
On Optimizing XOR-Based Codes for Fault-Tolerant Storage Applications

Cheng Huang, Jin Li, and Minghua Chen
Microsoft Research, Redmond, WA 98052

Abstract— For fault-tolerant storage applications, computation
complexity is the key concern in choosing XOR-based codes.
We observe that there is great benefit in computing common
operations first (COF). Based on the COF rule, we describe
a generic problem of optimizing XOR-based codes and make
a conjecture about its NP-completeness. Two effective greedy
algorithms are proposed. Against long odds, we show that XOR-
based Reed-Solomon codes with such optimization can in fact
be as efficient and sometimes even more efficient than the best
known specifically designed XOR-based codes.

I. I NTRODUCTION

Erasure correcting codes are often adopted by storage ap-
plications to provide fault tolerance [5]. For such applications,
encoding and decoding complexity is the key concern in
determining which codes to use. XOR-based codes use pure
XOR operation during coding computation, which makes
implementation most efficient in both hardware and software.
Hence, such codes are highly desirable in fault-tolerant storage
applications.

XOR-based codes can be implemented by transforming
from existing codes, which originally could be defined in finite
fields [3]. For instance, [4] constructs XOR-based codes from
Reed-Solomon codes [14] to protect packet losses in commu-
nication networks. Reed-Solomon codes, as probably the most
widely used codes, are flexible in coding parameters and also
able to recover the maximum number of failures (the MDS
property [11]). However, it has long been assumed that XOR-
based Reed-Solomon codes are inefficient (see the positional
paper [1] and all its followers) and thus inappropriate for
storage applications. This might be one of the most prominent
reasons that motivated decades of efforts in designing specific
XOR-based codes.

However, the biggest problem of specifically designed codes
is that they are in general not flexible. While codes providing
2 or 3-fault-tolerance (recoverable from2 or 3 storage node
failures) are well studied [1], [2], [6], [7], [9]. Efficientcodes
offering more redundancy still appear out of reach, even
though theredo exist a few schemes [2], [8]. In this paper,
we reexamine XOR-based Reed-Solomon codes and argue for
their suitableness in storage applications. Since the complexity
of XOR-based codes is solely determined by the total number
of XOR operations in encoding or decoding, we make a
simple yet key observation that common XOR operations
should be computed first (the COF rule). Based on the COF
rule, we can optimize arbitrary XOR-based codes (including
Reed-Solomon codes). We describe the optimization problem
as finding a computation path, which computes all required
outputs and minimizes the total number of XOR operations
at the same time. We relate the problem of optimizing XOR-
based codes (OXC in short) to a known NP-complete problem

and make aconjecturethat the current problem is also NP-
complete.

Two greedy approaches are proposed to find approximate
solutions to the OXC problem. When optimization is applied
to XOR-based Reed-Solomon codes, we show that these codes
can in fact be as efficient and sometimes even more efficient
than the best known specifically designed XOR-based codes,
which is contrary to long time odds. In particular, in2-
fault-tolerant case, XOR-based Reed-Solomon codes are more
efficient in encoding than EVENODD codes [1] and as effi-
cient as the RDP scheme. They are less efficient in decoding
though. In 3-fault-tolerant case, XOR-based Reed-Solomon
codes are more efficient in encoding than both the generalized
EVENODD codes [2] and the STAR scheme [9]. They are
also more efficient in decoding in most cases. As large scale
production adoption of erasure correcting codes is loomingon
the horizon, it is conceivable that redundancy beyond3 will
become necessary and XOR-based Reed-Solomon codes with
optimization should easily live up to such requirements.

The rest of the paper is organized as follows. Section II
revisits EVENODD codes as an example of specifically de-
signed XOR-based codes. Section III briefly describes the
transformation of Reed-Solomon codes into XOR-based codes.
Section IV presents the OXC problem, the complexity conjec-
ture and two greedy approaches. The performance of OXC is
evaluated in Section V and we conclude in Section VI.

