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Abstract—Orthogonal ~ Frequency —Division  Multiplexing each mobile device needs to be communicated to the scheduler
(OFDM) with dynamic resource allocation is widely consideed and the scheduler needs to convey the scheduling decisions
to be a key component of most emerging broadband wireless back to the mobiles, all with short delays.

access networks. However, resource allocation in an OFDM . .

system is complicated, especially in the uplink due to the There aré two d|§advantages of the above Centrghzed ap-
heterogeneity of the users’ subchannel conditions, indidual Proach: (i) The mobiles are forced to reveal all local infarm
resource constraints and application requirements. We fomulate  tion to the centralized schedular, which may not be desrabl
the resource allocation problem as a convex optimization in certain applications due to privacy concerns. (ii) The-ce
problem, which has a unique optimal objective value but ygjized schedular needs to have sophisticated compnétio

might have multiple corresponding optimal solutions. We tten o - . R .
prgsent a primal-rt)nlual base%l algogr]ithr% that is distributed, low capability to finish complicated optimizations with a short

complexity, and is provably global convergent to the optima delay. Due to these two reasons, in this paper we will discuss
solutions. The convergence and optimality of the algorithmis how to design a distributed resource allocation algoritiom f

studied through a realistic OFDM simulator. uplink OFDM systems. The proposed algorithm is based on
a primal-dual approach. It only requires simple updatesat t
mobile users and the base station, thus is scalable withonletw
size. Furthermore, it is guaranteed to converge to the @pbtim
Orthogonal Frequency Division Multiplexing (OFDM) is asplutions under proper update rules, despite of the nact-str
promising technology for future broadband wireless nekspr concavity of the optimization problem.
due to many of its advantages such as robustness againsthe rest of the paper is organized as follows. The precise
intersymbol interference and multipath fading, and no rfeed problem is stated in Section II. The primal-dual based algo-
complex equalizations. It is the core technology for a numbgthm is proposed in Section IlI, and its convergence betravi
of wireless data systems, such as IEEE 802.16 (WiMAXjs analyzed in Section 1V. Simulations results on convecgen

IEEE 802.11a/g (Wireless LANSs), and IEEE 802.20 (Moand optimality are given in Section V and we finally conclude
bile Broadband Wireless Access). In this paper, we copy Section VI.

sider the problem of uplink resource allocation for OFDM
wireless access networks. This problem is motivated by the [I. PROBLEM STATEMENT
WiMAX/802.16e standart During each time slot, the sched- \ve consider a system model similar as in [1]. The key
uler at the base station needs to make the following resoug&ations are listed in Tablé.IWe consider a single OFDM
allocation decision: which subset of users to schedule, f0owg|| \where there is a set of1 = {1,..., M} users trans-
allocate the subchannels to the users and the corresponqmging to the same base station. Each user M has a
power allocation across these subchannels. _total transmission power constraid};, and priority weight
Using OFDM on the uplink of an access network with),. e will later discuss how these weights are derived in
dynamic resource allocation has only recently attractedl Shyactice. The total frequency band is divided into a set of
nificant attention. Thus the literature on this subject if8 st _ {1,...,N} subchannels (e.g., frequency bands), and a
in a nascent state (e.g., [1], [10], [11]). The authors Qfser; can transmit over a subset of the subchannels, with
[1] considered the same problem as in this paper and dgsnsmit powerp,; over subchannej. For channelj, it is
signed centralized optimal and various heuristic algatgh g iocated to user with fraction z,;, and the total allocation
accordingly. In particular, the optimal algorithm req@irhe 5.,0ss all users should be no larger thare., 3, z;; < 1.
scheduler to solve a linear programming problem to dete¥min | every scheduling epoch, the scheduler seeks to maximize
the fractional channel allocations after the multi-dinienal 5 (time-varying) weighted sum of the users’ rates over argive
subgradient search converges. Furthermore, since the algpne-varying) rate-region. Next we will describe this shi
rithm is centralized, various information such as the Q te-region. We represent the time-varying subchannditgua
classes, queue-lengths and delays of the packets queued,Qor at timet as e;, wheree;; is the received Signal-to-
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versity of Hong Kong, e-mail{ni nghua, j whuang}@ e. cuhk. edu. hk. j. As in [4], this model can also incorporate various sub-
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1LTE for 3GPP and 3GPP2 and the FLASH OFDM system from Qualcomm 2we use bold symbols to denote vectors and matrices of themetities,
Flarion also fit the model we consider in this paper. Furtanthis model e.g., w = {w;,Vi}, e = {e;;,Vi,j}, p = {pi;,Vi,j}, andxz =
is applicable for both FDD and TDD systems. {zij,Vi,j}.

