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Abstract—This paper deals with the problem of congestion properties such as uniqueness of the equilibria and stability
control and packet exchange on a wireless network. The have been studied, [6] [7], and conditions for achieving

mathematical model corresponding to the real protocol is robustness to disturbances, [8], and to delays, [9], have been
inspired by and extends a known fluid flow scheme for the introduced T T

control of congestion on a wired network. The necessity to

introduce a specific wireless model is motivated by the presence . .
of channel error: often this error (due to intrinsic noise Quite recently some researchers have turned their atten-

or channel corruption) is not known exactly. This motivates tion to the wireless scenario. This new setting poses new,
the modification of the model by approximating parts of its unconfronted challenges, due to the presence of intrinsic
structure with binary functions, whose switching point is known noise and channel errors at the link level. An algorithm
precisely. These new discontinuous elements, while in practice known as MULTFRC (see [10]) and proposed for video

greatly simplifying the structure of the algorithm (they are . . .
endowed with a 1-bit of information), complicate the theoretical streaming over wireless networks, has introduced a scheme to

analysis of its dynamical properties. We therefore approximate e applied to TCP-friendly rate control (TFRC) for wireless
them with continuous functions with limiting convergence: networks. In [11], a corresponding continuous-time model

they thus preserve the simple shape and yield themselves to js introduced and studied. Many properties, such as global

analysis as well. Given this setup, we then investigate the giapility robustness conditions to delays and to disturbances,
important issues of existence and uniqueness of the equilibrium have been derived, [12] [13]

for the dynamical system, and of local asymptotic stability.

Furthermore, we show that this equilibrium solves a concave Thi tak tep f d: th f ch I
net utility optimization problem, of which the classical one for IS paper lakes a step forward. the presence of channe

wired networks is a special case. The take away point of this €rror is the cause of imperfect feedback from the network
work is that the scheme we propose to handle the traffic on a to the users; these errors prevent the exact measurement of
wireless network is not only innovative and meaningful, but has  the congestion status on the network. This motivates the
also the potential to be modified and translated into practical introduction of a simplifying approximation for that part of
implementation. S . . : .
the model which is affected by noise. This approximation,
. INTRODUCTION in the form of a step function that switches at a known

Transmission Control Protocol (TCP) has recently beeff” computable) point, is on the one hand simpler, but
the focus of much research (originated, among the mafp) the other hand discontinuous. Because of this, it is
contributions, in [1], [2], [3]). Not long ago, this practical qum=T hard to do analygs on the moqmed scheme. Som.e
scheme has been dynamically modeled via a system of cdpntinuous approximations are then introduced, and their
tinuous time differential equations that describe the evolutioliMiting behavior studied. With these modifications, the new
of the rates (that is, the number of bits per second) of a set §f€Me is prone to yield interesting results.

users that exchange information over a network. This is an 4 paper unfolds as follows: after a brief explanation
instance of fluid flow model (see [4], [S]). The study of thisy¢ ig-flow models for wireline networks and a concise

model further understanding of the intrinsic characteristicgiroquction to the TCP scheme for wireless networks
and dynamical properties of the system. Investigating thige propose its related modification and the corresponding

scheme has nevertheless proven to be a rather Cha"e”,g,%tinuous approximations. A series of facts will elucidate
task, mostly because of the presence of strong non linearitigs, ayistence and uniqueness of the equilibrium for the

in the functions that come into play, and because of thg,, ,yimation of the modified system. Furthermore, local

distributed nature of the scheme. Moreover, the multiplgapijity for the scheme will be proved, and limiting behav-
couplings between its entities (fsenders, receivers and linkg}q explained. It will then be shown that the equilibria of
hampers the global understanding of its behavior. the modified model are the solution of a concave net utility
The cu_rrent fluid flow models for TCP have only beer’bptimization problem, of which the generic one proposed by
dealing with the case of wired networks, [4] [5]. Fundamentqke“y for TCP on wired netowrks, [4], is a special case. The
*This work was supported by NSE grant ANI-9905799, the AFosRIMplications o_f these results will follow, and a description of
contract F49620-00-1-0327 and the NSF grant CCR-0225610. future work will close up the paper.