II. REVISITING EVENODD CODES

A. EVENODD: an example

EVENODD codes [1] are probably the most widely referred
XOR-based codes in fault-tolerant storage applications. Many
other schemes adopt a similar concept, where data blocks are
arranged in a two dimensional array and XOR is the only
required operation. Schemes as such are often referred asarray
codes. Low complexity is the key advantage of array codes,
which is especially desirable for storage applications. Below
we give a simple example of EVENODD codes.

1) EVENODD encoding:We examine a(5, 2) EVENODD
code. There are3 data blocks (k = 3) and2 redundant blocks
(r = 2). An EVENODD code is in the form of a(p−1)×(p+
2) two dimensional array, wherep is a prime number. Hence,
each block is segmented into(p − 1) cells. Figure 1 shows
this particular EVENODD code, wherep = 3 and each block
(corresponding to one column in the Figure) is segmented into
2 cells. The encoding is straightforward. The first redundant
block is simply the XOR of all the data blocks. In terms of
cells, they can be represented as (use+ as a simple notation

d1 d3 d5 c1 c3
d2 d4 d6 c2 c4

(a) encoding

d1 d3 d5 c1 c3
d2 d4 d6 c2 c4

(b) decoding

Fig. 1. An EVENODD code example.

for XOR)

c1 = d1 + d3 + d5,

c2 = d2 + d4 + d6,

which can be regarded as computinghorizontal parities. The
second redundant block can be computed as

S = d4 + d5

c3 = d1 + d6 + S,

c4 = d2 + d3 + S,

which can be regarded as computing diagonal parities (S is
called adjustor). It is easy to count that the total number of
XORs is9.

2) EVENODD decoding:EVENODD codes guarantee re-
coverability when there are no more than two block failures
(i.e., two columns completely wiped out). For instance, we
examine a particular failure pattern, when the second and the
third data blocks are unavailable. The decoding turns out tobe
straightforward as well. Using all the remaining parity blocks,
the adjustor can first be computed as

S = c1 + c2 + c3 + c4.

OnceS is known,d6 can be computed asd6 = c3 + d1 + S.
Then,d4 can be computed asd4 = c2 +d2 +d6. Next,d5 can
be computed asd5 = d4 + S. And finally, d3 = d1 + d5 + c1.
The decoding process is completed and all failed blocks are
recovered. The total number of XORs is10.

B. EVENODD: a matrix perspective

The encoding and decoding of linear block codes can
be represented in a matrix form. Here, we use the same
EVENODD code example to illustrate.

1) encoding with COF: Denote data cells asD =
[d1 d2 d3 d4 d5 d6] and parity cells asC = [c1 c2 c3 c4].
Then, the encoding can be represented asC = D × Me,
where theencoding matrixMe is in the following form:

Me =

1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 1
1 0 1 1
0 1 1 0

. (1)

1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 1

1 0 1 1

0 1 1 0

(a) EVENODD encod-
ing

1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 1

1 0 1 1

0 1 1 0

(b) encoding with COF

0 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

1 0 1 0

0 1 0 1

(c) decoding with COF

Fig. 2. A matrix perspective of EVENODD code.

Note thatMe represents a portion of the code’s generator
matrix. For systematic codes, it is convenient to ignore the
rest systematic part.

Given the encoding matrix, anaive approach to compute
the redundant blocks is to XOR all data cells whenever the
encoding matrix has non-zero entries. For example,c1 =
d1 + d3 + d5, c3 = d1 + d4 + d5 + d6, and so on. In this
way, counting the total number of non-zeros entries yields
the encoding complexity. Hence, we might conclude that10
XORs are required (note that three1’s in one column counts
for 2 XORs). However, if we are slightly more careful, we
will observe that some XORs are computed more than once.
Indeed, if the EVENODD encoding is mapped onto the matrix
representation, it is equivalent to computingd3 + d5 only
once (the calculation of the adjustor), which saves1 XOR
and exactly accounts for the difference between the original
EVENODD encoding and the matrix-based naive approach.
Figure 2(a) illustrates this.

