low-complexity algorithm
is not possible without the use of prediction queues and the
Backpressure technique.

IV. PERFORMANCE ANALYSIS

In this section, we first present an important theorem which
states that if a predictive scheduling policy is fully-efficient,
then the queueing system under the scheme evolves in the
exact same way as a non-predictive queueing system with
delayed arrivals and a different initial queue state. Using
this queue-equivalence result, we obtain an interesting delay
distribution shifting theorem. After that, we present our delay
analysis for the PBP algorithm.

A. Performance of Fully-Efficient Scheduling Policies

We start by presenting the theorem regarding the equiva-
lence between predictive and non-predictive systems.

Theorem 1: Let Q̂n(t) be the queue size of a single queue
system that (i) has Q̂n(0) =

∑Dn−1
t=0 An(t), (ii) has arrival

Ân(t) = An(t+Dn), (ii) has service µ̂n(t) =
∑Dn−1
d=−1 µ

(d)
n (t),

and (iv) evolves according to:

Q̂n(t+ 1) =

[
Q̂n(t)− µ̂n(t)

]+

+ Ân(t). (10)

Then, if the predictive system uses a fully-efficient predic-
tive scheduling policy (with any queueing discipline) with
Q

(−1)
n (0) = 0 for all n, we have for all t that:

Qsum
n (t) = Q̂n(t), ∀ n. 3. (11)

Proof: See Appendix A.
Theorem 1 provides an important connection between the
predictive system and the system without prediction. Using
this result, we derive the following theorem, which relates the
delay distribution of the predictive system to the equivalent
system without prediction.

Theorem 2: (Delay Distribution Shifting) Denote π(Dn)
n,k the

steady-state probability that a user n packet experiences a
delay of k slots under a fully-efficient predictive scheduling
policy in the predictive system, and let π̂n,k denote the steady-
state probability that a user n packet experiences a k-slot delay
in Q̂n(t). Suppose the set of queues {Q(d)

n (t)}Dn−1
d=−1 and Q̂n(t)

use the same queueing discipline. Then, we have for each
queue n that:

π
(Dn)
n,0 =

Dn∑
k=0

π̂n,k and π
(Dn)
n,k = π̂n,k+Dn

, k ≥ 1. (12)

That is, the distribution of the original queue can be viewed as
“shifted to the left by Dn slots” under predictive scheduling
with Dn-slot prediction. 3

Proof: See Appendix B.
Note that Theorem 2 is important for the general framework of
predictive scheduling. It allows us to compare scheduling with
prediction with the original queueing system, and enables us

to leverage existing results in queueing theory for analyzing
predictive systems. To formalize this idea, first notice that
if we start with Q̂n(0) = 0 and have Ân(t) = An(t), then
Q̂n(t) becomes exactly the same as the queueing process in
the original system without prediction. Thus, if the steady-state
behavior of Q̂n(t) does not depend on the initial condition
and the shift of the arrival process, e.g., a G/G/1 queue [24],
then the delay performance of the predictive system can be
understood by studying the delay distribution of the original
system without prediction.

Corollary 1: Suppose {Q(d)
n (t)}Dn−1

d=−1 and Q̂n(t) use the
same queueing discipline. For any arrival and service processes
under which the delay distribution of Q̂n(t) does not depend
on Q̂n(0) and the shift in the arrival process, we have:

π
(Dn)
n,0 =

Dn∑
k=0

πn,k and π
(Dn)
n,k = πn,k+Dn

, k ≥ 1. (13)

Here πn,k is the steady-state probability that a user n packet
experiences a delay of k slots in the system without prediction,
i.e., Dn = 0. 3
Note that Corollary 1 applies to general multi-queue single-
server systems where the steady-state behavior depends only
on the statistical behavior of the arrival and service processes.
Note that (13) also quantifies how tail delay changes with pre-
dictive scheduling. Specifically, we now have in the predictive
system that:

Pr
{

Delayn > K
}

=
∑
k>K

πn,k+Dn
. (14)

This is often exponentially smaller compared to that under the
non-predictive system (see the simulation section).

With Theorem 2, we can now quantify how much delay
improvement one can obtain via predictive scheduling. This is
summarized in the following theorem, in which we use Wtot
to denote the average delay of the original system without
prediction, i.e.,

Wtot =

∑N
n=1 λn

∑
k≥0 kπn,k∑N

n=1 λn
. (15)

Theorem 3: Suppose the conditions in Corollary 1 hold.
The delay reduction offered by predictive scheduling with
prediction window vector D, denoted by R(D), is given by:

R(D) (16)

=

∑N
n=1 λn

(∑
1≤k≤Dn

kπn,k +Dn

∑
k≥1 πn,k+Dn

)∑N
n=1 λn

.

In particular, if Wtot < ∞, the average system delay goes to
zero as Dn goes to infinity for all queue n, i.e.,

lim
D→∞

R(D) = Wtot. (17)

Here D →∞ means Dn →∞ for all n. 3
Proof: See Appendix C.

Note that Theorems 2 and 3, and Corollary 1 show that
systems with predictive scheduling can be analyzed by studying
the original system without prediction. Also note that the above
results hold under any queueing discipline. The resulting delay
distribution, of course, changes under different disciplines.

6

Hence, the results also provide an efficient way for deciding
how much prediction power is needed for different systems
under different control policies, e.g., if a system has a delay
distribution under which most packets experience a delay of
no more than D slots, then using a prediction power of D slots
suffices to reap most of the benefit of predictive scheduling,
and further investment on improving prediction power can
readily be saved.

B. Performance of PBP

In this section, we analyze the performance of PBP. We will
assume the slack condition (18), i.e., there exist a set of power
vectors and probabilities {P (si)

m , a
(si)
m }, and a constant η > 0,

such that:

λn −
∑
si

πsi

∞∑
m=0

a(si)
m µn(si,P

(si)
m) ≤ −η, ∀n. (18)

Note that (18) is commonly assumed in stochastic queueing
system works and η ≥ 0 is necessary for system stability
[21]. The following theorem states that allowing predictive
scheduling does not change the optimal average cost.

