
Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency
in Reliable Data Storage Systems

Cheng Huang, Minghua Chen, and Jin Li
Microsoft Research, Redmond, WA 98052

Abstract

To flexibly explore the trade-offs between storage space
and access efficiency in reliable data storage systems, we
describe two classes of erasure resilient coding schemes:
basic and generalized Pyramid Codes. The basic Pyramid
Codes can be simply derived from any existing codes, and
thus all known efficient encoding/decoding techniques di-
rectly apply. The generalized Pyramid Codes are radically
advanced new codes, which can further improve access ef-
ficiency and/or reliability upon the basic Pyramid Codes.

We also establish a necessary condition for any failure
pattern to be ever recoverable, and show that the gener-
alized Pyramid Codes are optimal in failure recovery (i.e.,
the necessary condition is also sufficient, and any failure
pattern that is ever recoverable can indeed be recovered).

1 Introduction

A promising direction in building large scale storage sys-
tems is to harness the collective storage capacity of massive
commodity computers. While many practical systems de-
mand high reliability (such as five 9s), individual compo-
nents can rarely live up to that standard. Interestingly, a
recent study of disk drives [20] shows that the real-world
reliability is much lower than expected.

On the other hand, large scale production systems (e.g.,
GFS [7]) have successfully demonstrated the feasibility of
building reliable data storage using much less reliable com-
modity components. To ensure high reliability, these sys-
tems often use replication schemes, where data blocks are
replicated a number of times. Trivial as it seems, there are
sound reasons for such a choice. The simplicity of design,
implementation and verification is perhaps the most impor-
tant one. Another reason is because replication schemes
often demonstrate good I/O performance. For instance, in a
3-replication scheme (each data block is stored with 2 ad-
ditional replicas), writing a data block takes 3 write oper-
ations (1 write to itself and 2 to its replicas) and reading
simply takes 1 read operation (from the original data block
or either of the replicas).

On the downside, replication schemes consume several
times more storage space than the data collection itself.
In data centers, storage overhead directly translates into
costs in hardware (disk drives and associated equipments),
as well as costs to operate, which include building space,
power, cooling, and maintenance, etc. As a matter of fact,
it is recently reported that over 55% of the cost of a typical
data center (providing Microsoft’s Windows Live services
in this case) is due to building, power distribution and equip-
ments [9]. In wide area storage applications, the storage
overhead also means much less effective usage of allocated
space. For instance, WheelFS [21] proposes to build a dis-
tributed storage system using PlanetLab machines, where
users often have storage quotas. Shrinking the effective
storage usage to 1/3 (3-replication) or even less (due to
lower reliability of individual PlanetLab machines than that
in data centers, a higher replication ratio is often required)
will not appear as an attractive solution.

Naturally, many Erasure Resilient Coding (ERC) based
schemes (e.g. Oceanstore [12]) are proposed to reduce the
storage overhead. In a typical ERC scheme, a certain math-
ematical transform maps k data blocks into n total blocks
(k original data and n − k redundant). Blocks often have
the same size and can be physically mapped to bytes, disk
sectors, hard drives, and computers, etc. When failures hap-
pen, failed blocks (or simply erasures) can be recovered us-
ing other available data and redundant blocks (with proper
mathematical transforms). Such an ERC scheme is often
called an (n, k)-ERC scheme.

Here is a comparison. Assuming each block fails with
an independent probability of 0.01, then a (16, 12)-ERC
scheme and a 3-replication scheme provide the same level
of reliability (five 9s). Clearly, the ERC scheme requires
only 16 blocks in total, compared to 36 blocks by the repli-
cation scheme, both for 12 data blocks. Hence, the stor-
age savings of ERC schemes are superior. However, be-
yond RAID systems [4], ERC schemes are yet to see any
large scale production level adoption. We believe there are
two fundamental obstacles. First, it’s very difficult to get
ERC schemes right. Consistency issue has long been a huge
concern. And despite of numerous efforts to address the

1

problem, all solutions remain quite complicated. It’s very
challenging to design and implement, not even mention to
verify, such schemes. Sometimes, the complexity simply
scares engineering efforts away. Second, ERC schemes of-
ten suffer greatly on the I/O performance. In the (16, 12)-
ERC scheme, writing a data block takes quite a number of
operations (5 reads of old blocks – 1 data and 4 redundant,
5 diffs to compute deltas, and another 5 writes to update all
the related blocks [1]). Reading takes 12 reads when hitting
a failed data block (in order to perform a proper mathemat-
ical transform).