Il. APRACTICAL FLOW CONTROL SCHEME relation, it is easy to express its equilibrium in an implicit
In this section we first introduce the dynamical model ofom. In [4] it is shown by Lyapunov arguments that this
the well-known general flow control problem first introduced@guilibrium is unique and asymptotically stable. Moreover,
by Kelly et. al., [4]. Starting from the wired scenario, wethe schemes can be endowed, under conditions over their
motivate and build up the extensions for the more challengirgrameters, with many interesting properties (as an example,
wireless case; finally, a modification to this last model i$0PUSINESs).
discussed in order to simplify it and enable its practicag \wireless Networks

implementation. Wireless channels are affected by errors, due to the cor-

A. Wired Networks ruptibility of the signals flowing through them and to the
A communication network is described via a geof links  Presence of noise. This directly influences the packet loss at

and a sefR of users(sender-receiver pairs). Eaghe J has egch link in a TpP-Iike s_etting. We th_us_ encompass this fact

a finite capacityC; < oo. The network interconnections are Within a new price function for, say, lin:

described via a routing matrid = (a;-,j € J,r € R),

wherea;, = 1 if j € r. A fluid-flow, continuous-time model ¢; Z zs(t) | 2 p; Z zs(t) | +¢j > p; Z (1)

for the TCP scheme (see [4]) has been proposed in order \ s.jes s:j€s s:j€s

to facilitate the analysis of the properties of the protocol. To (5)

each user a sending rate > 0 and a utility functionl,.(x,.) ~ This function accounts for both the congestion measure

are associated/,(z,) is assumed to be increasing, strictly(dependence on the term) as well as the channel errey.

concave an@'. The exchange of information between userghe TCP model (4) will then depend on this new function

over the links can be interpreted as a concave maximizatign(y). It is again easy to calculate the equilibrium of this new

problem (see, among the others, [14] [15]), dependent on tlynamic relation; the dependence on the new price function

aggregate utility functions for the rates and on some coswgll give a result that is different than the one derived from

on the links: (4). Interpreting this fact through an underlying optimization
problem, as in (1), shows that the new equilibrium will
maXZU,.(a:r) _ ij Z x|, 1) be suboptimal. This fact motivates the introduction of an

enhancement to the wireless scheme, as described in the

reR JjeJ s:j€Es . i
following section.

where the cost function®;(-) are defined as i

” C. A new Control Scheme for Wireless Networks

P;(y) :/ p;i(2)dz. (2) In [12] [13] [11], we introduced two extensions to the

0 TCP scheme, both aimed at compensating the suboptimality
The termsp;(y) can be interpreted as “prices” at the link andof the equilibrium point of the rates of the interconnection
are assumed to be non-negative, continuous and increas{@ags) with respect to the simpler scheme (4). In this paper
functions; they represent some congestion measure amngs shall focus on one of these two proposed schemes, the
as can be inferred from their structure, they have a locallynamic update.” Assume the term. is time dependent,
dependence on the aggregate rate passing through the link(¢), and evolves according to:
As in [5], in this paper we shall stick to the following “packet Zjerpj(Zs:jEs :cs(t))> ©

| " art =er|wr—w
Oss rate M dt wr (f) - <wT T(f) ZjGr qj(Zs:jGS Ls (t))

pi(y) = 3)
Y ) We can interpret this dynamical relation, in a fluid-flow
Flow control can then be regarded as a dynamical systerggnse, as the modification of the number of connections that
problem, dynamically evolving according to the problem lihe user has with the network. It is easy to compute the
that is having an equilibrium which is the solution of 1. Userequilibria of this new interconnection (the cougle,,w,}),
r will accrue a packet loss rate which, under our assumptions,q check that the “optimum point” of the rates is the
of small p;, can be approximated &8s p;(>_..;cs%s)- same as that of (4). Aiming at a dynamical analysis of
The rate control scheme has the following shape: this scheme, in [11] we showed that the interconnection is
globally asymptotically stable, under the realisitc assumption
il'r(t) =k | w® — 2,(t) ij Z x4(t) ,r€R that the two dynamical relations evolve in two different time
dt jer sij€s scales. In [12] and [13] we instead investigate the robustness
(4) of the scheme to delays and study its resilience against
with &, a positive scale factor affecting the adaptation ratajisturbances. It is important to notice that this scheme can be
and the constant? can be physically interpreted as theeasily implemented by adjusting the number of connections
number of connections that the user establishes with thehich an application opens in a real network. Therefore, it is
network; as discussed, the congestion signal (packet loss raa@application layer based approadnd it is easy to deploy,
depends on the sum of the prices along all the links that aees it does not require changes on the network’s infrastructure
crossed by the user. Interpreting the model (4) as a dynamical its protocol.