Theorem 4: For any vector 0 �D ≺ ∞, we have:

fD∗av = f∗av. 3 (19)

Proof: See Appendix D.
Theorem 4 is nteresting and shows that predictive scheduling
does not reduce the minimum cost needed for system stability.
Instead, the theorem, together with Theorem 5 below, deliver
an important message that predictive scheduling it improves
the system delay given the same utility performance.

We now have the following theorem, which shows that PBP
achieves an average power consumption that is within O(1/V)
of the minimum and guarantees an average congestion bound.

Theorem 5: The PBP algorithm achieves the following:

fPBPav ≤ fD∗av +
B

V
, Qsum

av = QBP
av =

B + V fmax

η
. (20)

Here B = N
2 (µ2

max + A2
max) is a constant independent of V ,

Qsum
av denotes the average expected queue size of

∑
nQ

sum
n (t),

and QBP
av denotes the average expected queue size of the non-

predictive system under Backpressure. 3
Proof: See Appendix E.

Theorem 5 is similar to the results in previous literature
of Backpressure, e.g., [21]. It states that the average size of∑
nQ

sum
n (t) is the same as QBP

av under Backpressure without
prediction. Since Qsum

n (t) is the total size of the actual queue
and the prediction queues, we see that the actual queue size
is strictly smaller than that under Backpressure. Since the
average queue size under PBP is finite, we can apply Theorem
3 to obtain the following immediate corollary.

Corollary 2: Suppose there exists a steady-state distribution
of the queue vector under PBP. Then, the average delay under
PBP goes to zero as D →∞. 3

Corollary 2 shows that with predictive scheduling, it is
possible to achieve an O(1/V) performance with an arbitrarily
small average delay. This is fundamentally different from the
non-predictive case, in which the best utility-delay tradeoff
is [O(1/V), O(log(V))] [9]. It is also tempting to analyze

the exact delay reduction offered by PBP. However, due
to the complex queueing dynamics under Backpressure, it
is challenging to compute the exact distributions πn,k even
without prediction. Thus, in the following, we consider a
general class of cost-minimization problems, and study the
delay reduction due to prediction in this case. For stating the
results, we define the following optimization problem, which
is the dual problem of problem (38) in Appendix D:

max : g(γ), s.t. γ � 0, (21)

where g(γ) is defined as:

g(γ) =
∑
si

πsi inf
P

(si)
m ∈P(si)

{
V f(si,P

(si)
m) (22)

+
∑
n

γn[λn − µn(si,P
(si)
m)]

}
.

We now state our theorem regarding the average backlog
reduction due to predictive scheduling. In the theorem, we
use γ∗ to denote an optimal solution of (21).

Theorem 6: Suppose (i) γ∗ = Θ(V) > 0 is unique, (ii) the
η-slack condition (18) is satisfied with η > 0, (iii) the dual
function g(γ) satisfies:

g(γ∗) ≥ g(γ) + L||γ∗ − γ||, ∀ γ � 0, (23)

for some constant L > 0 independent of V , (iv) there exists
a steady-state distribution of Qsum(t) under PBP, (v) Dn =
O(1

Amax
[γ∗n −G−K(log(V))2 − µmax]+) for all n, and (iv)

FIFO is used. Then, under PBP with a sufficiently large V , we
have:

Q(−1)
av ≤ QBP

av −
∑
n

Dn

(
λn −O(

1

V log(V)
)
)+
. 3 (24)

Proof: See Appendix F.
As shown in [15], conditions (i)-(iii) in Theorem 6 are satisfied
in many practical network optimization problems, especially
when the power allocation sets {P(si)}Mi=1 are finite. In this
case, queue vector Q(t) = (Q1(t), ..., QN (t)) mostly stays
close to the fixed point γ∗ [15]. Using Little’s theorem,
Theorem 6 implies that the system delay is reduced roughly
linearly in the prediction window size Dn. Note that the linear
reduction in Dn is due to the use of the FIFO discipline
and the fact that Dn is constrained. When Dn is larger than
O(1

Amax
[γ∗V n −G−K(log(V))2 − µmax]+).

Below, we consider the case when LIFO is used in PBP. In
this case, Theorem 7 shows that a small prediction window is
enough to guarantee that most packets experience zero delay!
In the theorem, we define the average rate of the set of packets
that are served before entering Q(−1)

n (t), i.e., with delay zero,
to be λ0

n.
Theorem 7: Suppose conditions (i)-(iv) in Theorem 6 hold,

and that Dn = [log(V)]k for k > 2 and for all n. Then, under
PBP with LIFO, we have:

λ0
n ≥

[
λn −O(

1

[log(V)]k−2
)

]+

. 3 (25)

Proof: See Appendix G.
Theorem 7 shows that a prediction window of poly-logarithmic
size in V is sufficient for guaranteeing that most packets

7

experience zero delay under PBP with LIFO. This is very
different from the FIFO case, and shows that under different
scheduling policies, one requires different prediction power for
achieving similar delay reduction.

V. PREDICTABLE-ONLY ARRIVAL

Here we discuss how PBP can also be applied (with
slight modification) to the case when arrivals can only be
predicted but not pre-served. The idea is to first pretend
that the predictable-only traffic can also be pre-served, and
then construct the algorithm and show that pre-serving rarely
happens.
Predictable− Only PBP (POPBP): In every time slot, run

PBP. In addition, for each queue n, do:
• (Marking) Mark all packets in {Q(d)

n (t)}Dn−1
d=0 served in

the current time slot as mistaken packets.
• (Dropping) Drop all mistaken packets when they enter
Q

(−1)
n (t). 3

Here “run PBP” means carrying out all the steps in PBP

including choosing and implementing actions, and updating
queue values. Note that now {Q(d)

n (t)}Dn−1
d=0 do not exactly

correspond to the number of remaining future arrivals, as they
are not served under POPBP. Instead, they are equal to the
number of future arrivals excluding the mistaken packets.

The performance of POPBP is summarized as follows.
Theorem 8: Suppose the conditions in Theorem 6 hold.

