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Optimal Resource Allocation for OFDM Uplink
Communication: A Primal-Dual Approach

Minghua Chen and Jianwei Huang

Abstract—Orthogonal Frequency Division Multiplexing
(OFDM) with dynamic resource allocation is widely considered
to be a key component of most emerging broadband wireless
access networks. However, resource allocation in an OFDM
system is complicated, especially in the uplink due to the
heterogeneity of the users’ subchannel conditions, individual
resource constraints and application requirements. We formulate
the resource allocation problem as a convex optimization
problem, which has a unique optimal objective value but
might have multiple corresponding optimal solutions. We then
present a primal-dual based algorithm that is distributed, low
complexity, and is provably global convergent to the optimal
solutions. The convergence and optimality of the algorithmis
studied through a realistic OFDM simulator.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
promising technology for future broadband wireless networks,
due to many of its advantages such as robustness against
intersymbol interference and multipath fading, and no needfor
complex equalizations. It is the core technology for a number
of wireless data systems, such as IEEE 802.16 (WiMAX),
IEEE 802.11a/g (Wireless LANs), and IEEE 802.20 (Mo-
bile Broadband Wireless Access). In this paper, we con-
sider the problem of uplink resource allocation for OFDM
wireless access networks. This problem is motivated by the
WiMAX/802.16e standard1. During each time slot, the sched-
uler at the base station needs to make the following resource
allocation decision: which subset of users to schedule, howto
allocate the subchannels to the users and the corresponding
power allocation across these subchannels.

Using OFDM on the uplink of an access network with
dynamic resource allocation has only recently attracted sig-
nificant attention. Thus the literature on this subject is still
in a nascent state (e.g., [1], [10], [11]). The authors of
[1] considered the same problem as in this paper and de-
signed centralized optimal and various heuristic algorithms
accordingly. In particular, the optimal algorithm requires the
scheduler to solve a linear programming problem to determine
the fractional channel allocations after the multi-dimensional
subgradient search converges. Furthermore, since the algo-
rithm is centralized, various information such as the QoS
classes, queue-lengths and delays of the packets queued on
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1LTE for 3GPP and 3GPP2 and the FLASH OFDM system from Qualcomm
Flarion also fit the model we consider in this paper. Furthermore, this model
is applicable for both FDD and TDD systems.

each mobile device needs to be communicated to the scheduler,
and the scheduler needs to convey the scheduling decisions
back to the mobiles, all with short delays.

There are two disadvantages of the above centralized ap-
proach: (i) The mobiles are forced to reveal all local informa-
tion to the centralized schedular, which may not be desirable
in certain applications due to privacy concerns. (ii) The cen-
tralized schedular needs to have sophisticated computational
capability to finish complicated optimizations with a short
delay. Due to these two reasons, in this paper we will discuss
how to design a distributed resource allocation algorithm for
uplink OFDM systems. The proposed algorithm is based on
a primal-dual approach. It only requires simple updates at the
mobile users and the base station, thus is scalable with network
size. Furthermore, it is guaranteed to converge to the optimal
solutions under proper update rules, despite of the non-strict
concavity of the optimization problem.

The rest of the paper is organized as follows. The precise
problem is stated in Section II. The primal-dual based algo-
rithm is proposed in Section III, and its convergence behavior
is analyzed in Section IV. Simulations results on convergence
and optimality are given in Section V and we finally conclude
in Section VI.

II. PROBLEM STATEMENT

We consider a system model similar as in [1]. The key
notations are listed in Table I2. We consider a single OFDM
cell, where there is a set ofM = {1, . . . , M} users trans-
mitting to the same base station. Each useri ∈ M has a
total transmission power constraintPi and priority weight
wi. We will later discuss how these weights are derived in
practice. The total frequency band is divided into a set of
N = {1, . . . , N} subchannels (e.g., frequency bands), and a
user i can transmit over a subset of the subchannels, with
transmit powerpij over subchannelj. For channelj, it is
allocated to useri with fraction xij , and the total allocation
across all users should be no larger than1, i.e.,