Now, an interesting question to ask is: can we find more
sharedXORs, which can be computed once and in turn further
reduce the total number of operations? Indeed, we observe that
d2 + d3 (denoted asd2,3) and d4 + d5 (denoted asd4,5) are
shared XORs (shown in Figure 2(b)). If we adopt a simple
rule to compute suchcommon operations first(COF),d2,3 and
d4,5 will be computed. Then,c1 = d1 + d2,3, c2 = d4,5 + d6,
c3 = d1 +d3 +d5 +d6 (as normal), andc4 = d2,3 +d4,5. The
total number of XORs is8, less than the original EVENODD
encoding.

2) decoding with COF: We consider the same failure
pattern, where the second and third data blocks are unavailable
(i.e., cellsd3, d4, d5 andd6 are erasures). It is straightforward
to derive decoding equations from the encoding matrixMe

(essentially performing matrix inversion) and obtainD′ =
C

′×Md, whereD′ = [d3 d4 d5 d6], C′ = [d1 d2 c1 c2 c3 c4],
and the decoding matrixMd is

Md =

0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
1 0 1 0
0 1 0 1

. (2)

Again, the naive approach requires12 XORs. But, applying
the COF rule, and compute shared XORs first (e.g.d1 + d4,

c1 + c4 and c2 + c3 in this case, also shown in Figure 2(c)),
the total number of required XORs is9. This is also less than
the original EVENODD decoding (10 XORs).

III. A 2-FAULT-TOLERANT REED-SOLOMON CODE

In this section, we construct a(5, 3) Reed-Solomon code
and apply the COF rule to both encoding and decoding.

A. Premier on isomorphism

Reed-Solomon codes are constructed in finite fields, where
the addition operation is simply XOR, but the multiplication
operation is handled specially. Elements of finite fields canbe
represented using polynomials, which help to understand the
addition and multiplication operations.

Consider a simple finite field with only4 elements, which
can be constructed taking polynomials modulox2 + x + 1.
Since addition in this finite field is XOR,+ and − are the
same, hence, we can computex2 = x+1 (modulox2 +x+1)
and x3 = xx2 = x(x + 1) = x2 + x = 1 (modulo x2 + x +
1). It is easy to imagine all polynomials can be represented
using4 basicelements, being0, 1, x andx + 1. Given these
elements, the addition and multiplication between any two pair
can be easily computed and stored in look-up tables. With the
addition and multiplication tables, Reed-Solomon codes can be
implemented using table-lookups, which is exactly how they
are often realized. For rigorous representations, please see [3].

From the polynomial perspective, however, there is another
way to represent the multiplication operation. Assuming we
would like to computex(x+1). Instead of directly computing
x(x+1) = x2 +x = 1 (modulox2 +x+1), we can consider
a more general case by writing the term into(ax + b)(x + 1).
Of course,a = 1 and b = 0 here. Hence,(ax + b)(x + 1) =
a(x2 + x) + b(x + 1) = a + b(x + 1) (modulo x2 + x + 1).
Therefore,(ax + b)(x + 1) can be represented as

(ax + b)(x + 1) =
[

a b
]

[

0 1
1 1

]

. (3)

Let a = 1 and b = 0, we can getx(x + 1) = 1.
Another example setsa = 1 and b = 1, and we can get
(x + 1)(x + 1) = x. Both can be easily verified using direct
polynomial multiplications. Hence, the multiplication infinite
fields can be transformed into pure XOR operations. This
mechanism is calledisomorphism. The significance is that
a and b no longer need to be a simply bit. They can be
a byte, a word or64 bits, even128 bits (with SSE/SSE2),
the maximal length a single XOR instruction can operate on.
Through isomorphism, arbitrary codes defined on finite fields
(including Reed-Solomon codes) can be implemented using
pure XOR operations. For more details, please see [4], [13].