Then, under POPBP with a sufficiently large V , we have:

fPOPBPav ≤ fD∗av +
B

V
, (26)

Q(−1)
av ≤ QBP

av −
∑
n

Dn

(
λn −O(

1

V log(V)
)
)+
. (27)

Moreover, the average packet dropping rate is O(1
V log(V)). 3

Proof: See Appendix H.
Theorem 8 is very interesting and states that even without
pre-serving, traffic prediction information can also be used to
significantly reduce system latency.

VI. PBP FOR MULTI-STAGE PROCESSING SYSTEMS

In this section, we extend the results to general multi-
stage processing systems. This system model can be used to
model many information or content processing systems, where
computing tasks or assembling missions require multiple steps
to complete.

Specifically, we consider a general system where N de-
notes the set of system nodes and E denotes the set of
links connecting the nodes. Different job flows enter the
system and go through a sequence of nodes, which form a
single not-repeating path according to some pre-determined
processing procedure. 6 The set of job flows is denoted by
C = {1, 2, ..., C}. For instance, in Fig. 4, job flow 2 (the
blue dashed job flow) enters from node 1 and goes through
the processing of nodes 1, 2 and 3, then leaves the system.
For each job flow c, we denote the its exogenous arrivals at

6It is possible to consider the case when certain nodes are repeated a few
times, e.g., they handle multiple steps of the job flow processing, by using
multiple queues to store intermediate products.

node n by A(c)(t), and denote the sequence of nodes it goes
through by Pc (including the source node and the departure
node). Then, for each node n ∈ Pc, we use up(c)

n to denote its
upstream node in Pc and use down(c)

n to denote its downstream
node.

We denote the service condition between two nodes n,m ∈
N by Snm(t) and let S(t) = (Snm(t), [n,m] ∈ E), e.g.,
whether the resources needed for this processing is scarce
right now due to some background processing tasks. We then
denote Pnm(t) the resource allocated over link [n,m] for
processing. The rate over each link is then determined by
µnm(S(t),P (t)).

1

2

4
3

A(1)(t)

A(3)(t)

A(2)(t)

Fig. 4. A multi-stage processing system. In this system, we have three
commodity flows, each represents a certain job. The flows enter and leave the
system after being processed. Each node thus maintains certain queues for
the jobs.

In this case, we similarly have the following
Multistage Predictive Backpressure (MPBP). The
main idea is again to include future arrivals into the backlog
of a node. Specifically, for each node n, if it is the source node
of the job flow c, then we define Q(k)

eff,n(t) =
∑Dn−1
d=−1 Q

(c,d)
n (t)

as the effective backlog of the node, where Q(c,d)
n (t) is defined

as in (5) - (7), with µdn(t) replaced by µ
(c,d)
nm (t). Otherwise,

if node n ∈ Pc is not a source node, it maintains a queue
Q

(c)
eff,n(t) as the current unprocessed work (including actual

and predicted or pre-processed traffic) for job flow c, which
evolves according to:

Q
(c)
eff,n(t+ 1) =

[
Q

(c)
eff,n(t)− µ(c)

downc
n
(t)
]+

+ µ
(c)
upcn

(t). (28)

Here µ(c)
n (t) denotes the rate allocated to serve job flow c at

node n at time t. With the definition of Q(c)
eff,n(t), the MPBP

algorithm works as follows.
Multistage Predictive Backpressure (MPBP) In every

time slot, observe Q
(c)
eff,n(t) for all n and c, and the current

channel state vector S(t). Perform:
• For every link [n,m] ∈ E , define:

Wnm(t) = max
c

[Q
(c)
eff,n(t)−Q(c)

eff,m(t)]+.

Denote c∗nm the id of the flow that maximizes the above.
• Choose the power allocation vector P (t) to solve the

following problem:

min : V f(P (t))−
∑
nm

Wnm(t)µnm(S(t),P (t)) (29)

s.t. P (t) ∈ PS(t). (30)

– Allocate the entire rate µnm(t) to c∗nm.
– If node n is the source node of flow c∗nm, allocate

the service rates {µ(c,d)
nm (t)}Dn−1

d=−1 to the queues in a
fully-efficient manner according to any pre-specified

8

queueing discipline.
• Update the queues Q(c)

eff,n(t) accordingly. 3
We notice that the MPBP algorithm is similar to the original

Backpressure algorithm for multihop systems [21]. In this
case, the performance of MPBP can similarly be analyzed and
the results are summarized in the following theorem, where
πck denotes the probability that a packet experiences a delay
of k slots traversing the path Pc.

Theorem 9: Suppose the conditions in Corollary 1 hold.
Then, under MPBP achieves:

fPBPav ≤ fD∗av +O(
1

V
), Qsum

av = QBP
av = O(V). (31)

Moreover, we denote the delay reduction offered by predictive
scheduling with prediction window vector D by Rmulti(D).
Then, if Wtot <∞, the average system delay goes to zero as
Dc goes to infinity for all flow c, i.e.,

lim
D→∞

∑
n

Rmulti(D) = Wtot. 3 (32)

Proof: The same as the proof of Theorem 3. Hence, we
omit the proof for brevity.

VII. SIMULATION

We present simulation results of the PBP algorithm in this
section in a 10-user single server system.

A. Parameters and Settings

Real Data Trace: We collected data from 10 different mo-
bile users in a 12-day long period (over five-minute intervals).
The data for each user represents the aggregate amount of
mobile traffic (over all applications) that is delivered by the
base station to the user in that slot. Fig. 5 shows the traffic of
a single user and the aggregate traffic of all users in 12 days.
In the simulations, we take the traffic data as the workload
arriving at the system which needs delivered by the server to
different users.

0 2 4 6 8 10 12
0

20

40

60

80

Time (day)

Tr
af

fic
 (K

B)

0 2 4 6 8 10 12
0

0.4

0.8

1.2

Time (day)

Tr
af

fic
 (M

B)

Fig. 5. Left: The mobile traffic delivered by the base station to a single
user. Right: The aggregate mobile traffic delivered by the base station to 10
different users.

