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Online Algorithms for Automotive Idling Reduction
with Effective Statistics
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Abstract—Idling, or running the engine when the vehicle is not
moving, accounts for 13% - 23% of vehicle driving time and costs
billions of gallons of fuel each year. In this paper, we consider
the problem of idling reduction under the uncertainty of vehicle
stop time. We abstract it as a classic ski rental problem, and
propose a constrained version with two statistics µB- and qB+ , the
expected length of short stops and the probability of long stops.
We develop online algorithms that combine the best of the well-
known deterministic and randomized schemes to minimize the
worst case competitive ratio. We demonstrate the robustness of
the algorithms in terms of both worst case guarantee and average
case performance using simulation and real-world driving data.

Index Terms—Automotive Idling Reduction, Online Algorithm,
Ski Rental Problem, Competitive Analysis

I. INTRODUCTION

FUEL economy has become a major concern in vehicle
designs, due to its significant environmental impact and

the foreseeable shortage of fossil oil. There is an enormous
amount of efforts in place to reduce the vehicle fuel con-
sumption and emission. For example, the US Environmental
Protection Agency [1] imposes the CO2 emission standard of
Model Year 2014 to be 315 grams/mile for passenger cars. In
2025, this number has to be decreased to 163 grams/mile, or
equivalently 54.5 miles per gallon (mpg), in parity with today’s
Prius (around 51 mpg). This greatly motivates the development
and commercialization of electric vehicles, hybrid electric
vehicles, and other energy efficient vehicles.

In this paper, we consider the problem of reducing the
cost associated with vehicle idling. An idling vehicle runs
its engine when it is not moving, which causes unnecessary
waste of fuel. The average amount of idling has been measured
at 13% to 23% of the total vehicle operating time, according
to surveys conducted in North America and Europe [2]. In US
alone, idling vehicles use more than 6 billion gallons of fuel at
a cost of more than $20 billion each year [3]. These (possibly
astonishing) facts have triggered significant legislation efforts
against unnecessary long idling. For example, Toronto City
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Council at its meeting on July 8, 2010, made changes to the
Idling Control By-Law, to impose an idling limit of 1 minute
[4]. Similar rules and laws can be found throughout US [5]
and Europe [6].

In order to reduce the cost associated with vehicle idling
(including fuel and emissions), the driver may manually turn
off the engine, when he/she expects to experience a long stop.
Alternatively, Stop-Start Systems (SSS) have been proposed
to automatically perform the task. Such a system is a key
building block in hybrid electric vehicles (HEV), but it can
also be added as a new feature to conventional vehicles (those
equipped with an internal combustion engine only). In the
later case, they are typically referred to as Stop-Start Vehicles
(SSV). SSV would turn off the engine immediately when
the car stops, and restart the engine when the driver pushes
the gas pedal to go forward. Other functions like accessories
and lighting are powered by an electrical source other than
the vehicle’s alternator. In HEV, the strategy can be more
complicated, and is out of the scope of this work.

As in the case of idling, restarting the engine also comes
with a cost. It is estimated that the fuel consumption for restart-
ing the engine once is equivalent to keeping the engine idling
for 10 seconds [2], [7]. Considering other costs associated to
engine wear and exhaust gas emission, this number goes up
to 28 seconds for SSV or 47 seconds for those without SSS
(see Section IV for details). Thus, it is not necessarily the best
strategy to turn off the engine immediately. Considering fuel
consumption alone, it is better to keep the engine running if
the vehicle is known to be at rest for less than 10 seconds.

However, the vehicle stop time is unknown or even hard
to estimate in many situations, such as at traffic lights or in
heavy traffic. Thus, SSV have to make online decisions, i.e.,
without the a-priori knowledge of the vehicle stop time. In
this paper, we consider the problem of finding the best online
strategy for the stop-start systems. It can also be provided as
a driving tip to drivers of vehicles without stop-start systems.
In particular, we claim the following contributions:
1) We consider the costs of fuel consumption, emission, and
engine wear associated with idling and restart. We abstract the
problem as a classic ski rental problem, where a break-even
value characterizes the trade-off between keeping the vehicle
idle and restarting the engine. Thus, existing solutions on the
ski rental problem can be directly adopted.
2) We gain insight into the characteristics of the optimal
offline algorithm, and propose a constrained ski rental prob-
lem by introducing two new statistics µB- and qB+ , where
µB- is the expected length of short stops, and qB+ is the
probability of long stops. We derive two online algorithms,
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for the constrained ski rental problem. One is a closed-form
solution, ONAIR (an ONline algorithm for Automotive Idling
Reduction with effective statistics), that provides performance
guarantees (bounded worst case expected competitive ratio).
The other is an optimal numerical solution, ONAIRE (ONAIR
Exact version), which gives the smallest worst case expected
competitive ratio under any traffic conditions.
3) We use real-world data to evaluate the proposed online
algorithms. ONAIR and ONAIRE outperform other existing
strategies in terms of providing lower bound on worst case
performance. At the same time, for average case performance,
ONAIR and ONAIRE also perform better than other strate-
gies. In addition, the robustness of the proposed strategies in
different driving conditions is evaluated using synthetic data.

The rest of the paper is organized as follows. In Section II,
we introduce the problem of SSS online strategy and link
that to the classic ski rental problem. We also review related
works proposed in the context of the ski rental problem. In
Section III, to minimize the worst case expected competitive
ratio, we solve the constrained ski rental problem analytically
to derive a closed form sub-optimal strategy, and also solve the
problem numerically to get the optimal solution. The break-
even interval is calculated in Section IV. In Section V, we
use real-world driving data and synthetic data to validate the
performance of the proposed strategies. Finally, the paper is
concluded in Section VI.

II. IDLING REDUCTION PROBLEM

When the car has to stop due to traffic or the driver’s needs,
there are two possible actions that the driver/SSS can take:
– Keeping the Vehicle Idle, which wastes fuel to keep the
engine running at a relatively low speed, and consequently
with exhaust gas emissions. The associated cost is proportional
to the vehicle idling time.
– Turning off the Engine. In this case, the engine has to
be restarted when the driver pushes the gas pedal. Restarting
the engine requires a one-time cost due to 1) fuel consumption
and related emission; 2) excessive engine wear costs, including
those to the starter and starter battery.

Both costs can be calculated by studying the characteristics
of the vehicle and the cost to each part (e.g., starter and starter
battery). We use costidling /s to denote the cost of idling per
unit time, and costrestart for the one-time cost to restart the
engine. The ratio between these two

B =
costrestart

costidling /s

(1)

denotes the amount of idling time such that the total cost for
idling is equal to the cost of turning off and restarting the
engine. B is called the break-even interval, which plays a
key role in the algorithm design. The calculation of B for
automotive idling is detailed in Section IV, which considers
the fuel consumption and other costs associated to engine wear
and exhaust gas emission. However, the existing algorithms for
the ski rental problem (summarized in Section II-B) and our
algorithms apply to any given B.