B. A 2-fault-tolerant Reed-Solomon code

[11] gives a convenient way to construct Reed-Solomon
codes when the redundant blocks are no more than3. To offer
2-fault-tolerance for3 data blocks, we can use the above finite

field of size4 and the following encoding matrix:

[

ca cb

]

=
[

da db dc

]

1 1
1 x

1 x + 1

 , (4)

whereca, cb are redundant blocks andda, db, dc data blocks,
representing elements in the finite field. Letca = c1x + c2,
da = d1x + d2, etc. Now,c1, c2, d1 and d2 are elements in
binary and we get the following through isomorphism:

[

c1 c2 c3 c4

]

=
[

d1 d2 d3 d4 d5 d6

]

1 0 1 0
0 1 0 1
1 0 1 1
0 1 1 0
1 0 0 1
0 1 1 1

.

(5)
Applying the COF rule, we observe thatd1+d3 andd4+d6 are
shared XORs and should only be computed first. In the end, the
total number of XORs is8, less than the EVENODD encoding.
Similarly, it is straightforward to verify that decoding the
second and third data blocks requires9 XORs, also less than
the EVENODD decoding. As a matter fact, for this particular
example, the encoding and decoding matrices happen to be the
same for the EVENODD code and the Reed-Solomon code.
This is not true in general though.

IV. OPTIMIZING XOR-BASE CODES

Conceivably, the COF rule is applicable to arbitrary XOR-
based codes, no matter whether they are specially designed
XOR-based codes, or simply isomorphism of regular Reed-
Solomon or other types of codes. However, when the encoding
matrix or decoding matrix is large, it becomes nontrivial to
determine which shared XORs should be computed first and
used as intermediate results for other. In this section, we define
the problem of optimizing XOR-based codes formally (OXC
in short), present a conjecture of the NP-completeness of the
problem, and propose two effective greedy algorithms.

A. Problem formulation

The OXC problem is stated as follows. Given a set of
inputs (denoted asi1, i2, · · · , i|I|) and a coding matrixM
(either encoding or decoding), a set of outputs (denoted aso1,
o2, · · · , o|O|) are computed from the inputs and the coding
matrix, where XOR is the only computation operation. Define
a computation pathas an order of XOR operations involving
the inputs and/or the intermediate results from previous XORs.
A computation path isvalid, if it yields all required outputs
after all XORs along the path are computed. Thelength
of a computation path is simply the total number of XORs
contained in the path.Given the inputs and the coding matrix,
the OXC problem is to find a valid computation path with the
minimum length.

Next, we relate the OXC problem to a known NP-complete
problem and make a conjecture about its complexity. As
illustrated by various shapes (rectangle, circle, and eclipse)
in Figure 2(c), we can usecoversto represent shared XORs.

2

2

2

2

1

2
2

2
1

2

1

212

i1

i2

i3

i4

i6

i5

(a) graph with edge counters

2

2

2

2 2
2

2

2

22

i1

i2

i3

i4

i6

i5

(b) approach I: cardinality matching

1

1

1

1

2

2

2

2 2
2

2

2

22

i1

i2

i3

i4

i6

i5

E-9

E-9

E-10 E-10

E-10

E-10

E-10

E-9

E-10

E-9

(c) approach II: weighted matching

Fig. 3. Illustration of greedy approaches.

Here, we define a general conceptualrectangle cover(denoted
asRC) for shared XORs. A rectangle cover may span multiple
rows (rectangle height, hRC) and columns (rectangle width,
wRC) of the coding matrix. It doesnot need to be contiguous
in either rows or columns. Intuitively, a rectangle cover has
to be rectangle, so it contains the same number of entries
among all rows (or columns). A rectangle cover can only
contain1’s andno 0’s at all. All columns of a rectangle cover
share same XORs. Hence, computing any single column is
sufficient and the number of XORs required is (hRC − 1).
Now, we define thecostof a rectangle cover (denoted ascRC)
ascRC = (hRC − 1) + wRC, where(hRC − 1) accounts for
the number XORs to be computed within the rectangle, and
wRC one potential XOR with outside inputs per column of
the rectangle. Finally, we define a set ofnone-overlapping
complete rectangle covers(denoted asRCi’s), which donot
overlap with each other and cover all1’s of the coding matrix.
We have the following corollary.

