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Abstract—Passive network tomography uses end-to-end obser-
vations of network communications to characterize the network,
for instance, to estimate the network topology and to localize
random or adversarial faults. Under the setting of linear network
coding, this work provides a comprehensive study of passive
network tomography in the presence of network (random or
adversarial) faults. To be concrete, this work is developed along
two directions: 1. Tomographic upper and lower bounds (i.e., the
most adverse conditions in each problem setting under which
network tomography is possible, and corresponding schemes
(computationally efficient, if possible) that achieve this perfor-
mance) are presented for random linear network coding (RLNC).
We consider RLNC designed with common randomness, i.e., the
receiver knows the random code-books of all intermediate nodes.
(To justify this, we show an upper bound for the problem of
topology estimation in networks using RLNC without common
randomness.) In this setting we present the first set of algorithms
that characterize the network topology exactly. Our algorithm
for topology estimation with random network errors has time
complexity that is polynomial in network parameters. For the
problem of network error localization given the topology infor-
mation, we present the first computationally tractable algorithm
to localize random errors, and prove it is computationally
intractable to localize adversarial errors. 2. New network coding
schemes are designed that improve the tomographic perfor-
mance of RLNC while maintaining the desirable low-complexity,
throughput-optimal, distributed linear network coding properties
of RLNC. In particular, we design network codes based on
Reed-Solomon codes so that a maximal number of adversarial
errors can be localized in a computationally efficient manner even
without the information of network topology. The tomography
schemes proposed in the paper can be used to monitor networks
with other faults such as packet losses and link delays, etc.
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I. INTRODUCTION

The goal of passive network tomography (or passive net-
work monitoring) is to use end-to-end observations of network
communication to infer the network topology, estimate link
statistics such as loss rate and propagation delay, and locate
network failures [3].

In networks using linear network coding each node outputs
linear combinations of received packets; this has been shown
to attain optimal multicast throughput [4]. In fact, even ran-
dom linear network codes (where each node independently
and randomly chooses the linear combinations to generate
transmitted packets) suffice to attain the optimal multicast
throughput [5], [8]. In addition to their desirable distributed
nature, such schemes also have low design and implementation
complexity [5], [8].

The main observation driving this work is that the linear
transforms arising from random linear network coding have
specific relationships with the network structure, and analyzing
these relationships can significantly aid tomography. Prior
works [9], [10] have also observed this relationship.
Toy example for error localization: Consider the tomography
problem in Figure 1. Source s transmits probe symbols ( say
1 and 2) to receiver r via intermediate node u. Suppose edge
e1 is erroneous and adds (say) 2 to every symbol transmitted
over it. Receiver r knows the probe symbols, network, and
communication schemes a priori. It also knows one of the
links is erroneous (though it doesn’t know in what manner),
and wants to locate the erroneous link.

The case where the network communicates only via routing
is shown in Figure 1(a). The probe symbols 1 and 2 are
transmitted over edges e1 and e2 respectively to node u. Due
to the error introduced over e1, node u receives symbols 3
and 2 via edges e1 and e2 respectively, and forwards them to
node r via edges e3 and e4 respectively. Node r receives two
symbols from e3 and e4, denoted by a vector Y = [3 2]T .
Since r knows the probe symbols a priori, it can compute the
error vector to be E = Y − [1 2]T = [2 0]T . Using E and its
knowledge of the routing scheme, node r can infer that the
error happened in the routing path {e1, e3}, but cannot figure
out whether the error occurred on e1 or e3.

Figure 1(b) shows the case where node u applies linear
network coding to transmit symbols. In particular, node u
outputs x3 = x1 + 2x2 to link e3 and x4 = x1 + x2 to
e4, where x1 and x2 are the symbols that node u receives
from e1 and e2, and x3 and x4 are the symbols to be sent
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(b) Coding Case

Fig. 1. A tomographic example for locating an error at edge e1. In
Figure 1(a) observing error vector E = [2 0]T is not enough to distinguish
the error locations e1 and e2. In Figure 1(b), since network coding is used
by intermediate node u, the information of E = [2 2]T is enough to locate
the erroneous edge e1.

over e3 and e4. For a unit additive error e = 1 at e1, e2, e3

or e4, the receiver r would observe error vectors e[1 1]T ,
e[2 1]T , e[1 0]T or e[0 1]T , respectively. Thus, errors in
different links result in observed error vectors in the corre-
sponding vector spaces. Such linear algebraic characteristics
of networks can be exploited to locate the erroneous link.
Specifically, if error e = 2 is injected into e1, node r receives
Y = [7 5]T . Knowing in advance the probe symbols and node
u’s coding scheme, the receiver r computes the error vector
as E = Y − [1 + 2 · 2, 1 + 2]T = [2 2]T . Upon observing
E = [2 2]T and comparing with the set of different error
vector spaces corresponding to different error locations, r can
determine that e1 is the erroneous link and the error is e = 2.
�

While the toy example above might give the impression
that the coding scheme needs to be carefully designed for the
communication problem at hand, our results in this paper show
that in fact random linear coding suffices for tomographic
schemes that are distributed and have low computational and
communication overhead. Further, if end-to-end network error-
correcting codes (see for instance [11], [12]) are used for
the network communications, in addition network tomography
can also be implemented in a “passive” manner, i.e., no
dedicated probe messages are necessary. To be precise, the
matrix received by the receiver in normal network commu-
nications contains sufficient information. With the help of
end-to-end error correcting codes, the receiver can know the
”error space” from such matrix. Thus throughout this work,
the phrase “network tomography” stands for “passive network
tomography” unless otherwise specified.

In this work we consider a network in which all nodes per-
form linear network coding. Besides receiving the messages,
the receiver(s) wants to recover the network topology, and
then detect and locate adversarial attacks, and random glitches
(errors or erasures).

We perform a comprehensive study of passive network
tomography in the presence of network errors, under the

setting of network coding. In particular, we seek answers to
the following questions.
1). In networks performing random linear network coding
(RLNC), what are the appropriate tomographic upper and
lower bounds? That is, what are the most adverse conditions
in each problem setting under which network tomography
is possible, and what schemes (computationally efficient, if
possible) achieve this performance?
2). Are there any linear network coding schemes that improve
upon the tomographic upper bounds for RLNC while main-
taining their desirable low-complexity, throughput-optimal,
distributed implementation properties?

A. Main contributions

We examine the relationship that linear transforms arising
from random linear network coding have with the structure of
the network. For this we find it useful to define the impulse
response vector (IRV) t′(e) for every link e as the transform
vector from link e to the receiver (see Section III-A for details).
As shown in subsequent sections, each t′(e) can be treated as
the fingerprint of corresponding link e. Any error on e exposes
its fingerprint, allowing us to locate the error. Note that all the
tomography schemes proposed in the paper for network errors
can be used to monitor networks with other glitches such as
network erasures (i.e., packet losses) and link delays. We delay
discussion on these related topics to the Appendix.

For network tomography under RLNC, our results are
categorized into two classes:

Topology estimation. For networks suffering from random
or adversarial errors, we provide the first algorithms that can
estimate the network topology, given certain sufficient condi-
tions are satisfied. In the case of random errors, our algorithm-
s are computationally efficient. We also provide necessary
conditions for such topology estimation to be possible. Our
algorithms rely on the receivers (and the adversaries as well)
have the access to a common randomness, i.e., that the coding
coefficients of each node are chosen from a random code-
book known by the receiver. Without common randomness, we
prove that in the presence of adversarial or random errors it is
either theoretically impossible or computationally intractable
to estimate topology accurately.

Error localization. We provide the first polynomial time
algorithm for locating edges experiencing random errors. For
networks suffering from adversarial errors we provide an
upper bound of the number of locatable errors, and also a
corresponding (exponential-time) algorithm that matches this
bound. Moreover, we provide the first proof of computa-
tional intractability of the problem. Note that, as with error-
localization schemes in the previous literature ([9], [14], [15],
[16]), the schemes we provide for RLNC require the receiver
to know the network topology and local linear coding coeffi-
cients – this can be from the topology estimation algorithms
in this work, or as part of the network design a priori.

In the other direction, to circumvent the provable tomo-
graphic limitations of RLNC, we propose a specific class of
random linear network coding that we call network Reed-
Solomon coding (NRSC), which has the following desirable
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features. NRSC is linear network coding that is implemented
in a distributed manner (each network node only needs to know
the node-IDs of its adjacent neighbors). With high probability
over code design, NRSC achieves the the multicast capacity.
Further, NRSC aids tomography in two aspects as follows.

• Computational efficiency. Under the adversarial error
model, the receiver can locate adversarial errors in a
computationally efficient manner. In particular, the num-
ber of locatable adversaries matches a corresponding
tomographic upper bound. For the random error model,
a lightweight topology estimation algorithm is provided
under NRSC.

• Robustness for dynamic networks. For adversarial error
localization the algorithms under NRSC do not require
the prior knowledge of the network topology and thus
are robust against dynamic network updating.

In Table I we compare our results and previous works on
computational complexity.

B. Related work

Common randomness. Essentially all prior tomography re-
sults for RLNC assume some form of common randomness,
i.e.,, the receiver is assumed to have some a priori knowledge
about the random coding coefficients used by internal nodes.
Some previous results [10], [9], [16] for locating errors under
RLNC do not explicitly assume common randomness, but
assume the receiver knows all the linear coding coefficients
employed by each node in the network, which is related to
our notion of common randomness.

We summarize related works on network inference under
the following categories.

Passive tomography: The work in [10] provided the first
explicit (exponential-time) algorithm for estimating the topol-
ogy of an error-free network that performs RLNC. The work
in [9] studied the problem of locating network errors for RLNC
with the knowledge of network topology. In particular, error
localization can be done in time O

((|E|
z

))
, where |E| is the

number of links in the network and z is the number of errors
the network experiences.

Active tomography: The authors in [14], [15], [16] per-
formed network tomography by using probe packets and
exploiting the linear algebraic structure of network coding. The
setting considered in these works concerns active tomography,
whereas in this work we focus on passive tomography. For
active random error localization, the authors in [14] and [16]
studied error1 localization in a network using binary XOR
coding. Using pre-designed network coding and probe packets,
they showed that the sources can use fewer probe packets
than traditional tomography schemes based on routing. Again,
O
((|E|

z

))
is the computational complexity of localization. For

active topology estimation, using pre-designed binary XOR
coding, the authors of [15] showed that the topology of a
binary tree network can be recovered by using probe packets.

1In fact network erasures are considered in their works. Here we classify
network erasures as a subclass of network errors.

The authors in [17] generalized the results to multi-source
multi-receiver scenario.

Network inference with internal nodes’ information: An-
other interesting set of works ([18], [19], [20]) inferred the
network by the “packet information” of each internal node. In
particular, using this internal “packet information”, the work
in [19] explored the subspace properties of packets received
by internal nodes, the work in [18] proposed a scheme that
infers the bottlenecks of P2P networks under network coding,
and the works in [20], [21], [6] provided efficient schemes
to locate the adversaries in the networks. Note that all these
schemes require the receiver to know the information of the
packets received by each internal node.

C. Organization of the paper

The rest of this paper is organized as follows. We for-
mulate the problem in Section II and present preliminaries
in Section III. We then present our main technical results.
Our results for network tomography consist of two parts.
Part I considers RLNC, the schemes for topology estimation
in the presence of network adversary and random errors are
presented in Section IV, and the schemes for error localization
is presented in Section V; Part II, consists of a particular
type of RLNC, network Reed-Solomon coding (NRSC), in
Sections VI, Section VII and Section VIII.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notational convention

Scalars are in lower-case (e.g. z). Matrices are in upper-case
(e.g. X). Vectors are in lower-case bold-face (e.g. e). Column
spaces of a matrix are in upper-case bold-face (e.g. E). Sets
are in upper-case calligraphy (e.g. Z).