During the vehicle stop, decision has to be made whether to
continue waiting (and keep the engine idle) or to turn off and

restart when the driver intends to move forward. If the vehicle
stop time y is known in advance, it is easy to figure out the
optimal strategy: if y is less than B (informally, the stop is
“short”), then it is better to keep the engine idle; otherwise
(informally, the stop is “long”), the driver/SSS should turn off
the engine immediately and restart later.

However, the vehicle stop time is naturally random, and
in many situations, such as stops at traffic light or in heavy
traffic, it is difficult to estimate before hand. The decision has
to be made without having the input y, or in an online fashion.
In contrast, the optimal strategy with the knowledge of y is
called the offline algorithm. The problem of designing online
algorithm to choose between continuing idling (and paying a
repeating cost) or paying a one-time restart cost is exactly the
topic of the classic ski rental problem [8]. In the ski rental
problem [8], a skier has to pay $1 for renting skis for one
day or pay $B to buy his own. He cannot find out until which
day he is still able to ski due to the unpredictable weather
condition. Every day when he goes skiing, an online decision
can be made on whether to rent (similar to keeping the vehicle
idle) or buy (similar to turning off and restarting the engine).

Online algorithm has a broad range of applications, in-
cluding Snoopy Caching [8] [9], microgrids power generation
scheduling [10], financial decision on renting or buying [11],
task assignment and scheduling in multicore system [12],
system level power management [13] [14], temperature aware
energy minimization [15]. In the following, we review the
metric to evaluate the performance of the online algorithms
and the existing solutions for the ski rental problem.

A. Competitive Analysis

Competitive analysis is a common way to evaluate online
algorithms, which compares the cost incurred by the evaluated
strategy with the optimal offline algorithm. Optimal offline
algorithm knows stop length a priori, so that it can turn the
engine off immediately if the stop is long, or keep it idle if the
stop is short. For a stop with length y, the cost of the offline
algorithm, denoted as costoffline(y), is calculated as

costoffline (y) =

{
y 0 ≤ y < B
B y ≥ B (2)

The online algorithm (deterministically or randomly) selects
the amount of idling time x. We denote the cost of the online
algorithm for a selected x and a given y as costonline(x, y).
Since the vehicle will wait until x, if y < x, the cost is y;
otherwise, the cost is the amount of idle time x plus the one
time restart cost B.

costonline (x, y) =

{
y 0 ≤ y < x

x+B y ≥ x (3)

The competitive ratio cr(x, y) for a given pair of x and
y is defined as the ratio between the costs of the online and
offline algorithms:

cr(x, y) =
costonline(x, y)

costoffline(y)
(4)

The expected competitive ratio, denoted as CR, is defined
as the ratio between the expected cost of an online algorithm



3

and that of the offline algorithm [16]:

CR =
E
y
[E
x
[costonline(x, y)]]

E
y
[costoffline(y)]

(5)

Our objective is to select the strategy of idling time x such
that the worst case CR (maxy CR) is minimized.

B. Existing Solutions

For SSV, one strategy commonly used in the design1 is
that the engine is turned off immediately when the car stops.
This strategy (with the short name TOI for Turning Off
Immediately) has a fixed cost of B for any stop length y. For
vehicles without SSS, the drivers may be reluctant to turn off
the engine because of the concerns on the engine wear or other
needs. This strategy (with the short name NEV for NEVer)
certainly incurs large cost when the stop time is long. In the
following, we review existing online algorithms proposed in
the context of the ski rental problem.

A deterministic online algorithm chooses a fixed x in (3).
Karlin et al. [8] prove that among all possible deterministic
algorithms, the strategy of x = B gives the smallest worst
case cr(x, y):

min
x

max
y

cr(x, y) = max
y

cr(B, y) = 2 (6)

We use DET to denote this online algorithm.
If we consider the metric of the worst case CR, DET is

not the best strategy. Karlin et al. [16] further propose a
randomized online algorithm, which can guarantee that the
worst case CR is no larger than e/(e−1) for any distribution of
y. This bound is also proven to be the smallest that any online
algorithm can provide with no further statistical information on
y. This algorithm, denoted as N-Rand, selects the idling time
x based on the probability density function p(x) as follows

p(x) =

{
1

B(e−1)
e

x
B 0 ≤ x ≤ B

0 otherwise
(7)

Recently, Khanafer et al. [9] propose to include the first-
moment (the average) µ or second-moment of the stop length
as additional statistical information. It then derives a revised
randomized algorithm to minimize the largest C̃R, where

C̃R = E
y

Ex [costonline(x, y)]

costoffline(y)

 = E
y

[
E
x

[
costonline(x, y)

costoffline(y)

]]
(8)

The definition in (8) is the expectation of competitive ratios,
while the definition (5) is the ratio of expected cost of online
strategy over the expected cost of optimal offline strategy.
From the driver’s perspective, he/she would care much more
about the expected cost as defined in (5), than the expected
competitive ratio as defined in (8). In our problem setting, we
assume that some statistics of stop length y is known. Under
this assumption, the expected offline cost E

y
[costoffline(y)], or

the denominator of (5), is constant, as shown in Equation (13).
Hence, minimizing the competitive ratio as defined in (5) is
equivalent to minimizing the out-of-pocket expense.

1see e.g., http://en.wikipedia.org/wiki/Start-stop system

While we recognize that there might be some other appli-
cations where (8) is more suitable, we adopt the definition of
CR in (5) as our minimization goal, as in most other works
on the ski rental problem. The minimization of worst case
CR is a typical objective in the online algorithm research
community, for problems with no or limited knowledge about
future information. If the full distribution of the stop lengths is
known, a possibly better objective is to minimize the average
CR, as in [17].

With the available information on µ, if µ ≤ 2(e−2)
e−1 B =

0.836B, the probability density function of x is derived as in
(9); otherwise, it is the same as N-Rand.

p(x) =

{
1

B(e−2)

(
e

x
B − 1

)
0 ≤ x ≤ B

0 otherwise
(9)

The upper bound on CR′ is proven to be 1 + µ
2B(e−2) . We

denote this strategy as MOM-Rand.

C. Other Related Works

Besides the deterministic [8] and randomized [16] online
algorithms for the classical ski rental problem, there are
related works on exploiting additional statistical information
to improve the performance of online algorithms. Fujiwara et
al. [17] assume the distribution of input (like stop length y
in anti-idling problem) is exponential or uniform, and then
minimize the average case cost. Xu et al. [18] assume the
input is geometrically distributed, and they use the average
value of input to make the rent or buy decision. Dong et
al. [19] propose to use different subsets to classify input to
determine the average case cost for geometrical distribution.
These works rely on the full distribution information which
are usually difficult to get a priori. Khanafer et al. [9] propose
an algorithm based on the knowledge of average input length
or its second moment.