∑

i xij ≤ 1.
In every scheduling epoch, the scheduler seeks to maximize

a (time-varying) weighted sum of the users’ rates over a given
(time-varying) rate-region. Next we will describe this this
rate-region. We represent the time-varying subchannel quality
vector at timet as et, whereeij is the received Signal-to-
noise ratio (SNR) per unit power for useri on subchannel
j. As in [4], this model can also incorporate various sub-
subchannelization schemes where the resource allocation is

2we use bold symbols to denote vectors and matrices of these quantities,
e.g., w = {wi,∀i}, e = {eij ,∀i, j}, p = {pij , ∀i, j}, and x =

{xij ,∀i, j}.
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TABLE I
KEY NOTATIONS

Notation Physical Meaning

N total number of subchannels
N set of all subchannels
M total number of users
M set of all users
wi useri’s (dynamic) weight
eij normalized SINR on subchannelj for useri
pij power allocated on subchannelj for useri
xij fraction of subchannelj allocated to useri
Pi maximum transmit power for useri

performed in terms sets of frequency bands in the frequency
domain or with a granularity of multiple symbols in the time
domain.

Let R(et) denote the feasible rate region at timet, i.e.,

R(et) =

{

r ∈ ℜM
+ : ri =

∑

j∈N

xij log
(

1 +
pijeij

xij
,
)

, ∀i ∈ M

}

,

(1)
where(x, p) ∈ X are chosen subject to

∑

i

xij ≤ 1, ∀j ∈ N , (2)

∑

j

pij ≤ Pi, ∀i ∈ M, (3)

and the set

X := {(x, p) ≥ 0 : 0 ≤ xij ≤ 1, ∀i, j} . (4)

In practical OFDM systems,xij is constrained to be an
integer, in which case we add the additional constraintxij ∈
{0, 1} for all i, j. The integer constraint makes the resource al-
location very difficult to solve, and various heuristic algorithms
to deal with such constraint are proposed in [1]. In this paper,
we will ignore this integer constraint and focus on the rate
region defined by (1) to (4). The corresponding solution will
typically contain fractional values ofxij ’s. There are several
practical methods of achieving these fraction allocations. For
example, if resource allocation is done in blocks of OFDM
symbols, then fractional values ofxij can be implemented by
time-sharing the symbols in a block. Likewise, if the number
of subchannels are large enough so that the subchannel SNRs
do not change dramatically among adjacent subchannels, then
the fractional value ofxij can also implemented by frequency
sharing (e.g., [11]).

Next we formulate the resource allocation problem, which
is essentially a weighted rate maximization problem. In partic-
ular, the priority weights are motivated by the gradient-based
scheduling framework presented in [3], [7], [8]. Each user
i is assigned a utility functionUi(Wi,t, Qi,t) depending on
their average throughputWi,t up to time t and their queue-
length Qi,t at time t. This is used to quantify fairness and
ensure stability of the queues. During each scheduling epoch
t, the system objective is to choose a rate vectorrt in R(et)
that maximizes a (dynamic) weighted sum of the users’ rates,
where the weights are determined by the gradient of the sum

utility across all users at timet. More precisely, the scheduler
seeks to maximize the projection ofrt onto the gradient

∇wU(Wt, Qt) −∇qU(Wt, Qt),

where

U(Wt, Qt) =

K
∑

i=1

Ui(Wi,t, Qi,t).

We further assume that for each useri,

Ui(Wi,t, Qi,t) = ui(Wi,t) −
di

p
(Qi,t)

p,

where ui(Wi,t) is an increasing concave function,di ≥ 0
is a QoS weight for useri’s queue length, andp > 1 is a
fairness parameter associated with the queue length. Hence,
the resource allocation decision is the solution to

max
rt∈R(et)

(∇wU(Wt, Qt)
T −∇qU(Wt, Qt)

T ) · rt

= max
rt∈R(et)

∑

i

(

∂ui(Wi,t)

∂Wi,t

+ di(Qi,t)
p−1

)

ri,t. (5)

Several variations of the policy in (5) have been studied. If
di = 0 for all i ∈ M, the resulting policy has been shown
to yield utility maximizing solutions [3], [7], [8]. A specific
choice ofdi for “usual” utility functionsui(·) has been shown
to produce utility maximizing solutions subject to stability [6].