B. Network setting

For ease of discussion, we consider a direct acyclic and
delay-free network G = (V, E), where V is the set of nodes
and E is the set of edges. Each node has a unique identification
number known to itself. Such a label could correspond to the
node’s GPS coordinates, or its IP address, or a factory stamp.
The capacity of each edge is normalized to be one symbol of
Fq per unit time. We denote e(u, v) as the edge from node u
to v. In particular, u is said to be the tail node of e, and v
is said to be the head node of e. For each node v ∈ V , let
In(v) be the set of all incoming edges (or nodes) of v and
Out(v) be the set of all outgoing edges (or nodes) of v. The
out-degree of node v is defined as |Out(v)| and in-degree of
node v is defined as |In(v)|.

Note that all the results in the paper can be generalized to
the scenario where edges with non-unit capacity are allowed.
A non-unit capacity edge is modeled as a set of parallel edges.
This can be denoted by somewhat unwieldy notation, say
e(u, v, i), which stands for the i’th parallel edge from u to
v.

We focus on the unicast scenario where a single source s
communicates with a single receiver r over the network. In



4

TABLE I
COMPARISON OUR RESULTS AND PREVIOUS WORKS ON COMPUTATIONAL COMPLEXITY

Objective Failure model Tomography for Tomography for Tomography for
RLNC [Previous works] RLNC [This work] NRSC [This work]

Adversarial Errors - Exponential -
Topology Estimation

Random Errors - Polynomial Polynomial
Adversarial Errors Exponential [9] Hardness Proof Polynomial

Failure Localization
Random Errors Exponential [9], [14] Polynomial Polynomial

principle, our results can be generalized to other communica-
tion scenarios where RLNC suffices. For instance, in networks
with multiple receivers, we assume all incoming edges of the
receivers are reconnected to a virtual receiver who performs
network tomography.

Let C be the min-cut (or max-flow) from s to r. Without loss
of generality, we assume that both the number of edges leaving
the source s and the number of edges entering the receiver r
equal C. We also assume that for every node in V , there is at
least one path from the node to the receiver r; Otherwise, the
node is not involved in network communications, and hence
is irrelevant to our study.

C. Dependency
Any set of z edges e1, e2, ..., ez is said to be flow-

independent if there is a path from the head of each to
the receiver r, and these z paths are edge-disjoint. The
flow-rank of an edge-set Z equals the max-flow from the
heads of edges in Z to the receiver r. A collection of
edge-sets Z1,Z2, ...,Zn is said to be flow-independent if
flow-rank(∪ni=1Zi) =

∑n
i=1 flow-rank(Zi). The flow-rank of

an internal node equals to the flow-rank of its outgoing edges.
For the set Z ⊆ E with flow-rank z, the extended set (or
Ext(Z)) is the set that is of flow-rank z, includes Z and
is of maximum size. Note that Ext(Z) is well-defined and
unique [22].

D. Network transmission via linear network coding
In this paper we consider the linear network coding scheme

proposed in [23]. Let each packet have n symbols from Fq ,
and each edge have the capacity of transmitting one packet,
i.e., a row vector in F1×n

q .
Source encoder: The source s arranges the data into a C×n

message matrix X over Fq . Then on each outgoing edge of s,
a linear combination over Fq of the rows of X is transmitted.
Matrix X contains a pre-determined “short” header (say, the
identity matrix in FC×Cq ) known in advance to both the source
and the receiver, to indicate the linear transform from the
source to the receiver.

Network encoders: Each internal node similarly takes linear
combinations of the packets on incoming edges to generate
the packets transmitted on outgoing edges. Let x(e) represent
the packet traversing edge e. An internal node v generates its
outgoing packet x(e′) for edge e′ ∈ Out(v) as

x(e′) =
∑

e∈In(v)

β(e, v, e′)x(e), (1)

where β(e, v, e′) is the linear coding coefficient from the
packet x(e) to the packet x(e′) via v. As a default let
β(u, v, w) = β(e, v, e′), where e = (u, v) and e′ = (v, w).

Receiver decoder: The receiver r constructs the C×n matrix
Y over Fq by treating the received packets as consecutive
length-n row vectors of Y . The network’s internal linear
operations induce a linear transform between X and Y as

Y = TX, (2)

where T ∈ FC×Cq is the overall transform matrix. The receiver
r can extract T from the packet heads (recall that internal
nodes mix heads in the same way as they mix messages). Once
T is invertible the receiver can decode X as X = T−1Y .

E. Network error models

Networks may experience disruption as a part of normal
operation. Edge errors are considered in this work – node
errors may be modeled as errors on edges outgoing from nodes
with errors.

Let x(e) ∈ F1×n
q be the input packet of e. For each edge

e ∈ E a length-n row-vector z(e) is added into x(e). Thus
the output packet of e is y(e) = x(e)+z(e). Edge e is said to
suffer an error if and only if z(e) is a non-zero vector.

Both adversarial and random errors are considered.
• Random errors. Every edge e in E independently expe-

riences random errors with a non-negative probability.
A random error on e means that z(e) has at least one
randomly chosen position, say i, such that the i’th symbol
of z(e) is chosen from Fq uniformly at random. Note the
difference of this model from the usual model of dense
random errors on Fq [24], wherein z(e) is chosen from
Fnq at random. The model described in this work is more
general in that it can handle such errors as a special case.
However, it can also handle what we call “sparse” errors,
wherein only a small fraction of symbols in z(e) are non-
zero. Such a sparse error may be a more natural model of
some transmission error scenarios [25], [26]. They may
also be harder to detect. In our model we consider the
worst-case sparsity of 1.

• Adversarial errors. The network is said to have z adver-
sarial errors if and only if the adversary can arbitrarily
choose a subset of edges Z ⊆ E with |Z| = z and the
corresponding erroneous packets {z(e), e ∈ Z}. Note that
the adversary is assumed to have unlimited computational
capability and to have the access to the information
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of the source matrix X , network topology, all network
coding coefficients and tomography algorithms used by
the receiver.

F. Tomography Goals

The focus of this work is network end-to-end passive
tomography in the presence of network errors. There are two
tomographic goals. i) Topology estimation: The receiver r
wishes to correctly identify the network topology upstream of
it (i.e., the graph G). ii) Error location: The receiver r wishes
to identify the locations where errors occur in the network.

In fact, all tomography schemes in the paper can be gener-
alized in the following manner. Instead of the incoming edges
In(r) of the receiver r, consider any cut EC of edges that
disconnects source s from receiver r. A network manager
that has access to the packets output from EC can use the
tomography schemes in this paper to estimate the topology of
the upstream network and locate the network errors.

G. Network error-correcting codes

Consider the scenario where a randomly or maliciously
faulty set of edges Z of size z injects faulty packets into the
network. As shown in [12], the network transform (2) then
becomes into

Y = TX + E. (3)

Note that the C × n error matrix E has rank at most z (see
Section III-C for details). The goal for the receiver r in the
presence of such errors is still to reconstruct the source’s
message X . Note that the loss-rate 2z/C is necessary and
sufficient for correcting z adversarial errors [12], [11], while
the loss-rate (z + 1)/C is necessary and sufficient [11] for
correcting z random errors.

In this work we use the algorithms of [12] for correcting
adversarial errors, and the algorithms of [11] for correcting
random errors. All our tomography schemes use the perfor-
mance guarantees provided by such end-to-end network error-
correcting codes.

H. Computational hardness of NCPRLC

Several theorems we prove regarding the computational in-
tractability of some tomographic problems utilize the hardness
results of the following well-studied problem.

The Nearest Codeword Problem for Random Linear Codes
(NCPRLC) is defined as follows:

• NCPRLC: (H, z, e): Given a parity check matrix H
which is chosen uniformly at random over Fl1×l2q with
l2 > l1, a constant z, and a vector e ∈ H which is linear
combined from at most z columns of H . The algorithm
is required to output a z-sparse solution b (i.e., b has at
most z nonzero components) such that e = Hb.

Note that NCPRLC is a well-known computationally hard
problem [27], [28].

I. Decoding of Reed-Solomon codes

This section introduces some properties of the well-studied
Reed-Solomon codes (RSCs) [29], used in particular for worst-
case error-correction for point-to-point channels. A Reed
Solomon code (RSC) is a linear error-correcting code over
a finite field Fq defined by its parity check matrix H ∈ Fl1×l2q

with l2 > l1. Here l1 + 1 is the minimum Hamming distance
of the code, i.e., minimum number of nonzero components
among the codewords belonging to the code. In particular, H
is formed as

H = [h1,h2, ...,hl2 ], (4)

where hi = [hi, (hi)
2, ..., (hi)

l1 ]T ∈ F`1q and hi 6= 0 for each
i ∈ [1, l2] and hi 6= hj for i 6= j.

Given e which is a linear combination of any z ≤ (l1+1)/2
columns of H , the decoding algorithm of RS-CODE, denoted
as RS-DECODE(H, e), outputs a z-sparse solution of Hb =
e with O(l2l1) operations over Fq (see [30]). That is, b ∈ Fl2q
has at most z non-zero components and e = Hb. Further
more, for any b′ 6= b, either e 6= Hb′ or b′ has more than
z non-zero components, i.e., b is the unique z-sparse solution
of Hb = e.

III. IMPULSE RESPONSE VECTOR (IRV)

In this section, we explain the relationship between the
linear transforms induced by the linear network coding and
the network structures, by introducing the concept of impulse
response vector (IRV). The relationship forms the mathemat-
ical basis for our proposed tomography schemes.

A. Definition of Impulse Response Vector (IRV)

Corresponding to each edge e ∈ E we define the length-
C impulse response vector (IRV) t′(e) ∈ FCq as the linear
transform from e to the receiver. In particular, let the source s
transmit the all-zero packet 0 ∈ Fnq on all outgoing edges, let
edge e inject a packet z(e) ∈ Fnq , and let each internal node
perform linear network coding operations. Then the matrix Y
received by the receiver r is Y = t′(e)z(e) ∈ FC×nq . So t′(e)
can be thought of as a “unit impulse response” from e to r.

Illustrating examples for edge IRVs are in Figures 2 and
3. In Figure 2, coding coefficients for a unit-length packet
are shown. In Figure 3(a), only e4 has an injected symbol 1
and what r receives is Y = [1, 0]T , thus the IRV of e4 is
t′(e4) = [1, 0]T . For the same reason, the IRVs of e5, e3, e2

and e1 are computed similarly in Figure 3(b) , Figure 3(c),
Figure 3(d) and Figure 3(e) respectively.

For a set of edges Z ⊆ E with |Z| = z, the columns of the
C × z impulse response matrix T ′(Z) comprise of the set of
vectors {t′(e) : e ∈ Z}.

All IRVs can be inductively computed. First, the IRV for
each edge incoming to the receiver is set as a distinct unit
vector, i.e., a distinct column of the C × C identity matrix.
Then for each edge e incoming to node v with outgoing edges
{e1, e2, ..., ed}, we have

t′(e) =
∑

j=1,2,...,d

β(e, v, ej)t
′(ej).
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Fig. 2. An example network and its local coding coefficients.

B. IRVs under random linear network coding (RLNC)

The linear network coding defined in Section II-D is a
random linear network coding (RLNC) if and only if [7] the
following conditions are true.

Source encoder: The source s takes C independently and
uniformly random linear combinations of the rows of X to
generate respectively the packets transmitted on each edge
outgoing from s (recall that exactly C edges leave the source
s).

Network encoders: Each internal node, say v, indepen-
dently and uniformly chooses its local coding coefficients
{β(e, v, e′), e ∈ In(v), e′ ∈ Out(v)} at random.