I. INTRODUCTION



TABLE |

KEY NOTATIONS utility across all users at time More precisely, the scheduler

seeks to maximize the projection 8f onto the gradient

Notation | Physical Meaning VwU(Wt, Qt) _ VqU(Wt, Qt),
N total number of subchannels
N set of all subchannels where
M total number of users K
M set of all users UW, Q) = Z Ui(Wit, Qi)
w; users’s (dynamic) weight p—
€ij normalized SINR on subchannglfor user: .
Dij power allocated on subchannglfor users We further assume that for each user
Tij fraction of subchannej allocated to uset d;
P; maximum transmit power for user UWi, Qi) = ui(Wiy) — ;(Qi,t)p,

where u;(W;+) is an increasing concave functiod; > 0

is a QoS weight for usei’s queue length, angg > 1 is a

performed in terms sets of frequency bands in the frequengy, oo parameter associated with the queue length. Hence
domain or with a granularity of multiple symbols in the iM&4 resource allocation decision is the solution to
domain.

Let R(e;) denote the feasible rate region at time.e., max )(VwU(Wt, Q)" =V UMW, Q)" -ry
, e . 6ui(wit) _
_ M ... . Pijeij _ 5 . . 1 .
R(e:) = {r eRy iy = jEGNx” log (1 + 5 ,) , Vi g M}, —mmeg();) 1- (7811’” +di(Qit)? Tyt (5)

@) Several variations of the policy in (5) have been studied. If
d; = 0 for all i € M, the resulting policy has been shown
inj <1VjEN, @) to yield utility maximizing solutions [3], [7], [8]. A spefic

where(x, p) € X are chosen subject to

choice ofd; for “usual” utility functionsu;(-) has been shown
to produce utility maximizing solutions subject to statlyili6].

Zpij < P,Vie M, @) As a concrete example, one class of utility functions typi-
J cally used (e.g. [2], [9]) foru,(-) is
and the set (W) { S(W1)*, a<l, a#0 ©)
ui(Wig) =4 @ T —
X:={(x,p)>0:0<mz; <1,Vij}. 4) cilog(Wit), a=0,

) . . wherea < 1 is a fairness parameter ang > 0 is a QoS
In practical OFDM systemsy;; is constrained to be an eijght. In this case, the objective in (5) becomes
integer, in which case we add the additional constrajnte
{0, 1} for all 4, j. The integer constraint makes the resource al- Z (ciWi)* " 4+ di Qi) ") Tie.
location very difficult to solve, and various heuristic afigfoms i
to deal with such constraint are proposed in [1]. In this pap&Vith zero queue weightd;, and equal throughput weights,
we will ignore this integer constraint and focus on the ratgettinga = 1 results in a “maximum throughput” scheduling
region defined by (1) to (4). The corresponding solution willule that maximizes the total throughput during each slot. F
typically contain fractional values of;;'s. There are several o = 0, this results in the proportional fair rule [5].
practical methods of achieving these fraction allocatidfoy The optimization in (5) can be written as
example, if resource allocation is done in blocks of OFDM
symbols, then fractional values of; can be implemented by rER(er) Zwl tTi,¢s
time-sharing the symbols in a block. Likewise, if the number ) ) " ) )
of subchannels are large enough so that the subchannel SN§réw:,: > 0 is a time-varying weight assigned to th
do not change dramatically among adjacent subchannets, tger at timez. Our focus in this paper is on solving such
the fractional value of;; can also implemented by frequency? Problem for an uplink OFDM system, i.e., whé{e;) is
sharing (e.g., [11]). given by (1). For simplicity we will drop the time index
Next we formulate the resource allocation problem, which