These obstacles, however, can be largely overcome by
exploring practical application needs. Many production ser-
vices have already been successfully built on top of append-
only storage systems, where write operations only append
to the end of existing data and data is rarely modified once
written. This is viable as many data collections are by large
static (notable examples are those ever exploding media
content collections, due to the boom of portable music de-
vices and Internet videos). Based on such observation, we
envision a hybrid approach, where ERC schemes are com-
bined together with replication schemes. Fresh data written
into the system are first replicated to ensure reliability. In
this way, the write performance is the same as pure repli-
cation schemes. ERC is later applied to completed data
blocks. After redundant blocks are created, replicas of the
original data blocks are deleted. This usually happens as a
background process, e.g., when the system utilization enters
a valley period. Clearly, most data blocks will be protected
by ERC, and only a small number of active blocks will be
in replication. Hence, the storage overhead is very close to
pure ERC schemes. Moreover, since ERC is only applied
to completed data blocks that rarely change, the consistency
issue is greatly alleviated. In summary, several goals can be
achieved simultaneously: 1) simplified design, implementa-
tion and verification; 2) low storage overhead; and 3) much
improved write performance.

To this end, the remaining issue is how to achieve good
read performance. Indeed, the read performance has great
impact on the overall system performance, since it dictates
peak system load and/or peak bandwidth usage. Further, as
most systems incur many more reads than writes, the read
performance is certainly a primary design concern. How-
ever, in the hybrid approach, most blocks are covered by
ERC, and hence reads are almost as difficult as in pure
ERC schemes. Instead of jumping from ERC schemes di-
rectly to replication schemes, which do improve the read
performance, but at the cost of significantly higher storage
overhead, we describe schemes that can achieve much bet-
ter read performance with only moderately increased stor-
age overhead. If traditional ERC schemes and replication
schemes are regarded as two ends of trading storage space
for access efficiency, our schemes allow flexible exploration

of the entire spectrum.
Specifically, we describe two classes of erasure resilient

coding schemes: basic and generalized Pyramid Codes.
The basic Pyramid Codes can be simply derived from
any existing codes, and thus all known efficient encod-
ing/decoding techniques directly apply. The generalized
Pyramid Codes are radically advanced new codes, which
can further improve access efficiency and/or reliability upon
the basic Pyramid Codes. We also establish a necessary
condition for any failure pattern to be ever recoverable, and
show that the generalized Pyramid Codes are optimal in
failure recovery (i.e., the necessary condition is also suf-
ficient, and any failure pattern that is ever recoverable can
indeed be recovered).

The rest of the paper is organized as follows. Section 2
describes the basic Pyramid Codes and Section 3 focuses
on the generalized Pyramid Codes. Section 4 lists some
additional related work. We make concluding remarks in
Section 5, and more importantly, raise a few open issues.

2 Basic Pyramid Codes
Let a distributed storage system be composed of n

blocks, where k blocks are data blocks, and the other m =
n − k blocks are redundant blocks. Use di (i = 1, · · · , k)
to denote the data blocks, and cj (j = 1, · · · ,m) to denote
the redundant blocks.

2.1 Brief primer on MDS codes

Before presenting Pyramid Codes, let us briefly review
maximum distance separable (MDS) [14] erasure resilient
coding, which attracts particular attention in distributed
storage system design. When an ERC scheme applies a
(n, k) MDS code in a distributed storage system, m = n−k
redundant blocks are computed from k original data blocks.
The MDS property guarantees that all the original data are
accessible as long as any k among the n blocks are func-
tional. That is, the system is resilient to n − k arbitrary
failures.

Many commonly used ERC schemes in storage systems
are specific examples of the MDS codes. For example, the
simple parity scheme, which is widely used in RAID-5 sys-
tems, computes the only redundant block as the binary sum
(XOR) of all the data blocks. It is a (k + 1, k) MDS code.
The replication scheme, which creates r replicas for each
data block, is indeed a (1+r, 1) MDS code. Reed-Solomon
codes [18] are a class of the most widely used MDS codes.

2.2 Basic Pyramid Codes: an example

Now we use an example to describe the Pyramid Codes,
which can significantly improve the read performance. Our
example constructs from a (11, 8) MDS code, which could
be a Reed-Solomon code, or other MDS code, such as
STAR [11]. (Note that MDS codes are not required, but

2

Pyramid Codes constructed from MDS codes do have cer-
tain good properties, which will become clear later.)

