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Abstract— This paper deals with the problem of congestion
control and packet exchange on a wireless network. The
mathematical model corresponding to the real protocol is
inspired by and extends a known fluid flow scheme for the
control of congestion on a wired network. The necessity to
introduce a specific wireless model is motivated by the presence
of channel error: often this error (due to intrinsic noise
or channel corruption) is not known exactly. This motivates
the modification of the model by approximating parts of its
structure with binary functions, whose switching point is known
precisely. These new discontinuous elements, while in practice
greatly simplifying the structure of the algorithm (they are
endowed with a 1-bit of information), complicate the theoretical
analysis of its dynamical properties. We therefore approximate
them with continuous functions with limiting convergence:
they thus preserve the simple shape and yield themselves to
analysis as well. Given this setup, we then investigate the
important issues of existence and uniqueness of the equilibrium
for the dynamical system, and of local asymptotic stability.
Furthermore, we show that this equilibrium solves a concave
net utility optimization problem, of which the classical one for
wired networks is a special case. The take away point of this
work is that the scheme we propose to handle the traffic on a
wireless network is not only innovative and meaningful, but has
also the potential to be modified and translated into practical
implementation.

I. I NTRODUCTION

Transmission Control Protocol (TCP) has recently been
the focus of much research (originated, among the many
contributions, in [1], [2], [3]). Not long ago, this practical
scheme has been dynamically modeled via a system of con-
tinuous time differential equations that describe the evolution
of the rates (that is, the number of bits per second) of a set of
users that exchange information over a network. This is an
instance of fluid flow model (see [4], [5]). The study of this
model further understanding of the intrinsic characteristics
and dynamical properties of the system. Investigating this
scheme has nevertheless proven to be a rather challenging
task, mostly because of the presence of strong non linearities
in the functions that come into play, and because of the
distributed nature of the scheme. Moreover, the multiple
couplings between its entities (senders, receivers and links)
hampers the global understanding of its behavior.

The current fluid flow models for TCP have only been
dealing with the case of wired networks, [4] [5]. Fundamental
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properties such as uniqueness of the equilibria and stability
have been studied, [6] [7], and conditions for achieving
robustness to disturbances, [8], and to delays, [9], have been
introduced.

Quite recently some researchers have turned their atten-
tion to the wireless scenario. This new setting poses new,
unconfronted challenges, due to the presence of intrinsic
noise and channel errors at the link level. An algorithm
known as MULTFRC (see [10]) and proposed for video
streaming over wireless networks, has introduced a scheme to
be applied to TCP-friendly rate control (TFRC) for wireless
networks. In [11], a corresponding continuous-time model
is introduced and studied. Many properties, such as global
stability, robustness conditions to delays and to disturbances,
have been derived, [12] [13].

This paper takes a step forward: the presence of channel
error is the cause of imperfect feedback from the network
to the users; these errors prevent the exact measurement of
the congestion status on the network. This motivates the
introduction of a simplifying approximation for that part of
the model which is affected by noise. This approximation,
in the form of a step function that switches at a known
(or computable) point, is on the one hand simpler, but
on the other hand discontinuous. Because of this, it is
quite hard to do analysis on the modified scheme. Some
continuous approximations are then introduced, and their
limiting behavior studied. With these modifications, the new
scheme is prone to yield interesting results.

The paper unfolds as follows: after a brief explanation
of fluid-flow models for wireline networks and a concise
introduction to the TCP scheme for wireless networks,
we propose its related modification and the corresponding
continuous approximations. A series of facts will elucidate
the existence and uniqueness of the equilibrium for the
approximation of the modified system. Furthermore, local
stability for the scheme will be proved, and limiting behav-
iors explained. It will then be shown that the equilibria of
the modified model are the solution of a concave net utility
optimization problem, of which the generic one proposed by
Kelly for TCP on wired netowrks, [4], is a special case. The
implications of these results will follow, and a description of
future work will close up the paper.



II. A PRACTICAL FLOW CONTROL SCHEME

In this section we first introduce the dynamical model of
the well-known general flow control problem first introduced
by Kelly et. al., [4]. Starting from the wired scenario, we
motivate and build up the extensions for the more challenging
wireless case; finally, a modification to this last model is
discussed in order to simplify it and enable its practical
implementation.