is essentially a weighted rate maximization problem. Irtipar ~ !!l- PRIMAL-DUAL ALGORITHM TO FIND OPTIMAL
ular, the priority weights are motivated by the gradiensdzh SOLUTION
scheduling framework presented in [3], [7], [8]. Each user Before solving problem in (7), let us first rewrite it in
i is assigned a utility functiot/;(W; ., Q;,) depending on variablesz andp directly instead of in rate-. Problem (7)
their average throughpu¥; ; up to timet and their queue- can be written as

()

length Q; ; at timet. This is used to quantify fairness and e

abili : : >y log (14 22 8)
ensure stability of the queues. During each schedulinglepoc (:cné?gx Wi Tij 108 o
t, the system objective is to choose a rate veetoin R(e;) ieM o jeN ’

that maximizes a (dynamic) weighted sum of the users’ ratesibject to the per subchannel assignment constraints am(2)
where the weights are determined by the gradient of the suine per user power constraints in (3), whéras given in (4).



It can be shown that the objective function of problem in (8nd
is continuous and concave over the constrainfisahus there i (i, pij) = '
is no duality gap between it and its dual problem. However, Tij + €5 T Pijeij
the objective’s derivative is not well defined at the oridiiis To pursue the saddle points of the Lagrangian function, we
motivates us to look at the followingrelaxed version of the .ynsider the following primal-dual algorithrivi, j,
problem in (8):

w; (Tij + €5)€ij

Dii€i Ti; = kfg (fij(ij, pig) — UJ);;]. ) (11)
max w; Z (x5 + €i5) log (1 + #) , (9) ) A 12
(@p)eX JeN Tij + €45 Pij = Ry (935 (w35, pij) — )pij ) 12)
where constants;; takes small positive value for alland ;. P Zx o 1) (13)
The constraint set remains the same. I Y '
By such relaxation, the objective function in the new j+
problem in (9) now has derivative defined everywhere in the .
constraint setY. Thanks to the continuity of the objective i o=k} Zpij -B (14)
function, the optimal value to the relaxed problem in (9) can J A
EGZGEZZI’U@I:I% gocsr?o;zr:htgtbi gr]r?alcl) régg:gslgrp]).roblem in (80, i herekfj, kfj, k¥ andk? are constants representing adaption

Elates It is easy to verlfy that equilibria of the above syste

e the wanted saddle points.

Applying primal-dual algorithms to solveon-strictly con-
cave optimization problem in general encounters challenge
in guaranteeing its convergence. For instance, it has been

The existence of derivatives allows us to write down
primal-dual algorithm to pursue the optimal solution to th8
relaxed problem in (9). The Lagrangian for the relaxed prob
lem in (9) is as follows,

A 1 Dij€ij shown that primal-dual algorithms can fail to converge in a
L\, po,p) == D wiaj + eij) log ( 1+ T+ € non-strictly concave optimization setting in a commurimat
g network setting [14]. In the next section, we study dynamics

of the above primal-dual algorithm and show it does not
+ Z Ai | Bi— Zpij + Z py | 1= inj - (10) converge in general. Then we derive a sufficient condition fo
i J J i its convergence. Utilizing this condition, we put congitai
The strong duality theorem implies that the optimal prinrad a On adaptation rates of our proposed primal-dual algoritam t
dual solutions must satisfy KKT conditions, i.e., for aland warranty its convergence.
ja
IV. CONVERGENCE OF THEPRIMAL -DUAL ALGORITHM
u; 20, inj <1, u (inj - 1) = 0, In this section, we study convergence of the proposed
i i primal-dual algorithm. We first show the trajectories caee
to an invariant set that contains all wanted saddle points.