For an (11, 8) MDS code, the 8 data blocks are sepa-
rated into two equal size groups S1 = {d1,d2,d3,d4} and
S2 = {d5,d6,d7,d8}. Two of the three redundant blocks
are kept unchanged (say c2 and c3). They are now called
global redundant blocks, which cover all the 8 data blocks.
Then, a new redundant block is computed for group S1,
which is denoted as group (or local) redundant block c1,1.
The computation is done as if computing c1 in the original
MDS code, except for setting all the data blocks in S2 to 0.
Similarly, group redundant block c1,2 is computed for S2. It
is easy to see that group redundant blocks are only affected
by data blocks in the corresponding groups and not by other
groups at all. This yields a (12, 8) Pyramid Code.

Algebraically, each data or redundant block can be rep-
resented as many symbols (or elements) in finite fields (or
rings) [13]. The process of computing redundant blocks
from data blocks is called encoding, and the process of
computing failed data blocks from other data and redun-
dant blocks called decoding (or recovery). Without loss of
generality and yet to keep the presentation simple, we as-
sume each block is merely one symbol. Most ERC schemes
apply linear block codes, where the redundant blocks are
linear combinations of the data blocks. For instance, in the
(11, 8) MDS code, the redundant block c1 satisfies

c1 =
8∑

i=1

αidi,

where αi’s are symbols in the same field (or ring). Based on
this representation, the new redundant blocks in the Pyra-
mid Code satisfy

c1,1 =
4∑

i=1

αidi, c1,2 =
8∑

i=5

αidi.

Hence, c1,1 + c1,2 = c1 (all
∑

’s and +’s are binary sum).
To this end, the group redundant blocks can be interpreted
as the projection of the original redundant block in the
MDS code onto each group (by setting the data blocks in
all other groups to 0). Alternatively, given the group re-
dundant blocks, they can be combined (again, binary sum)
to compute the original redundant block in the MDS code.
The Pyramid Code constructed in this example is shown in
Figure 1(a). For convenience, we define the concept of con-
figuration, which represents all data block subsets used to
compute the redundant blocks. For instance, the configura-
tion of this code is c1,1 : S1, c1,2 : S2, and c2, c3 : S1 ∪S2.

Now, we examine interesting properties of the Pyramid
Code. First of all, it has the same write overhead as the
original MDS code. Whenever any data block is updated,
the Pyramid Code needs to update 3 redundant blocks (both

c1,1: {d1,d2,d3,d4}
c1,2: {d5,d6,d7,d8}

d1 d2 d3 d4 d5 d6 d7 d8

c2 c3

k=8

c1,1 c1,2

c1
global

redundancy

n-k=4

local
redundancy

(a) construction

of failed blocks 0 1 2 3 4

MDS code recoverability (%) 100 100 100 100 0
(11, 8) avg. read overhead 1.0 1.64 2.27 2.91 -

Pyramid Code recoverability (%) 100 100 100 100 68.89
(12, 8) avg. read overhead 1.0 1.25 1.74 2.37 2.83

(b) comparison

Figure 1. Construction of (12, 8) Pyramid
Code and comparison with (11, 8) MDS code.

c2, c3, plus either c1,1 or c1,2), while the MDS code also
updates 3 redundant blocks (c1, c2 and c3).

Secondly, we claim that the (12, 8) Pyramid Code can
also recover 3 arbitrary erasures, the same as the original
(11, 8) MDS code. To show this, assume there are 3 arbi-
trary erasures out of the 12 total blocks, which can fall into
one of the following two cases: 1) both c1,1 and c1,2 are
available; or 2) at least one of them is unavailable. In the
first case, c1 can be computed from c1,1 and c1,2. Then,
it becomes recovering 3 erasures from the original (11, 8)
MDS code, which is certainly doable. In the second case,
it is impossible to compute c1. However, other than c1,1

or c1,2, there are at most 2 failed blocks. Hence, from the
perspective of the original MDS code, there are at most 3
failures (c1 and two other failed blocks) and thus is decod-
able.

Third, the Pyramid Code is superior in terms of the read
overhead. When any data block fails, the Pyramid Code can
decode using local redundant blocks, which leads to read
overhead of 4, compared to 8 in the MDS code. Finally, note
that the Pyramid Code improves the read performance at the
cost of using one additional redundant block. Hence, this
example literally demonstrates the core concept of how the
Pyramid Codes can trade storage space for access efficiency.