Receiver decoder: As shown in Equation (2), the receiver
r receives Y as Y = TX , where T is the overall transform
matrix. It is proved that with a probability at least 1−|E|/q, the
matrix T is invertible under RLNC [7]. The receiver extracts
T from the header of Y and decodes X as X = T−1Y .

For RLNC, the linear transforms defined in Section III-A
provide algebraic interpretations for the graphs. To be con-
crete, Lemma 1 below states that the linear independence of
the IRVs has a close relationship with the flow-independence
of the edges. This relationship is used in tomography schemes
shown in later sections.

Lemma 1: 1) The rank of the impulse response matrix
T ′(Z) of an edge set Z with flow-rank z is at most z.

2) The IRVs of flow-independent edges are linearly inde-
pendent with probability at least 1− |E|/q.

Proof:
1) When the flow-rank of Z is z, the max-flow from Z

to r is at most z. If the rank of T ′(Z) is larger than z,
say z+ 1, Z can transmit information to r at rate z+ 1,
which is a contradiction.

2) For an flow-independent edge set Z with cardinality
z, assume a virtual source node s′ has z virtual edges
connected to the tails of Z , and all outgoing edges
(except for Z) of the tails of Z are deleted. The max-
flow from s′ to r is z and Z is a cut. Then T ′(Z) has
rank z if and only if s′ can transmit information to r at
rate z. By a direct corollary of Theorem 1 in [5], this
happens with probability at least 1− |E|/q.

�
Thus for a large enough field-size q, properties of the

network edges map to similar properties of the IRVs. For
instance, assume Z1, . . . ,Zd are edge sets. Using the Union
Bound over the edge sets, with probability at least 1 − (d +
1)|E|/q, we have flow-rank(Zi) = rank(T ′(Zi)) for any
i ∈ {1, . . . , d}, and flow-rank(∪di=1Zi) = rank(T ′(∪di=1Zi)).
Thus, flow-rank(∪di=1Zi) =

∑d
i=1 flow-rank(Zi) if and only if

rank(T ′(∪di=1Zi)) =
∑d
i=1 rank(T ′(Zi)). Thus by studying

the ranks of {T ′(Z1), . . . , T ′(Zd)}, we can infer relationships
between the topological structures of {Z1, . . . ,Zd}.

The example in Figure 3 also shows the relationship be-
tween flow-independence and linear independence.

C. IRVs for network errors

Assume a faulty set of edges Z of size z injects faulty
packets into the network, i.e., Z = {e : e ∈ E , z(e) 6= 0} and
|Z| = z. From the definition of IRV, we have

Y = TX + T ′(Z)Z, (5)

where Z is a z × n matrix whose rows comprise of additive
error packets {z(e) : e ∈ Z}. Thus the error matrix E defined
in Equation (3) (of Section II-G) equals T ′(Z)Z and has rank
at most z.

IV. TOPOLOGY ESTIMATION FOR RLNC

In the first part of our technical results, we construct
schemes for topology estimation in the presence of network
adversary and random errors in Section IV, and schemes for
error localization in Section V.
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A. Common randomness

Common randomness means that all candidate local coding
coefficients {β(u, v, w), u, w ∈ V} of node v ∈ V are chosen
from its local random code-book Rv , and the set of all local
random code-booksR = {Rv, v ∈ V} is known a priori to the
receiver r. Note that R can be public to all parties including
the adversaries.

Common randomness is both necessary and sufficient for
network topology estimation under RLNC. On one hand
sufficiency follows from the results of [10] and those of this
section. On the other hand we show that in the presence of
adversarial (or random errors), determining the topology with-
out assuming common randomness is theoretically impossible
(or computationally intractable) in Theorem 2 and Theorem 3.

Each local random code-book in R comprises of a list of
elements from Fq , with each element chosen independently
and uniformly at random. These random code-books can be a
part of network design, or computed by using pseudorandom
function with node ID as the input.

Depending on the types of failures in the network, we define
two types of common randomness. Recall that β(u, v, w) is
the local coding coefficient from edge e(u, v) via v to the edge
e′(v, w) (see Section II-D for details).

Weak type common randomness for random errors. For
node v ∈ V each distinct element (u,w) in V ⊗ V indexes a
distinct element in Rv . The local coding coefficient β(u, v, w)
is chosen as the element Rv(u,w). For instance consider the
subnetwork shown in Figure 4. Under weak type common
randomness2, Figure 5 shows how node v1 chooses the coding
coefficient β(v2, v1, v4).

v1

v2 v3

v4 v5 v6

Fig. 4. The adjacent neighbors of node v1.

Strong type common randomness for adversarial errors. For
node v ∈ V each distinct element (u,w,w′) in V ⊗ V ⊗ V
indexes a distinct element in Rv . For an instance network,
recall that Out(v) is set of the outgoing edges of v. The coding
coefficient β(u, v, w) is chosen as

β(u, v, w) =
∑

e(v,w′)∈Out(v)

Rv(u,w,w′). (6)

For instance consider the subnetwork shown in Figure 4.
Under strong type common randomness, Figure 6 shows how

2We note that for network with parallel edges the random code-book Rv

can be described by somewhat unwieldy notation. For instance, under weak
common randomness the element Rv(u,w, i, j) is for the coding coefficient
from edge (u, v, i) (i.e., the ith parallel edge between u and v) to (v, w, j)
via v.

v2 v3 v4 v5 v6

v3

v1
v2

v1

Rv1

Fig. 5. Under weak type common randomness, node v1 in Figure 4 chooses
β(v2, v1, v4) as the element shown in the dark region.

node v1 chooses the coding coefficient β(v2, v1, v4).
For adversarial errors it is required that the existence of

an edge e(v, w) would affect the particular choice of the
coding coefficients {β(u, v, w′) : w′ 6= w}. Otherwise, if the
adversary corrupts e(v, w) and only sends all-zero packet on
e(v, w), it is impossible for the receiver to notice the existence
of e(v, w). Thus a different type of common randomness is
used for networks suffering adversarial errors. For such strong
type common randomness, since 1) all symbols in Rv are
independently and uniformly chosen over finite field Fq and 2)
for each coding coefficient β(u, v, w) the summation in equa-
tion (6) involves distinct elements inRv , the coding coefficient
β(u, v, w) chosen by equation (6) is also independently and
uniformly distributed over Fq .

We first prove the necessity of using common randomness
for topology estimation in networks with adversarial errors.
Since the network adversaries can hide themselves and only
inject zero errors, it suffices to prove common randomness is
necessary for topology estimation in error-free networks.

Theorem 2: If internal nodes choose local coding coeffi-
cients independently and randomly without assuming common
randomness, there exist two networks which cannot be distin-
guished by the receiver in the absence of network errors.
Proof: Since the overall transform matrix (see Equation (2) for
details) is the only information the receiver can retrieve from
the receiving packets, it suffices to prove the overall transform
matrixes of Exp1 and Exp2 in Figure 7 are statistically
indistinguishable.

For both Exp1 and Exp2, the transform matrixes T (1)
and T (2) are in fact single elements over Fq . For Exp1, let
a ∈ Fq be the transform coding coefficient from s to u1.
Similarly, [b1, b2]T ∈ F2×1

q , [c1, c2] ∈ F1×2
q , and d ∈ Fq

are the transform coding coefficients from u1, u2, u3 to the
adjacent downstream nodes respectively. Thus, the overall
transform matrix T (1) from s to r in Exp1 is T (1) =
d[c1, c2][b1, b2]Ta = ab1c1d+ ab2c2d.

Similarly, let a′ ∈ Fq be the transform coding coefficient
from s to v1. Similarly, b′ ∈ Fq , [c′1, c

′
2]T ∈ F2×1

q , and
[d′1, d

′
2] ∈ F1×2

q are the transform coding coefficients from v1,
v2, v3 to the adjacent downstream nodes respectively. Thus,
the overall transform matrix T (2) from s to r in Exp2 is
T (2) = [d′1, d

′
2][c′1, c

′
2]T b′a′ = a′b′c′1d

′
1 + a′b′c′2d

′
2.

Since each element of {a, b1, b2, c1, c2, d, a′, b′, c′1, c′2, d′1, d′2}
is independently and uniformly chosen at random, T (1) is
statistically indistinguishable from T (2). �
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v2 v3 v4 v5 v6

v3

v1
v2

v1

Rv1

bv1 bv2bv3 bv4 bv5bv6

Fig. 6. Under strong type common randomness, node v1 in Figure 4 chooses β(v2, v1, v4) as bv4 + bv5 + bv6 .

s

u1

u2

u3

r

s

r

v1

v2

v3

Exp1 Exp2

Fig. 7. Two networks that are impossible to distinguish by the receiver.

For the random error model (see Section II-E for details),
Theorem 2 does not suffice to show the necessity of common
randomness. The reason is that in a zero error network the only
network information observed by the receiver is the transform
matrix T , while in networks suffering random errors, a random
error on the edge may expose its IRV information which aids
topology estimation. In the following, it is proved that without
assuming common randomness topology estimation is at least
as computationally intractable as NCPRLC (see the definition
in Section II-H for details).

For notational convenience, we define IIRV to be a set of
vectors, i.e., a subset of FCq . Set IIRV is a collection of IRVs
of all edges in the network. Note that IIRV is merely a set of
vectors, and as such, individual element has no correspondence
with any edge in the network. For instance, for the network
in Fig 3, IIRV is defined as {[0, 1]T , [0, 2]T , [1, 0]T , [3, 2]T }.

For the random error model, as in (5), the receiver gets
Y = TX + E, where E = T ′(Z)Z. Thus E and T are all
the information observed by the receiver r. When the edges
suffer random errors independently, since the errors in Z are
uniformly random, the error matrix E = T ′(Z)Z cannot
provide more information than T ′(Z), whose columns are in
IIRV . Thus it suffices to prove:

Theorem 3: When the internal nodes choose local coding
coefficients independently and randomly without assuming

r

...

...
l2 edges

l1 edges

u

r

...l1 edges

u

e

(a) (b)

... ...

Fig. 8. A network reduced from the NCPRLC instance (H, z, e).

common randomness, if the receiver r can correctly output
the topology in polynomial time (in network parameters) with
the knowledge of T and IIRV , NCPRLC can be solved in
polynomial time (in problem parameters).
Proof: Given a NCPRLC instance (H, z, e), as shown in
Figure 8(a), we construct a network with l1 edges to r and
l2 edges to node u.

Since H is a matrix chosen uniformly at random over
F`1×`2q , it corresponds to a RLNC, where each column of H
corresponds to an IRV of an edge in In(u).

Since e is a linear combination of z columns of H , we can
assume that there is an edge e that is connected to z edges
in In(u) (see Figure 8(b)), and that the IRV of e is e. If the
receiver r can recover the topology, r is able to tell which z
edges in In(u) are connected to e. Thus r can find a linear
combination of z columns of H resulting in e and thus solve
(H, z, e). �

B. Topology estimation for networks with adversarial errors

In this section, we use an error-correcting code ap-
proach [12] to estimate the topology of a network with
adversarial errors. At a high level, the idea is that in strongly
connected networks (which is defined in Assumption 2 below),
each pair of networks generates transform matrices that look
“very different”. Hence no matter what the adversary does,
he is unable to make the transform matrix for one network
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resemble that of any other. The estimation algorithm and proof
techniques are similar in flavor to those from algebraic coding
theory.

As is common in the network error-correcting literature (for
instance, [11], [12]), we assume that the adversary is bounded,
and therefore corrupts no more than z edges in the network.
Assumptions and justifications:

1) At most z edges in Z suffer errors, i.e., {e : e ∈
E , z(e) 6= 0} = Z and |Z| ≤ z. When 2z + 1 ≤ C,
network-error-correcting codes (see Section II-G for de-
tails) are used so that the source message X is provably
decodable.

