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Abstract—The peak-demand charge motivates large-load cus-
tomers to flatten their demand curves, while their self-owned
renewable generations aggravate demand fluctuations. Thus, it is
attractive to utilize energy storage for shaping real-time loads and
reducing electricity bills. In this paper, we propose the first peak-
aware competitive online algorithm for leveraging stored energy
(e.g., in fuel cells) to minimize peak-demand charges. Our algo-
rithm decides the discharging quantity slot by slot to maintain the
optimal worst-case performance guarantee (namely, competitive
ratio) among all deterministic online algorithms. Interestingly, we
show that the best competitive ratio can be computed by solving a
linear number of linear-fractional problems. We can also extend
our competitive algorithm and analysis to improve the average-
case performance and consider short-term prediction.

I. INTRODUCTION

Utilities are motivating customers to play a more active
role in power systems by introducing new pricing schemes,
e.g., Time-of-Use (TOU), Real-Time Pricing (RTP), and Peak-
Time Rebates (PTR). Notably, for large-load customers, in
addition to the volume charge associated with the amount
of consumed energy, utilities introduce the peak-demand
charge [1], which sets a punitive charge on the maximum
power during the billing period. Typically, the demand charge
rate is over 100 HK$/kW, while the volume charge prices are
around 50 cents/kWh in Hong Kong. Thus, it is no surprise that
the peak-demand charge often accounts for a large portion of
a commercial or industrial customer’s bill, e.g., up to 90% for
DC fast charging stations [2]. The heavy peak-demand charge
drives customers to flatten their demand curves.

To reduce electricity purchases, energy consumers have
been installing solar roofs or wind turbines. However, such
volatile renewable generations aggravate demand fluctuations
and render it harder to tame the peak-demand charge.

Energy storage has been a useful tool for peak shaving
in power systems and is attracting large-load consumers’
attention to reducing electricity bills. We herein focus on
discharging the stored energy in an online fashion for peak-
demand charge minimization. We consider discharging only
from two aspects. First, recharging in an on-peak period is
neither economic nor friendly to power systems. The volume
charge rates are higher by TOU pricing, while recharging
may increase the accumulated peak demand in a commu-
nity microgrid. Second, it is inconvenient to recharge certain
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storage systems during use, such as fuel cells and pumped
storage. Also, frequent charging and discharging behaviors
may shorten the battery life. Last but not least, studying the
storage discharging can shed light on the more complicated
case regarding the charging/discharging joint optimization.

Designing an online discharging algorithm for reducing the
peak-demand charge is challenging due to the non-cumulative
nature of peak usage and the volatility of demands. Substantial
existing results apply stochastic optimization or robust opti-
mization. However, these methods may suffer from inaccurate
estimations and the inefficiency of considering the worst
absolute performance. Instead, we herein exploit the online
algorithm design with competitive analysis, which relies little
on future predictions and features the worst-case online-to-
offline performance, referred to as Competitive Ratio (CR).

We propose the first peak-aware competitive online storage
discharging algorithm with the optimal competitive relative
performance guarantee regarding the peak-demand charge.
Our algorithm adopts an intuitive and innovative CR-Pursuit
framework [3], [4] and decides the discharging quantity slot by
slot to maintain the optimal CR among all online algorithms. A
unique technical contribution is that we obtain the best CR by
solving a linear number of linear-fractional programs. We also
extend the original algorithm to an adaptive one that improves
average-case performance by exploiting the real-time informa-
tion. Moreover, we adapt our algorithm to incorporate look-
ahead information and obtain a better performance guarantee.
Please refer to [5] for more technical details.

II. PROBLEM FORMULATION

Consider an on-peak period of T time slots. Let c be the
storage capacity and δ̄ be the ceiling discharging quantity in
a time slot. Given the demand profile d ∈ RT , we formulate
the Peak-Aware Discharging (PAD) problem as follows:

PAD: min
δ∈RT

max
t∈[T ]

(dt − δt)

subject to
T∑
t=1

δt ≤ c; (Inventory Constraint)

0 ≤ δt ≤ min{δ̄, dt}, for all t ∈ [T ],

where [T ] , {1, 2, . . . , T}, δt is the discharging quantity
of time slot t, and maxt∈[T ] (dt − δt) is the peak usage.
We can easily solve the offline PAD and obtain the op-
timal objective value v(d) by linear programming. How-
ever, owing to the volatile real-time demands, we merely
know in advance the lower and upper bounds of the de-
mand in each time slot, namely dt ∈ [d, d]. An online dis-



charging algorithm A has to determine δt without know-
ing dk, k > t, while the prior knowledge includes the
sequentially revealed demands and discharging quantities of
past time slots together with the demand bounds. Let vA(d)
be the ultimate peak usage under the algorithm A and the
demand profile d. The CR of A is CRA = maxd∈D

vA(d)
v(d) ,

where D = {d ∈ RT | d1 ≤ d ≤ d1}. Our objective is to de-
sign an online algorithm such that its CR is as small as
possible. Despite the generality of PAD, to the best of our
knowledge, no existing results have studied optimal competi-
tive online algorithms for PAD. Without loss of generality, we
assume that c ≤ Td as we consider large-load customers.