Except for statistical information, there are other works that
use some prediction techniques to improve the performance.
Lu et al. [20] introduce the use of look ahead window (the
knowledge on whether or not the stop length y is within
the window) to minimize competitive ratio bound against
uncertainty. Hwang et al. [14] use average input length to
predict the next one for system level power management.
Ramanathan et al. [13] use the previous input to predict the
next, however, the correlation of consecutive inputs is not
obvious according to current driving data as discussed in
Section V-C. Yuan et al. [15] calculate the processor utilization
ratio according to the estimated remaining workload, and
compare it with the effective cooling rate to determine whether
to switch the processor into sleep mode.

Regarding vehicle idling, the idling costs of different ve-
hicles are summarized in [21], and the estimations of restart
cost are reported in [7] and [22]. Hill et al. [23] look at the
emissions from idling, investigate into the matter of diesel
particulate for school buses, and evaluate the effectiveness
of different retrofit solutions like ultra-low sulfur diesel fuel
and diesel particulate filter. Based on the observation that the
engine may not be shut down as it is sometimes needed to
provide power for heating etc., Stodolsky et. al. [24] propose
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to use alternative power sources while the engine is off,
including direct-fired heater, auxiliary power units, and truck
stop electrification. These solutions are evaluated for transit
buses in [25].

Xu et al. [26] implement an intervention system which pre-
vents excessive idling for school buses, motivated by idling’s
environmental impact. A stop longer than 120 seconds is
viewed as excessive idling, and the engine is shut down when
that happens. Dupuis et al. [27] propose to automatically
shut down the engine to prevent fines on excessive idling.
Winslow [28] proposes to design an anti idling alarm function,
which is designed to prevent fines on excessive idling. From
the algorithm design point of view, these three works implicitly
propose a form of deterministic online algorithm c-DET, where
c is, for example, 120 seconds for Xu et al. [26]. However, as
can be seen in the discussion in Section II-B, these algorithms
are not able to guarantee the same competitive ratio as [8].
Compared to these works, our work is the first to formally
formulate the vehicle idling decision problem as a ski-rental
problem and apply the existing solutions on online algorithm
design. Furthermore, we propose a constrained ski rental
problem with two new effective statistics and design online
algorithms with strong performance guarantees.

In the following, we look at additional statistical information
of the stop length that can help provide better performance
guarantees than the existing solutions when distribution is
unknown. We use the definition of CR in (5) to give the
competitive analysis, because of its direct relationship with
the expected cost of the online algorithm.

III. ANTI-IDLING WITH EFFECTIVE STATISTICS

The classic ski rental problem aims at improving the CR
when the future information is unknown a-priori. Accurate
prediction is extremely difficult in many scenarios, however,
effective statistical information can be available. In this sec-
tion, we discuss the effective statistics that can be helpful
to improve the online algorithms for the ski rental problem.
We call them constrained ski rental problem, as the statistical
information is introduced as additional constraints to the
original one [9].

A. Effective Statistics

The first moment (mean) and second moment are commonly
used statistics to characterize a random variable. However,
they are usually affected by extreme values. For the ski rental
problem, the length of an extremely long stop is not necessarily
informative. This is evidential in the optimal offline strategy:
once the stop length y is longer than B, to what extent its
length exceeds B will not affect the optimal offline decision,
and the engine should be turned off immediately. Similarly,
the behavior of DET is independent from the actual length y
if y > B: it only waits until time B to turn off the engine.

Furthermore, a given first moment cannot necessarily help
find the best strategy. For example, for stops with mean value
smaller than B (B = 28, for instance), turning off immediately
(TOI) seems to be a preferred strategy. However, we can
easily find a counterexample. Suppose there are 10 stops, 9

with 1 second, and 1 with 1000 seconds, the mean is about
100 seconds. On average, these stops are long. However, DET
incurs a smaller total cost (=65) than TOI (=280).

We observe that the expected length is still meaningful
when stops are shorter than B, and propose to use µB- (the
expected length of stops given they are short) as defined in
(10). For the stops with length longer than B, we use their total
probability qB+ , which is defined in (11). Here q(y) represents
the distribution of the stop length y, which is unknown before
making an online decision. B is the break-even value defined
in (1).

µB- =

∫ B

0+
yq(y)dy (10)

qB+ = 1−
∫ B

0+
q(y)dy (11)

Now all the possible distributions of stop length y can be
described by the set Q

Q = {q(y)|q(y) ≥ 0, (10) and (11) are satisfied.} (12)

With these two constraints, the expected cost of the offline
algorithm is

E
y
[costoffline(y)] = µB- + qB+B (13)

and the expected cost of DET is

E
y
[costDET(y)] = E

y
[costonline(B, y)] = µB- + 2qB+B (14)

both of which are constant for a given pair of µB- and qB+ .
Also, an upper bound on the expected offline cost can be de-
rived as µB-+qB+B ≤ B. This is consistent with the intuition
that no online algorithm (including TOI, whose expected cost
is always B) can outperform the offline algorithm.

B. Problem Formulation

Our target is to find an online algorithm that defines the
probability distribution p(x) of the idling time x with the given
information of µB- and qB+ , such that it provides the lowest
upper bound on the CR (and consequently the expected online
cost). The algorithm designer’s strategy space P defines the
set of all possible p(x) available for the designer.

P =

{
p(x)|p(x) ≥ 0,

∫ +∞

0+
p(x)dx = 1

}
(15)

For a given pair of µB- and qB+ , the adversary’s strategy
space is Q as defined in (12), and the offline cost (13) becomes
constant. Minimizing the worst case CR in (5) is equivalent
to solving the minimax problem defined in (16)

min
p∈P

max
q∈Q

J(p, q) (16)

where J(p, q) is the expected online cost with strategy p(x)
and stop length distribution q(y)

J(p, q) = E
y
[E
x
[costonline(x, y)]] (17)

We first consider the solution format. Similar to the random-
ized algorithm (N-Rand) [16], it can be proved that ∀x > B,
p(x) = 0 (see Section III-C). In other words, the optimal
online strategy only selects idling time x no larger than B.
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Furthermore, we observe that N-Rand has a continuous
probability density function (pdf) for x ∈ [0, B]. The deter-
ministic online algorithm (DET) exhibits the same optimal
behavior as the offline algorithm when the stop length y is
less than B. On the other hand, the solution of TOI follows
the online strategy when y > B. Both DET and TOI can
be regarded as discrete probability distributions, represented
with Dirac delta function. Thus, we propose a generic solution
format for the designer’s strategy p(x), to include the discrete
and continuous distributions simultaneously:

p(x) = h(x) +

N∑
i=0

θiδ(x− di) (18)

where h(x) is the continuous probability density function, and
δ(x − di) is the Dirac delta function representing discrete
distribution at di. In Equation (18), there are N + 1 discrete
distributions, represented by δ(x − di). di can be any value
ranging from ε (an arbitrarily small positive number, repre-
senting the algorithm TOI) to B. These discrete distributions
represent di-DET strategies, which keep the engine idle until
di seconds and then turn it off. θi is the probability for the
corresponding discrete distribution at di.