Channel, Power and Prediction: For each user n, we
assume that the channel condition Sn(t) takes values {1, 2}
with equal probabilities, and Pn(t) ∈ P(Sn) , {0, 5, 10}.
We assume that at any time, only one channel receives

nonzero power allocation. The service rate is given by
µn(t) = b100 log(1 + Sn(t)Pn(t))c KB/s. The cost function
f(S(t),P (t)) is set to be

∑
n Pn(t), which denotes the total

power consumption. We set Dn = ρ ∗ 5 for all n. Then,
we simulate the cases ρ ∈ {1, 3, 5, 10} to see the effect of
the predictive scheduling. We simulate the algorithm with
V ∈ {1, 5, 10, 20, 50, 100}.

B. Performance of PBP

Fig. 6 shows the performance of PBP with FIFO queueing
policy. We see from the left plot that the average power
consumption decreases as V increases. The right plot shows
the average backlog under PBP. It is not hard to see that the
average system backlog scales as O(V). One also sees that
as the prediction window sizes increase, the network delay
decreases linearly in D.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

V
0 20 40 60 80 100

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

V

BP
PBP − 5 prediction
PBP − 15 prediction
PBP − 25 prediction
PBP − 50 prediction

Avg Power Consumption Avg Queue Size (MB)

Fig. 6. Performance of PBP. Left: Average power consumption under PBP.
Right: Average queue size under PBP with different prediction window sizes.

Fig. 7 shows the delay distribution under PBP for the setting
with V = 100 and ρ = 1. We see that the distributions of the
latency for queue n are shifted to the left by Dn, as shown in
Theorem 2. It can also be verified that Corollary 1 also holds.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Delay

Fr
ac

tio
n

BP
PBP − 5 prediction

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Delay

Fr
ac

tio
n

BP
PBP − 5 prediction

Queue 2 Queue 10

Fig. 7. Packet delay distribution under PBP with FIFO scheduling with
V = 100 and Dn = 5 for all n. We see that predictive scheduling effectively
shifts the distribution to the left by 5 slots for both queues.

Fig. 8 then shows the delay distribution under PBP and the
original Backpressure, under the LIFO discipline. It can be
verified that the distribution for the predictive system is also
a left-shifted version of the one under Backpressure. We see
that large fractions of packets experience zero delay in both

9

queues, i.e., they are served before they arrive at Q(−1)
n (t).

This is so because under LIFO Backpressure (no prediction),
most packets roughly experience (log(V))2 delay. Thus, with
a moderate size prediction window size, the server can serve
most packets before they enter the system. Since we use a log-
scale for the x-axis, we do not plot the fraction for packets
that have zero delay. Instead, we show the numbers in the
plot. We see that, 69% of the packets for queue 2 are served
before they enter the system, whereas 73% of the packets are
served for queue 10. These results demonstrate the power of
predictive scheduling on delay reduction.

100 101 1020

0.05

0.1

0.15

0.2

0.25

Delay

Fr
ac

tio
n

BP
PBP − 5 prediction

100 101 1020

0.05

0.1

0.15

0.2

0.25

Delay

Fr
ac

tio
n

BP
PBP − 5 prediction

Queue 2 Queue 10

PBP: π0
2(5)=0.69 PBP: π0

10(5)=0.73

Fig. 8. Packet Delay distribution under PBP with LIFO scheduling (V =
100 and Dn = 5 for all n). We see that a large fraction of the packets
now experience zero delay! This is because with a moderate size prediction
window, most packets are served before they arrive at Q(−1)

n (t). In the plots,
πn
0 (Dn) denotes the fraction of packets experience zero delay.

C. Impact of Imperfect Prediction

To investigate the impact of imperfect prediction, we con-
sider two types of prediction errors. The first type is failing to
predict actual arrivals, i.e., miss detection. When it happens,
the arrivals will be out of the system’s vision and thus will not
appear in prediction queues. Therefore, they cannot be served
predictively. The other type is false alarm, which happens
when the system mistakenly predicts the existence of non-
existing arrivals. Such false arrivals will appear in prediction
queues, but will not enter the system. However, the system
may incorrectly allocate resources to serve them, resulting in
wasted service opportunities.

We model miss detections and false alarms as follows. Each
time unit, q fraction of the request arrivals are miss detections,
and 1−p

p fraction of the rest request arrivals are false alarms
(p ≥ 0.5). Therefore, fraction 1−q

p of all predicted requests
are actual arrivals, which can be served beforehand. Larger q
means more miss detections, and smaller p means more false
alarms in the system. For perfect prediction, q = 0 and p = 1.
We simulate three different settings: (q = 0.5, p = 0.95),
(q = 0.05, p = 0, 75) and (q = 0.2, p = 0.85). The first setting
corresponds to the case when the prediction mechanism works
very conservatively, which leads to very few false alarms but
many miss detections. The second setting corresponds to the
case where the prediction mechanism works very aggressively
and results in few miss detections but many false alarms. The
third setting is in-between.

As discussed above, Q(d)
n (t) (0 ≤ d ≤ Dn − 1) may now

contain false alarms besides real arrivals, and the fraction of
false alarms is 1−p on average. Thus, the effective queue size
of Q(d)

n (t) (the number of real arrivals) is p·Q(d)
n (t). Therefore,

in the PBP algorithm, we use Q(−1)
n (t)+p

∑Dn−1
d=0 ·Q(d)

n (t) as
the weight in (8) instead of

∑Dn−1
d=−1 Q

(d)
n (t).

Fig. 9 shows the performance of PBP with FIFO queueing
policy under imperfect prediction when Dn = 5 for all n.
We see that PBP still improves the delay performance while
at the same time keeping a good power performance. This
is because that the chance that PBP serves future arrivals
is decreased when V increases. Therefore, the impact of
prediction errors on the utility performance of PBP is reduced,
showing that PBP is robust against prediction error. Compared
to PBP with perfect prediction, prediction errors increase the
average backlog of the system and thus the average delay. This
is intuitive since miss detections cannot be served beforehand
and false alarms waste service opportunities. We also observe
that the delay performance of PBP is more sensitive to miss
detections. This is because miss detections enter the system
directly and may increase the system backlog.