A. Wired Networks

A communication network is described via a setJ of links
and a setR of users(sender-receiver pairs). Eachj ∈ J has
a finite capacityCj < ∞. The network interconnections are
described via a routing matrixA = (ajr, j ∈ J, r ∈ R),
whereajr = 1 if j ∈ r. A fluid-flow, continuous-time model
for the TCP scheme (see [4]) has been proposed in order
to facilitate the analysis of the properties of the protocol. To
each user a sending ratexr ≥ 0 and a utility functionUr(xr)
are associated.Ur(xr) is assumed to be increasing, strictly
concave andC1. The exchange of information between users
over the links can be interpreted as a concave maximization
problem (see, among the others, [14] [15]), dependent on the
aggregate utility functions for the rates and on some costs
on the links:

max
∑
r∈R

Ur(xr)−
∑
j∈J

Pj

∑
s:j∈s

xs

 , (1)

where the cost functionsPj(·) are defined as

Pj(y) =
∫ y

0

pj(z) dz. (2)

The termspj(y) can be interpreted as “prices” at the link and
are assumed to be non-negative, continuous and increasing
functions; they represent some congestion measure and,
as can be inferred from their structure, they have a local
dependence on the aggregate rate passing through the link.
As in [5], in this paper we shall stick to the following “packet
loss rate”:

pj(y) =
(y − Cj)+

y
. (3)

Flow control can then be regarded as a dynamical systems
problem, dynamically evolving according to the problem 1,
that is having an equilibrium which is the solution of 1. User
r will accrue a packet loss rate which, under our assumptions
of small pj , can be approximated as

∑
j∈r pj(

∑
s:j∈s xs).

The rate control scheme has the following shape:

d

dt
xr(t) = kr

wo
r − xr(t)

∑
j∈r

pj

∑
s:j∈s

xs(t)

 , r ∈ R

(4)
with kr a positive scale factor affecting the adaptation rate,
and the constantwo

r can be physically interpreted as the
number of connections that the user establishes with the
network; as discussed, the congestion signal (packet loss rate)
depends on the sum of the prices along all the links that are
crossed by the user. Interpreting the model (4) as a dynamical

relation, it is easy to express its equilibrium in an implicit
form. In [4] it is shown by Lyapunov arguments that this
equilibrium is unique and asymptotically stable. Moreover,
the schemes can be endowed, under conditions over their
parameters, with many interesting properties (as an example,
robustness).

B. Wireless Networks

Wireless channels are affected by errors, due to the cor-
ruptibility of the signals flowing through them and to the
presence of noise. This directly influences the packet loss at
each link in a TCP-like setting. We thus encompass this fact
within a new price function for, say, linkj:

qj

∑
s:j∈s

xs(t)

 , pj

∑
s:j∈s

xs(t)

+εj ≥ pj

∑
s:j∈s

xs(t)

 .

(5)
This function accounts for both the congestion measure
(dependence on the termpj) as well as the channel errorεj .
The TCP model (4) will then depend on this new function
qj(y). It is again easy to calculate the equilibrium of this new
dynamic relation; the dependence on the new price function
will give a result that is different than the one derived from
(4). Interpreting this fact through an underlying optimization
problem, as in (1), shows that the new equilibrium will
be suboptimal. This fact motivates the introduction of an
enhancement to the wireless scheme, as described in the
following section.

C. A new Control Scheme for Wireless Networks

In [12] [13] [11], we introduced two extensions to the
TCP scheme, both aimed at compensating the suboptimality
of the equilibrium point of the rates of the interconnection
(4-5) with respect to the simpler scheme (4). In this paper
we shall focus on one of these two proposed schemes, the
“dynamic update.” Assume the termωr is time dependent,
ωr(t), and evolves according to:

d

dt
wr(t) = cr

(
wo

r − wr(t)

∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑

s:j∈s xs(t))

)
. (6)

We can interpret this dynamical relation, in a fluid-flow
sense, as the modification of the number of connections that
the user has with the network. It is easy to compute the
equilibria of this new interconnection (the couple{xr, ωr}),
and check that the “optimum point” of the rates is the
same as that of (4). Aiming at a dynamical analysis of
this scheme, in [11] we showed that the interconnection is
globally asymptotically stable, under the realisitc assumption
that the two dynamical relations evolve in two different time
scales. In [12] and [13] we instead investigate the robustness
of the scheme to delays and study its resilience against
disturbances. It is important to notice that this scheme can be
easily implemented by adjusting the number of connections
which an application opens in a real network. Therefore, it is
anapplication layer based approachand it is easy to deploy,
as it does not require changes on the network’s infrastructure
or its protocol.



D. The Indicator Function

From the structure of Eqn. (6) we can gather that the
implementation of the control law onwr depends on the
precise measurement of the ratio

∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑

s:j∈s xs(t)) , which
is the portion of the end-to-end packet loss rate that is
exclusively caused by congestion.