We now summarize the steps to solve the constrained ski
rental problem in (16). In Section III-C, we determine the
range of strategy space, and prove that p(x > B) ≡ 0.
In Section III-D, we first construct the dual problem of the
max problem in (16) (constrained by (10) and (11)), and
convert the original minimax problem (16) to a minimization
problem. Because of the difficulty to find a closed form
optimal solution, we restrict the solution space by replacing
one inequality constraint (38b) with its equality version, and
solve the minimization problem. This will result in ONAIR,
a closed-form but sub-optimal solution. In Section III-E, we
try to derive the optimal solution by numerically solving the
constrained ski rental problem (16). The closed-form sub-
optimal solution and the optimal numerical solution are then
compared in Section III-F.

C. Range of Strategy Space

In this section, we prove that the strategy space of the online
algorithm is limited to x ≤ B.

Theorem 1. The optimal value to the optimization problem
in (16) is the same as the one defined in (19)-(20), which has
the same objective function but with a reduced feasible set.

min
p∈P′

max
q∈Q

J(p, q) (19)

where J(p, q) is defined in (17), Q defined in (12), B defined
in (1), and

P ′ =
{
p(x)

∣∣∣∣p(x) ≥ 0;

∫ B

0+
p(x)dx = 1;

∫ +∞

B+
p(x)dx = 0

}
(20)

Remark. Theorem 1 means that, with the known statistics µB-

and qB+ (defined in (10) and (11) respectively), reducing the
feasible set from P to P ′ would not incur optimality loss of
the optimization problem in (16).

Proof. Suppose there exists an optimal strategy p1(x) in
P\P ′, i.e.,

∫ +∞
B+ p1(x)dx > 0. For any such p1(x), we can

construct another strategy p2(x) ∈ P ′ as in (21).

p2(x) =


p1(x) x < B

(
∫ +∞
B

p1(x)dx) · δ (x−B) x = B
0 x > B

(21)

For any distribution q(y) ∈ Q, we construct a new distri-
bution q′(y) of y as follows

q′(y) =


q(y) y ≤ B or y > 2B
0 B < y < 2B

(
∫ 2B

B+ q(y)dy) · δ (y − 2B) y = 2B
(22)

It is easy to see that q′(y) ∈ Q as well. In addition,∫ +∞

2B

q′(y)dy = qB+ (23)

∀x ≤ B,
∫ +∞

x

q′(y)dy =

∫ +∞

x

q(y)dy (24)

We now prove that J(p1(x), q
′(y)) ≥ J(p2(x), q(y)). Firstly,

we compare E
y
[costonline(x, y)]q′ and E

y
[costonline(x, y)]q

Case 1: if x < B,

E
y
[costonline(x, y)]q′

=
∫ x

0+
yq′(y)dy +

∫ +∞
x+

(x+B)q′(y)dy

=
∫ x

0+
yq′(y)dy + (x+B)

∫ +∞
x+

q′(y)dy

=
∫ x

0+
yq(y)dy + (x+B)

∫ +∞
x+

q(y)dy (by Eqn (22) and (24))
= E

y
[costonline(x, y)]q

(25)
Case 2: if x ∈ [B, 2B),

E
y
[costonline(x, y)]q′

=
∫ B

0+
yq′(y)dy +

∫ x
B+ yq

′(y)dy

+
∫ 2B-

x+
(x+B) q′(y)dy +

∫ +∞
2B

(x+B) q′(y)dy

≥
∫ B

0+
yq′(y)dy + 0 + 0 +

∫ +∞
2B

2Bq′(y)dy
= µB- + 2qB+B (by Equation (23))
= E

y
[costonline(B, y)]q (by Equation (14))

(26)

Case 3: if x ≥ 2B,

E
y
[costonline(x, y)]q′

=
∫ B

0+
yq′(y)dy +

∫ 2B-

B+ yq′(y)dy +
∫ x

2B
yq′(y)dy

+
∫ +∞
x+

(x+B) q′(y)dy

≥
∫ B

0+
yq′(y)dy + 0 +

∫ x
2B

2Bq′(y)dy +
∫ +∞
x+

2Bq′(y)dy
= µB- + 2qB+B (by Equation (23))
= E

y
[costonline(B, y)]q (by Equation (14))

(27)
Combining the above Equations (25)–(27) and the definition

of p2(x) in (21), we have ∀q(y) ∈ Q, ∃q′(y) ∈ Q such that

J(p1(x), q
′(y))

=
∫ B-

0+ E
y
[costonline(x, y)]q′ p1(x)dx

+
∫ 2B-

B E
y
[costonline(x, y)]q′ p1(x)dx

+
∫ +∞

2B E
y
[costonline(x, y)]q′ p1(x)dx

≥
∫ B-

0+ E
y
[costonline(x, y)]q p1(x)dx

+E
y
[costonline(B, y)]q(

∫ 2B-

B
p1(x)dx+

∫ +∞
2B

p1(x)dx)

= J(p2(x), q(y))

Since we can find a suitable q′ for every q, this means
that max

q∈Q
J(p1(x), q(y)) ≥ max

q∈Q
J(p2(x), q(y)) in general. In
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other words, strategy p2 incurs no larger cost than strategy
p1. We can therefore restrict our feasible set to P ′ without
deteriorating our cost function.

D. Sub-optimal Closed-form Solution

We denote the expected online cost for a given y ≤ B as

C(p(x), y) =

∫ y

0+
(x+B)p(x)dx+ y

∫ B

y

p(x)dx (28)

and the one for y > B as

C′(p(x), y) =

∫ B

0+
(x+B)p(x)dx (29)

The expected online cost J(p, q) can be represented as

J(p, q) =

∫ +∞

0+
E
x
[costonline(x, y)]q(y)dy

=

∫ B

0+
C(p(x), y)q(y)dy +

∫ +∞

B

C′(p(x), y)q(y)dy

(30)

To solve the minimax problem in (16), we first consider the
subproblem max

q∈Q
J(p, q), and construct its dual problem. To

take the constraints (10) and (11) into account, the Lagrangian
associated with the max problem can be defined as

L(q, λ1, λ2) =J(p, q) + λ1

(
−
∫ B

0+
q(y)dy + 1− qB+

)
+λ2

(
−
∫ B

0+
yq(y)dy + µB-

) (31)

where λ1 and λ2 are the Lagrangian multipliers, both of which
are unconstrained.

We now expand the two terms on the right hand side in (30)
with the defined generic solution format in (18). We observe
that for d0 = ε or dN = B, the adversary is completely
constrained by the statistics µB- and qB+ , as the expected cost
is a constant (B for d0 = ε, µB- + 2qB+B for dN = B) for
any q(y) that satisfies (10) and (11). Hence, we process the
discrete distributions θεδ(x−ε) and θBδ(x−B) separately. We

define p̃(x) = h(x)+
N−1∑
i=1

θiδ(x− di), and θε = θ0, θB = θN .