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

V

BP
PBP(q=0.5,p=0.95)
PBP(q=0.05,p=0.75)
PBP(q=0.2,p=0.85)

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

2.2

V

BP
PBP(q=0.5,p=0.95)
PBP(q=0.05,p=0.75)
PBP(q=0.2,p=0.85)
PBP(q=0,p=1)

Avg Power Consumption Avg Queue Size (MB)

Fig. 9. Performance of PBP under imperfect prediction when Dn = 5 for all
n. Left: Average power consumption under different prediction errors. Right:
Average queue size under different prediction errors.

VIII. CONCLUSION

In this paper, we investigate the fundamental benefit of
predictive scheduling in controlled queueing systems. Based
on a lookahead prediction window model, we establish a novel
queue-equivalence result, which enables exact analysis of
queueing systems under predictive scheduling using traditional
queueing network control techniques. We then propose the
Predictive Backpressure (PBP) algorithm, and show that
PBP achieves a cost performance that is arbitrarily close to
the optimal, while guaranteeing that the average system delay
vanishes as the prediction window size increases. Our results
provide useful guidelines for designing control algorithms in
systems where system prediction and pre-serving is available,
and provide a mathematical frame work for provisioning the
required prediction power, as well as analyzing the tail delay
reduction improvement.

IX. ACKNOWLEDGEMENT

This work was supported in part by the National Ba-
sic Research Program of China Grant 2011CBA00300,

10

2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61361136003, 61303195, and the
China youth 1000-talent grant. It was also partially supported
by the University Grants Committee of the Hong Kong Spe-
cial Administrative Region, China (Area of Excellence Grant
Project No. AoE/E-02/08 and General Research Fund Project
No. 411011), and Chancellor’s Fellowship and NSF grant
CNS1147930.

APPENDIX A – PROOF OF THEOREM 1

Here we prove Theorem 1.
Proof: (Theorem 1) We prove the result by induction with

the aid of the following figure showing the evolution of Q̂n(t).

µn(t)Ân(t) = An(t + Dn)
Q̂n(t)

Fig. 10. The original queue without prediction and with a delayed arrival
process as well as a different initial queue state.

First, we see that the the result holds for t = 0: On
one hand, Q̂n(0) =

∑Dn−1
t=0 An(t). On the other hand, in

the system under predictive scheduling, since Q(−1)
n (0) = 0

and Q
(d)
n (0) = An(d) for d ∈ {0, ..., Dn − 1}, we have

Qsum
n (0) =

∑Dn−1
t=0 An(t).

Now suppose the result holds for all t = 0, ..., k, we
show that it holds for t = k + 1. Using the queueing
dynamic equation (10), we know that in time slot k, µ̃n(k) =
min[µn(k), Q̂n(k)] packets will be served from Q̂n(k). Now
consider the queues {Q(d)

n (k)}Dn−1
d=−1 . Since the scheduling pol-

icy is fully-efficient, we must have that the number of packets
served from these queues is also µ̃n(k) = min[µn(k), Q̂n(k)].
To see this, note that if µ̃n(k) = µn(k), there are more packets
in the queues than the number of packets that can be served.
In this case, we must have µ(d)

n (k) ≤ Q(d)
n (k) for all d. Also,

because the policy is fully-efficient, we have
∑
d µ

(d)
n (k) =

µn(k). Hence, exactly µn(k) packets will be served from
{Q(d)

n (k)}Dn−1
d=−1 , resulting in Q̂n(k+1) = Qsum

n (k+1). On the
other hand, suppose µ̃n(k) = Q̂n(k). Then, there are enough
service opportunities to clear all the awaiting packets. In this
case, since the scheduling policy is fully-efficient, exactly
Q̂n(k) packets will be served. Thus, in both cases, we have
Q̂n(k + 1) = Qsum

n (k + 1) = An(k +Dn).

APPENDIX B – PROOF OF THEOREM 2

Here we prove Theorem 2.
Proof: (Theorem 2) From Theorem 1, we see that

Qsum
n (t) = Q̂n(t) for all time. Hence, if the two queueing

systems use the same queueing discipline in choosing what
packets to serve, then every packet will experience the exact
same delay in both Q̂n(t) and {Q(d)

n (t)}Dn−1
d=−1 .

However, in Qsum
n (t), a packet will enter the actual system

only after spending one unit of time in each of the queues in
{Q(d)

n (k)}Dn−1
d=0 , which takes exactly Dn slots in total. Thus,

any packet experiencing a k-slot delay will experience [k −
Dn]+ delay in Q(−1)

n (t).

APPENDIX C – PROOF OF THEOREM 3

We prove Theorem 3 here.
Proof: (Theorem 3) Using Corollary 1, we see that in the

predictive system, the average system backlog size is given
by:

NP
tot =

N∑
n=1

λn
∑
k≥1

kπn,k+Dn . (33)

On the other hand, the average system backlog without pre-
diction is given by:

Ntot =

N∑
n=1

λn
∑
k≥1

kπn,k. (34)

Using (34) and (33), we conclude that:

Ntot −NP
tot =

N∑
n=1

λn

(∑
1≤k≤Dn

kπn,k +Dn

∑
k≥1

πn,k+Dn

)
. (35)

Using Little’s theorem and dividing both sides by
∑
n λn, we

see that (16) follows.
Now we prove (17). By taking a limit as D →∞, we first

obtain:

lim
D→∞

∑
n

λn
∑

1≤k≤Dn

kπn,k = Ntot. (36)

Then, using the fact that Wtot <∞, we have:

lim
Dn→∞

Dn

∑
k≥1

πn,k+Dn = 0, ∀ n. (37)

Using the above in (16), we see that (17) follows.

APPENDIX D – PROOF OF THEOREM 4

In this section, we prove Theorem 4 using a similar argu-
ment as in [10]. For our analysis, we will use the following
theorem, which characterizes f∗av in the non-predictive case
(see [10] for its proof).

Theorem 10: The minimum average cost f∗av is the solution
to the following optimization problem:

min : fav =
∑
si

πsi

N+2∑
m=1

a(si)
m f(si,P

(si)
m) (38)

s.t.
∑
si

πsi

N+2∑
m=1

a(si)
m µn(si,P

(si)
m) ≥ λn,∀n, (39)

P (si)
m ∈ P(si),

∑
m

a(si)
m = 1, a(si)

m ≥ 0, ∀ si,m.3

Theorem 10 can be viewed as saying that the minimum
average cost subject to system stability can be achieved
by a stationary and randomized policy, which picks a
set of power allocations {P (si)

m , ∀ si,m} with probabilities
{a(si)
m , ∀ si,m}.