Ai 20, Zpij <P, A Zpij - b = 0, Theorem 1: All trajectories of the non-linear primal-dual
J J system in (11) to (14) converge to an invariant Bgiglobally
zi; 20, py = 0, asymptotically. Furthermore, lét*, p*, \*, u*) be any saddle
eoi (wiloe (1 4+ Pij€ij '\ _ point of the Lagra_ng|an function in (10), the following isi&r
g\ Wilos Tij + €ij on ¥, and any point{(z, p, A\, u) € Vj,
WiPijeij 3 > < 0 . (:C*.,p*,)\*,u*) is co_ntained inVy;
Tij + €ij + pijei; = e Ai is nonzero only |_f2j pi; = P
o < wiey (xy +ey) )\i> . . ujpf nonze;g only ify_; a7, =1,
Tij + €ij + Pijeij * Tite; | mhten”

The last two inequalities become equalitieszif > 0 and Proof: Let (z*,p*,u",\*) be one point satisfying the
qi; > 0, respectively. The points satisfying above KKTKKT condition. Motivated by the Lyapunov function used
conditions are exactly the saddle points of the Lagrangiéh[12], we consider the following La salle function

function in (10). Since the primal problem has at least one

solution, these saddle points exist. Vizp, ul’ A . Ly
" + _ ij . ij N
Define (a)" = max(a,0), and = Z T / (€ —aj;) d§ + Z P / (€ — py;) d€
(a)) { % b>0; ij 0 ij 00
max(a,0), otherwise. 1 I “ 1 «
(@0 3 [ e Y e

For ease of use in following sections, we define PR AL i g0
fir sy pr) = wilog ( 1+ DijCij W;Pij€ij It is straightforward to verify thal” is semi-positive definite.

ij\Tij, Pij) = Wi 08 2y +ey) 1y +ey+pgey lts Lee derivative over an invariant s, p, u, A)|z > 0,p >



O0,u>0,A> O} is given by

oV
V= E ,T”-i-g 8 pU E a—uj—i—
J

BV
—\
O\

< Z(AZ— - \) Zp;;- - P,
>

(=) (ij - 1) +

S (U5 05] — [u3 X)) [
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S (i 066 — 150 0) [
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*
— ]
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~ Pij

The first sum is non-positive, singe,; p;; < P; and\; =0

Lij
Dij

when} . p;; < P;. Following the same logic, we determin

the second sum to be non-positive.

The third sum is also non-positive singg (z;,p;;) <
and the inequality holds only when;; 0; S|m|IarIy,
g9ij(z;,pi;) < A, and the inequality holds only wheii; = 0.
For z;; # 0, we havep;; # 0 and

[fij(xzj’p:j)?gij (‘TZ?pr]] [U’]?)\z]

is the gradient of following

).

and [fi;(xij, pij), 9ij (xijvpij]T
function

PijCij
Tij + €ij

Hij(xij, pij) = wi(wi; + €i;) log (1 +
By concavity of the functiord;;, we have

Hij(wij,piz) < Hij(z;,pi;)+

T — qx¥
VH;;(z};, ph * wol, 15
H;j(z3;,p3;) < Hij(xij, pij)+
x’f‘, — X
VHZ" LiiysPij ij K . 16
i ‘7p‘7)[pij—pij ] (16)

Consequently, the inner product of the gradient differearod
the variable difference is non-positive, i.e.
] <0,
Hence, the fourth sum is also non-positive.
As such, we havé” < 0. According to La Salle princi-
ple [13], trajectories of the system in (11) to (14) conveige

the setVy = {(x,p, \,u) : V = 0} globally asymptotically.
Over setl), we have the following observations:

e \; is nonzero only ifsz;‘j = P;;
} —o.

*
— T

*
— Dij

xij

(U3 @igs pi )s 92y (wigs pig)] = 155 9351) [ Pij

o u; is nonzero only ify, 7, = 1;
Tij — X
o ([fij»9i5] = *

Dij

ij

[ i*jvg:j]) _p:j

e

Combining the third observation with Egn. (15) and (16),
we further know that/(x, p, \, u) € Vj,
_ gcfj } '
— P

Taking the derivative of both sides, we ha¥e:, p, \, u) € Vp,

[ fij(xijvpij)
Gij (CCz'j ) pij)

