
1

Queuing Models for Peer-to-peer Systems

Taoyu Li∗† Minghua Chen† Dah-Ming Chiu† Maoke Chen∗
∗Tsinghua University, Beijing, China. {taoyu,cmk}@ns.6test.edu.cn

†The Chinese University of Hong Kong, Shatin, Hong Kong. {tyli,minghua,dmchiu}@ie.cuhk.edu.hk

Abstract—Recent development of peer-to-peer (P2P) services
(e.g. streaming, file sharing, and storage) systems introduces a
new type of queue systems not studied before. In these new
systems, both job and server arrive and depart randomly. The
server dynamics may or may not correlate to the job dynamics.
Motivated by these observations, we develop queuing models for
P2P service systems and a taxonomy for different variations
of these queueing models. For several basic classes of these
systems, we show that they are stable, i.e. all arriving job will
be served and cleared in finite time, if the average workload
does not exceed the average system service capacity. Numerical
experiments verify our results, and indicate that higher server
dynamics lead to less time a job spends in the system on average.

I. INTRODUCTION

Classical queueing theory models systems where jobs arrive
randomly at static service stations of given service capacities,
and provides analysis of the system’s properties, such as
waiting time and stability. Queueing theory has wide appli-
cation in many scenarios of operations research. In particular,
its application in studying computer networks and operating
systems led to a generalization of queueing theory to model
a network of queues and many different service policies [1],
[2].

Recently, the modeling of peer-to-peer (P2P) systems is
pointing to a new kind of queueing system not studied before.
In this new model, jobs still arrive randomly, but the service
stations also arrive randomly, possibly correlated to the arrival
of jobs. Like classical queueing theory, this new kind of model
can also help answer some fundamental questions in the design
of (P2P) systems. For example, what are the necessary or
sufficient conditions to guarantee the stability of a P2P system?
And what would be the performance for a given workload and
service parameters?

One of the first dynamic P2P models was introduced by Qiu
and Srikant [3] to model BitTorrent, a P2P file sharing system.
The model is simple, but very inspiring. Although they did not
mention queueing theory, they implicitly modeled randomly
arriving service stations (which are peers themselves) provid-
ing an effective service (file sharing) rate. Subsequently, Fan,
Chiu and Lui [4] modeled and studied the tradeoff between
different service rate allocations in a dynamic P2P system
similar to the Qiu-Srikant model. Clevenot, Nain and Ross
[5] generalized the Qiu-Srikant model fluid model to describe
more realistic cases. The authors in [6] and [7] also used
randomly arriving peers with certain service rate to model P2P
streaming systems. There are many other examples of dynamic

This work was supported by a Competitive Earmarked Research Grant
(Project Number 2150572) established under the University Grant Committee
of the Hong Kong Special Administrative Region, China, the Direct Grant
(Project Number 2050397) of The Chinese University of Hong Kong, and a
gift grant from Cisco.

P2P system models, yet there has not been a unifying analysis
in terms of an generalized queueing theory.

In this paper, we first develop a taxonomy and a family of
notations similar to that in [1] for different variations of queue-
ing models with server dynamics (Section II). For several basic
classes of these systems, we derive the stability conditions
and compare them to those results in the classical queueing
theory (Section III). Next, to demonstrate the application of a
P2P queueing model to real systems, we study a P2P storage
system known as Wuala [8] (Section IV). We present some
numerical simulation results in Section V, and conclude the
work in Section VI.

II. QUEUING MODEL FOR PEER-TO-PEER SYSTEMS

The key notations we use in this paper are listed in Table I.
Throughout this paper, we assume servers are homogeneous
and each has a unit service capacity. The case of heteroge-
neous servers can be handled by modeling multiple classes of
homogeneous servers in the system, each class having different
service capacity.