D. The Indicator Function guantity:

. —_ O\t
From the structure of Eqn. (6) we can gather that the 7 (;) = 1Ind ZM ) (7)
implementation of the control law o&,. depe(ngs on the ier Yj
. - rPj sijes Ts ¢ 1 . H H
precise measurement of the ra&jer qJ'(Z;j; 70 which B 1, if route r is congested at time
is the portion of the end-to-end packet loss rate that is 0, otherwise.

exclusively caused by congestion.

. _ . . He :
From an end-to-end point of view, users can infer whichy i jink j. From this definition, we can observe that

packet is lost only bY obsgrvmg a discontinuity in the « I.(x) has exactly the same behavior as the ratio when
sequence number that is carried by every pdclhke reason : o . .
route r is underutilized, therefore, replacing the ratio

of the loss (congestion or channel error) would not be given with I, (z) will not affect the system’s thrust to pursue
though. Therefore users can only precisely measure the end- full uti?ization

-en ket | r .8, ; . n . .
:ﬁee 3;:%2 e;ugstz cac:? egcj)%r ‘{-{E(:Esuef(%(t))' guzt))m « If any of the links of router is congested,.(z) does

q _ .y g T 'J’GTZ_)J_ sij€s eV not have the exact same behavior as the ratio; instead,

sure ) ;c, (2 s.jes ¥s(t)), provided more information is decreaser,(t) in order to avoid further congestion on
gathered from the network infrastructure (like the routes for  he route.
instance). As an eExarIrjp_IeL the ,:lou_tfgrs _and tEhLerase Siatat'on%nlike the ratio in (6), the value of the indicator function
can generat_e an Explicit-Loss-Notification ( ) marking can be easily and accurately estimated by each user. In fact
on consecutive packets when they understand that the currgy Lalue is directly correlated to changes on the round trip
packet is lost due to the wireless transmission. Thereforeﬁ e (RTT) for each usér Physically, RTT consists of the
Lhe userﬁ, observe a lost pI?Cket' they can r::hecl; thle ELr,%'und trip propagation delay and round trip queuing delay.

It on the stccessive pac et to see whet er the loss p r a given route, assuming the backward path is congestion-
caused by CO”QGS“O”S or by channel error. This way, USGiZe, ie. the incoming rates to the sender are less than
can get a precise measure Bl ¢, pj(2 e, 2s(t)), @nd a0 jinks capacities, the round trip propagation delay is a
therefore a better estimate of the above ratio. Other solut|0|ﬂ§ed value, and the queuing delay is zero if the forward
are based on end-to-end statistics, or there exist sche his not,congested If the forward path is congested, the
that are not using packet loss as a congestion measure: euing delay increases to positive values, and if the path

instance, TCP Vegas quantifies the congestion on a meas econtinuously congested keeps increasing to a maximum

of the queueing delay. However, to our best knowledge, NONR ue. i.e. until the buffer is overflown

of the real world networks infrastructures currently employ Hence, clearlyan increase in RTT is due to the presence
these functionglities. Even worst, it is very hard to an thi f forwar,d congestionand therefore increasing queueing
enhancement in every router and base station, and it breggg,. 4. the increase itself is symptomatic of the indicator
the end-to-end principle Internet relies on. function assuming value one. On the other hand, if there
All the above motivates the pursue of a better way t¢s no increase in RTT, then most probably the route is not
control the quantitiesy, based on some alternative that iscongested, which means that he indicator function is likely
easy for users to measure in reality. We first gauge how the be equal to zero.
ratio affects the system’s performance in (6): The system (4-5), endowed with this new term, is modified

as
« If a router is underutilized, then the ratio is zero; this
implies that the number of connections(¢) increases d