As a concrete example, one class of utility functions typi-
cally used (e.g. [2], [9]) forui(·) is

ui(Wi,t) =

{

ci

α
(Wi,t)

α, α ≤ 1, α 6= 0
ci log(Wi,t), α = 0,

(6)

whereα ≤ 1 is a fairness parameter andci ≥ 0 is a QoS
weight. In this case, the objective in (5) becomes

∑

i

(

ci(Wi,t)
α−1 + di(Qi,t)

p−1
)

ri,t.

With zero queue weightsdi and equal throughput weightsci,
settingα = 1 results in a “maximum throughput” scheduling
rule that maximizes the total throughput during each slot. For
α = 0, this results in the proportional fair rule [5].

The optimization in (5) can be written as

max
rt∈R(et)

∑

i

wi,tri,t, (7)

wherewi,t ≥ 0 is a time-varying weight assigned to theith
user at timet. Our focus in this paper is on solving such
a problem for an uplink OFDM system, i.e., whenR(et) is
given by (1). For simplicity we will drop the time indext.

III. PRIMAL -DUAL ALGORITHM TO FIND OPTIMAL

SOLUTION

Before solving problem in (7), let us first rewrite it in
variablesx and p directly instead of in rater. Problem (7)
can be written as

max
(x,p)∈X

∑

i∈M

wi

∑

j∈N

xij log

(

1 +
pijeij

xij

)

(8)

subject to the per subchannel assignment constraints in (2)and
the per user power constraints in (3), whereX is given in (4).
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It can be shown that the objective function of problem in (8)
is continuous and concave over the constraint setX , thus there
is no duality gap between it and its dual problem. However,
the objective’s derivative is not well defined at the origin.This
motivates us to look at the followingǫ-relaxed version of the
problem in (8):

max
(x,p)∈X

∑

i∈M

wi

∑

j∈N

(xij + ǫij) log

(

1 +
pijeij

xij + ǫij

)

, (9)

where constantsǫij takes small positive value for alli andj.
The constraint set remains the same.

By such relaxation, the objective function in the new
problem in (9) now has derivative defined everywhere in the
constraint setX . Thanks to the continuity of the objective
function, the optimal value to the relaxed problem in (9) can
be arbitrarily close to that of the original problem in (8), if
ǫ = [ǫij , ∀i, j] is chosen to be small enough.

The existence of derivatives allows us to write down a
primal-dual algorithm to pursue the optimal solution to the
relaxed problem in (9). The Lagrangian for the relaxed prob-
lem in (9) is as follows,

L(λ, µ, x, p) :=
∑

i,j

wi(xij + ǫij) log

(

1 +
pijeij

xij + ǫij

)

+
∑

i

λi



Pi −
∑

j

pij



+
∑

j

µj

(

1 −
∑

i

xij

)

. (10)

The strong duality theorem implies that the optimal primal and
dual solutions must satisfy KKT conditions, i.e., for alli and
j,

uj ≥ 0,
∑

i

xij ≤ 1, uj

(

∑

i

xij − 1

)

= 0,

λi ≥ 0,
∑

j

pij ≤ Pi, λi





∑

j

pij − Pi



 = 0,

xij ≥ 0, pij ≥ 0,

xij

(

wi log

(

1 +
pijeij

xij + ǫij

)

−

wipijeij

xij + ǫij + pijeij

− uj

)

≤ 0,

pij

(

wieij(xij + ǫij)

xij + ǫij + pijeij

− λi

)

≤ 0.

The last two inequalities become equalities ifxij > 0 and
qij > 0, respectively. The points satisfying above KKT
conditions are exactly the saddle points of the Lagrangian
function in (10). Since the primal problem has at least one
solution, these saddle points exist.

Define(a)+ = max(a, 0), and

(a)+b =

{

a, b > 0;
max(a, 0), otherwise.

For ease of use in following sections, we define

fij(xij , pij) = wi log

(

1 +
pijeij

xij + ǫij

)

−
wipijeij

xij + ǫij + pijeij

,

and

gij(xij , pij) =
wi(xij + ǫij)eij

xij + ǫij + pijeij

.