Corollary 1: A computation path is equivalent to a set
of none-overlapping complete rectangle covers. Moreover,
the length of the computation path equals to the total cost
of all rectangle covers minus the number of outputs, i.e.,
∑

cRCi
− |O|. (We leave the proof to interested readers and

simply mention that minus|O| is because each column over-
counts exact by1.)

To this end, the OXC problem is equivalent to finding
a set of none-overlapping complete rectangle covers of the
coding matrix with the minimum total cost (|O| is constant
and thus can be ignored). To get rid of the none-overlapping
requirement, we can apply a simple technique and modify the
cost function of rectangle covers. For each entry in a rectangle
cover, we add a large constantL to its cost. Then, for none-
overlapping rectangle covers, the number of times thatL is
counted in total cost equals to the number of1’s in the coding
matrix. On the other hand, once two rectangle covers overlap,
L will be counted more times. Hence, as long asL is large
enough (e.g. more than the total entries in the coding matrix,
|I| × |O|), overlapping rectangle covers willneveryield the
minimum cost. With this cost function modification, we only
need to find a set of complete rectangle covers with minimum

total cost. In [15], theminimum weighted rectangle covering
(MWRC) problems is shown to be NP-complete. Note that
the general MWRC problem includes arbitrary cost functions
for each rectangle. It isnot clear that the problem is still NP-
complete with the current cost function. Hence, we only make
a conjecture here that the OXC problem is also NP-complete.
In the rest of this section, we describe two greedy algorithms
to derive approximate solutions.

B. Greedy approach I: cardinality matching

Let’s use the coding matrix in Figure 2(c) to describe the
algorithm. The inputs arei1, i2, i3, i4, i5 andi6. The outputs
areo1, o2, o3, ando4. Based on the coding matrix, in order to
compute cello1, we need to XOR4 inputs, i.e.,o1 = i2+i3+
i4 + i5. There are many ways to computeo1. For instance, we
can first computei2 + i3, i4 + i5 and then sum them up. Or,
we can computei2+i3, and then addi4 andi5 one by one. To
list all possibilities, we draw all inputs asnodesin a graph and
connect two nodes with an edge whenever there is a potential
XOR computation. Clearly, between any two-node pair among
i2, i3, i4 andi5, there exists an edge. Hence, the graph contains
a 4-clique. This is for one output. Similarly, for other outputs,
the graph will contain different cliques. Putting all cliques
into the same graph, while some edges belong to only one
clique, other might belong to multiple. We keep a counter
on each edge. Intuitively, the counter represents how many
times one particular XOR is shared during the computation of
different outputs. To reduce the total number of operations, it’s
natural to compute the mostly shared XORs first. In the graph
notation, it is to compute the edges with the highest counter
value.

For instance, Figure 3(a) shows the complete graph and
edge counters corresponding to the coding matrix. The highest
counter is2. To compute such edges first, we remove all edges
with less counter values and obtain the subgraph in Figure 3(c).
The next step is to find the maximum number ofdisjoint
edges (no two edges share the same node) and compute
them first. The intuition is that disjoint edges represent XORs
on completely different nodes and computing them at the
same time donot affect each other. Computing the maximum
number of disjoint edges can get the maximum reduction of

XORs at once. It turns out that finding the maximum number
of disjoint edges is a well-studied graph theory problem, called
maximum cardinality matching. A matching is a set of edges
in a graph, where there are no two edges share the same
node. A maximum matching is a matching with the maximum
number of edges. Given a graph, there are many polynomial
time algorithms to find a maximum matching. When a graph
contains multiple maximal matchings, our algorithm proceeds
with any of them. The XORs corresponding to the matching
are computed first. Given the matching shown in Figure 3(c),
we will first computei1 + i2, i3 + i6 and i4 + i5.