Lij

Hij (i, pij) = Hij(w3;, piy) +V Hij (235, pij) { pij

] =VH; (:ij,]?rj) = constant

Multiplying a vector(1,
equation, we get

—1/e;;] on both sides of the above

1 Pij€ij
ii(Tijypii) — —9i (i, 0ij) = wilog | 1 + ——— | —w;
fij(ziz, piz) e 9ij (5, Pij) i g( + i + e i
1
= fij (Ii},pi‘j) - fgij(ﬂffj,pi‘j)
€ij
= constant

At the end, we gep;; = (z;; + e”)m. [ ]
Although all trajectories of the primal-dual system in (11)
to (14) converge tol, that contains the wanted equilibria,
they might not be able to converge to any of these equilibria.
This is becaus&) may also contain non-equilibrium points, in
particular, limit cycles. If a trajectory converges to ltraicles
in Vp, then it never has chance to converge to the equilibria.
Next we make this precise and also give sufficient conditions
under which this non-convergent behavior will not happen.
Recall that)M is the total number users arid is the total
number of subchannels. Over déf, the primal-dual system
in (11) to (14) turns into a linear one as follows:

{;;_KlAT[K:}—KlAT{z], (17)
Coelz)xl2] o
B[Izé:_o, (19)

whereK; and K, are2M N x 2M N diagonal matrices given
by

KCE
0

0

K = KP |, K,=

BisaMN x 2M N matrix given by

=[C, —=D], C =diag(cij,Vi,j),
p:]‘
xijteij’

wherec;; =

D = diag(Ind(c;j), Y1, 7),

whereInd(x) takes valuel if = > 0 and0 otherwise, and4
isa(2MN) x (M + N) matrix given by

A0
St



where A; is an N x M N matrix and is given byA; = In particular, we choosé&’; to be kI wherek is a positive
[Iy,...,In], and Az is an M x M N matrix given by constant, and<,; to be of some form that will be clear later.
By direct computation, we get

11><N 0 e 0
4 0  lixny - 0 BK\ A" =k [CA], —AL].
2 = . . . . . )
: : . : We observe thaBK; AT has at least rank/ + N — 1. This
0 0 R FIYN is becauseC' AT has N linearly independent columns; AT

has M linearly independent columns, and any + N — 1
columns of the matrix are linearly independelit AK; AT =
kK,AAT is a diagonal matrix given by:

Here Iy is an identity matrix with dimensiodV, and 1« 5
is an all one vector with dimension 1 hy.
For the above linear system, we have the following.

Lemma 1: For the linear system in (17) to (19), the follow- [M 0 -+ 0 - 0
ing is true: R |
1) Every order Lee derivative aB[z,p]” is constant, i.e., i Kv 0 o -~ M 0 -+ 0
a9 { 0 K ] o -~ 0 N -~ 0
BKlAT{gT;}:consthzl,z---. C : L

de L0 -~~~ 0 0 - N |

2) lts trajectories do not converge.

Proof: (Sketch) The first observation can be easily derivef%is long as e!theIK“ or K* is not tﬂe product of a constant
from (17) to (19). For the second observation, it is strdimht and an identity matrlx,.therngAA B ”,I has at Ie:;st one
ward to verify the transfer function matrix of the linear non-zero row for any e|genvalueof_matr|x fQAKlA '
is a product of positive diagonal matrix and a skew-symroetri Ve combine this non-zero row with 53 A™ to form a new

matrix. Hence, all eigenvalues of the transfer matrix anelyu matrix. By d0|_ng S0, Itis s_tra_lghtforwar_d to verify thief + N .
imaginary columns of this new matrix is linearly independent; hente, i

According to Lemma 1, if a trajectory of the primal-duapas rankM + N. We summarize the above analysis into the
system converges to limit cycles i, then then it never oIIC0W|r|1|g Colr.ollélry.d.t_ in (20 in Th 5 tisfied
has a chance to converge to the wanted equilibria. Ther,efoge orollary 1: Conditions in (20) in Theorem 2 are satisfie

trajectories of the primal-dual system in (11) to (14) cogee It the following is true: N
to equilibria of the system, if and only i, only contains ¢ K“ = kI and K? = kI for some positive constarit

equilibria of the system. (diagonal terms of{* and K? take the same valuk);
A . .
On the other hand, Lemma 1 states that every order Leet & OF K is not product of a constant and an identity
derivative of B[z, p| is constant. Consequently, ¥ and u matrix.
in V, are completely observable from the constatjt:, p|” Following the above choice on on adaptation rates, trajecto

through the linear system in (17) to (19), thén= 0 and ries of (z,p) of the primal-dual system in (11) to (14) converge