From an end-to-end point of view, users can infer which
packet is lost only by observing a discontinuity in the
sequence number that is carried by every packet1; the reason
of the loss (congestion or channel error) would not be given
though. Therefore users can only precisely measure the end-
to-end packet loss rate, i.e.

∑
j∈r qj(

∑
s:j∈s xs(t)), but not

the quantity due to congestion, i.e.
∑

j∈r pj(
∑

s:j∈s xs(t)).

In principle, users can have the ability to exactly mea-
sure

∑
j∈r pj(

∑
s:j∈s xs(t)), provided more information is

gathered from the network infrastructure (like the routes for
instance). As an example, the routers and the base stations
can generate an Explicit-Loss-Notification (ELN) marking2

on consecutive packets when they understand that the current
packet is lost due to the wireless transmission. Therefore if
the users observe a lost packet, they can check the ELN
bit on the successive packet to see whether the loss is
caused by congestions or by channel error. This way, users
can get a precise measure of

∑
j∈r pj(

∑
s:j∈s xs(t)), and

therefore a better estimate of the above ratio. Other solutions
are based on end-to-end statistics, or there exist schemes
that are not using packet loss as a congestion measure: for
instance, TCP Vegas quantifies the congestion on a measure
of the queueing delay. However, to our best knowledge, none
of the real world networks infrastructures currently employ
these functionalities. Even worst, it is very hard to add this
enhancement in every router and base station, and it breaks
the end-to-end principle Internet relies on.

All the above motivates the pursue of a better way to
control the quantitieswr based on some alternative that is
easy for users to measure in reality. We first gauge how the
ratio affects the system’s performance in (6):

• If a router is underutilized, then the ratio is zero; this
implies that the number of connectionswr(t) increases
in order to boost the user ratexr(t), which makes the
system pursue full utilization on the router;

• If the router is fully utilized, i.e. if any one of its link is
congested, than the ratio takes a value between zero and
one, finely adjustingwr(t), and hencexr(t), to make
the system pursue the maximum utility.

This behavior suggests the idea of replacing the ratio with an
indicator function. Specifically, let us introduce the following

1In practice, the sender waits for three duplicate acknowledgements
asking for the retransmission of the missing packet, before it asserts that
the packet is lost.

2Along with ELN, there exist schemes known as Explicit-Congestion-
Notification (ECN) that, as intuitive, work similarly.

quantity:

Ir(x) = Ind

∑
j∈r

(yj(t)− Cj)+

yj
> 0

 (7)

=
{

1, if route r is congested at timet;
0, otherwise.

Here yj(t) =
∑

s:j∈s xs(t) is the aggregate rate flowing
through link j. From this definition, we can observe that

• Ir(x) has exactly the same behavior as the ratio when
route r is underutilized, therefore, replacing the ratio
with Ir(x) will not affect the system’s thrust to pursue
full utilization.

• If any of the links of router is congested,Ir(x) does
not have the exact same behavior as the ratio; instead,
it assumes the value one to push downwr(t), so as to
decreasexr(t) in order to avoid further congestion on
the route.

Unlike the ratio in (6), the value of the indicator function
can be easily and accurately estimated by each user. In fact,
its value is directly correlated to changes on the round trip
time (RTT) for each user3. Physically, RTT consists of the
round trip propagation delay and round trip queuing delay.
For a given route, assuming the backward path is congestion-
free, i.e. the incoming rates to the sender are less than
the links capacities, the round trip propagation delay is a
fixed value, and the queuing delay is zero if the forward
path is not congested. If the forward path is congested, the
queuing delay increases to positive values, and if the path
is continuously congested keeps increasing to a maximum
value, i.e. until the buffer is overflown.

Hence, clearly,an increase in RTT is due to the presence
of forward congestion(and therefore increasing queueing
delay)4; the increase itself is symptomatic of the indicator
function assuming value one. On the other hand, if there
is no increase in RTT, then most probably the route is not
congested, which means that he indicator function is likely
to be equal to zero.

The system (4-5), endowed with this new term, is modified
as:

d

dt
xr(t) = kr

wr(t)− xr(t)
∑
j∈r

(εj + pj(yj(t)))

(8)

d

dt
wr(t) = cr (wo

r − wr(t)Ir(x)) . (9)

The model (8-9) is a nonlinear, coupled system with dis-
continuities introduced by the termsIr(x), r ∈ R. The
discontinuities make it difficult to analyze the system, as the
new vector field is no longer continuous. As such, it does
not fit into the classical framework for analysis previously
employed; it would instead require the study of solutions
in the Filippov sense (see [16]). We decide to tackle this

3Here we call RTT the sum of the time it takes a packet to go from
sender to receiver, and back.