Once these XORs are computed, we examine the remaining
XORs. We can still use a matrix to represent all the XORs. The
matrix will be modified from the original coding matrix, where
entries corresponding to XORs, which have already been com-
puted, need to be removed. Also, we need to add new entries
for the intermediate results from the above computations. To
this end, we add three new imaginary inputsi1,2, i3,6 andi4,5

to represent the intermediate results. Now the decoding matrix
becomes

M
′ =

0 1 → 0 1 → 0 1
1 1 → 0 1 → 0 0
1 1 → 0 0 1 → 0

1 → 0 0 1 → 0 1
1 → 0 0 1 → 0 0

0 1 → 0 0 1 → 0

0 1 1 0
0 1 0 1
1 0 1 0

, (6)

where the three bottom rows are newly added. Taking the
second column as an example, it has2 non-zero entries. It
corresponds too2 = i1,2 + i3,6 and indeed the same as the
original computation ofo2 = i1 + i2 + i3 + i6.

Given the new coding matrix, it’s possible to find more
shared XORs operations and again compute them only once.
Apparently, we can apply the same procedure to find the
maximum number of shard XORs. Indeed, the procedure is
repeated until there are no more shared XORs. It is easy
to show that the algorithm terminates after finite rounds,
and within each round, both preparing the graph and finding
maximum matching take polynomial time. Hence, the overall
complexity is still in polynomial time. We will elaborate this
later when discussing practicality issues.

C. Greedy approach II: weighted matching

As mentioned already, there might exist multiple maximum
matchings in a graph. For instance, in Figure 2(b), matchingi1
with i6, i2 with i5 andi3 with i4 is also a maximum matching.
In the above greedy approach, we proceed with any maximum
matching. In this part, we consider a variation of the above
approach. We still like to find a maximum matching (i.e., the
maximum number of disjoint pairs), but we like the matching
to cover as fewerdensenodes as possible. The density of a
node is defined by its degree. The intuition is that if all nodes
covered by the maximum matching are removed, as well as

all the edges connected to these nodes, the remaining graph
should be as dense as possible such that it’s likely to contains
more matchings for the next round.

Now we describe the second approach, which differs from
the first greedy approach in the way of finding a maximum
matching. Starting from the original graph with counter values,
we assign weights to all edges. For an edge with the maximum
counter value, its weight is set to be a large constant (say
E) minus the degrees of both its end nodes. For instance,
the edge betweeni1 and i6 has weightE − 9 (rest shown
in Figure 2(c)). For an edge with a smaller counter value, it’s
excluded. Once we go through all edges and obtain a subgraph,
we find amaximum weighted matching, which is known to be
solvable in polynomial time. Note that the maximum weighted
matching doesnot guarantee to find the maximum number
of matching pairs. The constantE is added exactly for this
reason. As long as we makeE large enough (e.g., the sum
of all nodes’ degrees), a maximum weighted matching will
always contains the maximum number of matching paries (i.e.,
also a maximum cardinality matching). Maximum weighted
matching has comparable complexity as maximum cardinality
matching, so the complexity of the second greedy approach is
also comparable to the first approach. Finally, we note that our
empirical experience shows that neither approach is superior,
so we simply run both approaches and take a better result in
practice.

V. PERFORMANCE EVALUATION

In this section, we apply the both greedy approaches to opti-
mize XOR-based Reed-Solomon codes. We compare encoding
and decoding complexities to the naive approach, as well as
to the best known specifically designed XOR-based codes.