Next, we show detailed comparisons between the two
codes. Two performance metrics are used throughout the
paper. When the number of failed blocks (either data or
redundant) is r, there are

(
n
r

)
possible failure cases. The

first metric, recoverability, represents the ratio between the
number of recoverable cases and the total cases. It can be
easily linked with the reliability of the overall system us-
ing failure probability models (we do not expand along this

3

direction, as it is not the focus of this paper). The second
metric, average read overhead, represents the average over-
head to access each data block. Consider an example of
1 block failure in the (11, 8) MDS code. If the failure is
a redundant block (3/11 chance), then all the data blocks
can be accessed directly, so the average read overhead is 1.
Otherwise, the failure is a data block (8/11 chance), then
the read overhead is 8 for the failed data block and 1 for
the remaining 7 data blocks. Hence, the average read over-
head is (8 + 7)/8. Altogether, the average read overhead is
1×3/11+(8+7)/8×8/11 = 1.64. Detailed comparisons
on these two metrics are shown in Figure 1(b). We observe
that the additional redundant block in Pyramid Code helps
to reduce the read overhead under all failure patterns, com-
pared to the MDS code. Moreover, it also helps the Pyramid
Code to battle additional failures (4 failure in here).

2.3 Basic Pyramid Codes: construction

Formally, a basic Pyramid Code can be constructed as
follows. It starts with a (n, k) code (preferably a MDS
code), and separates the data blocks into L disjoint groups
(denoted as Sl, l = 1, · · · , L), where group Sl contains kl

blocks (i.e., |Sl| = kl). Next, it keeps m1 out of the m re-
dundant blocks unchanged, and computes m0 = m − m1

new redundant blocks for each group Sl. The jth group
redundant block for group Sl (denoted as cj,l) is simply a
projection of the jth redundant block in the original code
(i.e., cj) onto the group Sl. In other words, cj,l is computed
the same as cj in the original code, but simply setting all
groups other than Sl to 0. Again, the combination of all
cj,l’s for the same l yields the redundant block cj in the
original code. Moreover, if a Pyramid Code is constructed
from a MDS code, it satisfies the following property.

Theorem 1 A basic Pyramid Code constructed from a
(n, k) MDS code can recover m = n − k arbitrary era-
sures (proof skipped, please refer to [10]).

So far, we focus on Pyramid Codes with two-level hierar-
chy (global level and group level). Clearly, It should not be
difficult to extend the results to multiple hierarchies. And
regardless of levels, to achieve the best read performance,
the decoding of a Pyramid Code will always start with the
lowest level and gradually move to the global level. This is
very similar to climbing up a Pyramid, just as the name of
the codes suggests. (please see [10] for more details).

3 Generalized Pyramid Codes
In this section, we describe generalized Pyramid Codes,

which are not trivial generalizations of the basic Pyramid
Codes, but rather radically advanced new ERC schemes.
They also go beyond the structure of the basic Pyramid
Codes, where groups lower in the hierarchy are always

nested in upper ones. In the generalized Pyramid Codes,
groups may overlap with each other. Nevertheless, we
use the common name Pyramid Codes to categorize both
classes of codes, as they both aim at the same goal of trad-
ing storage space for access efficiency, and also follow the
same failure recovery philosophy (i.e., the decoding scope
is gradually broadened).

3.1 Motivation

d1 d2 d3 d4 d5 d6

d7 d8 d9 d10 d11 d12

c1,1 c2,1

c1,2 c2,2

c3 c4

group
redundancyglobal

redundancy

(a) inherently unrecoverable

d1 d2 d3 d4 d5 d6

d7 d8 d9 d10 d11 d12

c1,1 c2,1

c1,2 c2,2

c3 c4

group
redundancyglobal

redundancy

(b) unrecoverable as a basic Pyramid Code

Figure 2. Examples to motivate the gen-
eralized Pyramid Codes (6 erasures each,
marked by “x”).

We use an example to explain the need to investigate be-
yond the basic Pyramid Codes. Figure 2 shows a configura-
tion of a (18, 12) basic Pyramid Code, which is constructed
from a (16, 12) MDS code. The code has 2 groups. Within
each group, 6 data blocks are protected by 2 redundant
blocks. Additionally, there are 2 global redundant blocks
which protect the entire 12 data blocks. From the previous
section, we know that the code can recover 4 arbitrary era-
sures. Since it has 6 redundant blocks, interesting questions
to ask are: 1) what 5-erasure and 6-erasure patterns can it
recover? Clearly, due to information theory limits, the code
can not recover more than 6 erasures; and 2) more generally,
can the recoverability be further improved?

In particular, we examine the two erasure patterns. The
first pattern has 6 erasures and is shown in Figure 2(a).
There are 6 data blocks and 2 redundant blocks available
in the second group. Hence, those 2 redundant blocks are
not useful for recovery and can be removed. Now, we are
left with 6 erasures, but only 4 redundant blocks. Therefore,
this erasure pattern is inherently unrecoverable. The second
erasure pattern is shown in Figure 2(b). It turns out that
the basic Pyramid Code can not recover this pattern either.
The decoding procedure can not make progress within each
group, where there are more failed data blocks than avail-

4

able redundant blocks. Hence, it moves to the global level,
where it computes one more redundant block c2 from c2,1

and c2,2. Still, on the global level, there are only 3 available
redundant blocks and yet 5 data erasures. Hence, it can not
proceed either. But, is there a way in which we can recover
this pattern? In the following, we give a positive answer by
presenting the generalized Pyramid Codes.