2) Strong connectivity. A set of networks satisfies “strong
connectivity” if the following is true. Each internal node
has both in-degree and out-degree at least 2z + 1. Note
that in an acyclic graph it implies that the source has at
least 2z + 1 edge disjoint paths to each internal node,
which has 2z + 1 edge disjoint paths to the receiver.
We motivate this strong connectivity requirement by
showing in Theorem 6 lower bounds on the connectivity
required for any topology estimation scheme to work in
the presence of an adversary.3

3) Knowledge of local topology. We assume that each node
knows the ID numbers of the nodes exactly one hop
away from it, either upstream or downstream of it.

4) Strong type common randomness is assumed. This as-
sumption is justified by Theorem 2.

After receiving the overall transform matrix Te which is
polluted by the network adversarial errors, the receiver r uses
the following algorithm to estimate of topology of the network.
The algorithm below essentially finds a matrix that is “closest”
to the observed matrix in a certain metric (details are below),
but is “feasible”, i.e., corresponds to a transfer matrix for
an error-free network. It then estimates the topology as the
network corresponding to this closest matrix.

Algorithm 1 TOPO-ADV-RLNC
Input: Matrix Te and codebook R = {Rv, v ∈ V}

1: for Each candidate graph G satisfying the strong connec-
tivity requirement do

2: Using R, compute the overall transform matrix T (G)
for G

3: if rank(Te − T (G)) ≤ z then
4: return G
5: end if
6: end for

Before proving the correctness of TOPO-ADV-RLNC we
show the key lemma for the rank distance of different graphes.
The rank-distance between any two matrices A,B ∈ FC×Cq

is defined as rm(A,B) = rank(A − B). We note that rank-
distance indeed satisfies the properties of a distance function;
in particular it satisfies the triangle inequality [12].

3Note that for the single source (or single receiver) network, such con-
nectivity requires parallel edges at the source (or the receiver). Otherwise if
parallel edges are not allowed, we assume the neighbors of the source (or the
receiver) are the end-nodes, i.e., they are not in the domain of tomography.
Similar argument holds in later sections.

Lemma 4: Let the transform matrices of two different net-
works G and G′ be T (G) and T (G′) respectively. Then with
probability at least 1 − |V|4/q, rm(T (G), T (G′)) ≥ 2z + 1.
With probability at least 1− |V|42|V|

2

/q, it holds for any pair
of networks 4.
Proof: Without loss of generality, we assume that there exists
a node u 6= r such that v has an outgoing edge ev in G but
not in G′.

We first show that there exists a (2z + 1) × (2z + 1) sub-
matrix in T (G)− T (G′), such that its determinant is not zero
on an realization of the elements of the code-books in R.
Using Assumption 2), in G there exist 2z + 1 edge disjoint
paths from s to r via v. The elements in R can be evaluated
such that i) only the routing transmissions along these paths
are allowed for any graph over node set V; ii) in G, the source
s can transmit 2z+ 1 packets using routing via v to r; iii) the
elements in Rv satisfy Rv(u,w,w′) 6= 0 only if (v, w′) = ev .

Thus for graph G, under such a realization of R the
transform matrix T (G) has a sub-matrix as a (2z+1)×(2z+1)
identity matrix.

Since ev 6∈ G′, due to condition iii) above and the definition
of strong type common randomness, in G′ all local coding
coefficients used by v are zero. Due to condition i) above,
only routing transmissions via node v are allowed. Thus the
transform matrix T (G′) for graph G′ is a zero matrix.

Thus under such a realization of R, T (G) − T (G′) has a
(2z + 1)× (2z + 1) sub-matrix with determinant 1.

Each element of such a sub-matrix is a polynomial of local
coding coefficients, and therefore a polynomial of random
variables belonging to R. The degree of such polynomial in
no more than |E|. Thus, the determinant of the sub-matrix
is a polynomial of random variables in R, with degree at
most |E| × (2z + 1) ≤ |E|2 ≤ |V|4. Using Schwarth-Zippel
Lemma [32], with probability at least 1− |V|

4

q the determinant
of the sub-matrix is nonzero, i.e., rm(T (G)−T (G′)) ≥ 2z+1.

Since there are at most 2|V|
2/2 acyclic graphs and 2|V|

2

pairs of graphs to be compared, following a Union Bound [33]
argument, with probability at least 1−|V|42|V|

2

/q, it holds for
any pair of networks. �

As in (5), after transmission, the erroneous transfer matrix
Te received by r is actually

Te = T + T ′(Z)Zh, (7)

where Zh represents the errors injected for the packet headers,
i.e., the first C columns of Z. This combined with Lemma 4
enables us to prove the correctness of TOPO-ADV-RLNC.

Theorem 5: With probability at least 1 − |V|42|V|
2

/q, the
network G outputted by TOPO-ADV-RLNC is the correct
network.
Proof: We assume Lemma 4 is true for any pair of graphs,
which happens with probability at least 1 − |V|42|V|

2

/q as
stated above.

4For counting the total number of networks we do not count the the
networks with parallel edges for clarity of exposition. When parallel edges
are taken into account, the number of bits required to represent the field-size
q should be Θ(|V|2 log(|E|)), so as to make the probability of failure of the
tomography algorithm negligible..
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By (7), the rank distance rm(Te, T (G)) equals
rank(T ′(Z)Zh) ≤ rank(T ′(Z)) ≤ z. For any transfer
matrix T (G′) corresponding to a different network
G′, by the triangle inequality of the rank distance,
rm(T (G′), Te) ≥ rm(T (G′), T (G)) − rm(T (G), Te) ≥ z + 1.
This completes the proof. �

Finally, we show that the strong connectivity requirements
(see Assumption 2) for details) we require for Theorem 5 are
“almost” tight. We remark that there is a mismatch between
the sufficient connectivity requirement in Assumption 2 (each
internal node has in-degree at least 2z+ 1), and the necessary
connectivity requirement of Theorem 6 (each internal node
has in-degree at least z + 1). Whether the gap between
such mismatch can be closed is still open. We note that
Theorem 6 holds for any network transmission scheme and
network tomography scheme.

Theorem 6: For any network G that has a node with in-
degree less than than z + 1, or a node with out-degree less
than 2z + 1, there exists an adversarial action that makes any
tomographic scheme fail to estimate the network topology.
Proof: Assume node v has 2z outgoing edges, and the
adversary controls a set Z of size z of them. Let Z ′ be the
other z outgoing edges of v that are not corrupted by the
adversary. If an adversary transmits messages on Z claiming
that a node the node at the tails is u (different from v), the
receiver cannot distinguish this from the case in which the
adversary corrupts the edges in Z ′ and claims that the node at
the tail is v (whereas the actual node in this alternate scenario
is u).

On the other hand, if v has only z incoming edges, the
adversary can cut these off (i.e. simulate erasures on these
edges). Since the node can only transmit the message from its
incoming edges, this implies that all messages outgoing from
v are also, essentially, erased. Hence the presence of v cannot
be detected by r. �

In fact, the proof of Lemma 4 only requires that G and G′
differ at a node with high connectivity. If we know the possible
topology set a priori, we can relax the connectivity require-
ment. The following corollary formalizes the observation.

Corollary 7: For a set of candidate networks
{G1,G2, ...,Gd}, if any two of them differ at a node
which has max-flow at least 2z + 1 from the source and
max-flow at least 2z + 1 to the receiver, with a probability at
least 1 − d2|V|4/q the receiver can find the correct topology
by the receiving transform matrix.

Proof: Following the proof of Lemma 4, we conclude that
for any two distinct graphs in {G1,G2, ...,Gd}, with probability
at least 1−|V|4/q, their transform matrixes have rank distance
at least 2z + 1. Using the union bound, with probability at
least 1 − d2|V|4/q, the transform matrixes of every pair of
graphs in {G1,G2, ...,Gd} have rank distance at least 2z + 1.
Following the proof of Theorem 5, with probability at least
1 − d2|V|4/q, the network G output by TOPO-ADV-RLNC
is the correct network.

We note that this corollary reduces the connectivity re-
quirement for practical tomography scenarios. In practice it is
easier to know the network topology “near” you, of network
resources that you control, than to know the internal network

topology of “public networks” controlled by independent
entities (such as ISPs connecting different local networks). As-
suming the topology of the local network is known, candidate
networks {G1,G2, ...,Gd} are those differing at such public
networks. Further, nodes in public networks are more likely
to have high degrees [13], which makes Corollary 7 easier to
satisfy.

C. Topology estimation for networks with random errors

Under RLNC, we provide a polynomial-time scheme to
recover the topology of the networks that suffer from random
network errors (the definition of random errors can be found
in Section II-E). The receiver r proceeds in two stages. In
the first stage (Algorithm 2 FIND-IRV), r recovers the IRV
information during several rounds of network communications
suffering random errors. In the second stage (Algorithm 3
FIND-TOPO), r uses the IRV information obtained to recover
the topology. An interesting feature of the algorithms proposed
is that random network failures actually make it easier to
efficiently estimate the topology.
Assumptions, justifications, and notation:

1) Multiple “successful” source generations. A “success-
ful” generation means the number of errors does not
exceed the bound C − 1 and receiver r can decode
the source message correctly by using network error-
correcting-codes (see Section II-G for details). The
protocol runs for t independent “successful” source
generations, where t is a design parameter chosen to
trade off between the probability of success and the
computational complexity of the topology estimation
protocol. Let X(i) be the source messages transmitted,
Z(i) be set of edges suffering errors and Y (i) be the
received matrix in the ith source generation.

2) Weak connectivity requirement. It is assumed that each
internal node has out-degree no less than 2. Note that
this is a necessary condition to ensure that each edge
is distinguishable from every other edge, i.e., any pair
of edges are flow-independent (see the definition in
Section II-C for details).

3) Each node knows the IDs of its neighbors. As in
Section IV-B, Assumption 3.

4) The network is not “noodle like”. That is, the network
does not have high-depth but narrow-width5. To be
precise for any distinct i, j ∈ [1, t] let the random
variable D(i, j) be 1 if and only if Z(i) is flow-
independent to Z(j), i.e., flow-rank(Z(i) ∪ Z(j)) =
flow-rank(Z(i)) + flow-rank(Z(j)). Since random net-
work errors are independent of the source generation,
Pr(D(i, j) 6= 1) has no dependence on (i, j) and is
defined as pc. The property that the network not be
“noodle-like” requires that pc be bounded away from
1.

5) Independent errors. For each source generation, each
edge e independently has random errors with probability

5At a high-level, the problem lies in the fact that such networks have high
description complexity (dominated by the height), but can only support a low
information rate (dominated by the width).
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at least p. Note that Assumptions 1 and 4 above require
that the typical number of error edges p|E| in each source
generation is no more than C. Thus we can assume
p = Θ(1/|E|).

6) Weak type common randomness is assumed. This as-
sumption is justified by Theorem 3.

Stage I: Find candidate IRVs
In the i’th source generation, the source message is a matrix

X(i) in FC×nq , where the first C columns of X(i) form an
C × C identity matrix and the last n − C columns of X(i)
are the real messages. For any matrix N with n columns, let
Nh (and Nm ) be the matrix comprised of the first C columns
(and last n−C columns) of N . Then the algorithm that finds
a set of candidate IRVs is as follows.