4Again, under the slack assumption that the incoming rates to the sender
are less than the links capacities.



problem by approximating theIr(x), r ∈ R with continuous
functions; hence we get a continuous approximated version
of the system (8-9), which we describe in the following.

III. C ONTINUOUS APPROXIMATIONS OF THESYSTEM

AND THE TWO TIMES SCALE ASSUMPTION

The parameter-dependent function we use to approximate
Ir(x) in (9) is the following5:

fr(x) =
e

∑
j∈r ln

1+e
β

yj−Cj
yj


− 1

1 + e

∑
j∈r ln

1+e
β

yj−Cj
yj

 , r ∈ R; (10)

furthermore, the discontinuous quantitypj(yj(t)) = (yj(t)−
Cj)+/yj(t) in (8) is approximated using the following
function:

gj(yj(t)) =
1
β

ln
(

1 + e
β

yj(t)−Cj
yj(t)

)
, j ∈ J. (11)

It should be clear thatfr(x) → Ir(x) and gj(yj(t)) →
pj(yj(t)) asβ →∞.

The corresponding approximated system is,∀r ∈ R,{
d
dtxr(t) = kr

(
wr(t)− xr(t)

∑
j∈r(εj + gj(y(t)))

)
;

d
dtwr(t) = cr (wo

r − wr(t)fr(x)) .
(12)

Since the approximated system in (12) is continuous, we
can then analyze its equilibrium and stability for arbitrary
values ofβ. As β →∞, the system in (12) approaches the
original system (8-9). Therefore, the logic is to analyze the
properties of the system (12); moreover, by lettingβ →∞,
we expect to reveal those of the interconnection (8-9).

The approximated system in (12), although continuous,
is still hard to analyze in general. Like the model (4-6),
it is a nonlinear, coupled, multivariable system, and the
two equations are not exactly symmetrical even though they
might appear to be so.

In [11] we argue that in the actual TCP schemes the rate
of change of the quantitywr(t), representing the number
of connections that a user has with the network, is dimen-
sionally slower than that ofxr(t), representing the source
sending rate. Therefore, inspired by control literature on
single perturbation systems (for instance, refer to [16]), we
carefully make a key assumption to enable the decoupling of
the system into two time scales:the dynamics corresponding
to xr(t) and wr(t) evolve in two different time scales; the
first in a faster one, while the second in a slower one. This
helps us derive strong results on the overall interconnection.

The two time scale assumption applied to the approxi-
mated system in (12) highlights two kinds of dynamics: a
fast one, which is described in theboundary-layer system,
and a slow one, which is encompassed in thereduced-order

5For simplicity reasons, we do not make this dependence on the parameter
β explicit in the quantitiesfr andgj

system. The fast interconnection is described,∀r ∈ R, as{
d
dtxr(t) = kr

(
wr(t)− xr(t)

∑
j∈r(εj + gj(y(t)))

)
,

wr(t) = constant;
(13)

in the slower timescale, we instead have the following
dynamics,∀r ∈ R:

xr(t) = wr(t)∑
j∈r(εj+gj(y(t))) ,

d
dtwr(t) = c

(
wo

r − wr(t)fr(x(t))

)
;

(14)

Under the two times scale setting, the behavior of the system
can be described as follows. On the fast timescale,wr can
be thought as being held constant, and the entire system can
be expressed as the boundary system shown in (13). This
system is nothing but a slight modification of Kelly’s control
system on wired network (as expressed in (4)), except for
wo

r replaced by the “constant”wr(t) and the price function
pj(yj(t)) replaced by

∑
j∈r(εj + gj(y(t)); the behavior of

the boundary system can thus be easily inferred from the
known results of the system in (4). It has a unique and
globally exponentially stable equilibrium, which is a function
of wr. Particularly, on the fast timescale,xr converges to the
equilibrium manifold defined as follows:

xr(t) =
wr(t)∑

j∈r(εj + gj(yj(t)))
. r ∈ R (15)

On the slow timescale,xr has already converged to the
equilibrium manifold, and the system collapses into the
reduced system described in (14). Its behavior determines
how the approximated system evolves in the long run;
therefore, together with the boundary layer system, it fully
characterizes behavior of the system for all possible times.
Motivated by the above considrations, we shall mainly focus
on investigating the reduced system in (14).

IV. EXISTENCE, UNIQUENESS OFTHE EQUILIBRIUM , ITS

LOCAL STABILITY AND THE RELATED OPTIMIZATION

PROBLEM

Given a general nonlinear system, the existence of an
equilibrium and its stability represent among the first things
to look at.