A. Limited exploration of available Reed-Solomon codes

We shows 2-fault-tolerant and 3-fault-tolerant cases, which
are the focus of a large number of specifically designed XOR-
based codes. Even with limited redundancy, there are still
numerous ways to construct a Reed-Solomon code. Here,
we use the Reed-Solomon codes presented in [11] (Ch.11.
Theorem11). For a given finite field GF(Q = 2q), the parity
check matrix is given as

H =

1 · · · 1 1 0 0
α1 · · · αQ−1 0 1 0
α2

1
· · · α2

Q−1
0 0 1

 . (7)

To construct a(n, k) systematic Reed-Solomon code (r =
n − k ≤ 3), we can choose anyr out of 3 rows andk out of
the first(Q− 1) columns fromH. It’s easy to verify that this
gives us ar × n parity check matrix, which corresponds to
a (n, k) systematic Reed-Solomon code. Still, the number of
available codes (i.e.,

(

Q−1

k

)

column combinations) are quite
large. Hence, we further limit our exploration to include only
columns that are contiguous inH (cyclic is fine). In short,
given (n, k), we only consider(Q − 1) codes whenr = 3
and 3(Q − 1) codes whenr = 2 (3 times more due to row
combinations). For each(n, k), we choose a Reed-Solomon

code that incurs the minimum number of XORs inencoding
(after optimization) as the desirable code and compute its
corresponding average decoding complexity over all failure
patterns.

B. Comparison

encoding complexity decoding complexity
k EVENODD RS (naive) RS (OXC) RDP EVENODD RS (naive) RS (OXC) RDP

3 4.5 5 4 4 5 6.67 4.83 4
5 8.75 11 8 8 9.5 16.33 9.97 8
7 12.83 17 12 12 13.67 23.43 14.25 12
11 20.9 29.75 20 20 21.8 46.66 24.67 20
13 24.92 36.75 24 24 25.83 55.43 29 24

(a) 2-fault-tolerant case

encoding complexity decoding complexity
k gen. EO / STAR RS (naive) RS (OXC) gen. EO STAR RS (naive) RS (OXC)

5 13.5 18 11.33 28.8 13.6 22.27 12.57
7 19.67 28 17.33 36 21.06 32.29 17.58
11 31.8 50.75 27 49.1 34.2 67.08 32.02
13 37.83 63 32.25 55.44 41.04 79.75 36.96
17 49.86 95 44.6 67.84 54.4 128.78 55.17
19 55.89 107.8 50.4 73.98 61.74 144.12 60.50

(b) 3-fault-tolerant case

Fig. 4. Comparison with best known specifically designed XOR-based codes.

In 2-fault-tolerant case, we compare XOR-based Reed-
Solomon codes to the EVENODD codes [1] and the RDP
scheme [6]. From Figure 4(a), we observe that, with opti-
mizaiton, the encoding of Reed-Solomon codes can be as
efficient as EVENODD/RDP. The decoding of Reed-Solomon
codes arelessas efficient though. In 3-fault-tolerant case, we
compare with the generalized EVENODD codes [2] (asgen.
EO) and the STAR scheme [9]. The encoding complexity of
both specifically designed schemes are the same. The decoding
of the STAR scheme is more efficient than the generalized
EVENODD codes. We observe that the Reed-Solomon codes
appear more efficient than both schemes in encoding over all
k’s, and more efficient in decoding over mostk’s. This is
very interesting and suggests that designing more efficient3-
tolerant XOR-based codes might be possible. Moreover, in all
cases, we observe that OXC shows great improvement over
the naive approach, where the complexity literarily countsthe
number of1’s in coding matrices. We believe the significant
gap between OXC and the naive approach contributes to
the long time misconception that Reed-Solomon codes are
inappropriate as XOR-based codes.