Proof: (Theorem 4) We first see that since any policy
without prediction is also a feasible policy for the predictive
system, fD∗av ≤ f∗av by definition.

We now prove that fD∗av ≥ f∗av. Consider any predictive
scheduling scheme ΠP that ensures system stability. Consider
the set of slots t ∈ {0, ...,M}. Let Tsi(M) denote the set of
slots with S(t) = si and let Tsi(M) denote its cardinality. We

11

also define the conditional empirical average of transmission
rate and power cost as follows:

(µ
(si)
1 (M), ..., µ

(si)
N (M), f

(si)
(M)) (40)

,
∑

t∈Tsi (M)

(µ1(si,P (t)), ..., µN (si,P (t)), f(si,P (t)))

Tsi(M)
.

The above is a mapping from the N -dimensional power
vector space into the N + 1 dimensional space, and that
the right-hand-side is a convex combination of the points in
the N + 1 dimensional space. Hence, using Caratheodory’s
theorem as in [10], one see that for every M , there exists
probabilities {a(si)

m (M)}N+2
m=1 and power allocation vectors

{P (si)
m (M)}N+2

m=1, such that:

µ(si)
n (M) =

N+2∑
m=1

a(si)
m (M)µn(si,P

(si)
m (M)), ∀n,

f
(si)

(M) =

N+2∑
m=1

a(si)
m (M)f(si,P

(si)
m (M)).

Now define:

(µ1(M), ..., µN (M), f(M))

,
∑
si

Tsi(M)

M
(µ

(si)
1 (M), ..., µ

(si)
N (M), f

(si)
(M)).

Using the ergodicity of the channel state process, the conti-
nuity of f(si,P (t)) and µn(si,P (t)), and the compactness
of P(si), one can find a sequence of times {Mi}∞i=1 and a
set of limiting probabilities {a(si)

m }N+2
m=1 and power vectors

{P (si)
m }N+2

m=1 such that:

fΠP
av =

∑
si

πsi

N+2∑
m=1

a(si)
m f(si,P

(si)
m), (41)

µΠP
n =

∑
si

πsi

N+2∑
m=1

a(si)
m µn(si,P

(si)
m), ∀ n. (42)

Here fΠP
av denotes the average cost under scheme ΠP and µΠP

n

denotes the average total allocated transmission rate to queue
n under ΠP . This shows that the average cost and the average
allocated rate to any queue under a predictive scheme can be
achieved by some randomized schemes.

Let β(d)
n (t) be the number of packets that enter Q(d)

n (t)

at time t and let µ
(d)
n (t) denote the service rate allo-

cated to serve the packets in Q
(d)
n (t) at time t. Further

let η(d)
n (t) be the number of packets served from Q

(d)
n (t)

at time t. Then, denote β
(d)
n , µ

(d)
n , and η

(d)
n their av-

erage values, i.e., β
(d)
n = limT→∞ 1

T

∑T−1
t=0 E

{
β

(d)
n (t)

}
,

µ
(d)
n = limT→∞ 1

T

∑T−1
t=0 E

{
µ

(d)
n (t)

}
, and η

(d)
n =

limT→∞ 1
T

∑T−1
t=0 E

{
η

(d)
n (t)

}
. 7

Using the queueing dynamics of {Q(d)
n (t)}Dn−1

d=−1 , we have:

β(d)
n − β(d−1)

n = η(d)
n , ∀ d = Dn − 1, ..., 0. (43)

7Here we assume these limits exist. Note that since An(t), η
(d)
n (t) and

µ
(d)
n (t) are all bounded, these limits are equal to the sample path limits with

probability 1 [25].

Because η
(d)
n (t) ≤ µ

(d)
n (t) and

∑
d µ

(d)
n (t) = µn(t) for all

time, we have:

η(d)
n ≤ µ(d)

n ,
∑
d

µ(d)
n ≤ µΠP

n . (44)

Since the system is stable, i.e., Q(−1)
n (t) is stable, we must

have:

β(−1)
n ≤ η(−1)

n ≤ µ(−1)
n . (45)

Summing (45) and (43) over d = −1, ..., Dn − 1, using (44),
using βDn−1

n = λn, and using the fact that ΠP stabilizes the
system, we conclude that:

λn ≤
Dn−1∑
d=−1

η(d)
n ≤

Dn−1∑
d=−1

µ(d)
n ≤ µΠP

n .

This shows that for any stabilizing predictive policy, one
can find an equivalent stationary and randomized scheduling
policy, which results in the same cost that can be expressed
as (38), and generates the same service rates that must satisfy
the constraint (39). Since f∗av is defined to be the minimum
cost over the entire class of such stationary and randomized
schemes, we conclude that fD∗av ≥ f∗av.

APPENDIX E – PROOF OF THEOREM 5

Here we prove Theorem 5. Our proof is based on the
following theorem about the Backpressure algorithm [10].

Theorem 11: The Backpressure algorithm with any finite
Q(0) achieves the following:

fBPav ≤ f∗av +
B

V
, QBPav ≤

B + V fmax

η
. (46)

Here B = N
2 (µ2

max + A2
max) is a constant independent of

V . fBPav and QBPav denote the average expected cost and
the average expected system queue size under Backpressure,
respectively. 3

Proof: (Theorem 5) To prove the results, we con-
sider the auxiliary system in Theorem 1, i.e., no prediction,
Q̂n(0) =

∑Dn−1
t=0 An(t), Ân(t) = An(t + Dn), µ̂n(t) =∑Dn−1

d=−1 µ
(d)
n (t), and Q̂n(t) evolves according to (10).

Then, we construct the Backpressure algorithm for this
auxiliary system. We define a Lyapunov function L(t) =
1
2

∑
n Q̂n(t)2 and define a one-slot Lyapunov drift as ∆(t) =

E
{
L(t+ 1)− L(t) | Q̂(t)

}
. Using (10), we get:

∆(t) + V E
{
f(t) | Q̂(t)

}
≤ B + V E

{
f(t) | Q̂(t)

}
(47)

−
∑
n

Q̂n(t)E
{
µ̂n(t)− Ân(t) | Q̂(t)

}
.