Now the first term on the right hand side in (30) is∫ B

0+
C(p(x), y)q(y)dy =

∫ B

0+
C(p̃(x), y)q(y)dy

+

∫ B

0+
C(θεδ(x− ε) + θBδ(x−B), y)q(y)dy

=

∫ B

0+
C(p̃(x), y)q(y)dy + θεB(1− qB+) + θBµB-

(32)

The Lagrangian in (31) can be partitioned into two parts:

L(q, λ1, λ2) = Obj (λ1, λ2) +

∫ B

0+

Con (λ1, λ2) · q (y)dy (33)

where

Obj(λ1, λ2) = qB+ ·
∫ B

0+

(x+B)h(x)dx+

N−1∑
i=1

θi (di +B)

+ θεB + 2θBqB+B + θBµB- + λ1 (1− qB+) + λ2µB-

(34)

Con (λ1, λ2) = C(p̃(x), y)− λ1 − λ2y (35)

By optimization theory [29], the dual function is

g (λ1, λ2) = sup
q∈{ q(y)|q(y)≥0}

L (q, λ1, λ2) (36)

(36) is finite only if the coefficient of q is non-positive, since
the probability function q(y) ≥ 0:

g (λ1, λ2) =

{
Obj (λ1, λ2) Con (λ1, λ2) ≤ 0

∞ otherwise (37)

Due to the linearity of J(p, q) on q, strong duality holds [29].
Now, the original minimax problem in (16) is equivalent to
the minimization problem in (38).

min
p,λ1,λ2

Obj (p, λ1, λ2) (38a)

s.t. ∀0 ≤ y ≤ B,C(p̃(x), y)− λ1 − λ2y ≤ 0 (38b)∫ B

0+
p̃(x)dx = 1− θε − θB (38c)

h(x) ≥ 0 (38d)
0 ≤ θi ≤ 1, i = 0, 1, .., N (38e)

However, it is very difficult to find a closed-form solution
for (38). In the remainder of this subsection, we replace the
inequality (38b) with equality

∀0 ≤ y ≤ B,C(p̃(x), y)− λ1 − λ2y = 0 (39)

This will allow us to derive a closed form solution, but it
is suboptimal as the resulted feasibility region is restricted.
In Section III-E, the exact solution will be solved numerically
by discretizing the minimax problem, and in Section III-F, the
closed-form suboptimal solution is compared with the optimal
numerical solution in terms of performance and applicability.

Substituting C(p̃(x), y) in (39) by (28), we can derive the
equality constraint as in (40):∫ y

0+

(x+B)p̃(x)dx+ y

∫ B

y

p̃(x)dx− λ1 − λ2y = 0 (40)

The equality constraint (40) is differentiated with respect to
y, to derive the following ordinary differential equation (ODE):

Bp̃ (y) +

∫ B

y

p̃ (x) dx− λ2 = 0 (41)

Without differentiating the probability density function, we
can define f(x) as the cumulative density function for the
continuous distribution h(x).

B d
dy
f (y) + f (B)− f (y)− λ2

+B
N−1∑
i=1

θiδ (y − di) +
N−1∑
i=1

θi (1− u (y − di)) = 0
(42)

u(y − di) is the Heaviside step function, whose value is zero
when y < di, 0.5 when y = di, and one when y > di.

Using Laplace Transformation and plugging the initial con-
ditions, we can get

F (s) = 1

s− 1
B

(λ2 + θε + θB − 1)

− 1
s
(λ2 + θε + θB − 1)−

N−1∑
i=1

θi
e−dis

s

(43)
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TABLE I: Vertices of the Convex Polytope

(θε, θB) strategy condition
(0, 0) N-Rand Kε ≥ 0,KB ≥ 0
(0, 1) DET KB ≤ Kε,Kε ≤ 0||KB ≤ 0
(1, 0) TOI Kε ≤ KB ,Kε ≤ 0||KB ≤ 0

Then with the fact that f(B) = 1 −
∑N
i=0 θi, we can get

the cumulative density function f(x) using inverse Laplace
Transformation, as in (44).

f(x) =
1− θε − θB

e− 1
e

x
B − 1− θε − θB

e− 1
−
N−1∑
i=1

θiu (x− di) (44)

Differentiating the cumulative density function, we can get
h(x) as follows.

h(x) = C0e
x
B −

N−1∑
i=1

θiδ (x− di) (45)

where the coefficient C0 = 1−θε−θB
B(e−1) . It should be noted that

h(x) ≥ 0, while θiδ (x− di) is infinity when x = di if θi > 0.
Due to the non-negativity of h(x), all θi except for θ0 (θε)
and θN (θB) have to be zero. With the result, we can get the
designer’s strategy as in (46).

p(x) = h(x) + θεδ(x− ε) + θBδ(x−B) (46)

It should be noted in (46), all probabilities for the discrete
distributions in the designer’s strategy p(x) are zero, except
for di = ε and di = B.

Substituting (45) into (35), we can get the Lagrange multi-
pliers (as functions of θi, the probability corresponding to the
discrete distribution at di).{

λ1 = 0
λ2 = e

e−1
(1− θε − θB) (47)

Substituting (47) into (34), the objective Obj(λ1, λ2) is now
a function of θε and θB , as in (48).

min
θε,θB

Kεθε +KBθB + (qB+B + µB-) e
e−1 (48)

where Kε and KB are constants, defined as

Kε = −qB+B e
e−1

+B − e
e−1

µB-

KB = −qB+B e
e−1

+ 2qB+B − 1
e−1

µB-
(49)

We incorporate the constraints that p(x) is a valid probabil-
ity function

s.t.

 θε + θB ≤ 1
0 ≤ θε ≤ 1, 0 ≤ θB ≤ 1
0 ≤ µB- ≤ B, 0 ≤ qB+ ≤ 1

(50)

The linear programming problem with the objective in (48)
and constraints in (50) can be solved using standard techniques
in linear programming. Simply speaking, the constraints in
(50) limit that θε and θB are all finite. By the fundamental
theorem in linear programming, the solution space of this LP
problem forms a convex polytope, and the optimal solution
is obtained in one of the three vertices. The strategy and
associated cost to each vertex is summarized in Table I:

Case 1: qB+B + µB- ≤ e−1
e B and µB- ≤ (e− 2) qB+B. In

this case, the vertex (θε, θB) = (0, 0) has the smallest solution.
The resulting strategy is the same as N-Rand defined in

Equation (7). Consequently, the worst case CR is e
e−1 (a

constant independent from µB- and qB+ ).
Case 2: 2qB+B + µB- ≤ B and (e − 2)qB+B ≤ µB- . In

this case, the vertex (θε, θB) = (0, 1) has the optimal solution.
The resulting strategy is the same as the deterministic online
algorithm. The worst case CR is

CR = CRDET =
µB- + 2qB+B

µB- + qB+B
(51)

Case 3: B ≤ 2qB+B + µB- and e−1
e B ≤ qB+B + µB- . In

this case, the vertex (θε, θB) = (1, 0) gives the best objective
value. The resulting strategy is the same as TOI. The worst
case CR is

CR = CRTOI =
B

µB- + qB+B
(52)

E. Optimal Numerical Solution

The strategy derived in Section III-D is sub-optimal as the
feasible region is restricted by replacing inequality constraint
(38b) with its equality version. To deal with the inequality
constraint (38b), in this section, we investigate into the optimal
solution for the constrained ski rental problem by solving the
problem numerically. We discretize the original minimax prob-
lem, and convert it to a minimization problem by constructing
the dual problem of the original max problem, .