We first present a necessary condition of recoverability.
Then, we describe the construction of the generalized Pyra-
mid Codes, where the condition also becomes sufficient
(i.e., the codes are optimal in failure recovery).

3.2 Necessary condition of recoverability

d1

d2

d3

d4

d5

d6

c1,1

c2,1

c3

c4

c1,2

c2,2

(a) unrecoverable pat-
tern (full-size matching
does not exist)

d5

d6

d7

d8

d11

c2,1

c3

c4

c1,2

c2,2

(b) recoverable pattern
(full-size matching ex-
ists)

Figure 3. Tanner graphs (bold edges show
maximum matchings).
The recoverability of any ERC scheme (not just Pyramid

Codes) can be easily verified using a Tanner graph, which is
a tool frequently used in the study of erasure resilience cod-
ing [13]. A Tanner graph is a bipartite graph, where nodes
on the left part of the graph represent data blocks (data
nodes hereafter), and nodes on the right represent redun-
dant blocks (redundant nodes). An edge is drawn between a
data node and a redundant node, if the corresponding redun-
dant block is computed from the corresponding data block.
Given an erasure pattern, a simplified Tanner graph (denoted
as T) can be plotted to show only the failed data blocks and
the available redundant blocks. For instance, the Tanner
graphs corresponding to the erasure patterns in Figure 2 are
shown in Figure 3.

Furthermore, we define matching (denoted by M) as a
set of edges in a Tanner graph, where no two edges connect
at the same node. The size of the matching |M | equals to
the number of edges in the set. Define maximum matching
(denoted by Mm) as a matching with the maximum number
of edges. Also, if |Mm| equals to the number of data nodes,
such a matching is called a full-size matching (denoted by
Mf). For example, the Tanner graph in Figure 3(b) con-

tains a full-size matching, while the one in Figure 3(a) does
not. With these definitions, the necessary condition of re-
coverability is stated in the following theorem. (Note that
when there is no ambiguity, blocks and nodes are used in-
terchangeably, so as the recovery of an erasure pattern and
the recover of a Tanner graph.)

Theorem 2 For any linear ERC scheme (not just Pyramid
Codes), an erasure pattern is recoverable only if the corre-
sponding Tanner graph contains a full-size matching.

Proof We prove this theorem by contradiction. Examining
an arbitrary recoverable erasure pattern, whose correspond-
ing Tanner graph T consists of rd data nodes and rc redun-
dant nodes. (Again, this means the erasure pattern has rd

failed data blocks and rc available redundant blocks.) Ob-
viously, rd ≤ rc. Now, let’s assume T does not contain a
full-size matching. Then, the size of its maximum matching
Mm is less than rd, i.e., |Mm| < rd. Based on the König-
Egerváry Theorem [19] in graph theory, in a bipartite graph,
the maximum size of a matching is equal to the minimum
size of a node cover. Hence, a minimum node cover (de-
noted by Nc), which contains a minimum set of nodes cov-
ering all edges in T , has |Mm| nodes, i.e., |Nc| = |Mm|.
Let nd be the number of data nodes in Nc, then |Mm| − nd

is the number of redundant nodes in Nc. It is clear that
nd ≤ |Mm| < rd.

Now let us assume all the data blocks in Nc are somehow
known (not erasures any more), then we can deduce a new
erasure pattern with fewer failed blocks, which corresponds
to a new Tanner graph T ′. Any redundant node that is not in
Nc can be removed from T ′, because those redundant nodes
can only connect to the data nodes in Nc (otherwise, there
will be edges in T not covered by Nc) and thus isolated in
T ′. Hence, there are at most |Mm| − nd redundant nodes
left in T ′. On the other hand, there are still rd−nd (positive
value) data nodes left. As |Mm| − nd < rd − nd, there are
less redundant nodes than the data nodes, and thus T ′ is not
recoverable. Therefore, T should not be recoverable either,
which contradicts with the assumption. �

For interested readers, the same condition is also stud-
ied using an alternative set representation in a companion
paper [3] (called Maximally Recoverable property there).
Next, we present the generalized Pyramid Codes, which are
optimal as the necessary condition also becomes sufficient.