in order to boost the user rate (), which makes the ~ gz@r(t) = kv | we(t) —:(t) Z(eﬂ' +1;(i(1)) |®)
system pursue full utilization on the route Jer
« If the router is fully utilized, i.e. if any one of its link is iwr(t) = ¢ (W — w, () (2)). )

congested, than the ratio takes a value between zero andt
one, finely adjustingw,.(t), and hencer,.(t), to make The model (8-9) is a nonlinear, coupled system with dis-
the system pursue the maximum utility. continuities introduced by the terms.(z),r € R. The
discontinuities make it difficult to analyze the system, as the
This behavior suggests the idea of replacing the ratio with g{b\w vector field is no longer continuous. As such, it does
indicator function Specifically, let us introduce the following not fit into the classical framework for analysis previously
employed; it would instead require the study of solutions
in the Filippov sense (see [16]). We decide to tackle this

lin practice, the sender waits for three duplicate acknowledgements
asking for the retransmission of the missing packet, before it asserts that®Here we call RTT the sum of the time it takes a packet to go from
the packet is lost. sender to receiver, and back.

2Along with ELN, there exist schemes known as Explicit-Congestion- #Again, under the slack assumption that the incoming rates to the sender
Notification (ECN) that, as intuitive, work similarly. are less than the links capacities.



problem by approximating thé.(x),r € R with continuous systemThe fast interconnection is describéth, € R, as

functions; hence we get a continuous approximated version 4
of the system (8-9), which we describe in the following. gt (t) = Ky (’wr(t) —ar(t) X e (6 + gj(y(t)))) ;
w,.(t) = constant

IIl. CONTINUOUS APPROXIMATIONS OF THESYSTEM _ _ _ (13) _
AND THE TWO TIMES SCALE ASSUMPTION in the slower timescale, we instead have the following

. _dynamicsVr € R:
The parameter-dependent function we use to approximate

. . . wy(t
I,(z) in (9) is the following: z,(t) = WM’
;i —Cy (14)
zmm(mﬂ ) L (t) = (w - wr<t>fr<:c<t>>>;
e —1
fr(@) = PR reR (10) Under the two times scale setting, the behavior of the system
Xjer 1n(1+e Yj ) can be described as follows. On the fast timescalecan
L+e be thought as being held constant, and the entire system can
furthermore, the discontinuous quantity(y; (t)) = (y;(t)— be expressed as the boundary system shown in (13). This
C;)* /y;(t) in (8) is approximated using the following System is nothing but a slight modification of Kelly's control
function: system on wired network (as expressed in (4)), except for

) b w? replaced by the “constantb,(t) and the price function
9;(y;(8)) = = In (1 n eﬁw) . e (11) p;(y;(t)) replaced by) ;. (e; + gj(y(t));_ th_e behavior of
B the boundary system can thus be easily inferred from the

known results of the system in (4). It has a unique and
It should be cl thatf,. I. dg;(y;(t . o .
p‘(sy‘c():)) aseﬁ :eig afr(x) — Ir(x) and g;(y; (1)) — globally exponentially stable equilibrium, which is a function
INII .

The corresponding approximated systemvisc R, of w,.. Particularly, on the fast timescate, converges to the

equilibrium manifold defined as follows:
{ pt) = ke (wr(0) = 00 Sy, (e + 95(0(0)) ) o) = D)

Lo, (t) = ¢, (w2 — w, () fr(2)). > jerlei +9i(y; (1))

: : . . . (12) On the slow timescaleg, has already converged to the
Since the approximated system in (12) is continuous, we_ .. . : .
equilibrium manifold, and the system collapses into the

can then analyze its equilibrium and stability for arbitraryreoluceol system described in (14). Its behavior determines

values of/3. As § — oo, the system in (12) approaches thehow the approximated system evolves in the long run;

original system (8-9). Therefore, the logic is to analyze th?herefore, together with the boundary layer system, it fully

properties of the system (12); moreover, by letting oo, characterizes behavior of the system for all possible times.

we expect to r'eveal those of the Interconnection (8'9)' Motivated by the above considrations, we shall mainly focus
The approximated system in (12), although contlnuou%jn investigating the reduced system in (14).
is still hard to analyze in general. Like the model (4-6),

it is a nonlinear, coupled, multivariable system, and thé¢V. EXISTENCE, UNIQUENESS OFTHE EQUILIBRIUM, ITS
two equations are not exactly symmetrical even though theyL OCAL STABILITY AND THE RELATED OPTIMIZATION
might appear to be so. PROBLEM