In the discrete format, the designer can select a strategy to
keep the engine idle until i − 1 seconds and then turn it off,
while i ∈ {1, 2, 3, ..., B}. We name this strategy as i-DET.
Also the designer can use mixed strategy by selecting 1-DET
with probability p1, selecting 2-DET with probability p2, and
so on. The designer’s strategy can be defined as in (53).

PDiscrete =

{
~p = [p1, p2, ..., pB ]| 0 ≤ pi ≤ 1,

B∑
i=1

pi = 1

}
(53)

On the other hand, the adversary can choose to give the
designer a stop with length j while j ∈ {1, 2, 3, ....}, or
use mixed strategy by giving the stop with length j with
probability qj . The adversary’s strategy can be defined as in
(54).

QDiscrete =


~q = [q1, q2, ...]| 0 ≤ qj ≤ 1,

∞∑
j=1

qj = 1,

∞∑
j=B

qj = qB+ ,
B−1∑
j=1

jqj = µB−

 (54)

Then, we consider the cost Aij incurred when the designer
selects i-DET, and the adversary gives a stop with length j.
This cost can be defined as in (55).

Aij =

{
B + (i− 1) i ≤ j

j i > j
(55)

In Figure 1, an example of the constrained ski rental
problem is used to explain the discretized strategy PDiscrete,
QDiscrete, and cost Aij , where B = 4. Each row represents
a pure strategy i-DET for the designer, and each column
represents a pure strategy with stop length j for the adversary.
As in Theorem 1, the designer would not choose any i-DET
strategy which idles more than B seconds, so there are only
B rows for the designer. Since the designer’s strategy space
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Fig. 1: Discretized Constrained Ski Rental Problem

is limited to {1, 2, 3, 4}, all pure strategies for the adversary
with stops no shorter than B incur the same cost. The column
{p1, p2, p3, p4} that to the left of the matrix represents the
probability of the corresponding i-DET in the mixed strategy
for the designer, and the row above the matrix represents the
probability distribution of the adversary’s mixed strategy. It
should be noted, the probability distribution of the adversary’s
strategy is constrained by µB- and qB+ .

Now we try to use the discretized designer strategy ~p, the
adversary’s strategy ~q, and the cost matrix A to formulate the
original minimax problem. The expected cost for the ski rental
problem described in Figure 1 can be defined in a general
format as in (56).

J (pi, qj) =

B∑
i=1

B−1∑
j=1

piAijqj + qB+

B∑
i=1

piAiB (56)

The minimax problem describing the constrained ski rental
problem can be defined as in (57).

min
p1,p2,
...,pB

max
q1,q2,
...,qB−1

J (pi, qj)

s.t.



B−1∑
j=1

qj = 1− qB+ ,
B−1∑
j=1

jqj = µB-

qj ≥ 0, 1− qB+ − qj ≥ 0, 1 ≤ j ≤ B − 1
B∑
i=1

pi = 1

pi ≥ 0, pi ≤ 1, 1 ≤ i ≤ B

(57)

To solve the minimax problem, we first find the dual problem
of the original max problem. To this end, we construct the
Lagrangian as defined in (58). λ0j , λ1j , ν1, and ν2 are
Lagrangian multipliers, where λ0j and λ1j are non-negative.

L (qj , ν1, ν2, λ0j , λ1j) =
B∑
i=1

B−1∑
j=1

piAijqj + qB+

B∑
i=1

piAiB

+ν1

(
−
B−1∑
j=1

qj + 1− qB+

)
+ ν2

(
−
B−1∑
j=1

jqj + µB-

)
+
B−1∑
j=1

λ0jqj +
B−1∑
j=1

λ1j (1− qB+ − qj)

= qB+

B∑
i=1

piAiB + ν1 (1− qB+) + ν2µB- +

B−1∑
j=1

λ1j (1− qB+)︸ ︷︷ ︸
Obj(ν1,ν2,λ0j ,λ1j)

+
B−1∑
j=1

(
B∑
i=1

piAij − ν1 − ν2j + λ0j − λ1j

)
︸ ︷︷ ︸

Con(ν1,ν2,λ0j ,λ1j)

qj

(58)
g (ν1, ν2, λ0j , λ1j) = sup

qj

L (qj , ν1, ν2, λ0j , λ1j) is the dual

function. Lagrangian is linear on qj , and a linear function
is only bounded when the coefficient of the independent
variable is zero, so the dual function is only bounded when

Con (ν1, ν2, λ0j , λ1j) = 0, when dual function is equal to
Obj (ν1, ν2, λ0j , λ1j).

g (ν1, ν2, λ0j , λ1j) = sup
qj

L (q, ν1, ν2, λ0j , λ1j)

=

{
Obj (ν1, ν2, λ0j , λ1j) Con (ν1, ν2, λ0j , λ1j) = 0

∞ otherwise
(59)

Now the dual problem of the original max problem can be
constructed as in (60).

min
ν1,ν2,λ0j ,λ1j

Obj (ν1, ν2, λ0j , λ1j)

s.t.

 Con (ν1, ν2, λ0j , λ1j) = 0, 1 ≤ j ≤ B − 1
λ1j ≥ 0, 1 ≤ j ≤ B − 1
λ0j ≥ 0, 1 ≤ j ≤ B − 1

(60)

It should be noted that because Lagrangian (58) is linear
on qj , so strong duality holds. The maximum value of the
original max problem is equal to the minimum value of the
dual problem, so the original minimax problem is equivalent
with the min problem as defined in (61).

min
ν1,ν2,λ0j ,λ1j ,pi

Obj (ν1, ν2, λ0j , λ1j)

s.t.


Con (ν1, ν2, λ0j , λ1j) = 0, 1 ≤ j ≤ B − 1
λ1j ≥ 0, 1 ≤ j ≤ B − 1
λ0j ≥ 0, 1 ≤ j ≤ B − 1
B∑
i=1

pi = 1, pi ≤ 1,−pi ≤ 0, 1 ≤ i ≤ B

(61)

This is a linear programming problem, that can be solved
with state-of-the-art solvers such as CPLEX [30]. It should
be noted that the solution of pi is dependent on µB- and qB+ ,
for a new pair of statistics, this linear programming problem
has to be solved again. The strategy is denoted as ONAIRE
(abbreviation for ONAIR Exact version).

F. Comparison of ONAIR and ONAIRE

The rule to select TOI, DET, and N-Rand for ONAIR is
illustrated in Figure 2(a). The selection is based on different
values of the two statistics µB- and qB+ . In Figure 2(b), the
rule to select different strategies for ONAIRE is exhibited. The
µB- , qB+ plane is divided for different strategies. The area
E-Rand (abbreviation for Exact Randomized algorithm) cor-
responds to the randomized algorithm selected by ONAIRE.
Different from N-Rand, we cannot derive an analytic solution,
and for different values of µB- and qB+ , the randomized
strategy (represented by ~p) is different.