TABLE I
KEY NOTATION

Notation Definition
A job arrival process.
B job service time distribution.
s number of servers (used in traditional queuing model).
C server arrival process.
E server life time distribution.
POLICY the service policy assumed.
1/λc average interarrival time between two job arrivals.
1/µc average job service time when served by a single server.
ρc = λc/µc job load demand of the system.
1/λs average interarrival time between two server arrivals.
1/µs average server life time.
ρs = λs/µs service capacity of the system.
nc(t) the number of jobs in the system at time t.
ns(t) the number of servers in the system at time t.

In classical queuing theory, Kendall’s notation [1], i.e.,
A/B/s/POLICY, is widely used to represent queuing model
for static service systems where servers are static.

To represent new queuing models for P2P service systems
in which both job and server dynamically arrive and depart,
we use the following notation

A/B/(C/E)/POLICY. (1)

This notation extends Kendall’s notation, by using two addi-
tional terms (C and E) to represent the server dynamics in P2P
queuing models.

To represent systems with different job and server dynamics,
some notations we use for arrival processes (A or C) and
distributions (B or E) are 1) M for a Memoryless process
(e.g. Poisson process), or an exponential distribution. 2) D

2

for a deterministic process, or a deterministic distribution. 3)
G for a process with general independent arrivals, or arbitrary
distribution.

Notice that for C or E, it may be the case that server arrival
and lifetime distribution has correlation with job arrival and
job service time distribution. We use notation ‘−’ for C or
E in the case that server arrival and lifetime distribution is
identical to the job arrival and job service time distribution.
We use notation +M/+G for E in the case that server lifetime
equals to the summation of job service time and an extra
period of time following exponential or arbitrary distribution,
respectively.

Similarly, notations we use for service policy (POLICY)
include 1) FCFS (First-Come-First-Served), which means
jobs are served in their arrival order, each by all the servers
currently in the system. 2) PS(k) (k-Processor-Sharing),
which means all jobs in the system are served, each by no more
than k servers simultaneously. In real systems, this constraint
is often due to downlink capacity limitation of end users.
Furthermore, we assume the job-server allocation is efficient
so that the number of busy servers (also the total service
capacity, since each server has a unit service capacity) at time
t is exactly the maximum allowed value min(knc(t), ns(t)).

We discuss several classes of P2P service systems as fol-
lows.

1) M/M/(M/M)/FCFS Systems: This type of systems
has independent Poisson job and server arrivals, and indepen-
dent exponentially-distributed job service time and server life
time. The service policy allows only the first job in the queue
to get served, by all servers simultaneously.

2) M/M/(M/M)/PS(k) Systems: This type of systems
is the same as the M/M/(M/M)/FCFS systems, except
the service policy allows all jobs to get served simultaneously,
each by no more than k servers. In practice, some P2P online
storage systems may belong to this type of systems. We would
model a real P2P online storage system in Section IV.

3) M/M/(−/−) Systems: In this type of systems, job
dynamics and server dynamics are identical and full correlated,
and we have ns(t) = nc(t) for all t. Whenever a job joins
(leaves) the system, a server also joins (leaves) the system
and vice versa. In practice, this corresponds to P2P systems
where a peer provides service to others only during the time
period it is being served.

4) M/M/(−/ + G) Systems: In this type of systems, job
and server arrive in a pair (i.e. they are peers themselves). For
each job-server pair, the server stays for additional random
amount of time after the job leaves the system. In practice,
this corresponds to P2P file downloading systems where peers
may remain in the system for a while to serve others after they
finish their own downloads. Note that Qiu-Srikant model [3]
can be modeled as an M/M/(-/+M) model in a similar way.

III. STABILITY OF PEER-TO-PEER SERVICE SYSTEMS

To facilitate the discussions, we first give the definition of
stability for the P2P queuing system.

Definition 1 (Stability): A P2P service system is stable if
its corresponding job-server process {nc(t), ns(t)}t is positive
recurrent, so that a stationary distribution exists.

TABLE II
TRANSITION RATE OF THE JOB-SERVER MARKOV PROCESS IN

M/M/(M/M)/FCFS SYSTEMS.