To pursue the saddle points of the Lagrangian function, we
consider the following primal-dual algorithm:∀i, j,

ẋij = kx
ij (fij(xij , pij) − uj)

+
xij

, (11)

ṗij = kp
ij (gij(xij , pij) − λi)

+
pij

, (12)

u̇j = ku
j

(

∑

i

xij − 1

)+

uj

, (13)

λ̇i = kλ
i





∑

j

pij − Pi





+

λi

, (14)

wherekx
ij , k

p
ij , k

u
j andkλ

i are constants representing adaption
rates. It is easy to verify that equilibria of the above system
are the wanted saddle points.

Applying primal-dual algorithms to solvenon-strictly con-
cave optimization problem in general encounters challenge
in guaranteeing its convergence. For instance, it has been
shown that primal-dual algorithms can fail to converge in a
non-strictly concave optimization setting in a communication
network setting [14]. In the next section, we study dynamics
of the above primal-dual algorithm and show it does not
converge in general. Then we derive a sufficient condition for
its convergence. Utilizing this condition, we put constraints
on adaptation rates of our proposed primal-dual algorithm to
warranty its convergence.

IV. CONVERGENCE OF THEPRIMAL -DUAL ALGORITHM

In this section, we study convergence of the proposed
primal-dual algorithm. We first show the trajectories converge
to an invariant set that contains all wanted saddle points.

Theorem 1: All trajectories of the non-linear primal-dual
system in (11) to (14) converge to an invariant setV0 globally
asymptotically. Furthermore, let(x∗, p∗, λ∗, u∗) be any saddle
point of the Lagrangian function in (10), the following is true
on V0 and any point(x, p, λ, u) ∈ V0,

• (x∗, p∗, λ∗, u∗) is contained inV0;
• λi is nonzero only if

∑

j p∗ij = Pi;
• uj is nonzero only if

∑

i x∗
ij = 1;

•
pij

xij+ǫij
=

p∗

ij

x∗

ij
+ǫij

.

Proof: Let (x∗, p∗, u∗, λ∗) be one point satisfying the
KKT condition. Motivated by the Lyapunov function used
in [12], we consider the following La salle function

V (x, p, u, λ)

=
∑

i,j

1

kx
ij

∫ xij

0

(ξ − x∗
ij) dξ +

∑

i,j

1

kp
ij

∫ pij

0

(ξ − p∗ij) dξ

+
∑

j

1

ku
j

∫ uj

0

(ξ − u∗
j ) dξ +

∑

i

1

kλ
j

∫ λi

0

(ξ − λ∗
i ) dξ.

It is straightforward to verify thatV is semi-positive definite.
Its Lee derivative over an invariant set{(x, p, u, λ)|x ≥ 0, p ≥
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0, u ≥ 0, λ ≥ 0} is given by

V̇ =
∑

i,j

∂V

∂xij

ẋij +
∑

i,j

∂V

∂pij

ṗij +
∑

j

∂V

∂uj

u̇j+

∑

i

∂V

∂λi

λ̇i

≤
∑

i

(λi − λ∗
i )





∑

j

p∗ij − Pi



+

∑

j

(uj − u∗
j )

(

∑

i

x∗
ij − 1

)

+

∑

i,j

(

[f∗
ij , g

∗
ij ] − [u∗

j , λ
∗
i ]
)

[

xij − x∗
ij

pij − p∗ij

]

+

∑

i,j

(

[fij , gij ] − [f∗
ij , g

∗
ij ]
)

[

xij − x∗
ij

pij − p∗ij

]

.

The first sum is non-positive, since
∑

j p∗ij ≤ Pi andλ∗
i = 0

when
∑

j p∗ij < Pi. Following the same logic, we determine
the second sum to be non-positive.