In this section we show that the system in (12) has a unique
equilibrium, and that this equilibrium is locally exponentially
stable. We start from showing that any existing equilibrium
is locally stable in a neighborhood; then, thanks to this fact
and together with some results from the Poincare-Hopf Index
Theorem (see [16]), we conclude that there can be only one
equilibrium.

Before stating the main results, the following fact is intro-
duced. We simply denotex(t) = (x1(t), . . . , xcard(R)(t))T ;
similarly for w(t).

Lemma 1: The equilibrium manifold shown in (15) is a
one-to-one mapping betweenx(t) and w(t); moreover, the
following holds on the manifold:

ẇ = D(x)ẋ,



where

D(x) = diag(x)
(
diag

(∑
j∈r

εj + gj(yj)
xr

)
+AT diag(g′j(yj))A

)
is a product of two positive definite matrices, and as such
all its eigenvalues are positive.
Proof: Refer to Appendix A.

Remark 1: Lemma 1 implies that within the reduced
system (14), analyzing the behavior of the system with
respect tox is equivalent to carrying out the analysis with
respect tow; as a matter of fact, both of them, as well as
their derivatives, are in a one-to-one relationship.

Based on the two times scale decomposition and on
singular perturbation theory (see, for instance, [16] or [17]),
showing that for the approximated system in (12) any possi-
ble equilibrium is locally exponentially stable follows from
the argument that both the boundary system and the reduced
system need to be locally exponentially stable around the
equilibrium. We first claim the following lemma for the
reduced system:

Lemma 2: Assume that for the reduced system in (14),
xo is one of its possible equilibria; thenxo is locally
exponentially stable for anyβ > 0.
Proof: Refer to Appendix B.
Furthermore, exploiting the fact that the boundary layer
system is locally exponentially stable (see [18]), we apply
arguments used in [16] and in [17] for the stability of
singular perturbation, non-linear system to infer that any
equilibrium of the composite system shown in (12) is locally
exponentially stable. This fact is stated in the following:

Theorem 1: If xo is an equilibrium for the composite
system shown in (12) with arbitraryβ > 0, it is locally
exponentially stable.

Remark 2: Theorem 1 and Theorem 2 state the existence
of a unique equilibrium and ensure its locally stability for the
continuous approximated system in (12), for any value ofβ.
At the limit asβ →∞, the approximated system approaches
the original discontinuous system in (8-9). Therefore, for
extremely largeβ, we expect the approximated system to
have a very close behavior to the original system, except
right at the discontinuitiesyj(t) = Cj .

Thus far we have shown that any existing equilibrium is
locally exponentially stable. Another important question to
address is how many equilibria there are for the system. The
answer is stated in the following:

Theorem 2: For any arbitraryβ > 0, the approximated
system (12) has one unique equilibrium.
Proof: Refer to Appendix C.
In the folowing, we motivate how the unique equilibrium
solves a concave optimization problem, which is a modifi-
cation of the one proposed for the wired case in Eqn. 1.

Theorem 3: For any arbitraryβ > 0, the unique equilib-
rium of the approximate system in (12), denoted by(x∗, n∗),
solves the following concave optimization problem

max
x≥0

∑
r∈R

Ur(xr)−
∑
j∈J

∫ yj

0

gj(z) dz, (16)

with Ur, r ∈ R being the concave function:

Ur(xr) =
∫ xr

0

h−1
r

(
wo

r

ν

)
dν, r ∈ R,

where h−1
r , r ∈ R is the inverse of the monotonically

increasing functionhr:

hr(z) ,

(∑
j∈r

εj + z

)
fr(z) =

(∑
j∈r

εj + z

)
eβz − 1
eβz + 1

.

Proof: First it is easy to see the net utility function in (16)
is concave. Then the claim follows by setting to zero the
derivative of the net utility function with respective tox.

One observation for Theorem 3 is in order: the unique
equilibrium for the system in (12) in the wireless scenario
solves a concave optimization problem which is similar to
the general one (Eqn. 1) solved in the wired network (see
[4]), but with different utility functionsUr(xr) for each user.
More prcisely, while theUr(xr) in the wired network case is
only a function ofxr, in wireless scenario it is also a function
of
∑

j∈r εj , that is the packet loss rate associated with the
router. In fact, if we letβ →∞ andεj = 0,∀j ∈ J , i.e. if
we tend to the wired network scenario, we havehr(z) = z,
and thus the optimization problem in (16) becomes identical
to the wired network optimization one. In this case, the
equilibrium (x∗, n∗) is exactly the same asxo, implying
the optimization problem in the wired network is merely a
special case of that in (16).