From To Rate
(nc, ns) (nc + 1, ns) λc for nc ≥ 0
(nc, ns) (nc − 1, ns) nsµc for nc ≥ 1
(nc, ns) (nc, ns + 1) λs for ns ≥ 0
(nc, ns) (nc, ns − 1) nsµs for ns ≥ 1

Note that if the Markov process {nc(t), ns(t)}t is stable,
then not only it has a stationary distribution, but also the states
(nc = 0, ns = j), (0 ≤ j), will be visited within finite amount
of time. Practically, this means that all arriving jobs will be
served and cleared by the P2P service system in finite time.

A. Stability of M/M/(M/M)/FCFS Systems
The job-server process {nc(t), ns(t)}t of this type of sys-

tems is a two-dimension birth-death process with infinite
states. Its transition rate is given in Table II. Since at any time
t one job is served by ns(t) servers, the job departure rate
is ns(t)µc, as shown in the third row in Table II. The server
dynamics, on the other hand, does not depend on the number
of jobs in the system, and can be studied by an M/M/∞
queue.

A routine way to derive the stability condition is to solve the
balance equations. However, for the above process, applying
this approach involves solving infinite number of balance
equations, each having four unknown variables. Observing that
the approach is very challenging, we thus re-interpret the job-
server process as a quasi-birth-death (QBD) one and proceed
with a matrix-analytical method.

Definition 2 (QBD process [9]): A QBD process is a con-
tinuous time Markov process satisfies that:

1) It has a two-dimensional state space
⋃

n≥0 `(n), where
`(n) is called level, and is given by

`(n) =
{ {(0, 1), (0, 2), . . . , (0,m′)}, n = 0;
{(n, 1), (n, 2), . . . , (n,m)}, n ≥ 1. (2)

where m and m′ are two positive constants and can be
infinity.

2) A transition from (n, i) to (n′, j) is not possible if |n′−
n| ≥ 2.

Further, the QBD is called homogeneous if it also satisfies
that:

3) For n ≥ 1, the instantaneous transition rate between two
states in the same level `(n) or between two states in
the levels `(n) and `(n± 1) is independent of n.

Otherwise the QBD is called non-homogeneous.
It is not difficult to verify that a M/M/(M/M)/FCFS

system is a homogeneous QBD process, and its transition
matrix, denoted by QA, is given by:

QA =




V P0

P2 P1 P0

P2 P1 P0

P2
.
. . .




(3)

3

where P0,P1, and P2 are square matrices given by P0 =
diag(λc), P2 = diag(0, µc, 2µc, · · ·),

P1 = diag(−λc,−λc − µc,−λc − 2µc, · · ·) +


−λs λs

µs −λs − µs λs

2µs −λs − 2µs λs

.


 ,(4)

and

V = diag(−λc)

+




−λs λs

µs −λs − µs λs

2µs −λs − 2µs λs

.


 .(5)

The stability condition of a homogeneous QBD process is
given in [9] as follows.

Lemma 3 (Stability condition for homogeneous QBD [9]):
If the homogeneous QBD process is irreducible, and if Markov
process corresponding to transition matrix P = P0 + P1 + P2

is irreducible and positive recurrent, then the QBD process is
positive recurrent if and only if

πP01 < πP21, (6)

where 1 is a value-one vector and π is a stationary probability
vector satisfying πP = π and π · 1 = 1.

Using Lemma 3, we derive the stability condition for
M/M/(M/M)/FCFS systems and summarize it in the
following theorem.

Theorem 4 (Stability for M/M/(M/M)/FCFS systems):
A M/M/(M/M)/FCFS queuing system is stable if and
only if

ρc < ρs. (7)

Proof: By interpreting the M/M/(M/M)/FCFS sys-
tem as a QBD process, we can get matrix P as

P =




−λs λs

µs −λs − µs λs

2µs −λs − 2µs λs

.


 .

It is not difficult to verify P is the transition matrix of an
M/M/∞ queuing process, which is irreducible and positive
recurrent. Furthermore, by solving balance equations, the
corresponding stationary distribution π is given by

πi =
{

e−ρs , if i = 0;
e−ρsρi

s/i!, if i ≥ 1.