Algorithm 2 FIND-IRV
Input: {Y (i), i ∈ [1, t]}
Output: IIRV , which is a set of dimension-one subspaces in

FCq and initialized as an empty set
1: for i = 1 to t do
2: Compute X(i) using network error-correction-codes
3: Compute E(i)r = Y (i)m − Y (i)hX(i)m
4: end for
5: for i, j = 1 to t and i 6= j do
6: Compute the intersection of the column-spaces E(i)r∩

E(j)r
7: if rank(E(i)r ∩E(j)r) = 1 then
8: Add E(i)r ∩E(j)r into IIRV
9: end if

10: end for

Let pa denote pc + 2ps + |E|/q and let ps denote 1 −
(1 − z/q)[1 − 2C2/(n − C)] and let < v > denote the
one-dimensional subspace spanned by the vector v. Then the
following theorem characterizes the performance of FIND-
IRV.

Theorem 8: The probability that IIRV contains {<
t′(e) >: e ∈ E} is at least 1− |E|ptp/2a .
The proof is presented after the discussion and Lemma 9
below. Note that the probability ps asymptotically approaches
0 with increasing block-length n and field-size q. Hence
pa is bounded away from 1 using Assumption 4. Thus if
t = Θ(log(|E|)/p), the probability that IIRV contains {<
t′(e) >: e ∈ E} is 1 − o(1). Since p = Θ(1/|E|), without
loss of generality we henceforth assume t = Θ(|E| log(|E|))
in future sections.

We note that at this stage elements in IIRV has no corre-
spondence with edges in the network– such correspondences
shall we found in the next stage by the algorithm FIND-TOPO
later. Furthermore, the set of vectors output by FIND-IRV can
also include some “fake candidates”, as demonstrated in the
example in Figure 9. In the next stage of topology estimation,
these fake IRVs will be automatically filtered out by FIND-
TOPO.

As a precursor to proving Theorem 8, we first characterize
the set of IRVs arising from random errors via Lemma 9 below.

Lemma 9: Under the random error model, with probability
at least 1− ps, E(i)r = T′(Z(i)).

e1

e2 e3

e4
1

2

3

Fig. 9. Let Z(1) = {e1, e4} and Z(2) = {e2, e3} and
rank(t′(e2), t′(e3), t′(e4)) = 3, then we have rank(T′(e2, e3) ∩
T′(e1, e4)) = 1 and T′(e2, e3) ∩ T′(e1, e4) = [t′(e2) + 2t′(e3)],
which is a “fake candidate”.

Proof: Recall that Z(i)m comprises of the last n−C columns
of Z. We first prove that Z(i)m has full row rank z with
probability at least 1− ps.

In the random error model (see Section II-E for details) each
error edge e has at least one randomly chosen location (say `)
in the injected packet z(e) such that the `th component of z(e)
is chosen uniformly at random from Fq . Thus for each row
of Z(i), all the last n−C elements are zero with probability
at most C/n. Using the Union Bound [33] Z(i)m has zero
rows with probability at most C2/n. Thus in the following
we assume each row of Z(i)m is non-zero.

The “Birthday Paradox” [33] implies that with probability
at least 1−C2/(n−C), for each row of Z(i)m, the following
happens: there are z distinct column indexes l1, . . . , lz ∈
{1, . . . , n − C} such that Z(i)m(i, li) is chosen uniformly
at random. Then the determinant of the sub-matrix of the
{l1, . . . , lz}th columns of Z(i)m is a nonzero polynomial
of degree z of uniformly random variables over Fq . By
the Schwartz-Zippel Lemma [32] this determinant is non-
zero with probability at least (1 − z/q). Thus Z(i)m has z
independent columns with probability at least (1 − z/q)[1 −
2C2/(n− C)] = 1− ps.

From the definition we have Y (i)m = TX(i)m +
T ′(Z(i))Z(i)m and Y (i)h = T + T ′(Z(i))Z(i)h. Hence,
we have E(i)r = T ′(Z(i))(Z(i)m−Z(i)hX(i)m). Since the
non-zero random variables in Z(i)m are chosen independently
from Z(i)hX(i)m, the matrix(Z(i)m − Z(i)hX(i)m) has
full row rank z with the same probability 1 − ps. Thus
E(i)r = T′(Z(i)) with probability at least 1− ps. �

Then we have:
Proof of Theorem 8: For any edge e and any i 6= j ∈
{1, . . . , t} and e ∈ Z(i)∩Z(j), we compute the probability of
the event F(e, i, j), which is defined as the one-dimensional
subspace < t′(e) > equaling the subspace E(i)r ∩E(j)r.

By Assumption 4, with probability at least 1 − pc, set
Z(i)−e is flow-independent of Z(j)−e. Conditioned on this,
Lemma 1.2 implies that with probability at least 1−pc−|E|/q,
T′(Z(i)\e) is linearly independent of T′(Z(j)\e). Hence
T′(Z(i)) ∩ T′(Z(j)) equals < t′(e) >. And by Lemma 9,
either of E(i)r 6= T′(Z(i)) or E(j)r 6= T′(Z(j)) with proba-
bility at most ps. Conditioning on all the events implies that
the probability of event F(e, i, j) is at least 1−pc−2ps−|E|/q.

When t is large enough, by the Chernoff bound [33] e will
fail at least tp/2 times with probability at least 1 − pΘ(t).
Conditioned on these many failures, there are tp/4 proba-
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bilistically independent F(e, i, j) for edge e, and FIND-IRV
accepts t′(e) with probability at least 1−(p

tp/4
a +pΘ(t)). Taking

the union bound over all edges gives the required result. �
Stage II: Topology recovery via candidate IRVs

Using IIRV , we now describe Algorithm 3 FIND-TOPO
that determines the network topology.

Note that IIRV is merely a set of one-dimensional sub-
spaces, and as such, individual element may have no corre-
spondence with the actual IRV of any edge in the network. At
any point in FIND-TOPO, let Ḡ denote the network topology
recovered thus far. Let V̄ and Ē be the corresponding sets of
nodes and edges respectively in Ḡ, and ĪIRV be the set of
IRVs of the edges in Ē , which are computed from Ḡ and the
set of local random code-books R = {Rv : v ∈ V}. We note
that the IRVs in ĪIRV are vectors rather than one-dimensional
subspaces.

Algorithm 3 FIND-TOPO
Input: IIRV and codebook R
Output: A output graph Ḡ = (V̄, Ē)

1: The set V̄ is initialized as the receiver r, all its upstream
neighbors, and the source s

2: The set Ē is initialized as the set of edges incoming to r
3: The set of ĪIRV is initialized as the IRVs of the incoming

edges of r, i.e., a subset of distinct columns of the C×C
identity matrix

4: NewEdge←true
5: while NewEdge=true do
6: NewEdge←false
7: for v ∈ V̄ and v 6= s do
8: Assume e1, . . . , ed be the outgoing edges of v in Ḡ
9: if {t̄′(e1), . . . , t̄′(ed)} from ĪIRV has rank larger

than 1 then
10: for Each candidate edge e(u, v), e(u, v) /∈ Ē do
11: Use R to compute the IRV of e as t̄′(e) =∑d

j=1 β(e, v, ej )̄t
′(ej)

12: if < t̄′(e) >∈ IIRV then
13: NewEdge←true
14: If u 6∈ V̄ , add u to V̄
15: Add e = e(u, v) to Ē
16: Based on R, update ĪIRV from Ḡ = (V̄, Ē)
17: end if
18: end for
19: end if
20: end for
21: end while

If IIRV contains all edge IRVs as claimed by Theorem 8,
we show correctness of FIND-TOPO as follows.

Theorem 10: With probability 1 − O(log2(|E|)|E|4|V|)/q,
FIND-TOPO recovers the network topology accurately by
performing O(log2(|E|)|E|4|V|C) operations over Fq .

Before the proof of Theorem 10 we need the following
lemma, which states that with high probability the algorithm
accepts an edge e as a correct edge if and only if e is actually
in the network G.

Lemma 11: 1) If edge e = (u, v) exists in G, < t′(e) >
is in IIRV , {e1, . . . , ed} are exactly all the outgoing

edges of v in G and t̄′(ei) = t′(ei) for i = 1, 2, ..., d,
the algorithm accepts e with probability 1.

2) If edge e does not exist in G, the algorithm accepts e
with probability at most O(log2(|E|)|E|2)/q.

Proof:
1) By the definition of IRV we have t̄′(e) =∑d

j=1 β(e, v, ej )̄t
′(ej) = t′(e) and will be accepted.

2) If e does not exist in G, the coding coefficients
{β(e, v, ej) : j = 1, . . . , d} are not used. Hence
from the perspective of any element < h > in
IIRV ,

∑d
j=1 β(e, v, ej )̄t

′(ej) is an independently and
uniformly chosen vector in the span of the vectors
{t̄′(ej) : j ∈ {1, . . . ,d}}. Since line 12 is called on-
ly if the rank of {t̄′(ej) : j ∈ {1, . . . ,d}} is no less
than 2, t̄′(e) ∈< h > with probability at most
1/q. Since FIND-IRV in Stage I needs at most t =
O(log(|E|)|E|) source generations6, IIRV has size at
most O(log2(|E|)|E|2). Using the union bound [33],
< t̄′(e(u,v, i)) > is in IIRV with probability at most
O(log2(|E|)|E|2/q). �

Then we have:
Proof of Theorem 10: Note that if no error occurs, the
algorithm can find at most |E| edges, the task of finding a
new edge requires at most |V| invocations of line 7 (once for
each node), and each invocation of line 7 results in at most |E|
invocations of line 10. Thus line 10 can be invoked at most
|E|2|V| times. Lemma 11 demonstrates that each invocation
results in an error with probability at most O(log2(|E|)|E|2/q).
Note further that this is the only possible error event. Hence by
the union bound [33], the probability that FIND-TOPO results
in an erroneous reconstruction of G is O(log2(|E|)|E|4|V|)/q.

As shown in the proof of Lemma 11 above, there are at
most O(log2(|E|)|E|2) elements in IIRV . For each element
in IIRV , it takes O(C) field operations to decide whether
it equals the target one-dimensional space < t̄′(e) >. Thus,
each computation of Line 12 takes at most O(log2(|E|)|E|2C)
finite field comparisons to determine membership of < t̄′(e) >
in IIRV . Hence, given that the bound on the number of
invocations of line 12 and that this can be verified to be
the most computationally expensive step, the running-time of
FIND-TOPO is O(log2(|E|)|E|4|V|C) operations over Fq .

Finally, we note that G is acyclic and the assumption that
IIRV contains {< t′(e) >: e ∈ E}. Hence conditioning
on no incorrect edge being accepted, for each invocation of
line 5, unless Ḡ = G, there exists an edge e such that all
edges e′ downstream of e in G are in Ē , which implies all
the corresponding t̄′(e′)s are correctly computed. Thus by
Lemma 11 edge e is accepted into Ē in line 15 with probability
1. Hence, each edge actually in G also eventually ends up in
Ḡ, and FIND-TOPO terminates. �

V. ERROR LOCALIZATION FOR RLNC

As in previous works ( [9], [15], [16]), under RLNC the
receiver r must know the network topology and local random
coding coefficients to locate network errors. Thus in this

6As pointed out in Remark 2 after Theorem 8.
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section receiver r is assumed to know the IRV of each edge,
which can be from the topology estimation algorithms in
Section IV, or as a part of priori network design.

A. Locating adversarial errors under RLNC

In this subsection we demonstrate how to detect the network
edges where the adversary injects errors. Since the IRV is
the fingerprint of the corresponding edge, detecting the edges
where errors have been injected becomes mathematically e-
quivalent to the problem of detecting IRVs in the error matrix
E. Our technique is based on the fact that when the edges are
flow-independent (see the definition in Section II-C for details)
enough from each other, the IRV of each erroneous edge is
not erasable from the column space of the error matrix E.
Assumptions and justifications:

1) Each internal node has out-degree at least 2z. Since G
is acyclic, this implies that every set of 2z edges in G is
flow-independent. While this assumption seems strong,
we demonstrate in Theorem 13 that such a condition is
necessary for r to identify the locations of z corrupted
edges.