On an actual implementation of the proposed system (8-
9), it is necessary to discretize continuous quantities. For
instance, controllingwr(t) is implemented by adjusting the
number of connections, which has to be an integer number;
controllingxr(t) is implemented by adjusting the number of
finite packets to be sent out in a time interval. Therefore, it
is very unlikely that the system will operate at those points
of discontinuity. From this point of view, the analysis based
on the approximated system is accurate enough to predict
and interpret the performance of the actual implementation
of the algorithm.

From a theoretical point of view, the existence of a unique
locally stable equilibrium encourages our effort to show
that in fact the equilibrium isglobally asymptotically stable;
indeed we have seen that the whole setting can be interpreted
as a utility maximization problem that holds globally.

A. Simulations

Fig. 1. Simulation topology.

In the following we present the output of some simu-
lations. They show how the performance of the modified



scheme closely matches that of the original scheme, in which
we assumed full information of the feedback signals from
each link. The topology is presented in Fig. 1 and matches
that in [11]. The two time scales assumption has been taken
into consideration by properly setting the multiplicative con-
stants in the differential equations: it can in fact be observed
that the changes ofwr are slower than those of the ratesxr.
The initial conditions for Figure 2 are precisely those of Fig.
5 in [11]. The reader should compare these two outcomes
to convince himself of the similarity of the results. Due
to the discretizations we introduced, the current outcomes
display some oscillations (see for instance 2-(b)) that were
not present in the original scheme; for this reason, we have
refined the integration step and thus necessarily increased the
simulation time. This oscillating behavior happens around
the optimum for the system (see 2-(a)), which matches that
of [11]; we discussed that this optimum corresponds to the
full utilization of the links (observe the oscillations of the
congestion measures, (see 2-(c))).

V. CONCLUSIONS ANDFUTURE WORK

Standing upon the results presented in [11], where a fluid-
flow approximation as a dynamical scheme for controlling
the flow over packet-switched wireless networks was pro-
posed and analyzed, this paper introduces an alternative of
such model for the wireless scenario. The model is obtained
by introducing an indicator function. This simplification is
motivated by the necessity to apply the scheme to real world
networks, which present inaccurate feedback to the end-
users; the new, 1-bit scheme is still an application layer based
approach, which therefore does not require any change in the
network infrastructure and protocol. The modified model,
although easier to implement than its precursor, comes at
the cost of introducing some discontinuities in the dynamics,
which complicate the theoretical analysis. Therefore, we pro-
pose an approximation based on some continuous, parameter-
dependent functions which, at the limit, coincide with the
discontinuous ones. The new functions yield themselves
to some analysis: we prove the existence and uniqueness
of the equilibrium of the interconnected systems, solving
a concave net utility optimization problem, of which the
generic one proposed by Kelly et. al., [4], is a special case.
Moreover, we show that this scheme, on a neighborhood
of the equilibrium, is exponentially stable. These results are
accurate enough to predict and interpret the performance in
reality, and are interesting enough to encourage continuing
efforts in theoretical aspects.

Given the parallel with the model in [11], the investigaton
of the global asymptotical stability of the unique equilib-
rium holds promising results; furthermore, interpreting the
properties of the equilibrium from the network optimization
standpoint, such as fairness between users and route utiliza-
tion, may give important insights. The delay stability and the
robustness to stochastic disturbance are also interesting and
important to investigate from both a practical as well as a
theoretical point of view.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

10000

12000

number of iterations

so
urc

e r
ate

s x
r

 

 
x1
x2
x3
x1+x2
x1+x3

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
20

40

60

80

100

120

140

160

180

200

220

number of iterations

w r

 

 
w1

w2

w3

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

number of iterations

pa
ck

et 
los

s r
ate

 on
 w

ire
les

s l
ink

s

 

 
p1

p2

q1

q2

(c)

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

number of iterations

tot
al 

ne
t u

tilit
y

(d)

Fig. 2. Simulations for the modified “dynamic-update” scheme: conver-
gence of (a) ratesxr(t), r = 1, 2, 3, (b) wr(t), r = 1, 2, 3, (c) packet loss
ratepj(·) andqj(·), j = 1, 2, and (d) net utility, with initial rate set to 0.
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APPENDIX

A. Proof of Lemma 1

Proof: Focusing on (15), the logic of proving the
desired result is to show that onex(t) results in onew(t),
and conversely onew(t) results in onex(t).