The average queue length in the stationary state is
∑∞

i=0 πi·i =
ρs.

Since P0 = diag(λc), we have πP01 = λc. With P2 =
diag(0, µc, 2µc, · · ·), we can derive πP21 = µc

∑∞
i=0 πi · i =

µcρs.
Combining above observations and applying Lemma 3,

we conclude that ρc < ρs is the stability condition for
M/M/(M/M)/FCFS systems.

TABLE III
TRANSITION RATE OF THE JOB-SERVER MARKOV PROCESS IN

M/M/(M/M)/PS(k) SYSTEMS.

From To Rate
(nc, ns) (nc + 1, ns) λc for nc ≥ 0
(nc, ns) (nc − 1, ns) min(knc, ns) · µc for nc ≥ 1
(nc, ns) (nc, ns + 1) λs for ns ≥ 0
(nc, ns) (nc, ns − 1) nsµs for ns ≥ 1

Remarks: Recall the server dynamics of this type of systems
can be modeled by a M/M/∞ queue. In stationary state, the
average service capacity, i.e. the average number of servers, is
ρs. Therefore, Theorem 4 states that a M/M/(M/M)/FCFS
P2P service system is stable if and only if the average
workload ρc does not exceed the average service capacity ρs.
This result is consistent with stability conditions of classical
static service systems, e.g. ρc < 1 for M/M/1 systems and
ρc < s for M/M/s systems.

B. Stability of M/M/(M/M)/PS(k) Systems

As compared to M/M/(M/M)/FCFS systems, in
M/M/(M/M)/PS(k) systems, a job can only get served
by at most k servers. Its job-server process {nc(t), ns(t)}t

can still be modeled as an irreducible and aperiodic two-
dimensional birth-death process with infinity number of states,
but with a different set of transition rate given in Table III.

It is not difficult to verify that an M/M/(M/M)/PS(k)
system is a non-homogeneous QBD, and its transition matrix
QB is given by

QB =




V P0

P
(1)
2 P

(1)
1 P0

P
(2)
2 P

(2)
1 P0

P
(3)
2

.

. . .




(8)

where P0 = diag(λc), P
(i)
2 = diag(min(ki, j) · µc, 0 ≤ j) ,

for i ≥ 1 describing the job departure rate when there is i

job within the system. V is as given by (5), and P
(i)
1 satisfies

(P0 + P
(i)
1 + P

(i)
2) · 1 = 0 and is given by

P
(i)
1 = diag(−λc −min(ki, j) · µc, 0 ≤ j)) +



−λs λs

µs −λs − µs λs

2µs −λs − 2µs λs

.


 ,(9)

By building a series of homogeneous QBD and ap-
plying Lemma 3, we have the stability condition for
M/M/(M/M)/PS(k) systems as follows.

Theorem 5 (Stability for M/M/(M/M)/PS(k) systems):
A M/M/(M/M)/PS(k) queuing system is stable if and
only if

ρc < ρs. (10)

Proof: We first prove the necessity of the condition.
Suppose ρc ≥ ρs, then applying Lemma 3, we can verify

4

the homogeneous QBD with transition matrix QA given by
(3) is unstable: Note the departure rate in QB given in (8)
is less than or equals to that of QA given in (3) for every
state. Therefore, if the QBD process associated with QA is
unstable, so is the job-server process associated with QB . This
completes the proof of necessity.

We now show the sufficiency of the condition. We first
construct two series of QBD processes, whose transition
matrices are given as: for all i ≥ 0,

Q(i) =




V P0

P
(1)
2 P

(1)
1 P0

P
(2)
2 P

(2)
1 P0

.
P

(i)
2 P

(i)
1 P0

P
(i)
2 P

(i)
1 P0

.




,

and

Q′(i) =




V P0

P
(i)
2 P

(i)
1 P0

P
(i)
2 P

(i)
1 P0

P
(i)
2

.

. . .