In [11] we argue that in the actual TCP schemes the rate Given a general nonlinear system, the existence of an
of change of the quantityv,(¢), representing the number equilibrium and its stability represent among the first things
of connections that a user has with the network, is dimeng |ook at.
sionally slower than that of,(t), representing the source |n this section we show that the system in (12) has a unique
sending rate. Therefore, inspired by control literature oBquilibrium, and that this equilibrium is locally exponentially
single perturbation systems (for instance, refer to [16]), wetable. We start from showing that any existing equilibrium
carefully make a key assumption to enable the decoupling gf [ocally stable in a neighborhood; then, thanks to this fact
the system into two time scaletsie dynamics corresponding and together with some results from the Poincare-Hopf Index
to x,(t) and w,(t) evolve in two different time scales; the Theorem (see [16]), we conclude that there can be only one
first in a faster one, while the second in a slower ofikis  equilibrium.
helps us derive strong results on the overall interconnection. Before stating the main results, the following fact is intro-

The two time scale assumption applied to the approxduced. We simply denote(t) = (z1(t), - Teara(r) ()7
mated system in (12) highlights two kinds of dynamics: &imilarly for w(t).
fast one, which is described in thundary-layer system  Lemma 1: The equilibrium manifold shown in (15) is a
and a slow one, which is encompassed in rduced-order one-to-one mapping betweer(t) and w(t); moreover, the

following holds on the manifold:
SFor simplicity reasons, we do not make this dependence on the parameter
£ explicit in the quantitiesf, and g, w = D(x)x,

reR (15)



where with U,.,r € R being the concave function:

. . o+ 9y . @ 0
D() = ding(e) (dias( 2 TEIU) 4T ding(g)(5,))A) Uit = [t (S v,
jer " 0 v
71 . . .
is a product of two positive definite matrices, and as sucfhere i, .7 € R IS the inverse of the monotonically
all its eigenvalues are positive. increasing functiort,

Proof: Refer to Appendix A. ] A efz -1
Remark 1: Lemma 1 implies that within the reduced he(2) = (Zci * Z) fr(z) = (Zeﬂ' . Z) Pz 1
system (14), analyzing the behavior of the system with er Jer
respect tor is equivalent to carrying out the analysis withproof: First it is easy to see the net utility function in (16)
respect tow; as a matter of fact, both of them, as well ass concave. Then the claim follows by setting to zero the
their derivatives, are in a one-to-one relationship. derivative of the net utility function with respective 1o m
Based on the two times scale decomposition and on One observation for Theorem 3 is in order: the unique
singular perturbation theory (see, for instance, [16] or [17])equilibrium for the system in (12) in the wireless scenario
showing that for the approximated system in (12) any posséolves a concave optimization problem which is similar to
ble equilibrium is locally exponentially stable follows from the general one (Egn. 1) solved in the wired network (see
the argument that both the boundary system and the reduqag), but with different utility functionsl,.(z,.) for each user.
system need to be locally exponentially stable around thgore prcisely, while the/,(z,.) in the wired network case is
equilibrium. We first claim the following lemma for the only a function ofz,, in wireless scenario it is also a function
reduced system: of 3., €, that is the packet loss rate associated with the
Lemma 2: Assume that for the reduced system in (14)router. In fact, if we let3 — oo ande; =0,V5 € J, i.e. if
z° is one of its possible equilibria; them® is locally we tend to the wired network scenario, we hangz) = z,
exponentially stable for ang > 0. and thus the optimization problem in (16) becomes identical
Proof: Refer to Appendix B. B {0 the wired network optimization one. In this case, the
Furthermore, exploiting the fact that the boundary layegquilibrium (z*,n*) is exactly the same as®, implying
system is locally exponentially stable (see [18]), we applyhe optimization problem in the wired network is merely a
arguments used in [16] and in [17] for the stability ofspecial case of that in (16).
singular perturbation, non-linear system to infer that any On an actual implementation of the proposed system (8-
equilibrium of the composite system shown in (12) is locallyg), it is necessary to discretize continuous quantities. For
exponentially stable. This fact is stated in the following: instance, controllings,(t) is implemented by adjusting the
Theorem 1:1f z° is an equilibrium for the composite number of connections, which has to be an integer number;
system shown in (12) with arbitrarg > 0, it is locally  controllingz,(t) is implemented by adjusting the number of
exponentially stable. finite packets to be sent out in a time interval. Therefore, it
Remark 2: Theorem 1 and Theorem 2 state the existendg very unlikely that the system will operate at those points
of a unique equilibrium and ensure its locally stability for theof discontinuity. From this point of view, the analysis based
continuous approximated system in (12), for any valug.of on the approximated system is accurate enough to predict
At the limit as 3 — oo, the approximated system approacheand interpret the performance of the actual implementation
the original discontinuous system in (8-9). Therefore, foof the algorithm.
extremely large3, we expect the approximated system to From a theoretical point of view, the existence of a unique
have a very close behavior to the original system, excepcally stable equilibrium encourages our effort to show
right at the discontinuitieg; (t) = C;. that in fact the equilibrium iglobally asymptotically stable;
Thus far we have shown that any existing equilibrium isndeed we have seen that the whole setting can be interpreted
locally exponentially stable. Another important question tas a utility maximization problem that holds globally.
address is how many equilibria there are for the system. TtAe
answer is stated in the following: ’
Theorem 2: For any arbitrary3 > 0, the approximated
system (12) has one unique equilibrium.
Proof: Refer to Appendix C. ]
In the folowing, we motivate how the unique equilibrium
solves a concave optimization problem, which is a modifi-
cation of the one proposed for the wired case in Eqgn. 1.
Theorem 3: For any arbitrary5 > 0, the unique equilib-
rium of the approximate system in (12), denoted by, n*),