• It is easy to see from (15) that onex(t) maps to a unique
w(t).

• Now we show that, givenw(t), there is only one set
values ofx(t) satisfying (15). Givenw(t) = w, (15) is
the maximum for the following strictly concave function
of x over RN

U(x) =
∑
r∈R

wr log xr−
∑
j∈J

∫ ∑
s:j∈s xs

0

(
εj +

(y − Cj)
+

y

)
dy.

The strict concavity implies that the maximum exists
overRN and is unique; hence there can only be one set
values ofx(t) = x satisfying (15). Therefore, onew(t)
maps to only onex(t).

The relation betweeṅw and ẋ is derived as in [11]. For the
last claim of the proposition, refer to known results from
[19].

B. Proof of Lemma 2

Proof: Around the equilibrium of the reduced system,
let xr(t) = xo

r+zr(t), denoteD(xo) asD̃; after linearization,

we have that,∀r ∈ R,

ż(t) = cD̃−1

[
1

xo
r

fr(x
o)

∑
j∈r

(
εj + gj(y

o
j )

)
zr(t)

+
∑
j∈r

(
εj + gj(y

o
j )

)
µo

r

∑
j∈r

βg′j(y
o
j )

∑
s:j∈s

zs(t)

+fr(x
o)

∑
j∈r

g′j(y
o
j )

∑
s:j∈s

zs(t)

]
,

= −cD̃−1

[
diag (fr(x

o)) D̃ + diag
( ∑

j∈r

(
εj + gj(y

o
j )

) )
· diag (βµo

r) AT diag(g′j(y
o
j ))A

]
z(t), (17)

where

µo
r =

e

∑
j∈r ln

1+e
β

yo
j−Cj

yj


1 + e

∑
j∈r ln

1+e
β

yo
j
−Cj
yj




2 > 0, r ∈ R,

and

g′j(y
o
j ) =

Cj

(yo
j )2

e
β

yo
j−Cj

yo
j

1 + e
β

yo
j
−Cj

yo
j

> 0, j ∈ J.

Denote E = diag (fr(xo)) D̃ +
diag

(∑
j∈r

(
εj + gj(yo

j )
)
βµo

r

)
AT diag(g′j(y

o
j ))A. Then

by simple arguments, the system in (17) is stable if and
only if D̃−1E has all positive eigenvalues. We now show
that this requirement is verified.

First note that this is equivalent to showED̃−1 has all
eigenvalues be positive sinceED̃−1 is similar to D̃−1E.
DefineG = diag(

∑
j∈r

εj+gj(y
o
j )

xo
r

), then

ED̃−1 = diag(fr(x
o))+G·diag (xo

rβµo
r) AT diag(g′j(y

o
j ))AD̃−1.

At the same time we notice that

D̃
[
AT diag(g′j(y

o
j ))A

]−1

=
[
G + AT diag(g′j(y

o
j ))A

][
AT diag(g′j(y

o
j ))A

]−1

= G

[[
AT diag(g′j(y

o
j ))A

]−1
+

[
diag(

∑
j∈r

εj + gj(y
o
j )

xo
r

)
]−1

]
.

Hence, define the terms inside the brackets asB; we can
then have the following expression forED̃−1:

ED̃−1 = diag(fr(x
o)) + G · diag (βµo

r) B−1G−1

= G · diag(βxo
rµ

o
r)

{
diag(

fr(x
o)

βxo
rµo

r

) + B−1

}
G−1.

Now we claimED̃−1 has all eigenvalues be positive, due to
the following three facts:

• B � 0 since it is a sum of two positive definite matrices.
Hencediag( fr(xo)

xo
rβµo

r
) + B−1 � 0 by the same argument.

• diag(βxo
rµ

o
r)
{

diag( fr(xo)
xo

rβµo
r
) + B−1

}
has all its eigen-

values to be positive, because it is the product of two
positive definite matrices [19];



• ED̃−1 has all eigenvalues be positive, because it is
similar to diag(βxo

rµ
o
r)
{

diag( fr(xo)
βµo

r
) + B−1

}
.

Eventually, D̃−1E has all eigenvalues be positive and
hence the system in (17) is exponentially stable for arbitrary
β > 0.

C. Proof of Theorem 2

Proof: First, any equilibrium(x∗, w∗) of the system in
(12) must lie on the equilibrium manifold defined by (15).
We also know on this one-to-one mapping manifold, the
entire system collapses to a lower dimension reduced system
shown in (14). Therefore, it is equivalent to investigate
the reduced system for the existence and uniqueness of
equilibrium.