3.3 Construction and optimality of gener-
alized Pyramid Codes

We use an exemplary configuration (shown in Fig-
ure 4(a)) to briefly illustrate the construction of a general-
ized Pyramid Code. The code can be represented using a
matrix form, as C = G × D, where C = [d1, d2, d3, d4,
c1, c2, c3, c4]T , D = [d1, d2, d3, d4]T and G is a genera-
tor matrix (shown in Figure 4(b)). The construction is to fill

5

d1 d2

d3 d4

c1

c2

c3 c4

horizontal
redundancy

vertical
redundancy

(a) configuration

G =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

g5,1 g5,2 0 0
0 0 g6,3 g6,4

g7,1 0 g7,3 0
0 g8,2 0 g8,4

.

(b) generator matrix

Figure 4. A construction example.

all the non-zero entries of G, such that the code is optimal
in failure recovery.

The algorithm works as follows. It starts with an identity
matrix G = I4×4 and adds new rows (say gi) one at a time.
The physical meaning of adding gi is to define the computa-
tion of a new redundant block. To achieve optimal recovery,
it is desirable that any failed data block should be recover-
able from the new redundant block together with any other
3 blocks. Rows of G that correspond to such blocks form
a submatrix, and the recoverability requires the submatrix
to be invertible. This requires that gi should be linearly
independent of the other 3 rows (denote the corresponding
subspace as S). Hence, gi should not be contained in S. Or
equivalently, gi should not be orthogonal to the null space
of S (a single vector here, as S has rank 3). Finally, the
orthogonality boils down to require that the dot product of
gi and the null space vector to be non-zero. Due to space
limitation, we only present the very high level concept here.
Please refer to [10] for complete details. Similarly, the fol-
lowing theorem on the existence and optimality of the gen-
eralized Pyramid Codes is simply presented without proofs.

Theorem 3 When the finite field size is greater than
(

n
k−1

)
,

the construction of a generalized Pyramid Code is guaran-
teed. In such a code, any recoverable erasure pattern that is
ever recoverable (i.e., its corresponding Tanner graph con-
tains a full-size matching) can indeed be recovered.

3.4 Optimal decoding

When block failures happen in ERC schemes, two types
of recovery could be triggered: 1) recovery of all the failed
blocks, including data and redundant blocks; and 2) recov-
ery of a particular data block being actively accessed. Cor-
respondingly, the access overhead can also be categorized
into: 1) recovery overhead; and 2) read overhead.

Given an erasure pattern, we define an access path as a
sequence of blocks to be accessed in order to recover the
desirable blocks. Different access paths often bear differ-
ent overheads. For instance, Figure 5(a) shows a config-
uration of a generalized Pyramid Code, as well as an era-
sure pattern with 5 failed data blocks. If it is desirable to
recover data block d6, there are at least two viable access
paths: 1) recover d6 directly from d2 and c6; or 2) first

c2

c4

c1

c3

d2 d3

d6 d7

d1

d5

d4

d8

c6 c8c5 c7

horizontal
redundancy

vertical
redundancy

(a) erasure pattern

d3

d4

d6

d7

d8

c3

c4

c1

c2

c6

c8

c7

(b) Tanner graph

Figure 5. Decoding of generalized Pyramid
Codes.

recover d3 from d1, d2, c1 and c2, then recover d7 from
d3 and c7, and finally recover d6 from d5, d7, c3 and c4.
Clearly, these two access paths have significantly different
overheads. Similarly, if it is desirable to recover all the
failed data blocks, there might also be a few access paths
with different overheads. In this section, we describe algo-
rithms to find access paths with either minimum recovery
overhead or minimum read overhead. This is contrast to the
basic Pyramid Codes, where finding access path with mini-
mum overhead is straightforward, because decoding should
always start from the lowest level in the hierarchy and grad-
ually move up.

3.4.1 Minimum recovery overhead

Theorem 4 In the generalized Pyramid Codes, to recover
the failed blocks in an erasure pattern with d failed data
blocks and c failed redundant blocks, the minimum access
path will include exactly d available redundant blocks. It
will also include every available data block, from which
the failed redundant blocks are originally computed (proof
skipped, please refer to [10]).

Based on Theorem 4, it is straightforward to design a
decoding algorithm with the minimum recovery overhead.
Given any erasure pattern, we choose subsets of redundant
blocks, such that the size of each subset simply equals to
the number of failed data blocks. If the recovery can suc-
ceed (again, the corresponding Tanner graph contains a full-
size matching), the recovery (data + redundant) overhead
is computed. After enumerating through all the redundant
subsets, the minimum recovery overhead can be readily de-
rived. In practice, the number of available redundant blocks
in the Tanner graph will not be many more than the num-
ber of failed data blocks, so the complexity of the algo-
rithm should not be high. For instance, the Tanner graph
in Figure 5(b) contains 7 redundant blocks and 5 failed data
blocks, thus there are merely

(
7
5

)
= 21 subsets to compute.