@ = 0. Ifall A andu in V; satisfy A\ = 0 and@ = 0, then to the optimal solutions of the problem in (9).

all z andp in V, satisfyz = 0 andp = 0, andV; contains Finally, we comment on the message passing needed in

only equilibria of the primal-dual system. We state corutii the primal-dual algorithm. The primal-dual algorithm caa b

for A andu to be completely observable frol|z, p]” and its implemented in a distributed fashion by mobile users and the

consequence on system convergence in the following theordi@ise station. A mobile useris responsible of updating;;
Theorem 2: All trajectories of the primal-dual system inandp;; for all channel;j as well as dual variablg; locally.

(11) to (14) converge to equilibria of the system globalljt also needs to send the latest valueof's to the base

asymptotically if the following conditions hold: for anygein- station, but not the;;'s and;. The base station is responsible

value of matrix K, AK; AT, denoted by, for updating dual variableg; for all channel;j locally and
broadcasting to the users. The total communication overhea
BE, AT has rankM + N (20) Per iteration would b/ +1) N messages. In particular, there
Ky ARG AT — ol ' is no need for the base station to know the weights and power

Proof: By linear system theory) andu are completely constraints of the individual users.

observable fromB[x, p]” if and only if the complete observ-

ability conditions, expressed by (20), hold [13]. Xfand « V. SIMULATION RESULTS

are completely observable from the constdtitr, p|7', then We test the convergence and optimality of the primal-

A =0andu = 0. According to (17),z andp in V; satisfy dual algorithm over a realistic OFDMA uplink simulator. We

A =0 anda = 0. As such,V, contains only equilibria of the consider a single OFDM cell model. Each user’s subchannel

primal-dual system, and Theorem 1 guarantees convergegais are the product of a constant location-based terrkegic

of its trajectories. B using an empirically obtained distribution, and a fast iadi
For the problem we studied in this paper, we verify thaerm, generated using a block-fading model and a standard

above conditions in (20) can be satisfied, by designing theobile delay-spread model with a delay spreadl0fisec.

adaptation rates of the algorithm. The system bandwidth is 5SMHz correspondingi®@ OFDM
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Fig. 1. Primal and Dual Variable Convergence of Primal-DAlgorithm global convergence despite of the existence of multiplé- opt
mal solutions. From simulations we observed that the actual
convergence time of the proposed algorithm can be long and is

tones. Resource allocation is performed using adjacentpgro heavily dependent on the choices of stepsizes. One futute wo

of 32 tones$, thus the total number of subchannels is 16. Thdirection is to design good stepsize choice rules to achieve

symbol duration isl00usec with a cyclic prefix of10usec. faster and more robust convergence.
Next we show the simulation results the primal-dual al-
gorithm with an example of 4 users. We also simulate the ACKNOWLEDGEMENT

algorithm with more users (40) and subchannels (64), but wil We want to acknowledge helpful discussions with Professor
not show the results here due to space limitations. Here tRandall Berry from Northwestern University, Dr. Vijay G.
weights of the users are randomly generated ffom], and Subramanian from National University of Ireland, and Dr.
the channel conditions are randomly generated from theeabdrajeev Agrawal from Motorola Inc.

simulator. Four users have total power constraintsigfl.5w,

2w and2.5w, respectively. The update stepsizes in (11) to (14) REFERENCES

are chosen as;; = kfj = kf‘j = ki; =0.01 for all i andj. [1] J.Huang, V. Subramanian, R. Berry and R. Agrawal, " @cheduling

The initial values of primal and dual variables are randomly ~and Resource Allocation in Uplink OFDM Systemgroc. of Asilomar
Conference, Pacific Grove, CA, Nov. 2007.