B
(e 2)q

B
B   1e

e



1e

e

 B
q 

B

B

 

(a) Rule Map of ONAIR

B
q 

B

B

 

(b) Rule Map of ONAIRE
Fig. 2: Strategy Rule Map Comparison

We now compare the strategy ONAIR with ONAIRE. The
comparison is visualized in Figure 3. Figure 3 (a) and (c)
exhibit two views of the worst case CR bound corresponding
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Fig. 3: Worst Case CR Comparison
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Fig. 4: Projected views

to ONAIR, while Figure 3 (b) and (d) show two views of the
worst case CR bound corresponding to ONAIRE. For better
illustration of the comparison, we also give projected views
in Figure 4. As can be seen in the figures, in most cases,
the sub-optimal solution performs as same as the optimal
strategy. In some cases (when µB- is relatively small), ONAIR
is suboptimal, but provides close-to-optimal solutions. As can
be seen later in Section V, ONAIR usually performs as well
as ONAIRE for real driving data.

The implementations for the two strategies are different.
ONAIR has a closed-form solution, and the selection of
idling time x can be determined by evaluating some simple
function. On the other hand, the optimal strategy only has
a numerical solution. To get the optimal strategy, a complex
linear programming would be solved for each µB- and qB+ , but
this is impractical for embedded applications. An alternative
approach is to solve the minimax problem for each pair of
µB- and qB+ offline, and store all the strategies pi(µB- , qB+)
in a look-up table. However, this results in extra memory cost,
especially because of the randomized strategy E-Rand in the
purple area of Figure 2(b). For example, if the µB- ,qB+ plane
is divided into a 1024 × 1024 grid, the time granularity is 1

second, the break-even value B is 28 seconds, and 4 bytes are
used to store a value of probability, we need 56 MB memory
to store all the coefficients for different cases of µB- , qB+ . In
summary, ONAIRE performs better than ONAIR, at the cost
of computation or memory cost.

The ONAIR and ONAIRE strategies can be implemented
in vehicles with or without SSS. In current vehicles equipped
with SSS, the engine is turned off immediately once vehicle
stops. Historical stop lengths would be collected, which are
used to update the two statistics value: µB- and qB+ . The
idling or turning off decision is made according to the strategy,
and executed automatically by SSS, without human in the
control loop. In vehicles without SSS, the engine is turned
on and off by the driver. The strategy can be implemented in
car navigation system, which collects stop lengths information
and updates statistics. A driving tip would be given to driver
indicating when to turn off the engine.

ONAIR and ONAIRE rely on the estimation of break-even
interval B, which is dependent on fuel price, battery price and
ageing, starter life, etc. Among these factors, fuel price has a
large variation, while the others are relatively stable within
vehicle service life. To estimate break-even interval, the fuel
price would be updated after refueling. These strategies also
rely on the estimation of the statistics. To update the statistics
µB- and qB+ in time, the latest stops can be used to update
the current value of the statistics. In this way, the strategies
can adapt to different communities or cities.

IV. CALCULATION OF BREAK-EVEN INTERVAL B
In this section, we detail the break-even interval B for

studying the tradeoff between idling and restart. We assume
that the driver is interested in minimizing the total cost caused
by idling reduction algorithm, including fuel consumption
and amortized engine wear. However, we emphasize that the
development of the online algorithms is independent from the
actual value of B. US dollar is used as the default currency.

A. Idling Cost
Compared to restart, the cost of keeping the engine idle

mainly comes from the extra consumption of fuel. In modern
auto engines, the damage caused by excessive idling (spark
plug fouling or lubricant contamination) is limited, compared
with the cost of extra fuel [2].

The fuel cost during idling is dependent on the displacement
of the engine. A quantized expression can be summarized as
(62) [31], where fuelL/h is the total fuel (in liter) consumed
per hour, and D is the displacement of the engine.

fuelL/h = 0.3644×D + 0.5188 (62)

Argonne National Laboratory [7] conducted an experiment
on a 2011 Ford Fusion mid-sized sedan with a 2.5-L, 4-
cylinder engine (175 HP) and 6-speed automatic transmission.
The measured idling cost fuelcc/s is about 0.279cc per second.
The monetary cost of idling costidling /s depends on the fuel
price pgallon, as in (63). If the fuel price is $3.5 USD per
gallon (1 gallon = 3785 cc), costidling /s is about 0.0258 cent/s.

costidling /s = fuelcc /s×
pgallon

3785
(63)
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B. Cost of restart

For convenience, we normalize all the costs associated with
restart with the cost of idling for 1 second (costidling /s).

1) Fuel: In terms of fuel consumption alone, fuel caused by
one restart is estimated to be equivalent to the fuel cost during
10 seconds of idling. This estimation was reported by several
experiments: Chrysler Canada in 1981 and European work
in 1985 [2]; Natural Resources Canada’s Office of Energy
Efficiency on three 1999 model year vehicles [2]; and Argonne
National Laboratory’s test [7]. Based on these experiments, the
fuel consumption of restart Bfuel can be safely calculated as
10 seconds of idling.

2) Engine wear: Engine wear is a critical concern from
drivers, which may cause them to refuse to stop and restart
the engine. Engine wear comes from possible damage to three
components of the engine: the internal combustion engine
(ICE) itself, starter, and starter battery.

Bengine,s = BICE,s +Bstarter,s +Bbattery,s

Bengine,c = BICE,c +Bstarter,c +Bbattery,c
(64)

We distinguish two cases: SSV (with a second subscript ‘s’
in the above equation) and the conventional vehicles without
SSS (with a second subscript ‘c’).

a) ICE Wear: Despite the name “engine wear”, ICE itself
is the most durable among the three components. In modern
stop-start systems, ICE is modified, so that ignition is adjusted
according to the position of valves, in order to prevent further
harm to ICE. Even without SSS, there is no evidence that
restarting the engine causes significant wear to ICE, and we
assume that this is negligible compared to the other costs. In
other words, both BICE,s and BICE,c are estimated as zero.

b) Starter Wear: Compared with ICE, the starter is more
vulnerable. In stop-start systems, starter is strengthened in
order to deal with more frequent stop/start operations, while
conventional vehicles may suffer from that. In the following,
we discuss these two cases separately.

In SSV, the starter is usually strengthened. It is reported
that SSS can allow a total of 1.2 million starts [32], typically
enough for a car’s lifetime. Due to the durability of SSV’s
starter, we estimate Bstarter,s as 0.