2) At most z edges in Z suffer errors, i.e., {e : e ∈
E , z(e) 6= 0} = Z and |Z| ≤ z. When 2z + 1 ≤ C,
network-error-correcting codes (see Section II-G for
details) are used so that the source message X (and
thus the error matrix E) is provably decodable.

In the following, we present the algorithm to locate the
network adversaries under RLNC.

Algorithm 4 LOCATE-ADVERSARY-RLNC
Input: Matrix E and IRVs {t′(e) : e ∈ E}

1: Compute rank(E)= η
2: Let {e1, e2, ..., eη} be a set of independent columns of E
3: for i = 1 to η do
4: Find a set of edges Zi with minimal cardinality such

that ei is in the column space of the corresponding
impulse response matrix T ′(Zi)

5: end for
6: return Z ′ = ∪i∈[1,η]Z(i)

We show that with high probability LOCATE-
ADVERSARY-RLNC finds the location of edges with
adversarial errors.

Theorem 12: With probability at least 1 − |E|
(|E|

2z

)
/q the

solution of LOCATE-ADVERSARY-RLNC results in Z ′ =
Z .
Proof: Note that Assumption 1, with high probability, gives
a similar statement about the rank of the corresponding IRVs.
Using the Union Bound [33] on the result of Lemma 1.2 gives
us the result that any 2z IRVs are independent with probability
at least 1− |E|

(|E|
2z

)
/q. We henceforth assume this happens in

the following.
First of all, since each ei is in T′(Z), we have |Zi| ≤ z

for each i = 1, 2, ..., η.
We claim that for each i ∈ {1, 2, . . . , η}, Zi must be a

subset of Z . If not, say e ∈ Zi is not in Z . By the definition

of LOCATE-ADVERSARY-RLNC, t′(e) is in the span of
the columns of T ′(Z) and T ′(Zi − e). Thus a non-trivial
combination of the at most 2z − 1 IRVs results in t′(e).
It contradicts the assumption that any 2z IRVs are linearly
independent.

We prove next that for any edge e ∈ Z on which the
adversary injects a non-zero error, LOCATE-ADVERSARY-
RLNC outputs at least one Zi such that e ∈ Zi. Without loss
of generality, let e be the first edge in Z . Then E = T ′(Z)Z
and the first row of Z is nonzero. Since any z IRVs are
independent, T ′(Z) is of full column rank. Then for any η
independent columns in E there must be at least one, say ei,
such that the IRV t′(e) has nonzero contribution to it. That
is, ei = T ′(Z)(c1, c2, ..., cz)

T with c1 6= 0. Hence running
LOCATE-ADVERSARY-RLNC on ei will find t′(e) and
include the corresponding edge e into Zi. Otherwise, t′(e)
is in the span of the columns of T ′(Z − e) and T ′(Zi),
which contradicts the assumption that any 2z IRVs are linearly
independent. �

We now show matching converses for Theorem 12. In
particular, we demonstrate in Theorem 13 that Assumption 1
(i.e., that any 2z edges are flow-independent) is necessary.

Theorem 13: For linear network coding, any z corrupted
edges are detectable if and only if any 2z edges are flow-
independent.
Proof: The “if” direction is a corollary of Theorem 12. For the
“only if” direction, suppose there exist 2z edges such that they
are not flow-independent. Then the corresponding IRVs cannot
be linearly independent by Lemma 1.1. Then there must exist a
partition of these 2z edges into two edge sets Z1 and Z2 such
that |Z1| = z and |Z2| = z and T′(Z1) ∩ T′(Z2) 6= {0},
i.e., the spanning spaces of the corresponding IRVs in the
two sets intersect non-trivially. Then the adversary can choose
to corrupt Z1 and inject errors Z in a manner such that the
columns of T ′(Z1)Z are in T′(Z2). This means r cannot
distinguish whether the errors are from Z1 or Z2. �

Theorem 13 deals with the case that any z edges can
be corrupted. If only some sets of edges are candidates for
adversarial action (for instance the set of outgoing edges from
some “vulnerable” nodes) we obtain the following corollary.

Corollary 14: Let S = {Z1,Z2, ...,Zt} be disjoint sets
of edges such that exactly one of them is controlled by an
adversary. Then r can detect which edge set is controlled by
the adversary if and only if any two sets Zi and Zj in S are
flow-independent.

Note: The flow-independence between edge-sets Zi and Zj
in S does not require the edges within either of Zi or Zj to
be flow-independent. It merely requires that flow-rank(Zi) +
flow-rank(Zj) = flow-rank(Zi ∪ Zj).

Note that running LOCATE-ADVERSARY-RLNC might
require checking all the

(E
z

)
subsets of edges in the network –

this is exponential in z. We now demonstrate that for networks
performing RLNC, the task of locating the set of adversarial
edges is in fact computationally intractable even when the
receiver knows the topology and local encoding coefficients
in advance.

Theorem 15: For RLNC, if knowing the network G and
all local coding coefficients allows the receiver r correctly
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locating all adversarial locations in time polynomial in net-
work parameters, NCPRLC (see the definition in Section II-H
for details) can be solved in time polynomial in problem
parameters.
Proof: Given a NCPRLC instance (H, z, e), as shown in
Figure 8, we construct a network with l1 edges to receiver r
and l2 edges to node u.

Since H is a matrix chosen uniformly at random over Fq , it
corresponds to a RLNC, where each column of H corresponds
to an IRV of an incoming edge of u.

Assume the adversary corrupts z incoming edges of u. The
adversary can choose the errors Z such that each column of
E = T ′(Z)Z equals e. Also, E is all the information about the
adversarial behavior known by r under RLNC. Any algorithm
that outputs the corrupted set Z must satisfy e ∈ T′(Z) and
|Z| ≤ z. Once Z is found, r actually solves the NCPRLC
instance (H, z, e). �

B. Locating random errors under RLNC

In the previous section, we considered the problem of
locating adversarial edge errors over random linear network
coding, and proved the computational hardness of the problem.
In this section, we consider random edge errors, as defined in
Section II-E. We propose a different error locating algorithm
algorithm whose time-complexity is polynomial in network pa-
rameters. In particular, this new algorithm (denoted LOCATE-
RANDOM-RLNC) does not require that the graph has high
connectivity (as we demonstrated in Theorem 13 is a necessary
condition for locating adversarial edge errors).

Since T′(Z) = T′(Ext(Z)) (see the definition of Ext(Z)
in Section III-A for reference), the receiver cannot distinguish
whether the errors are from Z or Ext(Z). So rather than
finding Z , we provide a computationally tractable algorithm
to locate Ext(Z), a proxy for Z . The algorithm that finds
Ext(Z) is as follows. Recall that for any matrix N with n
columns, Nh (and Nm) be the matrix comprising of the first
C columns (and last n− C) of N .

Algorithm 5 LOCATE-RANDOM-RLNC
Input: Matrix Y and IRVs {t′(e) : e ∈ E}

1: Z ′ ← ∅
2: Compute the source message X using network error-

correction codes
3: Compute Er = Ym − YhXm

4: for Each edge e ∈ E do
5: if IRV t′(e) lies in Er then
6: Add e into Z ′
7: end if
8: end for
9: return Z ′

The correctness of LOCATE-RANDOM-RLNC is proved
as follows.

Theorem 16: If z is no more than C − 1, Z ′ = Ext(Z)
with probability at least 1 − 3|E|2/q − 2C2/(n − C). The
computational complexity is O(|E|C2) operations over Fq .

Proof: Lemma 1.2 implies that with probability at least 1 −
2|E|/q, T′(Z)) = T′(Ext(Z)). Lemma 9 implies that with
probability at least 1 − 2C2/(n − C), Er = T′(Z)). Thus,
using Union Bound, with probability at least 1 − 2|E|/q −
2C2/(n − C), we have Er = T′(Ext(Z)). Thus we have
Ext(Z) ⊆ Z ′.

For the other direction, using the Union Bound over all |E|
edges on Lemma 1.2, with probability at least 1− |E|2/q, for
any edge e 6∈ Ext(Z), t′(e) is not in Er. Therefore, Z ′ ⊆
Ext(Z).

Combining the two, we have that Ext(Z) = Z ′ with
probability at least 1− 3|E|2/q − 2C2/(n− C).

For each IRV t′(e), it costs at most O(C2) operations over
Fq to check whether it is in Er. Then the total computation-
al complexity of LOCATE-RANDOM-RLNC is O(|E|C2)
operations over Fq . �

VI. NETWORK REED-SOLOMON CODING (NRSC)

In the second part of the paper, we construct a particular
type of RLNC, network Reed-Solomon coding (NRSC). This
part consists of Sections VI, Section VII and Section VIII,
wherein we respectively define NRSC, and show its applica-
tion to the location of adversarial edges in networks, and that
of topology estimation in the presence of random errors.

A. Motivations

In part I (Sections IV and V), under random linear network
coding (RLNC), network tomography is studied for both
adversarial and random error models. For the random error
model the schemes for both topology estimation and error
localization can be done in time polynomial in network param-
eters, while the schemes presented for the adversarial model
all require time exponential in network parameters. Moreover,
under RLNC localizing adversarial errors is computationally
intractable (see Theorem 15) and requires the knowledge of
network topology, for which the estimation algorithm we
present also requires time exponential in network parameters.

In this section network Reed-Solomon Coding (NRSC) is
proposed to improve the tomographic performance (specially
for the adversarial error model), while preserving the key
advantages of RLNC. To be concrete, NRSC has the following
features.

1) Low implementation complexity. The proposed NRSC is
a linear network coding scheme (see Section II-D for details),
and can be implemented in a distributed and efficient manner,
where each network node only needs to know the node-IDs
of its adjacent neighbors. Thus once an edge (or node) has
left or joined, only its adjacent neighbors need to adjust the
coding coefficients.

2) High throughput. The multicast capacity of the underly-
ing communication scenario is achieved with high probability.

3) NRSC aids tomography in the following two aspects. i)
Computational efficiency. Under the adversarial error model,
the receiver under NRSC can locate a number of adversarial
errors that match a corresponding tomographic upper bound
(see Theorem 13 for details) in a computationally efficient
manner. For the random error model, a lightweight topology



15

v

t′(e1) t′(e2) t′(e3) t′(e4)

t′(e) =
∑
i∈[1,4] βit

′(ei)

Fig. 10. The IRV of e is a linear combination of the IRVs of e1, e2, e3 and
e4.

estimation algorithm is provided under NRSC. ii) Robustness
for dynamic networks. For adversarial (and random) error
localization, the algorithms we present under NRSC do not
require a priori knowledge of the network topology and
thus are robust against edge and node updates. 7 Hence, for
topology estimation in the random error model, the lightweight
algorithm under NRSC fits dynamic networks better than the
one under RLNC, since the latter requires that the network
topology remain stable for a long time period.

B. Overview of NRSC

In NRSC, in addition to an IRV each edge e is also assigned
a virtual IRV (VIRV) t′′(e). This virtual IRV is a deterministic
function of the node-IDs of the head and tail of e (and hence
is known to them), and must be a column of the parity check
matrix of a point-to-point Reed Soloman (RS) code [29].
Further, each node in an NRSC (say node v in Figure 10)
carefully chooses its coding coefficients (e.g., {β1, ..., β4} at
node v in Figure 10, where βi = β(e, v, ei) for i = 1, ..., 4)
such that the virtual IRVs of edges entering and leaving v
satisfy the same linear relationship as the IRVs (in the case of
Figure 10, t′′(e) = β1t

′′(e1)+ ...+β4t
′′(e4)). In other words,

under NRSC every network node makes a “local contribution”
to force edge IRVs to equal the corresponding VIRVs. And
this objective can be achieved if and only if a connectivity
requirement is satisfied (see Corollary 22 for details).