Here, we apply the Poincare-Hopf Index Theorem to claim
there are at least one equilibrium existed in the reduced
system, then apply together Lemma 2 to conclude the number
of equilibriums must be one.

Fact 1: (Poincare-Hopf Index Theorem) LetD be an open
subset ofR andν : DN → RN be a smooth vector field, with
nonsingular Jacobian matrix∂ν/∂p at every equilibriump.
If there is aG ⊆ DN such that every trajectory moves inward
of regionG, then the sum of the indices of the equilibria in
G is (−1)N .

To apply Poincare-Hopf Index Theorem, we need to con-
struct a proper vector field and the corresponding regionG.
For the reduced system, it is equivalent to investigate either
w(t) or x(t) as they are connected through an one-to-one
mapping.

We claim that the vector field defined by

ν(w(t)) := ẇ(t) = c ([wo
r , r ∈ R]− [wr(t)fr(x(t)), r ∈ R])

(18)
is the one we want. To see that, first noteν(w(t)) can be
expressed as a function ofx(t), the Jacobian matrix can be
expressed as

∂ν/∂w = ∂ν/∂x · ∂x/∂w.

We have shown that ifx∗ is an equilibrium of system in (14),
thenx∗ is locally stable, indicating∂ν/∂x is nonsingular at
the equilibrium. Also notex andw are one-to-one mapping,
hence∂x/∂w is nonsingular. Hence∂ν/∂w is nonsingular
at the equilibrium.6

We now start to construct the necessary regionG. First
note the following facts:

• if route r is not congested,gj(yj(t)) ≤ 1
β ln 2; so

xr(t) ≥
wr(t)∑

j∈r(εj + 1
β ln 2)

.

As we increasewr(t), xr(t) will eventually hint
minj∈r Cj and router is congested (the existence of
cross traffic can only help to make the route congested).
Hence we claim ifwr(t) is sufficiently large, the route
will be congested, regardless of the traffic pattern in the
network.

6rank(A)+rank(B)−k ≤ rank(AB) ≤ min(rank(A), rank(B)).

• if route r is congested, at least at one linkj on the
route, the aggregate arriving rateyj(t) must exceed the
link capacityCj , therefore

fr(x(t)) ≥ 2
eln 2

1 + eln 2
− 1 = 1/3.

Hencewo
r − wr(t)fr(x(t)) < wo

r − wr(t)/3 as long as
router is congested.

Therefore, aswr(t) becomes sufficiently large, the router
must be congested. There must exist onewmax

r such that
wo

r − wmax
r fr(x) < wo

r − wmax
r /3 < 0. Then the regionG

can be defined as

G = [0, wmax
1 ]× [0, wmax

2 ] · · · [0, wmax
N ].

On the boundary ofG, we check the flow of the vector
field:

• if wr(t) = 0, then easy to seėwr(t) > 0 according to
(18).

• if wr(t) = wmax
r , then by the definition ofwmax

r and
according to (18),ẇr(t) < 0.

Therefore, every point on the boundaryG will move inward.
Before we use the Poincare-Hopf Index Theorem, the

following Lemma says there are only finite number of
equilibria insideG.

Lemma 3: Let M denote the number of equilibriums
insideG, and0 < we

i < wmax represents theith equilibrium,
thenM < ∞.
Proof: This is because any equilibrium is locally expo-
nentially stable by Lemma 2, and hence is locally unique
in an open set around it. The set of equilibriums, denoted
as E = {we|wo

r − we
rfr(we) = 0, r ∈ R}, is closed and

bounded (i.e. compact) since thewe
rfr(we) is continuous

and we is bounded. The union of those disjoint open sets,
each including one locally unique equilibriumwe ∈ E , forms
a cover ofE . By [20], we claim the number of these disjoint
open sets must be finite. ThereforeM is finite.

Hence by Poincare-Hopf Index Theorem, and noticeM is
finite, we have the following equations, indicating that there
are at least one equilibrium inside regionG and

Index(G) = (−1)N =
M∑
i=1

Index(we
i ),

whereN is the dimension ofw(t).
But everywe

i is locally stable, hence the Jocobian matrix at
the equilibriumwe

i , denoted byJ(we
i ), has all its eigenvalues

be negative. Therefore

Index(we
i ) = sgn(Det(J(we

i ))) = (−1)N .

Therefore, we can see these two equations implyM = 1.
Together with the fact that any point outsideG can not be
an equilibrium, we conclude there is only one equilibrium
for system in (14).

Finally, as the reduced order system has only one unique
equilibrium on the equilibrium manifold, we conclude the
system (12) has a unique equilibrium, for arbitraryβ > 0.