Simulations

solves the following concave optimization problem Fig. 1. Simulation topology.
v,
max > Up(z,) — Z/ ’ gi(2)dz, (16) !n the following we present the output of some sim_u—
20 % Ges 7o lations. They show how the performance of the modified



scheme closely matches that of the original scheme, in which P
we assumed full information of the feedback signals from T T g
each link. The topology is presented in Fig. 1 and matches Z~  sool - o
that in [11]. The two time scales assumption has been taken

into consideration by properly setting the multiplicative con- so00| 7

stants in the differential equations: it can in fact be observed ool /\—_/
that the changes af,. are slower than those of the rates /

6000 T T e s —

source rates x
N
!
I

o
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

The initial conditions for Figure 2 are precisely those of Fig. number of iterations

5 in [11]. The reader should compare these two outcomes (@)

to convince himself of the similarity of the results. Due

to the discretizations we introduced, the current outcomes v
display some oscillations (see for instance 2-(b)) that were .l =]

not present in the original scheme; for this reason, we have
refined the integration step and thus necessarily increased the =
simulation time. This oscillating behavior happens around
the optimum for the system (see 2-(a)), which matches that

of [11]; we discussed that this optimum corresponds to the
full utilization of the links (observe the oscillations of the number of iterations
congestion measures, (see 2-(c))). (b)

V. CONCLUSIONS ANDFUTURE WORK

Standing upon the results presented in [11], where a fluid-
flow approximation as a dynamical scheme for controlling
the flow over packet-switched wireless networks was pro-
posed and analyzed, this paper introduces an alternative of

0.005 B

packet loss rate on wireless links
] g ]
o I o
B o N

i

such model for the wireless scenario. The model is obtained O e imber of iterations o 200 100
by introducing an indicator function. This simplification is ©)

motivated by the necessity to apply the scheme to real world 000

networks, which present inaccurate feedback to the end- s00 |

users; the new, 1-bit scheme is still an application layer based
approach, which therefore does not require any change in the
network infrastructure and protocol. The modified model,
although easier to implement than its precursor, comes at
the cost of introducing some discontinuities in the dynamics, 1
which complicate the theoretical analysis. Therefore, we pro- 0§ a0 555 555 5555 5000
pose an approximation based on some continuous, parameter- number of iterations
dependent functions which, at the limit, coincide with the (d)

discontinuous ones. The new functions yield themselves

to some an_aly_5|s: we proye the existence and umque_ancf& 2. Simulations for the modified “dynamic-update” scheme: conver-
of the equilibrium of the interconnected systems, solvingence of (a) rates,(¢),r = 1,2,3, (b) wr(t),r = 1,2, 3, (c) packet loss

a concave net utility optimization problem, of which theratep;(-) andg;(-),j = 1,2, and (d) net utility, with initial rate set to 0.
generic one proposed by Kelly et. al., [4], is a special case.