C. Practicality discussion

In order for OXC to be practically useful, computation
paths should be computed offline and stored physically. For
encoding, the additional storage overhead isnot an issue at
all, since there is only one computation path to store. For
decoding, the number of paths to be stored can be potentially
large (literally, one path per erasure pattern). To alleviate the
overhead, we consider two scenarios: 1) when the redundancy
is limited (e.g.2 or 3-fault-tolerant), the total number of path
might not be large and thus all paths can be stored; and
2) when there are more redundancy, computation paths to
recover limited failures can be stored. In storage applications,

these are more likely to be the most common failures and the
most performance gain will be achieved when the common
cases are optimized. During rare cases when more failures
occur, the decoding falls back into the naive approach. Less
efficient decoding in those cases shouldnot have much impact
on overall system performance. Moreover, OXC might be
particularly suitable for codes with inherent hierarchy (e.g.
Pyramid Codes [10]), where most decodings happen within
small groups with limited redundancy.

VI. SUMMARY

We make a simple and yet important observation that com-
mon XOR operations should be computed first in XOR-based
coding. We describe the OXC problem and make a conjecture
about its complexity. Two greedy approaches are proposed,
which effectively show that XOR-based Reed-Solomon codes
with optimization can be as efficient and sometimes even more
efficient than the best known specifically designed XOR-based
codes. Moreover, XOR-based Reed-Solomon codes with opti-
mization are likely to be applicable in large scale production
systems with higher redundancy requirements.

REFERENCES

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Efficient
Scheme for Tolerating Double Disk Failures in RAID Architectures,”
IEEE Trans. on Computers, 44(2), 192-202, Feb. 1995.

[2] M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with Independent
Parity Symbols,”IEEE Trans. Information Theory, 42(2), 529-542, Mar.
1996.

[3] R. E. Blahut, “Algebraic Codes for Data Transmission,” Cambridge Univ.
Press, Cambridge, U.K. 2002.

[4] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuck-
erman, “An XOR-Based Erasure-Resilient Coding Scheme,”Technical
Report No. TR-95-048, ICSI, Berkeley, California, Aug. 1995.

[5] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“Raid – High-Performance, Reliable Secondary Storage”,ACM Com-
puting Surveys, 26(2), 145-185, 1994.

[6] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J.Leong, and
S. Sankar, “Row-Diagonal Parity for Double Disk Failure Correction”,
the 4

th USENIX Conference on File and Storage Technolgoies (FAST
2005), San Francisco, CA, Dec. 2005.

[7] G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New Efficient MDS
Array Codes for RAID Part I: Reed-Solomon-Like Codes for Tolerating
Three Disk Failures”,IEEE Trans. on Computers, 54(9), Sep. 2005.

[8] G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New Efficient MDS
Array Codes for RAID Part II: Rabin-Like Codes for Tolerating Multiple
(≥ 4) Disk Failures”,IEEE Trans. on Computers, 54(12), Dec. 2005.

[9] C. Huang, and L. Xu, “STAR: an Efficient Coding Scheme for Correct-
ing Triple Storage Node Failures”,the4

th USENIX Conference on File
and Storage Technolgoies (FAST 2005), San Francisco, CA, Dec. 2005.

[10] C. Huang, M. Chen, and J. Li, “ Pyramid Codes: Flexible Schemes to
Trade Space for Access Efficiency in Reliable Data Storage Systems”,
Mar. 2007 (submitted).

[11] F. J. MacWilliams, and N. J. A. Sloane, “The Theory of Error Correcting
Codes, Amsterdam: North-Holland”, 1977.

[12] J. S. Plank, “A tutorial on Reed-Solomon Coding for Fault-Tolerance
in RAID-like Systems”,Software – Practice & Experience, 27(9), 995-
1012, Sep. 1997.

[13] J. S. Plank, and L. Xu, “Optimizing Cauchy Reed-Solomon Codes for
Fault-Tolerant Network Storage Applications,”the 5

th IEEE Interna-
tional Symposium on Network Computing and Applications (NCA 2006),
Cambridge, MA, Jul., 2006.

[14] I. S. Reed, and G. Solomon, “Polynomial Codes over CertainFinite
Fields”, J. Soc. Indust. Appl. Math., 8(10), 300-304, 1960.

[15] R. Rudell, “Logic Synthesis for VLSI Design”, Ph.D. thesis, UC
Berkeley, 1989.