6

3.4.2 Minimum read overhead

The recovery of a single data block in general requires
smaller overhead than the recovery of all failed blocks, and
their respective access paths could be rather different as
well. An algorithm to find an access path with the mini-
mum read overhead is described as follows.

Similar to the previous case, we choose subsets of the
available redundant blocks, whose size equals to the total
number of failed data blocks. If the corresponding Tanner
graph does not contain a full-size matching, this subset is
simply skipped. Otherwise, a breadth first search is carried
out, starting from the target failed data block. If the search
encounters a data node in the Tanner graph, it follows only
the edge in the matching to the corresponding redundant
node. If the search encounters a redundant node, it follows
all edges in the Tanner graph to all the data nodes, which
have not been visited before. The search stops when the
set of visited redundant nodes is large enough to recover
all the visited data nodes. After enumerating through all
subsets, the minimum read overhead can be easily derived.
The complexity is comparable to the previous case.

Very careful readers might challenge that given a redun-
dant subset, there could exist more than one full-size match-
ing in the Tanner graph (i.e., data and redundant nodes could
be matched differently, while the sizes of matchings are
the same). The breadth first search only explores one of
them, which might happen to be not minimum. Neverthe-
less, the following theorem relieves such concern and the
algorithm indeed guarantees to find the minimum read over-
head (proof skipped, please refer to [10]).

Theorem 5 In the generalized Pyramid Codes, given an
erasure pattern and a redundant subset, the bread first
search algorithm will always yield the same read overhead,
even following different full-size matchings.

3.5 Comparisons

This subsection compares the basic and generalized
Pyramid Codes. We first use the same configuration, as
shown in Figure 2. Both codes (denoted as basic and gen.
I, respectively) are (18, 12) codes and guarantee the recov-
ery of 4 arbitrary failures. Figure 6 compares their recover-
ability beyond 4 failures, as well as the recovery and read
overhead. It is quite obvious that the generalized Pyramid
Code has higher recoverability when the number of failures
exceeds 4. Moreover, this improvement of recoverability
comes at the cost of increased read overhead (mostly promi-
nent when there are 6 failures).

Next, we modify the configuration slightly and create a
new generalized Pyramid Code, where the global redundant
blocks are removed and replaced by c3: {d1, d2, d3, d7,
d8, d9} and c4: {d4, d5, d6, d10, d11, d12}. (Note that

this configuration is not valid for a basic Pyramid Code,
since horizontal and vertical groups now overlap.) The per-
formance of this code is also shown in Figure 6. We observe
that its recoverability is slightly reduced, as it no longer
guarantees the recovery of 4 arbitrary erasures. On the other
hand, both its recovery and read overhead are reduced as
well. This again demonstrates the flexibility of Pyramid
Codes in trading storage space for access efficiency, with
different choices of configurations.

4 Additional related work
There are a few works, which bear a similar concept of

trading storage space for access efficiency. For example,
one scheme in [8] can improve the read overhead by us-
ing twice as much storage space as the data collection it-
self. [16] uses slightly more storage space than MDS codes
to improve access efficiency in wide area storage networks.
Compared to these schemes, Pyramid Codes are much more
flexible and can explore a much wider range of the trade-
offs. Moreover, the generalized Pyramid Codes have opti-
mal recovery performance, while none of the other existing
schemes does.

There are also significant efforts in trying to improve the
encoding/decoding performance of ERC schemes. In par-
ticular, lots of them advocate using pure XOR operations,
such as EVENODD [2], X-Code [22], RDP [5], codes based
on CPM [6], etc. As mentioned before, if these codes are
used to derive the basic Pyramid Codes, then all optimiza-
tions direct apply. As for the generalized Pyramid Codes,
some generic optimization concepts, such as [17], are still
applicable.

5 Concluding remarks
In this paper, we describe two classes of Pyramid Codes

to allow flexible exploration of the trade-offs between stor-
age space and access efficiency in reliable data systems.
The basic Pyramid Codes can be simply derived from any
existing codes, while the generalized Pyramid Codes are
radically advanced new codes. We also establish a neces-
sary condition of recoverability and show that the general-
ized Pyramid Codes are optimal in failure recovery.

References

[1] M. K. Aguilera, R. Janakiraman, and L. Xu, “Us-
ing erasure codes for storage in a distributed system”,
DSN 2005, Yokohama, Japan, June. 2005.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVEN-
ODD: An Efficient Scheme for Tolerating Double
Disk Failures in RAID Architectures,” IEEE Trans. on
Computers, 44(2), 192-202, Feb. 1995.