III. OPTIMAL ONLINE DISCHARGING ALGORITHM

Let π∗ be the optimal competitive ratio among all online
algorithms for PAD, given the parameters T, c, δ̄, d, d. Our op-
timal online discharging algorithm pCR-PAD(π∗) sequentially
determines the discharging quantity of time slot t as follows:

δt = [dt − π∗v(dt)]+,

where [x]+ , max{x, 0}, dt = [d1 d2 · · · dt d · · · d]′,
and v(dt) is the optimal objective value of PAD under dt.

Theorem 1. pCR-PAD(π∗) achieves the optimal competitive
ratio among all online algorithms for PAD.

The above theorem and the algorithm pCR-PAD(π∗) are
concise and intuitive. We attain the optimal discharging algo-
rithm by maintaining the online-to-offline ratio of peak usage
under the reference input dt to be no more than the best
possible CR π∗, namely, maxk≤t(dk − δk)/v(dt) ≤ π∗. A
critical issue remains unsolved: how can we obtain the smallest
CR π∗? While π∗ varies along with the parameters T, c, δ̄, d, d,
we can compute π∗ according to the following theorem.

Theorem 2. Given T, c, δ̄, d, d, it holds that

π∗ = max
d∈D,k∈[T ],k>bc/dc

∑
i∈[k] di − c∑
i∈[k] v(di)

. (1)

By Theorem 2, we next show how to obtain π∗ via a linear
number of linear-fractional programs. For each k ∈ [T ], the
right part of (1) is equivalent to the following linear-fractional
program, where we substitute a variable vi for v(di):

max
d∈D

∑
i∈[k] di − c∑
i∈[k] v(di)

:= max
d∈D,vi,δij

∑
i∈[k] di − c∑
i∈[k] vi

subject to
T∑
j=1

δij = c, for all i ∈ [T ];

0 ≤ δij ≤ δ̄, for all i, j ∈ [T ];

dj − δij ≤ vi, for all 1 ≤ j ≤ i ≤ T ;

d− δij ≤ vi, for all 1 ≤ i < j ≤ T.

Adaptive pCR-PAD Algorithm: Next, we shall improve
the average-case performance by absorbing real-time infor-
mation while maintaining the optimal worst-case performance
guarantee. Specifically, the adaptive pCR-PAD algorithm im-
proves pCR-PAD(π∗) by maintaining a better ratio π∗t in each
time slot, namely,

δt = [dt − π∗t · v(dt)]+, for all t ∈ [T ],

where π∗t = max
di∈[d,d],t≤k≤T

∑
i∈{t,...,k} di −

(
c−

∑t−1
i=1 δi

)
∑
i∈{t,...,k} v(di)

.

We see that π∗t is no more than π∗ and non-increasing in t.
Here is the simple intuition behind the adaptive pCR-PAD: if
the observed data dk, k < t can never be the first t−1 elements
of a worst-case demand profile regarding the online-to-offline
ratio of peak usage, then we should update our knowledge on
worst cases and maintain a better ratio π∗t , instead of π∗t−1.

pCR-PAD Algorithm with Look-Ahead Information:
We extend our optimal discharging algorithm to the case
where there is a look-ahead window of size W ∈ [T ]. That
is, we know dk, k ∈ [1,min{T, t + W}] at time slot t. We
denote by πW the optimal CR in this case. Again, we can
compute πW by linear-fractional programs, as shown below.

Theorem 3. Given T, c, δ̄, d, d,W , it holds that

πW = max
d∈D,I⊆[T ]

∑
i∈I di − c∑

i∈I v
(
dmin{T,i+W}

) .
IV. SIMULATION RESULTS

By the real data from an electric vehicle charging station,
we uniformly set T = 20, d = 442.8, and d = 1020.9 for all
instances. In practice, we can estimate these parameters based
on historical data and update them in real time. The capacity
rate refers to the ratio between the storage capacity c and the
average total consumption of sampled demand profiles. The
peak usage rate means the ratio between the ultimate peak us-
age under each algorithm and the original peak demand. Fig. 1
illustrates that our adaptive pCR-PAD algorithm attains better
peak reduction effects in both the average case (marked points
in lines) and the worst 15% case (cap lines) under different
storage capacities, in comparison with several threshold-based
algorithms and Receding Horizon Control (RHC) algorithms
of the same look-ahead window size W = T/4. On average,
our adaptive algorithm improves cost saving on the peak-
demand charge by about 19% as compared to alternatives.
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Fig. 1: Comparison with threshold-based and RHC algorithms.
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