,

respectively.
For any i, the two QBD processes associated with Q(i)

and Q′(i) respectively will have the same stability since their
transition rates are only different in the first finite levels.
Since the QBD processes associated with Q′(i), (i ≥ 0), are
homogeneous, their stability conditions are simply ρc < Fi

according to Lemma 3, where

Fi =
ki∑

j=0

πj · j +
∞∑

j=ki+1

πj · ki

is a constant depending on the stationary distribution π.
Notice that sequence {Fi}i is increasing and has a limit of

ρs =
∑∞

j=0 πj · j. Thus if we have ρc < ρs, there must exists
a t that ρc < Ft. Therefore the QBD process associated with
Q′(t) is stable, and so is the QBD process associated with
Q(t).

Now we compare Q(t) and QB given in (8). Observing the
departure rate in Q is larger than or equals to that in Q(t)

for every state, we conclude the job-server process associated
with QB is stable. This completes the proof of sufficiency.
Remarks: Theorem 5 states that for M/M/(M/M) systems,
using PS(k) or FCFS policy leads to the same stability
condition. Intuitively, this is because these two policies both
allow full utilization of the system service capacity when the
number of jobs is large (i.e. when the system is crowded),
and differ only when the number of jobs is small. Since the
stability is determined by the service capacity utilization when
the system is crowded, it is not surprising that these two
policies leads to the same stability condition.

TABLE IV
TRANSITION RATE OF THE JOB PROCESS IN M/M/(−/−) SYSTEMS.

From To Rate
nc nc + 1 λc for nc ≥ 0
nc nc − 1 ncµc for nc ≥ 1

C. Stability of M/M(−/−) and M/M/(−/ + G) Systems

In M/M(−/−) systems, every job arrival (departure) also
brings in (takes away) a server. So it is sufficient to describe
only the job dynamics to represent the entire system.

The job process {nc(t)}t is a one-dimension birth-death
process with transition rate given in Table IV, which is exactly
same with the job process associated with a classical M/M/∞
system. Since M/M/∞ systems are always stable, so are
M/M/(−/−) systems.

For M/M/(−/ + G) systems, since peers may stay in
the system for a while to serve others after its job has been
finished, the total number of servers would always be larger
than the total number of jobs. Since M/M/(−/−) systems
are always stable, so are M/M/(−/ + G) ones.

In practical P2P file downloading systems, this result indi-
cates that as long as every joining peer brings in some service
capability with it, the system is always stable.

IV. MODELING PEER-TO-PEER STORAGE SYSTEMS

Let us consider Wuala [8] as an example of a P2P storage
system. Wuala allows users to store and share files online.
Instead of relying purely on centralized (and deployed) servers,
Wuala relies on peers to contribute their disk space to help
provide the service. These peers may be users of the system
or may be pure storage sellers who only contribute to (without
using) the service. For the purpose of this modeling exercise,
we assume the requests for files are independent from the peers
providing the storage, who are referred to as storage peers.

To store a file into the system, Wuala encrypts it, erasure
codes it into fragments, and stores the coded fragments at
different storage peers. To retrieve a file from the system,
Wuala first locates the fragments using a distributed hash
table (DHT), then downloads fragments from multiple storage
peers simultaneously. After sufficient fragments are down-
loaded, the file can be decoded and restored. This approach
not only saves the deployment (and maintenance) costs of
centralized servers, but can also provide better download rate
for users, since it utilizes the upload bandwidth of multiple
peers instead of sharing the upload bandwidth of a centralized
server.

In studying the performance of systems based on centralized
servers, we may apply classical queueing theory to determine
the number of servers needed to support a certain workload.
For a P2P storage system such as Wuala, there is a correspond-
ing question of what type of online behavior of the storage
peers is necessary to ensure the download request rates can
be satisfied, which is exactly the kind of questions that can be
addressed by the P2P queueing model proposed in Section II.