_ 10—4 . S
generated. We choosg; = 107" for all z and j. Figure 1 [2] R. Agrawal, A. Bedekar, R. La and V. Subramanian, “A Clas

shows the convergence of the dual variablesafidy.;) as well Channel-Condition based Weighted Proportionally Fair eSiter,’
as the total power allocation of each usgr (p;; for eachi) Proc. of ITC 2001, Salvador, Brazil, Sept. 2001.

d | ch | all ti h ch -t h [3] R. Agrawal and V. Subramanian, “Optimality of Certain a@imel Aware
and total channel allocation on each chan li@w or eac Scheduling Policies,Proc. of 2002 Allerton Conference, Oct. 2002.

7). Itis clear that the system has converged to a neighborho@4 J. Huang, V. G. Subramanian, R. Agrawal and R. Berry, “Ditmk

of the optimal solution. Figure 2 shows the convergencef th  scheduling and resource allocation for OFDM systems,” umelgision
of IEEE Trans. on Wireless, 2008.

t(_)tal Weight_ed sum rqte compu_ted by the primal-dua_\l alg_mit [5] A. Jalali, R. Padovani, R. Pankaj, “Data throughput of ®HDR
(i.e., the primal feasible solution) under theapproximation a high efficiency - high data rate personal communicationeess

model and the optimal value (calculated by the centralize%] system.,” inProc. VTC *2000, Spring, 2000.

. . . . . . A. L. Stolyar, “Maximizing Queueing Network Utility syect to Sta-
optimal algorithm in [1]). The primal-dual algorithm aches bility: Greedy Primal-Dual Algorithm, Queueing Systems, Vol. 50, pp.

90% of the optimal performance withis00 iterations and5% 401-457, 2005. . o . .
within 1000 iterations. We have observed in our simulationd?] A. L. Stolyar, “On the asymptotic optimality of the graxfit scheduling

. . . . algorithm for multiuser throughput allocation,” Operaiso Research,
that the convergence time is heavily dependent on the clobice Vc?l. 53, No. 1, pp. 125 2005_9 P P

stepsizes. Larger stepsizes can increase the convergesen s [8] H. Kushner and P. Whiting, “Asymptotic properties of pational-
while leading to more fluctuations of the variables arourel th ~ fair sharing algorithms,” irProc. 40th Annual Allerton Conference on
. . Communication, Control, and Computing, 2002.

optlmal solution. [9] J. Mo and J. Walrand, “Fair end-to-end window-based estign
control,” IEEE/ACM Transactions on Networking, Vol. 8, Vo. 5, pp.

556-567, October 2000.
VI. CONCLUSION AND FUTURE WORK [10] S. Pfletschinger, G. Muenz, and J. Speidel, “Efficieriicsurier alloca-
. . tion for multiple access in OFDM systems,” Tith International OFDM-

OFDM has become a key technology for various wireless workshop 2002 (InOW’ 02), 2002.

broadband access systems. In this paper, we presentedsthelfifl W. Yu, R. Lui, and R. Cendrillon, “Dual optimization nfetds for mul-

‘g : . . tiuser orthogonal frequency division multiplex systenis,Proceedings
distributed and low complexity optimal resource allocatio of IEEE Globecom, vol. 1, 2004, pp. 225-229.

algorithm for uplink OFDM systems. The key features of thg2] s. Liu, T. Basar, and R. Srikant, “Exponential-RED: AaBitizing AQM

proposed algorithm include: (i) distributed implemeraatiat ﬁchemkle_ for L?Wé azr;)O(l) é—llgh-Speed TCP Protocols,1HEE Trans. on
. ) . . etworking, vol. 5, .

the mobile users and the base stat|0r_1 schedular, (ii) sm&lﬁ H. Khalil, “Noninear Systems (3rd edition).” PrengicHall, 2001.

local updates with low message passing overhead, and ()] T. Voice, “Stability of Congestion Control Algorithmwith Multi-Path

Routing and Linear Stochastic Modelling of Congestion @altitPhD

3This corresponds to the “Band AMC mode” of 802.16 d/e. Thesis, University of Cambridge, May, 2006.