The third sum is also non-positive sincefij(x
∗
ij , p

∗
ij) ≤ u∗

j ,
and the inequality holds only whenx∗

ij = 0; similarly,
gij(x

∗
ij , p

∗
ij) ≤ λ∗

i , and the inequality holds only whenp∗ij = 0.
For x∗

ij 6= 0, we havep∗ij 6= 0 and

[fij(x
∗
ij , p

∗
ij), gij(x

∗
ij , p

∗
ij ] = [u∗

j , λ
∗
i ],

and [fij(xij , pij), gij(xij , pij ]
T is the gradient of following

function

Hij(xij , pij) = wi(xij + ǫij) log

(

1 +
pijeij

xij + ǫij

)

.

By concavity of the functionHij , we have

Hij(xij , pij) ≤ Hij(x
∗
ij , p

∗
ij)+

∇Hij(x
∗
ij , p

∗
ij)

[

xij − x∗
ij

pij − p∗ij

]

, (15)

Hij(x
∗
ij , p

∗
ij) ≤ Hij(xij , pij)+

∇Hij(xij , pij)

[

x∗
ij − xij

p∗ij − pij

]

. (16)

Consequently, the inner product of the gradient differenceand
the variable difference is non-positive, i.e.

(

[fij(xij , pij), gij(xij , pij)] − [f∗
ij , g

∗
ij ]
)

[

xij − x∗
ij

pij − p∗ij

]

≤ 0.

Hence, the fourth sum is also non-positive.
As such, we haveV̇ ≤ 0. According to La Salle princi-

ple [13], trajectories of the system in (11) to (14) convergeto
the setV0 = {(x, p, λ, u) : V̇ = 0} globally asymptotically.
Over setV0, we have the following observations:

• λi is nonzero only if
∑

j p∗ij = Pi;
• uj is nonzero only if

∑

i x∗
ij = 1;

•

(

[fij , gij ] − [f∗
ij , g

∗
ij ]
)

[

xij − x∗
ij

pij − p∗ij

]

= 0.

Combining the third observation with Eqn. (15) and (16),
we further know that∀(x, p, λ, u) ∈ V0,

Hij(xij , pij) = Hij(x
∗
ij , p

∗
ij)+∇Hij(x

∗
ij , p

∗
ij)

[

xij − x∗
ij

pij − p∗ij

]

.

Taking the derivative of both sides, we have∀(x, p, λ, u) ∈ V0,
[

fij(xij , pij)
gij(xij , pij)

]

= ∇Hij(x
∗
ij , p

∗
ij) = constant.

Multiplying a vector[1,−1/eij] on both sides of the above
equation, we get

fij(xij , pij) −
1

eij

gij(xij , pij) = wi log

(

1 +
pijeij

xij + ǫij

)

− wi

= fij(x
∗
ij , p

∗
ij) −

1

eij

gij(x
∗
ij , p

∗
ij)

= constant.

At the end, we getpij = (xij + ǫij)
p∗

ij

x∗

ij
+ǫij

.

Although all trajectories of the primal-dual system in (11)
to (14) converge toV0 that contains the wanted equilibria,
they might not be able to converge to any of these equilibria.
This is becauseV0 may also contain non-equilibrium points, in
particular, limit cycles. If a trajectory converges to limit cycles
in V0, then it never has chance to converge to the equilibria.
Next we make this precise and also give sufficient conditions
under which this non-convergent behavior will not happen.

Recall thatM is the total number users andN is the total
number of subchannels. Over setV0, the primal-dual system
in (11) to (14) turns into a linear one as follows:

[

ẋ
ṗ

]

= K1A
T

[

u∗

λ∗

]

− K1A
T

[

u
λ

]

, (17)
[

u̇

λ̇

]

= K2A

[

x
p

]

− K2

[

1

P

]

, (18)

B

[

x + ǫ
p

]

= 0, (19)

whereK1 andK2 are2MN ×2MN diagonal matrices given
by

K1 =





Kx 0
0 Kp



 , K2 =





Ku 0
0 Kλ



 ,

B is a MN × 2MN matrix given by

B = [C, −D] , C = diag(cij , ∀i, j),

wherecij =
p∗

ij

x∗

ij
+ǫij

,

D = diag(Ind(cij), ∀i, j),

whereInd(x) takes value1 if x > 0 and0 otherwise, andA
is a (2MN) × (M + N) matrix given by

A =

[

A1 0
0 A2

]

,
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where A1 is an N × MN matrix and is given byA1 =
[IN , . . . , IN ], andA2 is anM × MN matrix given by

A2 =











11×N 0 · · · 0
0 11×N · · · 0
...