At a high level, we present the ideas that help NRSC
improve upon RLNC in terms of the performance of the
tomographic algorithms.

1) Computational efficiency. Under RLNC, each edge IRV
is randomly chosen from the linear subspace spanned by
the down-stream edge IRVs, resulting in network codes for
which locating network adversaries is as hard as NCPRLC (see
Theorem 15 for details). Under NRSC, VIRVs (and then IRVs)
are smartly chosen so as to enable computationally efficient
adversarial location.

2) Robustness for dynamic networks. Under RLNC each
edge updates (say, disconnecting) results in IRV updates for all
upstream edges. Under NRSC, once an edge is disconnected,
its tail node adjusts its local coding coefficients to ensure

7Note that under RLNC, the error localization algorithms in previous
works [9], [14], [16] and this paper require prior knowledge of the network
topology. However, as highlighted in Section IV-B, topology estimation under
RLNC for networks with adversarial errors is computationally intractable
(though Section V-B presents a computationally tractable algorithm for
networks with random errors).

that the IRVs remain unchanged for all upstream nodes.
This feature significantly reduces the complexity of error
localization over dynamic networks.

C. Node and edge IDs

Each pair of nodes (u, v) in V ⊗ V has an ID id(u, v)
chosen independently and uniformly at random from Fq .8
These IDs can be a part of network design, or outputted by a
pseudorandom hash function (with input as a pair of nodes)
such as AES [35] that can be accessed by all parties. Thus
this set of |V|2 IDs is publicly known a priori to all parties
(including the adversaries), even though they may not know
which nodes and edges are actually in the network.

The following lemma shows that each node pair has a
distinct ID with high probability:

Lemma 17: With probability at least 1 − |V|4/q, for any
(u, v) 6= (u′, v′) in E , id(u, v) 6= id(u′, v′).
Proof: For any (u, v) 6= (u′, v′), id(u, v) = id(u′, v′) with
probability at most 1/q. Since V × V has size |V|2, there
are at most

(|V|2
2

)
< |V|4 distinct pairs in V × V . Using

union bound [33] over all these pairs, the lemma is true with
probability at least 1− |V|4/q. �

For each edge e(u, v) ∈ E the ID of e is id(e) = id(u, v).
Thus the ID of edge e(u, v) can be figured out by both u and
v if they know their adjacent neighbors. A direct corollary
of Lemma 17 is that each edge has a distinct ID with high
probability. We henceforth assume that this is indeed the case.

For each edge e the virtual impulse response vector (VIRV)
is t′′(e) ∈ FCq , which is [id(e), (id(e))2, ..., (id(e))C ]T . For
any set of edges Z with size z, the virtual impulse-response-
matrix (VIRM) is T ′′(Z) ∈ FC×zq , with the columns com-
prised of {t′′(e), e ∈ Z}.

For the ease of notation we also defined a
dimension-parameterized VIRV as t′′(e, i) =
[id(e), (id(e))2, ..., (id(e))i]T . For any set of edges Z
with size z, the corresponding VIRM is T ′′(Z, i) ∈ Fi×zq ,
with the columns comprised of {t′′(e, i), e ∈ Z}. Note that
T ′′(Z, z) is a Vandermonde matrix and invertible when
|Z| = z and the edges in Z have distinct IDs.

D. Code construction of NRSC

We assume by default that the edges in E have distinct
IDs, which happens with probability at least 1 − |V|4/q by
Lemma 17. Recall that C is the capacity of the network, i.e.,
C = max-flow(s, r), and for ease of notation we assume that
the source has exactly C outgoing edges and the receiver has
C incoming edges (see Section II-B for details).

The construction of NRSC is then as follows.
Source encoder: Let Out(s) = {e1, e2, ..., eC} be the out-

going edges of the source s and X ∈ FC×nq be the source mes-
sage matrix. The source s computes M = T ′′(Out(s), C)−1X
and sends the ith row of M as the packet over ei. Note that
X contains a known “header”, say the C ×C identity matrix
over Fq , to indicate the network transform to the receiver.

8Note that for scenario where parallel edges are allowed, we assume some
pairs of nodes have multiple IDs, the i’th of which is the ID of the i’th edge
between them.
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Network encoders: Let Out(v) = {e1, e2, ..., ed} be the
outgoing edges of node v. For an incoming edge e of v, v
computes b(e) = T ′′(Out(v), d)−1t′′(e, d). For the coding
coefficient β(e, v, ei) from e via v to ei, v sets β(e, v, ei) to
be the ith component of b(e).

Receiver decoder: The receiver receives

Y = TX, (8)

where T ∈ FC×Cq can be indicated by the header of Y . If T
is invertible the receiver can decode X correctly.

Thus, similar to RLNC [5], NRSC can be implemented in
a distributed manner given that each node knows its local
topology, i.e., the adjacent neighbors. If an edge/node has been
added/deleted, only local adjustments are needed.

E. Optimal throughput for multicast scenario
The theorem below shows that with high probability NRSC

achieves the multicast capacity.
Theorem 18: With probability at least 1−C|E|4/q, receiver

r can decode X correctly.
Proof: Let i.e., X = {id(u, v), (u, v) ∈ V ⊗ V}. Thus, X is
the set of all random variables involved. By default we assume
that any polynomial mentioned in the proof has variables in
X .

Let detG = Πu∈Vdet(u), where det(u) is the determinant
of the matrix T ′′(Out(u), |Out(u)|) for node u ∈ V . For each
u ∈ V , since each component of T ′′(Out(u), |Out(u)|) is a
polynomial of degree at most |Out(u)|, det(u) is a polynomial
of degree at most |Out(u)|2. Thus detG is a polynomial of
degree at most

∑
u∈V |Out(u)|2 ≤ (

∑
u∈V |Out(u)|)2 = |E|2.

Let T be the transform matrix from s to r defined in
Equation (8). We claim each element of detG · T is a
polynomial of degree at most |E|4. To see this, we first note
that each component in det(u) · T ′′(Out(u), |Out(u)|)−1 is
a polynomial of degree at most |Out(u)|2 − |Out(u)| (see
Cramer’s rule in [36]). Thus in the construction of NRSC,
each local coding coefficient β(e, u, e′) used by u ∈ V is
Poly(e,u,e′)/det(u), where Poly(e,u,e′) is a polynomial of
degree at most |Out(u)|2. Each element in T can be expressed
as
∑
α β̄(α), where β̄(α) = Π(e,u,e′)∈αβ(e, u, e′) and α is a

path from s to r (see [5] for references). Thus each element in
T can be expressed as Polyα/(Πu∈αdet(u)), where Polyα =
Π(e,u,e′)∈αPoly(e,u,e′). Thus Polyα is a polynomial of degree
at most

∑
u∈α |Out(u)|2 ≤ ∑u∈V |Out(u)|2 ≤ |E|2. Since

no node appears twice in a path of an acyclic network,
detG is divisible by Πu∈αdet(u) for each path α. Thus
detG

∑
α Polyα(X )/(Πu∈αdet(u)) is a polynomial of degree

at most |E|4. This completes the proof of the claim that each
element of detG · T is a polynomial of degree at most |E|4.

Now we prove detG · T is invertible with high probability.
The determinant of detG · T is denoted as detr, which is
therefore a polynomial of degree at most |E|4C.

Without loss of generality let {P1,P2, ...,PC} be the edge-
disjoint paths from the source s to the receiver r. We first
prove that detr is a nonzero polynomial, i.e., that there exists
an evaluation of X such that detG 6= 0 (i.e., for each u ∈ V
no two edges in Out(u) have the same ID) and the source can
transmit C linearly independent packets via P1,P2, ...,PC .

We realize the evaluation of X as follows. First, as-
sume each edge has a distinct ID. Second, since the ith
outgoing edge of the source sends the ith row of M =
T ′′(Out(s), C)−1X , the paths P1,P2, ...,PC carry linearly
independent packets on their initial edges. Third, the IDs of
edges in Pi are all changed to be the ID of the first edge
in Pi. Note that this operation preserves the property that for
each u ∈ V no two edges in Out(u) have the same ID (i.e.,
detG 6= 0). Finally, due to the code construction of NRSC (see
Section VI-D), in fact the network uses routing to transmit the
C independent source packets via P1,P2, ...,PC .

Thus under the evaluation of X above, the matrix detG · T
is invertible and therefore detr 6= 0. Using Schwartz-Zippel
Lemma [32], detr 6= 0 and thus receiver r can decode X with
probability at least 1−|E|4C/q over all the possible evaluations
of X . �

Thus if the network has k receivers, using the union
bound [33] on all receivers we conclude that with probability
at least 1− k|E|4C/q each receiver can decode X .

Therefore the techniques over RLNC in multicast scenario
can be directly moved into NRSC. For instance using network
error-correcting codes [11], [12], NRSC is able to attain the
optimal throughput for multicast with network errors.

F. IRVs under NRSC

Following Theorem 18 above, the relations between IRVs
and the network structure can be shown to be the same as
those for RLNC (see Lemma 1 for details). To be precise, for
networks performing NRSC we have the following lemma.

Lemma 19: 1) The rank of the impulse response matrix
T ′(Z) of an edge set Z with flow-rank z is at most z.

2) The IRVs of flow-independent edges are linearly inde-
pendent with probability at least 1− C|E|4/q.

Proof: The proof is similar to the proof of Lemma 1. �
Note that for random error model (see Section II-E for

details), all tomography schemes under RLNC are based on
Lemma 1. Thus such schemes still work under NRSC.

VII. LOCATING ADVERSARIAL ERRORS UNDER NRSC

In this section we show that the receivers in networks using
NRSC are able to efficiently locate network adversaries even
without prior knowledge of the network topology. The high
level idea is that each column of error matrix plays the role of
vector e for RS-DECODE(H, e) (see Section II-I for details),
where the columns of the Reed-Solomon parity-check matrix
H comprise of the VIRVs of network edges. Thus the output
of algorithm RS-DECODE(H, e) locates the set of edges that
introduce errors.

Assumptions and Justifications
1) At most z edges in Z suffer errors, i.e., {e : e ∈
E , z(e) 6= 0} = Z and |Z| ≤ z. When 2z + 1 ≤ C,
network error-correcting-codes (see Section II-G for de-
tails) are used so that the source message X is provably
decodable.

2) Each node in V − {r} has out-degree at least d = 2z.
Note that Theorem 13 proves it is a necessary condition
for locating z errors.
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Let the elements in V ⊗ V be indexed by {1, 2, ..., |V|2}.
The parity check matrix H ∈ Fd×|V|

2

q is defined as H =
[h1,h2, ...,h|V|2 ], where hi is the VIRV (with length d) of
the ith element in V ⊗ V . Then the adversarial error locating
algorithm is constructed as follows.

Algorithm 6 LOCATE-ADV-RS
Input: Source matrix X , the parity-check matrix H , and the

C × n matrix Y received by receiver r
1: Z ′ ← ∅
2: Using network error correction code, decode X from Y
3: Compute Y(RS,d) = T ′′(In(r), d)Y
4: Compute L = Y(RS,d) −Xd, where Xd comprises of the

first d rows of X
5: for Each each column of L, say v do
6: Compute b = RS-DECODE(H,v)
7: if The ith component of b is nonzero then
8: The ith node pair (u, v) in V⊗V is added as an edge

e = (u, v) into Z ′
9: end if

10: end for
11: return Z ′

Theorem 20: The edge set Z ′ output by LOCATE-ADV-
RS equals the actual error edge set Z . The computational
complexity of LOCATE-ADV-RS is O(n|V|2d).

Before the proof we show the following key lemma when
|Out(u)| ≥ d for each node u ∈ V − {r}. Recall that z(e) is
the error packet injected on edge e.