By choosing the actions to minimize the right-hand-side of
(47), we see that Backpressure works as follows: At every
time t, solve the following problem and perform the chosen
action:

min : V f(S(t),P (t))−
∑
n

Q̂n(t)µn(S(t),P (t)) (48)

s.t. P (t) ∈ P(S(t)). (49)

Comparing this to (8), and using the fact that Q̂n(t) =
Qsum
n (t), we conclude that applying PBP to the predictive

system is equivalent to applying Backpressure to this auxiliary

12

system. Therefore, Backpressure in the auxiliary system will
choose the exact same control actions as PBP in the actual
system. Since both systems have the same arrival and channel
state processes, the two systems will evolve identically. Thus,
the average power cost and the average queue size will be
the same in both systems. Hence, Theorem 5 follows from
Theorem 11.

APPENDIX F – PROOF OF THEOREM 6
We prove Theorem 6. For our proof, we use the following

theorem (which is Theorem 1 in [15]), in which γ∗ denotes
an optimal solution of (21). According to [15], γ∗ is either
Θ(V) or 0.

Theorem 12: Suppose (i) γ∗ is unique, (ii) the η-slack
condition (18) is satisfied with η > 0, (iii) the function g(γ)
satisfies:

g(γ∗) ≥ g(γ) + L||γ∗ − γ||, ∀ γ � 0, (50)

for some constant L > 0 independent of V . Then, under
Backpressure, there exist constants G,K, c = Θ(1), i.e., all
independent of V , such that for any m ∈ R+,

P(r)(G,Km) ≤ ce−m, (51)

where P(r)(G,Km) is defined:

P(r)(G,Km) (52)

, lim sup
t→∞

1

t

t−1∑
τ=0

Pr
{
∃n, |Qn(τ)− γ∗n| > G+Km

}
. 3

Proof: See [15].
We are now ready to present the proof of Theorem 6.

Proof: (Theorem 6) We prove the results using Little’s
theorem. The main idea is to show that the average system
queue length is roughly reduced by

∑
n λnDn. To prove this,

we show that the average total service rate allocated to the
prediction queues is O(1

V log(V)). Then, the average rate of
the packets that go through {Q(d)

n (t)}Dn−1
d=0 will roughly be

λn, and so the average queue size is reduced by roughly∑
n λnDn.
First, using (11) and (51), we see that in steady state,

Pr
{
|Qsum

n (t)− γ∗n| > G+Km
}
≤ ce−m.

Using the fact that Qsum
n (t) =

∑Dn−1
d=−1 Q

(d)
n (t), we have:

Pr
{
Q(−1)
n (t) < γ∗n −G−Km−

Dn−1∑
d=0

Q(d)
n (t)

}
≤ ce−m.

Now let m = (log(V))2. Since γ∗n = Θ(V), we see that when
V is sufficiently large, we have:

γ∗n −G−Km−
∑
d

Q(d)
n (t)

= Θ(V)−G−K(log(V))2 −
∑
d

Q(d)
n (t)

(a)

≥ Θ(V)−G−K(log(V))2 −DnAmax

(b)

≥ µmax. (53)

Here (a) follows from the fact that Q(d)
n (t) ≤ Amax for all

0 ≤ d ≤ Dn−1, and in (b) we use the fact that V is sufficiently

large and Dn = O(1
Amax

[γ∗n−G−K(log(V))2−µmax]+) for
all n. This shows that the probability for Q(−1)

n (t) to go below
µmax is at most ce−(log(V))2 = c

V log(V) .
Now using the fact that under the FIFO queueing disci-

pline, a prediction queue Q
(d)
n (t) will be served only when

Q
(−1)
n (t) < µmax, we conclude that the average service rate

allocated to the prediction queues is no more than cµmax

V log(V) .
Hence, the average traffic rate of the packets that traverse all
prediction queues and eventually enter Q(−1)

n (t) is at least
[λn − cµmax

V log(V)]+. Since every packet stays 1 slot in every
prediction queue, using Little’s theorem, we conclude that the
average size of the prediction queues, denoted by

∑Dn−1
d=0 Q

(d)

n

satisfies
∑Dn−1
d=0 Q

(d)

n ≥
(
λn − cµmax

V log(V)

)+
Dn. Hence, (24)

follows.

APPENDIX G – PROOF OF THEOREM 7
We prove Theorem 7 in this appendix.

Proof: First of all, when conditions (i) - (iv) hold, we see
from Theorem 4 in [26] that, under Backpressure with LIFO
(without prediction), for each queue n, there exist a set of
packets Pn which have an average rate λ̃n given by:

λ̃n ≥
[
λn −O(

1

V log(V)
)

]+

, (54)

and packets in Pn experience an average delay DelayPn
which

satisfies:

DelayPn
≤ DBn ,

A+B[log(V)]2

λ̃n
, (55)

where A and B are Θ(1) constants. Note here that if λ̃n = 0,
then λn = O(1

V log(V)) and the theorem follows. Hence, here
we consider λ̃n > 0.

Now consider the system under PBP with LIFO. From the
queue equivalence result in Theorem 1, we can also find a
set of packets P̃n in the predictive system, which also have
an average rate of λ̃n and experience an average delay in
{Q(d)

n (t)}Dn−1
d=−1 given by DelayP̃n

≤ DBn. Now denote the
set of packets that eventually enter Q(−1)

n (t) by P̃(−1)
n and

denote their rate by β(−1)
n . We see then:

λn = β(−1)
n + λ0

n. (56)

Consider the packets in P̃n∩P(−1)
n and define their average rate

by β̃(−1)
n . Note that these are the packets that enter Q(−1)

n (t),
but are accounted for when computing the rate and packet
delay of P̃n. Using (55), we see that:

DBn ≥ DelayP̃n
≥ β̃

(−1)
n Dn

λ̃n
. (57)

Here (57) holds because P̃n includes the packets that eventu-
ally enter Q(−1)

n (t), which have an average delay of at least
Dn. (57) implies that:

β̃(−1)
n ≤ A+B[log(V)]2

Dn
= O(

1

[log(V)]k−2
).