...
. . .

...
0 0 · · · 11×N











.

Here IN is an identity matrix with dimensionN , and11×N

is an all one vector with dimension 1 byN .
For the above linear system, we have the following.
Lemma 1: For the linear system in (17) to (19), the follow-

ing is true:

1) Every order Lee derivative ofB[x, p]T is constant, i.e.,

BK1A
T

[

dqx
dtq

dqp

dtq

]

= const, ∀q = 1, 2, · · · .

2) Its trajectories do not converge.

Proof: (Sketch) The first observation can be easily derived
from (17) to (19). For the second observation, it is straightfor-
ward to verify the transfer function matrix of the linear system
is a product of positive diagonal matrix and a skew-symmetric
matrix. Hence, all eigenvalues of the transfer matrix are purely
imaginary.

According to Lemma 1, if a trajectory of the primal-dual
system converges to limit cycles inV0, then then it never
has a chance to converge to the wanted equilibria. Therefore,
trajectories of the primal-dual system in (11) to (14) converge
to equilibria of the system, if and only ifV0 only contains
equilibria of the system.

On the other hand, Lemma 1 states that every order Lee
derivative ofB[x, p]T is constant. Consequently, ifλ and u
in V0 are completely observable from the constantB[x, p]T

through the linear system in (17) to (19), thenλ̇ = 0 and
u̇ = 0. If all λ and u in V0 satisfy λ̇ = 0 and u̇ = 0, then
all x and p in V0 satisfy ẋ = 0 and ṗ = 0, andV0 contains
only equilibria of the primal-dual system. We state conditions
for λ andu to be completely observable fromB[x, p]T and its
consequence on system convergence in the following theorem.

Theorem 2: All trajectories of the primal-dual system in
(11) to (14) converge to equilibria of the system globally
asymptotically if the following conditions hold: for any eigen-
value of matrixK2AK1A

T , denoted byv,
[

BK1A
T

K2AK1A
T − vI

]

has rankM + N. (20)

Proof: By linear system theory,λ andu are completely
observable fromB[x, p]T if and only if the complete observ-
ability conditions, expressed by (20), hold [13]. Ifλ and u
are completely observable from the constantB[x, p]T , then
λ̇ = 0 and u̇ = 0. According to (17),x and p in V0 satisfy
λ̇ = 0 and u̇ = 0. As such,V0 contains only equilibria of the
primal-dual system, and Theorem 1 guarantees convergence
of its trajectories.

For the problem we studied in this paper, we verify that
above conditions in (20) can be satisfied, by designing the
adaptation rates of the algorithm.

In particular, we chooseK1 to bekI wherek is a positive
constant, andK2 to be of some form that will be clear later.

By direct computation, we get

BK1A
T = k

[

CAT
1 , −AT

2

]

.

We observe thatBK1A
T has at least rankM + N − 1. This

is becauseCAT
1 hasN linearly independent columns,−AT

2

hasM linearly independent columns, and anyM + N − 1
columns of the matrix are linearly independent.K2AK1A

T =
kK2AAT is a diagonal matrix given by:

k

[

Ku 0
0 Kλ

]





















M 0 · · · 0 · · · 0
...

. . . 0
... · · ·

...
0 · · · M 0 · · · 0
0 · · · 0 N · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · N





















.

As long as eitherKu or Kλ is not the product of a constant
and an identity matrix, thenkK2AAT − vI has at least one
non-zero row for any eigenvaluev of matrix K2AK1A

T .
We combine this non-zero row withBK1A

T to form a new
matrix. By doing so, it is straightforward to verify theM +N
columns of this new matrix is linearly independent; hence, it
has rankM + N . We summarize the above analysis into the
following Corollary.

Corollary 1: Conditions in (20) in Theorem 2 are satisfied
if the following is true:

• Kx = kI and Kp = kI for some positive constantk
(diagonal terms ofKx andKp take the same valuek);

• Ku or Kλ is not product of a constant and an identity
matrix.