[3] M. Chen, C. Huang, and J. Li, “’On the Maximally
Recoverable Property for Multi-Protection Group

7

50

60

70

80

90

100

0 1 2 3 4 5 6

re
co

ve
ra

bi
lit

y
(%

)

of failed blocks

basic gen. I gen. II

(a) recoverability

4

6

8

10

12

0 1 2 3 4 5 6

av
g.

 re
co

ve
ry

 o
ve

rh
ea

d

of failed blocks

basic gen. I gen. II

(b) recovery overhead

0

1

2

3

4

0 1 2 3 4 5 6

av
g.

 re
ad

 o
ve

rh
ea

d

of failed blocks

basic gen. I gen. II

(c) read overhead

Figure 6. Comparisons of three (18, 12) Pyramid Codes.
(basic stands for a basic Pyramid Code with the configuration shown in Figure 2; gen. I is a generalized Pyramid Code with
the same configuration; and gen. II is a generalized Pyramid Code, where the global redundant blocks are removed and re-
placed by two group redundant blocks, covering {d1,d2,d3,d7,d8,d9} and c4 : {d4,d5,d6,d10,d11,d12}, respectively.)

Codes”, (to appear) ISIT 2007, Nice, France, Jun.
2007.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson, “Raid – High-Performance, Reliable
Secondary Storage”, ACM Computing Surveys, 26(2),
145-185, 1994.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S.
Kleiman, J. Leong, and S. Sankar, “Row-Diagonal
Parity for Double Disk Failure Correction”, FAST
2005, San Francisco, CA, Dec. 2005.

[6] G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New
Efficient MDS Array Codes for RAID Part I: Reed-
Solomon-Like Codes for Tolerating Three Disk Fail-
ures”, IEEE Trans. on Computers, 54(9), Sep. 2005.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung,“The
Google File System”, SOSP 2003, Lake George, NY,
October, 2003.

[8] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant
Erasure Codes for Storage Systems”, FAST 2005, San
Francisco, CA, Dec. 2005.

[9] J. Hamilton, “An Architecture for Modular Data Cen-
ters”, CIDR 2007, Jan. 2007

[10] C. Huang, M. Chen, and J. Li, “Pyramid Codes: Flex-
ible Schemes to Trade Space for Access Efficiency in
Reliable Data Storage Systems”, Microsoft Research
Technical Report MSR-TR-2007-25, Mar. 2007.

[11] C. Huang, and L. Xu, “STAR: an Efficient Coding
Scheme for Correcting Triple Storage Node Failures”,
FAST 2005, San Francisco, CA, Dec. 2005.

[12] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwin-
ski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
“OceanStore: an Architecture for Global-Scale Persis-
tent Storage”, ASPLOS 2000, Cambridge, MA, Nov.,
2000.

[13] S. Lin, and D. J. Costello, “Error Control Coding,
Fundamentals and Applications”, Prentice Hall Press,
2004.

[14] F. J. MacWilliams, and N. J. A. Sloane, “The The-
ory of Error Correcting Codes”, Amsterdam: North-
Holland, 1977.

[15] J. S. Plank, “A tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like Systems”, Software –
Practice & Experience, 27(9), 995-1012, Sep. 1997.

[16] J. S. Plank, and M. G. Thomason, “A practical analy-
sis of low-density parity-check erasure codes for wide-
area storage applications”, DSN 2004, Florence, Italy,
Jun. 2004.

[17] J. S. Plank, and L. Xu, “Optimizing Cauchy Reed-
Solomon Codes for Fault-Tolerant Network Storage
Applications,” NCA 2006, Cambridge, MA, Jul.,
2006.

[18] I. S. Reed, and G. Solomon, “Polynomial Codes over
Certain Finite Fields”, J. Soc. Indust. Appl. Math.,
8(10), 300-304, 1960.

[19] A. Schrijver, “Combinatorial Optimization, Polyhe-
dra and Efficiency”, Algorithms and Combinatorics,
Springer, vol. A, 2003.

[20] B. Schroeder, and G. A. Gibson, “Disk Failures in the
Real World: What does an MTTF of 1,000,000 Hours
Mean to You?”, FAST 2007, San Francisco, CA, Feb.
2007.

[21] J. Stribling, E. Sit, M. F. Kaashoek, J. Li, and R.
Morris, “Don’t Give Up on Distributed File Systems”,
IPTPS 2007, Bellevue, WA, Feb. 2007.

[22] L. Xu, and J. Bruck, “X-code: MDS array codes with
optimal encoding”, IEEE Trans. on Information The-
ory, vol. 45, no. 1, 1999.

8