In modeling Wuala as a queueing system, we assume the
availability of the file is not an issue, as it can be taken care

5

TABLE V
KEY PARAMETERS FOR MODELING P2P STORAGE SYSTEMS

Notation Definition
ζ arrival rate of storage peers.
tON average online time of a storage peer.
ru upload bandwidth of each storage peer.
rd download bandwidth of each downloading peer.
L average file length in the system.
γ file download request arrival rate.

of by sufficient redundancy. The key performance problem
would be whether there is sufficient bandwidth to support the
download requests.

The key parameters used in modeling a P2P storage system
are listed in Table V.

If we assume server online/offline time and file length to
follow exponential distributions, and the arrival of file down-
load requests to follow a Poisson process, then such a P2P
storage system can be modeled by an M/M/(M/M)/PS(k)
model, where

λs = ζ , µs = 1/tON, (11)
λc = γ , µc = ru/L, and (12)

k = rd/ru . (13)

Applying Theorem 5, we know that stability does not
depend on k, and the stability condition ρc < ρs reduces to

ζtON · ru > γL, (14)

The left hand side represents the total supply (of uplink
bandwidth) whereas the right hand side represents the total
demand of downloading requests. The insight from this result
is the relationship between storage peers’ online behavior and
the system’s capacity. The online behavior of storage peers
can be adjusted by the policy for rewarding them, thus the
system capacity could be controlled.

In the next section we show some simulation results which
may give more insights on building P2P storage systems.

V. SIMULATION RESULT

In this section, we run numerical experiments to verify the
stability conditions we derive in Section III for different types
of systems, and explore other system performance metrics. The
value of time and parameter λc, λs, µc and µs are normalized
so we omit the unit of them when showing the results.

A. Verification of stability condition

In this experiment, we verify the stability conditions for
M/M/(M/M)/FCFS and M/M/(M/M)/PS(k) systems
given in Theorem 4 and Theorem 5. We fix ρs by fixing λs

and µs, vary ρc by fixing µc and changing λc, and see how
the time a job spends in the system change. In particular, we
simulate 20000 arriving jobs and record the time each of them
spends in the system. The initial value of nc and ns is 0 and
ρs respectively.

We also evaluate the stability of a system with general ser-
vice time distribution, i.e. an M/G/(M/M)/FCFS system.
We use a service time distribution which is converted from a

file size distribution measured from practical P2P file sharing
system [10].

We fix λs = 0.005, µs = 0.0005 and µc = 0.006, adjust λc

so that ρc/ρs = 0.85, 0.95, 1.05, 1.15, and 1.25 respectively,
and the result is shown in Fig.1. From the result, it can be
inferred that when ρc/ρs < 1, the total time a job spends in
the system is bounded. However, if ρc/ρs > 1, the time a job
spends in the system has a trend of increasing unboundedly
by time. This verifies that the stability condition ρc/ρs > 1
holds for M/M/(M/M)/FCFS and M/M/(M/M)/PS(k)
systems, as well as for M/G/(M/M)/FCFS systems.

Fig. 1. The time job spends in the systems with different ρc/ρs.

B. Impact of Server Dynamics

It would be interesting to compare the performance of P2P
service systems with same average service capacity (i.e. same
ρs) but different server dynamics (i.e. different λs and µs).

In this experiment, we fix ρs = 10, and adjust the value of
λs and µs proportionally to form several systems with different
server dynamics. All systems have the same λc and µc; hence,
they have the same average workload.

6

TABLE VI
AVERAGE AND STANDARD DEVIATION OF TOTAL TIME SPENT

λs 0.1 0.01 0.001 0.0001
average 104 331 2030 29030

standard deviation 114 453 3630 38001

We simulate the systems with 106 job arrivals, and record
the cumulative percentage of time a job spends in the system.
The initial value of nc and ns is 0 and ρs, respectively. The
results of λs equal to 0.1, 0.01, 0.001 and 0.0001 are shown
in Fig.2. The average and standard deviation of the time a job
spends in different systems are summarized in Table VI.

Fig. 2. Cumulative percentages for time a job spends in systems with constant
ρs but different λs.