Moreover, we show that this scheme, on a neighborhood

of the equilibrium, is exponentially stable. These results are VI. ACKNOWLEDGEMENTS
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19] R. Horn and C. JohnsorMatrix Analysis Cambridge Universit : .
o] R o g, ™ Y 9 Y diag (Zj@« (¢ +95(3)) ﬁu?) ATdiag(g}(y9))A.  Then
[20] J. Marsden and M. HoffmarElementary Classical Analysis. Second by simple arguments, the system in (17) is stable if and
edition  W.H.Freeman and Company, New York, 1993. only if D='E has all positive eigenvalues. We now show
A that this requirement is verified. ~
PPENDIX First note that this is equivalent to shawD~! has all
A. Proof of Lemma 1 eigenvalues be positive sind8D~! is similar to D~ E.
. . . ; — 7 €195 (Y5)
Proof: Focusing on (15), the logic of proving the PefineG = diag(}y e, =—z—-), then

desired result is to show that ongt) results in onew(t),
and conversely one(t) results in onex(t).

« Itis easy to see from (15) that on€t) maps to a unique )
w(t). —_— 0. I D[A" diag(g;(y5))A]

« Now we show that, givenw(t), there is only one set  _ T . o100 T . 1o -1
values ofz(t) satisfying (15). Givenu(t) = w, (15) is (G + A diag(g(v7) A] [A” diag(g; (7)) A]
the maximum for the following strictly concave function
of 2 overRY

ED™' = diag(f,(2°))+G-diag (z7Bu7) A" diag(g;(y5))AD™".

At the same time we notice that
-1

= G

9

. /o _ ) g (y2) L
[ATdmg(gj(yj))A] gt [dzag(z M)} 1:| )
JjeET
Ze:jes Ts _ i ] . .
Ule) =3 wr 10g~’0r—2/ h (Ej + M) dy.Hence, define the terms inside the bracketsBaswe can
0

reR T Y then have the following expression farD—!:

The strict concavity implies that the maximum exists ED™' = diag(f-(2°)) + G - diag (Buy) B~ G~
overRY and is unique; hence there can only be one set . o o { o fr(@0) 71} 1

o G-d TR B G .
values ofz(t) = x satisfying (15). Therefore, one(t) iag(farpr) mg(ﬁxmg) *

map_s to only onex(t). ) _ _ Now we claimED~! has all eigenvalues be positive, due to
The relation between and: is derived as in [11]. For the the following three facts:

last claim of the proposition, refer to known results from

« B > 0since itis a sum of two positive definite matrices.

[19]. u Hencediag(ﬁt,(;;g) + B~! = 0 by the same argument.
B. Proof of Lemma 2 o diag(Bxlul) {diag(%) +B—1} has all its eigen-

Proof: Around the equilibrium of the reduced system, values to be positive, because it is the product of two
letz,.(t) = x2+2,(t), denoteD(x°) asD; after linearization, positive definite matrices [19];



« ED™! has all eigenvalues be positive, because it is « if route r is congested, at least at one likon the

similar to diag(522u0) {diag(%ﬁ)) + B—l}- route, the aggregate arriving ragg(t) must exceed the

~ ) . link capacityC;, therefore
Eventually, D~'E has all eigenvalues be positive and Paciy®;

hence the system in (17) is exponentially stable for arbitrar en?
fenes he oy (17) is exp y el frle(®) 2 29—z — 1= 1/3.
C. Proof of Theorem 2 Hencewy — w, () fr(x(t)) < wg —w,(t)/3 as long as

Proof: First, any equilibrium(z*, w*) of the system in router is congested. .