Following the above choice on on adaptation rates, trajecto-
ries of(x, p) of the primal-dual system in (11) to (14) converge
to the optimal solutions of the problem in (9).

Finally, we comment on the message passing needed in
the primal-dual algorithm. The primal-dual algorithm can be
implemented in a distributed fashion by mobile users and the
base station. A mobile useri is responsible of updatingxij

and pij for all channelj as well as dual variableλi locally.
It also needs to send the latest value ofxij ’s to the base
station, but not thepij ’s andλi. The base station is responsible
for updating dual variablesµj for all channelj locally and
broadcasting to the users. The total communication overhead
per iteration would be(M +1)N messages. In particular, there
is no need for the base station to know the weights and power
constraints of the individual users.

V. SIMULATION RESULTS

We test the convergence and optimality of the primal-
dual algorithm over a realistic OFDMA uplink simulator. We
consider a single OFDM cell model. Each user’s subchannel
gains are the product of a constant location-based term, picked
using an empirically obtained distribution, and a fast fading
term, generated using a block-fading model and a standard
mobile delay-spread model with a delay spread of10µsec.
The system bandwidth is 5MHz corresponding to512 OFDM



6

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1
Dual variables λ

0 1000 2000 3000 4000 5000
0

0.5

1

1.5
Dual variables µ

0 1000 2000 3000 4000 5000
0

1

2

3

4
Total power allocation of all users

Numer of iterations
0 1000 2000 3000 4000 5000

0

1

2

3

4
Total channel allocation of all channels

Numer of iterations

Fig. 1. Primal and Dual Variable Convergence of Primal-DualAlgorithm

tones. Resource allocation is performed using adjacent groups
of 32 tones3, thus the total number of subchannels is 16. The
symbol duration is100µsec with a cyclic prefix of10µsec.

Next we show the simulation results the primal-dual al-
gorithm with an example of 4 users. We also simulate the
algorithm with more users (40) and subchannels (64), but will
not show the results here due to space limitations. Here the
weights of the users are randomly generated from[0, 1], and
the channel conditions are randomly generated from the above
simulator. Four users have total power constraints of1w, 1.5w,
2w and2.5w, respectively. The update stepsizes in (11) to (14)
are chosen askx

ij = kp
ij = kλ

ij = kµ
ij = 0.01 for all i and j.

The initial values of primal and dual variables are randomly
generated. We chooseǫij = 10−4 for all i and j. Figure 1
shows the convergence of the dual variables (λi andµj) as well
as the total power allocation of each user (

∑

j pij for eachi)
and total channel allocation on each channel (

∑

i xij for each
j). It is clear that the system has converged to a neighborhood
of the optimal solution. Figure 2 shows the convergence of the
total weighted sum rate computed by the primal-dual algorithm
(i.e., the primal feasible solution) under theǫ-approximation
model and the optimal value (calculated by the centralized
optimal algorithm in [1]). The primal-dual algorithm achieves
90% of the optimal performance within500 iterations and95%
within 1000 iterations. We have observed in our simulations
that the convergence time is heavily dependent on the choiceof
stepsizes. Larger stepsizes can increase the convergence speed
while leading to more fluctuations of the variables around the
optimal solution.

VI. CONCLUSION AND FUTURE WORK

OFDM has become a key technology for various wireless
broadband access systems. In this paper, we presented the first
distributed and low complexity optimal resource allocation
algorithm for uplink OFDM systems. The key features of the
proposed algorithm include: (i) distributed implementation at
the mobile users and the base station schedular, (ii) simple
local updates with low message passing overhead, and (iii)

3This corresponds to the “Band AMC mode” of 802.16 d/e.
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Fig. 2. Total Weighted Rate Convergence of Primal-Dual Algorithm

global convergence despite of the existence of multiple opti-
mal solutions. From simulations we observed that the actual
convergence time of the proposed algorithm can be long and is
heavily dependent on the choices of stepsizes. One future work
direction is to design good stepsize choice rules to achieve
faster and more robust convergence.
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