Lemma 21: If the source message matrix X equals to 0,

Y(RS,d) =
∑

e∈E
t′′(e, d)z(e). (9)

Proof: We proceed inductively. Throughout the proof let ET
be the set of edges satisfying the theorem, i.e., Y(RS,d) =∑
e∈E t′′(e, d)z(e) when z(e) = 0 for all e ∈ E − ET .
Step A: If ET = In(r), the theorem is true by the definition.
Step B: Since the network is acyclic, unless ET = E ,

there must exist an edge e ∈ E − ET such that its adjacent
outgoing edge set Out(e) is a subset of ET . Let Out(e) =
{e1, e2, ..., ek} with k ≥ d. If only e suffers non-zero injected
errors z(e), the output of e is z(e). Thus for each i ∈ [1, k]
the output of ei is βiz(e), where βi is the ith component
of b(e) = T ′′(Out(e), k)−1t′′(e, k) (see Section VI-D for
details). Since d ≤ k, we have

∑
i∈[1,k] βit

′′(ei, d) = t′′(e, d).
Since Out(e) ⊆ ET , Y(RS,d) =

∑
i∈[1,k] t

′′(ei, d)βiz(e) =
t′′(e, d)z(e). Therefore Equation (9) is true for the case where
only e suffers non-zero injected error z(e). Since NRSC is
involves linear network coding, e can be added into ET .

Step C: Since the network is acyclic and each node (or
edge) in V (or E) is connected to r, we can repeat Step B
until ET = E . �

Recall the definition of IRV in Section III-A, we have
Y =

∑
e∈E t′(e)z(e). Thus the following corollary is true for

networks satisfying |Out(u)| ≥ d for each node u ∈ V −{r}:
Corollary 22: For each edge e ∈ E , T ′′(In(r), d)t′(e) =

t′′(e, d).

Note that C ≥ d. Thus, for the case where no error
happens in the network and the source s transmits the C × n
message matrix X , by Lemma 21 above we have Y(RS,d) =∑
i∈[1,C] t

′′(ei, d)x(ei), where ei is the ith edge of Out(s)
and x(ei) is the ith row of M = T ′′(Out(s), C)−1X (see
Section VI-D for details). Thus Y(RS,d) = T ′′(Out(s), d)M =
Xd, where Xd is the matrix consisting of the first d rows of
X .

Since NRSC involves linear network coding, we have the
following corollary.

Corollary 23: When the source message is X , Y(RS,d) =
Xd +

∑
e∈E t′′(e, d)z(e).

Then we can prove main theorem of this section as follows.
Proof of Theorem 20: Using Corollary 23 we have L =∑
e∈Z t′′(e, d)z(e). Since |Z| = z ≤ d/2, each column of

L is a linear combination of at most d/2 columns of H .
Additionally, since H is also a parity check matrix of a Reed-
Solomon code, RS-DECODE correctly finds all the edges
with nonzero injected errors, and therefore Z ′ = Z . For each
column of L, RS-DECODE runs in time O(|V|2d). Thus the
overall time complexity of the algorithm is O(n|V|2d). �

VIII. TOPOLOGY ESTIMATION FOR NETWORKS WITH
RANDOM ERRORS UNDER NRSC

Under NRSC, the section provides a lightweight topology
estimation algorithm for the random error model. The high
level idea is that once a candidate IRV is collected using
Algorithm 2 FIND-IRV of Section IV-C, the corresponding
VIRV can be computed by Corollary 22. Using the VIRV
information, the corresponding edge can be detected. Thus
Algorithm 3 FIND-TOPO is not involved.

For estimating the entire network topology, all assumptions
in Section IV-C are required here except for Assumption 6,
which assumes weak type common randomness.

Algorithm 7 FIND-TOPO-RS
Input: Matrixes {Y (i), i ∈ [1, t]}, which are the received

matrix for source generations {1, 2, ..., t}.
1: E ′ ← ∅
2: for i = 1 to t do
3: Using network error-correction-code, compute the

source message X(i) in the i’th source generation
4: Compute E(i)r = Y (i)m − Y (i)hXm(i)
5: end for
6: for i, j = 1 to t, and i 6= j do
7: if rank(E(i)r ∩E(j)r) = 1 then
8: Let h be a vector in E(i)r ∩E(j)r
9: Compute h1 (and h2) as the first (and second) com-

ponent of T ′′(In(r), 2) · h
10: for u, v ∈ V , and u 6= v do
11: If the ratio h2/h1 equals id(u, v), add (u, v) as an

edge into E ′
12: end for
13: end if
14: end for
15: return E ′
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Let G = (V, E) be the actual network topology, pc be the
probability defined in Assumption 4 of Section IV-C, ps be 1−
(1−z/q)[1−2C2/(n−C)] and p′a be pc+2ps+C|E|4/q. Then
the theorem followed proves the correctness of Algorithm 7.

Theorem 24: 1) With probability at most |V|2t2/q, E ′
has an edge which is not in E .

2) If edge e ∈ Z(i)∩Z(j) for some i 6= j ∈ {1, 2, . . . , t},
e ∈ E ′ with probability at least 1− p′a.

Proof:
1) Consider node pair (u, v) ∈ V ⊗ V which is not

in E . Since id(u, v) is independent from the network
coding coefficients used in G and the random errors in
each source generation, for line 11, the ratio h2/h1 is
independent from id(u, v). Thus h2/h1 = id(u, v) with
a probability at most 1/q. Since there are at most t2

pairs of i, j in {1, 2, . . . , t}, using the union bound [33]
edge e(u, v) is accepted in E ′ with probability at most
t2/q. Since there are at most |V|2 node pairs, also by
the union bound [33], E ′ has an edge which is not in E
with probability at most |V|2t2/q.

2) If e ∈ Z(i) ∩ Z(j), from the proof of Theorem 8 the
intersection of E(i)r ∩ E(j)r equals < t′(e) > with
probability at least 1 − p′a. Note that the difference
between pa in Theorem 8 and p′a here comes from the
difference between Lemma 1 (which is for RLNC) and
Lemma 19 (which is for NRSC). Since each internal
node has out-degree at least 2, from Corollary 22 we
have T ′′(In(r), 2)t′(e) = t′′(e, 2) = [id(e), (id(e))2]T .
Thus, in line 11 edge e(u, v) would be accepted as a
new edge in E ′. This completes the proof.

�
If the purpose of tomography is only to estimate the part of

the topology that fails (i.e., recovering the edges with errors),
even Assumption 5 of Section IV-C is not needed anymore.
Thus, FIND-TOPO-RS does not require that each edge suffers
random errors with a non-negligible probability. Simply those
edges suffering random errors can be directly detected via
FIND-TOPO-RS, with high probability. For edges suffering
random errors, FIND-TOPO-RS can detect them with high
probability.

For the scenario where network edges (or nodes) suffer
dynamic updates, FIND-TOPO-RS is more robust than the
topology estimation algorithm under RLNC (see Section IV-C
for details). The reason is that under RLNC the receiver
must use algorithm FIND-IRV to recover all IRV information
before proceeding the topology estimation algorithm FIND-
TOPO. To be precise, under RLNC, it requires that the
network keeps unchanged for t = Θ(log(|E|)|E|) source
generations (see the discussion after Theorem 8 for details).
However, under NRSC, detecting an edge only requires that
the network remains unchanged until such edges suffers two
packet errors.

IX. CONCLUSION

This work examines passive network tomography on net-
works performing linear network coding in the presence of
network errors. We consider both random and adversarial

errors. In part I, under random linear network coding (RLNC)
we give characterizations of when it is possible to find the
topology, and thence the locations of the network errors. Under
RLNC, many of the algorithms we provide have polynomial
time computational complexity in the network size; for those
that are not efficient, we prove intractability by showing
reductions to computationally hard problems. In part II, we
design network Reed-Solomon coding (NRSC) to address the
undesirable tomography capabilities of RLNC under some
(especially adversarial error) settings, while still preserving
the key advantages of RLNC.
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XI. APPENDIX

A. Network erasure model

An erasure on edge e means that the packet x(e) carried by
e is treated as an all-zero length-n vector over Fq by the node
receiving x(e), i.e., the injected erroneous packet z(e) equals
−x(e). Two network erasure models are considered:
1) Random erasures: Every edge e in E experiences erasures
randomly and independently.
2) Adversarial erasures: The edges that suffer erasures are
adversarially chosen.

B. Locating erasures under RLNC

The algorithm LOCATE-RANDOM-RLNC can be also
generalized for locating network erasures (both random and
adversarial), resulting in polynomial-time algorithms. Note

that in the random error model the injected errors in Z
are chosen at random, while in the random erasure model
the injected errors are exactly the negative of the messages
transferred. Thus Lemma 9 for random error model is not
always true for the random erasure model. Hence, we need
Lemma 25 below as an alternative.

Let Z be the set of edges suffering erasures and |Z| = z.
Let t(e) ∈ F1×C

q be the global encoding vector [37] of edge
e, i.e., the packet carried by e is t(e)X when no errors or
erasures happen in the network. Let T (Z) ∈ Fz×Cq be the
matrix whose rows comprise of {t(e), e ∈ Z}. Recall that
E = T ′(Z)Z (as defined in Equation (5)), where the rows of
Z comprise of {z(e) : e ∈ Z}, i.e., {−x(e) : e ∈ Z}. Then
we have:

Lemma 25: If the source has max-flow z to the tails of the
edges in Z , with probability at least 1− |E|/q, the matrix Z
of injected errors has full row rank z and thus E = T′(Z).
Proof: Since the network is directed and acyclic, for ease
of analysis, we impose a partial order on the edges of
Z = {e1, e2, ..., ez}. In particular, for any i > j, ei cannot
be upstream of ej .

Similarly to Lemma 1, if the source has max-flow z to the
tails of the edges in Z , T (Z) has full row rank z with a
probability at least 1− |E|/q under RLNC.

The error corresponding to the erasure on e1 equals
−t(e1)X . The packet traversing e2 may be effected by the
first erasure. Hence, the error corresponding to the erasure
on e2 equals −(t(e2) − a1,2t(e1))X = −t̄(e2)X , where
a1,2 = c1,2 is the unit effect from e1 to e2. In general, the
error corresponding to the erasure on ei equals

−t̄(ei)X = −(t(ei)−
∑

j=1,2,...,i−1

cj,it̄(ej))X

= −(t(ei)−
∑

j=1,2,...,i−1

aj,it(ej))X,

where cj,i is the unit effect from ej to ei.
Thus Z = −AT (Z)X , where A ∈ Fz×zq and the (i, j)’th

element of A equal −aj,i with j < i, 0 if j > i, 1 if i = j.
Then A is invertible. If T (Z) has full row rank z and X
has an invertible C × C sub-matrix (for instance, the header
corresponding to the identity matrix used in RLNC), Z has
full row rank z. Thus, we have that E = T′(Z). �

To locate random erasures, Lemma 25 proves that when
the source has max-flow |Z| to the headers of Z who suffer
erasures, rank(Z) = z and E = T′(Z). Thus LOCATE-
RANDOM-RLNC can be used to locate erasures in the
network, by using E in line 5 instead of Er.

To use the efficient algorithm LOCATE-RANDOM-RLNC
to locate adversarial erasures, by Lemma 25 it is required
that every node has in-degree at least z. Otherwise, the high
complexity algorithm LOCATE-ADVERSARY-RLNC can
be used to find the locations of the adversarial erasures.

Finally, we note that the algorithm for locating erasures
can also be used for locating edges experiencing problematic
delays. Let Yd ∈ FC×nq be the delayed packet matrix received
by r. Then r can locate the delayed edges by treating Yd as
the erasure matrix E and then using the scheme for locating
network erasures.
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