These results indicate that with fixed average service ca-
pacity, a job would spend less time in systems with high
server dynamics than in systems with low server dynamics,
averagely. To explain this, we first define the system is in
“surplus stage” if the service capacity is no less than workload
ρc, and is in “deficiency stage” otherwise. Compared to high
server dynamics, low server dynamics lead to longer stay in a
stage each time the system enters it but less frequent switches
between stages.

In a system with low server dynamics, the queue builds up
when the system is in “deficiency stage” before it gets clear
after the system switches to “surplus stage”. Thus the queued-
up jobs spend longer time in the system. On the contrary, in
a system with high server dynamics, the switching between
stages is more frequent. Consequently, less jobs get queued
up in the “deficiency stage” before the system switches stage,
resulting in less time in the system in average.

Consider the P2P storage system we modeled in Section IV.
Remembering that we have λs = ζ and µs = 1/tON, the
simulation result indicates that, a system in which servers
get online/offline more frequently would have a better per-
formance, by shorter average file downloading time.

VI. DISCUSSION AND FUTURE WORK

In this paper, we extend classical queuing models to rep-
resent P2P service systems where both job and server arrive
and depart randomly. We develop a taxonomy for different

variations of these queueing models, and study the stability
conditions for several classes of the models.

For M/M/(−/−) models where job and server dynamics
are identical, we show that the system is always stable. This
confirms the observations in practical P2P streaming systems.

For M/M/(M/M) models where job and server arrive
independently, we show that the system is stable if its average
service capacity is larger than the average workload. This
stability condition is similar to that of static service systems.
The limitation of that a single job can get service from
only limited number of servers has no effect on this stability
condition.

As shown in our numerical experiments, the service dy-
namics in the P2P service systems helps to reduce the time a
job spends in the system. We plan to further characterize this
effect in future work.

We believe that there is lots of possible further work in the
area. Future work directions include study of M/G/(M/M)
systems with general service time distribution, system with
different classes of service policy, system with different type of
job/server correlation, and system with heterogeneous servers.
It would also be interesting to derive more analytical results
than just stability. An example would be average queue length.
Applying Little’s Law [1], the study on average queue length
would lead to the result on average service time, which may
give us more insight on the performance of P2P systems.

REFERENCES

[1] L. Kleinrock, Queueing systems. Vol. 1, Theory. Wiley NewYork, 1975.
[2] F. Baskett, K. Chandy, R. Muntz, and F. Palacios, “Open, closed, and

mixed networks of queues with different classes of customers,” J. Assoc.
Comput. Mach, vol. 22, no. 2, pp. 248–260.

[3] D. Qiu and R. Srikant, “Modeling and performance analysis of
BitTorrent-like peer-to-peer networks,” in Proceedings of SIGCOMM
2004, New York, NY, USA, 2004, pp. 367–378.

[4] B. Fan, D. Chiu, and J. Lui, “The Delicate Tradeoffs in BitTorrent-
like File Sharing Protocol Design,” in Proceedings of ICNP 2006,
Washington, DC, USA, 2006, pp. 239–248.

[5] F. Clevenot, P. Nain, and K. W. Ross, “Multiclass P2P Networks:
Static Resource Allocation for Bandwidth for Service Differentiation
and Bandwidth Diversity,” Performance Evaluation, vol. 62, pp. 32–49,
2005.

[6] R. Kumar, Y. Liu, and K. W. Ross, “Stochastic Fluid Theory for P2P
Streaming Systems,” in Proceedings of IEEE Infocom, 2007.

[7] D. Wu, Y. Liu, and K. W. Ross, “Queueing Network Models for Multi-
Channel P2P Live Streaming Systems,” in Proceedings of IEEE Infocom,
2009.

[8] “Wuala, the social online storage,” http://www.wuala.com.
[9] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Meth-

ods in Stochastic Modeling. SIAM, 1999.
[10] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy, “An analysis

of Internet content delivery systems,” ACM SIGOPS Operating Systems
Review, vol. 36, pp. 315–327, 2002.