(12) must lie on the equilibrium manifold defined by (15).Therefore, asu,(t) becomes sufficiently Iar%% the route
We also know on this one-to-one mapping manifold, thénfSt bsmcg;congested. OTher?n(must exist ane SUCh- that
entire system collapses to a lower dimension reduced systéfn — “r fr(z) < wi —w**/3 <0. Then the regiory
shown in (14). Therefore, it is equivalent to investigaté:an be defined as
the _lr.(;d.uced system for the existence and uniqueness of G = [0, w™*] x [0, wie] - - - [0, wi].
equilibrium.

Here, we apply the Poincare-Hopf Index Theorem to claim ©On the boundary ofj, we check the flow of the vector
there are at least one equilibrium existed in the reducdtfld:
system, then apply together Lemma 2 to conclude the numbere if w,(t) = 0, then easy to see, (t) > 0 according to

of equilibriums must be one. (18). o
Fact 1: (Poincare-Hopf Index Theorérhet D be anopen o if w,(t) = w;"**, then by the definition ofv;** and
subset ofR andr : DN — RN be a smooth vector field, with according to (18),(t) < 0.

nonsingular Jacobian matridxv/dp at every equilibriump.  Therefore, every point on the boundafywill move inward.

If there is aG C DV such that every trajectory moves inward Before we use the Poincare-Hopf Index Theorem, the
of region @G, then the sum of the indices of the equilibria infollowing Lemma says there are only finite number of
Gis (—1)N. equilibria insideg.

To apply Poincare-Hopf Index Theorem, we need to con- Lemma 3: Let M denote the number of equilibriums
struct a proper vector field and the corresponding region insideg, and0 < w{ < w™** represents thé&h equilibrium,
For the reduced system, it is equivalent to investigate eithéien M < oo.

w(t) or z(t) as they are connected through an one-to-oneroof: This is because any equilibrium is locally expo-
mapping. nentially stable by Lemma 2, and hence is locally unique

We claim that the vector field defined by in an open set around it. The set of equilibriums, denoted

. o as & = {w|w? — wif,(w®) = 0,r € R}, is closed and
v(w(t) = w(t) = c(fwy,r € B = [wr(t) fr(@(t)), € ]1%23) bounded{ (i.‘e. compactg si)nce the‘jfr(wj) is continuous
is the one we want. To see that, first not@u(t)) cag b)e and w® is bounded. The union of those disjoint open sets,

. . . each including one locally unique equilibriuaf € £, forms
expressed as a function oft), the Jacobian matrix can be f laim th ber of th disioi
expressed as a cover of€. By [20], we claim the number of these disjoint

open sets must be finite. Therefaté is finite. ]
Ov/ow = Ov/dx - Ox/Ow. Hence by Poincare-Hopf Index Theorem, and nofi¢dés
finite, we have the following equations, indicating that there

We have shown that if* is an equilibrium of system in (14), are at least one equilibrium inside regignand

thenz* is locally stable, indicatingv /0« is nonsingular at
the equilibrium. Also note: andw are one-to-one mapping, N M .
hencedz /0w is nonsingular. Hencév/dw is nonsingular Index(G) = (-1)7 = Zlndex(wi)’
at the equilibriunf =1
We now start to construct the necessary regiénFirst where N is the dimension ofu(t).
note the following facts: But everyws is locally stable, hence the Jocobian matrix at

. if route 7 is not congestedy; (y;(t)) < In2; so the equilibriumw$, denoted by/(w$), has all its eigenvalues
7 N be negative. Therefore
wy-(t)

2T o+ iny Inde(w) = sgn(Det(J(we))) = (~1).

As we increasew,(t), x,(t) will eventually hint Together with the fact that any point outsigecan not be

minje, C; and router is congested (the existence of L . L
i n equilibrium, we conclude there is only one equilibrium
cross traffic can only help to make the route congestecﬁ.

o ; . or system in (14).
Hence we claim ifw,.(¢) is sufficiently large, the route . .
. h : Finally, as the reduced order system has only one unique
will be congested, regardless of the traffic pattern in the ..~ o ;
network equilibrium on the equilibrium manifold, we conclude the

system (12) has a unique equilibrium, for arbitraty> 0.
Srank(A)+rank(B)—k < rank(AB) < min(rank(A), rank(B)). |

- (t)

Therefore, we can see these two equations indgly= 1.