Now using (54), we conclude that:

β(−1)
n ≤ β̃(−1)

n +O(
1

V log(V)
) = O(

1

[log(V)]k−2
). (58)

Combining (56) and (58), we see that the result follows.

13

APPENDIX H – PROOF OF THEOREM 8

Here we prove Theorem 8.
Proof: (Theorem 8) First we see that POPBP achieves the

exact same utility performance as PBP. This is because both
algorithms choose actions in the exact same way. Thus, (26)
follows from Theorem 5. Similarly, (27) follows because the
values of Q(−1)

n (t) are exactly the same under both algorithms.
To see the dropping rate, one sees that dropping happens

only when Q
(−1)
n (t) becomes empty. However, by choosing

Dn = O(1
Amax

[γ∗n−G−K(log(V))2−µmax]+), the probabil-
ity that Q(−1)

n (t) becomes empty is bounded by ce−(log(V))2 =
c

V log(V) as in the proof of Theorem 6. Since in every timeslot,
at most µmax packets can be marked as mistaken, we see that
the drop rate is at most O(1

V log(V)).

REFERENCES

[1] M. Maia, J. Almeida, and V. Almeida. Identifying user behavior in online
social networks. Proceedings of the 1st Workshop on Social Network
Systems, pages 1-6, 2008.

[2] I. Weber and A. Jaimes. Who uses web search for what? and how? Web
Search and Data Mining (WSDM), pages 21-30, 2011.

[3] R. Kumar and A. Tomkins. A characterization of online browsing
behavior. Proceedings of the 19th interna- tional conference on World
Wide Web, pages 561-570, 2010.

[4] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching
to improve world wide web latency. ACM SIGCOMM Computer
Communication Review, Volume 26, Issue 3, Pages 22-36, July 1996.

[5] J. Lee, H. Kim, and R. Vuduc. When prefetching works, when it doesnt,
and why. ACM Transactions on Architecture and Code Optimization
(TACO), Volume 9, Issue 1, March 2012.

[6] T. Ball and J. R. Larus. Branch prediction for free. Proceedings of
the Conference on Programming Language Design and Implementation,
ACM SIGPLAN Notices, volume 28, pages 300-13, 1993.

[7] M. U. Farooq, Khubaib, and L. K. John. Store-load-branch (slb)
predictor: A compiler assisted branch prediction for data dependent
branches. Proceedings of the 19th IEEE International Symposium on
High-Performance Computer Architecture (HPCA), February 2013.

[8] R. Berry and R. Gallager. Communication over fading channels with
delay constraints. IEEE Transactions on Information Theory, vol. 48,
no. 5, pp. 1135-1149, May 2002.

[9] M. J. Neely. Optimal energy and delay tradeoffs for multi-user wireless
downlinks. IEEE Transactions on Information Theory vol. 53, no. 9, pp.
3095-3113, Sept. 2007.

[10] M. J. Neely. Energy optimal control for time-varying wireless networks.
IEEE Transactions on Information Theory 52(7): 2915-2934, July 2006.

[11] A. C. Fu, E. Modiano, and J. N. Tsitsiklis. Optimal energy alloca-
tion and admission control for communications satellites. IEEE/ACM
Transactions on Networking, vol. 11, no. 3, pp. 488-500, 2003.

[12] M. A. Zafer and E Modiano. A calculus approach to energy-efficient
data transmission with quality-of-service constraints. IEEE/ACM Trans-
actions on Networking, 17(3), 898–911, 2009.

[13] C. W. Tan, D. P. Palomar, and M. Chiang. Energy-robustness tradeoff in
cellular network power control. IEEE/ACM Transactions on Networking,
Vol. 17, No. 3, pp. 912-925, 2009.

[14] M. J. Neely. Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks. IEEE Journal on Selected Areas in Communica-
tions (JSAC), Special Issue on Nonlinear Optimization of Communica-
tion Systems, vol. 24, no. 8, pp. 1489-1501, Aug. 2006.

[15] L. Huang and M. J. Neely. Delay reduction via Lagrange multipliers
in stochastic network optimization. IEEE Trans. on Automatic Control,
Volume 56, Issue 4, pp. 842-857, April 2011.

[16] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive resource allocation:
harnessing the diversity and multicast gains. IEEE Tansactions on
Information Theory, 2013.

[17] J. Tadrous, A. Eryilmaz, and H. El Gamal. Pricing for demand
shaping and proactive download in smart data networks. The 2nd
IEEE International Workshop on Smart Data Pricing (SDP), INFOCOM,
2013.

[18] J. Spencer, M. Sudan, and K Xu. Queueing with future information.
ArXiv Technical Report arxiv:1211.0618, 2012.

[19] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. J. Neely. Data
centers power reduction: A two time scale approach for delay tolerant
workloads. USC CS Technical Report 11-9020, 2011.

[20] I. Hou and P.R. Kumar. Broadcasting delay-constrained traffic over
unreliable wireless links with network coding. Proceedings of MobiHoc,
2011.

[21] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking Vol. 1, no. 1, pp. 1-144, 2006.

[22] L. Huang and M. J. Neely. Max-weight achieves the ex-
act [O(1/V), O(V)] utility-delay tradeoff under Markov dynamics.
arXiv:1008.0200v1, 2010.

[23] A. Wierman M. Lin, Z. Liu and L. Andrew. Online algorithms for
geographical load balancing. International Green Computing Conference
(IGCC), 2012.

[24] R. G. Gallager. Discrete Stochastic Processes. Kluwer Academic
Publishers, 1996.

[25] G. B. Folland. Real Analysis: Modern Techniques and their Applications.
Wiley, 2nd edition, 1999.

[26] L. Huang, S. Moeller, M. J. Neely, and Bhaskar Krishnamachari. Lifo-
backpressure achieves near optimal utility-delay tradeoff. IEEE/ACM
Transactions on Networking, Vol. 21, Issue 3, Pages 831-844, June 2013.