For conventional vehicles, starter is much more vulnerable.
We use the amortized replacement cost of the starter to
estimate the cost per start. We refer to the relationship between
starts per day and the vehicle service life as reported in [2].
The replacement cost of a starter ranges from $55 to $400,
depending on many factors, e.g. the length of warranty, make,
model, and engine size. Also, the labor cost of replacing the
starter is significant, ranging from $115 to $225. An average
cost per start coststarter,c can be calculated by dividing the
costs of replacement and labor by durability of the starter
(between 20,000 and 40,000 starts/replacement). coststarter,c

is reported as 0.5 to 4 cents per start [2]. If the idling cost
costidling /s is 0.0258 cent/s, Bstarter,c ranges from 19.38 to
155.04 seconds.

c) Starter Battery: The calculation of the restart cost
associated to starter battery is more difficult to calculate, be-
cause of the uncertainty on the number of charging/discharging
(called cyclic endurance) during a starter battery’s lifetime.

TABLE II: Statistics of Stops in Different Areas

Location Vehicles Mean(µ) Std(σ) P{X ≤ µ+ 2σ}
Atlanta 827 10.37 8.42 0.9091
Chicago 408 12.49 9.97 0.9534
California 291 9.37 7.68 0.9553
San Antonio 55 2.23 1.74 0.9636
Houston 59 4.85 3.10 0.9661
Aalborg (DK) 20 2.36 1.42 1.0000

Cyclic endurance depends on the depth of discharging and
the pattern of charging/discharging cycles. For example, [2]
reports that a battery with 1.75% depth of discharge could
serve for 13250 cycles before failure. When the depth of
discharge increases to 31%, the number of cycles decreases to
250. Batteries for stop-start systems are usually improved in
order to meet the requirement of more frequent restarts. For
example, VARTA stop-start pro batteries [33] could provide
3 times higher levels of cyclic endurance than conventional
batteries, along with a very high deep discharge capability.

To estimate the cost of starter battery per start, we use the
amortized battery cost by the possible number of stops during
its warranty. For example, VARTA (an advanced stop-start
battery) has a price of about $230 (without labor cost) [34],
with a warranty usually of 2-4 years. According to the driving
data [35] [36], the total stops per day for different areas are
listed in Table II. We consider the maximum of µ+2σ = 32.43
as the estimated upper bound on the number of stops per day,
such that more than 95% of the vehicles will fall in this range.

In the end, the lowest costs of starter battery for one start
costbattery,s and costbattery,c are calculated to be 0.49 cents,
and the Bbattery,s and Bbattery,c are at least 18 seconds.

3) Exhaust Emissions: The emission of CO2 is proportional
to the fuel consumed, thus one restart emits roughly the same
amount of CO2 as idling for 10 seconds. Evaluation on the
monetary cost of emission largely depends on the legislation
around the world. Carbon dioxide tax is introduced in many
countries now. Similar to anti-idling rules, it varies a lot among
different locations. Many developed countries have taxed the
fuel directly for many years [37]. Without further information,
we assume the cost incurred by CO2 has already been included
in the calculation of Bfuel.

Other emissions, including total hydrocarbons (THC), ni-
trogen oxides (NOx), and carbon monoxide (CO), are more
relevant with the scrubber technology. The environmental
concern on anti-idling is that these exhaust gas emissions from
restarts is significantly larger than idling, due to the cooling of
catalysts. According to the measurement by Argonne National
Laboratory [7], restart causes emission of 44 mg THC, 6 mg
NOx, and 1253 mg CO, while for every second of idling,
emission of THC, NOx, and CO are 0.266 mg, 0.0097 mg,
and 0.108 mg respectively.

However, most of the regulations against exhaust emis-
sions have limited impact on excessive idling, as drivers
are rarely charged due to exhaust emissions. Some countries
have introduced regulations against NOx or CO, usually on
manufacturers and power generation industry. Take the country
of Sweden as an example, Nitrogen Oxidant is charged by
about 4.3 Euros per kilogram of NOx (or the total emission
of 166,667 restarts) [38]. Such a penalty is equal to $0.0035
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cents per restart, or the cost of an idling for 0.14 seconds.
Hence, we assume that the impact of exhaust emissions is
negligible in the calculation of break-even interval.

C. Summary of Break-Even Interval

For vehicles without SSS, the largest estimation variation
for break-even interval comes from the starter, as discussed
in Section IV-B. There are two reasons that we use the
lowest value according to the break-even value’s estimated
range. First, with development of technology, the strength of
starter is improving, so that the starter wear cost per start
is decreasing. Second, Bstarter,c would decrease with higher
fuel price. Hence, in the long run, Bstarter,c would decrease.
For vehicles with SSS, the Bstarter,s = 0, and the estimation
variation for break-even interval comes from Bbattery,s. The
reason we estimate starter battery wear cost using the warranty
is that we assume the battery manufacturers determine the
warranty according to the expected battery service life.

In summary, we estimate a minimum break-even interval of
B = 28 seconds for SSV, and 47 seconds for conventional
vehicles without SSS. We consider both the fuel consumption
and mechanical wears. Hence, it addresses not only the en-
vironmental impact of vehicle idling reduction, but also car
owners’ concerns on damages to the car’s starter and starter
battery (the reasons why they are reluctant to shut down
engines during idling).

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we conduct experiments to evaluate the
performance of the proposed online algorithm, including ON-
AIR which is a closed-form sub-optimal solution discussed in
Section III-D, and ONAIRE, the optimal numerical solution
as solved in Section III-E . We consider both SSV and the
vehicles without stop-start systems. We use real-world driving
data (Section V-A) as well as synthetic data (Section V-B)
to study the CR of the proposed algorithms ONAIR and ON-
AIRE, and compare them with other strategies. In Section V-C,
the correlation of consecutive stop lengths is investigated.

The solutions for comparison include TOI (Turning Off
Immediately), NEV (Never turning off), DET (Deterministic
Algorithm) [8], N-Rand (Randomized Online Algorithm) [16],
and MOM-Rand [9]. For N-Rand, MOM-Rand algorithms,
because these strategies rely on random numbers, while the
time span of the data is usually short, so we repeat all the
stop length data by 10 times to avoid significant statistical
fluctuation. Also due to the limited time span of the data, the
training data is not separated from the test data. The statistics
µB- and qB+ are initialized using the entire dataset, because
we assume the knowledge of the statistics.

Except for these existing algorithms, we also consider
a clairvoyant algorithm (CLA for abbreviation), which has
the knowledge of the full distribution of the stop length
distribution. The full statistical information is usually difficult
to get compared with several limited statistics as used in
Section III, but this algorithm can serve as a benchmark to
evaluate the effectiveness of the statistics used for improving
online algorithm.
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Fig. 5: Distribution of Stop Length

With the real-world driving data and the synthetic data,
ONAIR and ONAIRE have very similar worst case or average
case CR. The biggest difference is about 0.04 for the average
CR for vehicles without SSS in the city of Aalborg. Hence,
in the following, we focus our discussion on the comparison
of ONAIR with other strategies.

A. Real-World Driving Data

We first use real-world driving data to demonstrate the per-
formance of our proposed control strategies and their advan-
tage compared with current solutions. We select data released
by the National Renewable Energy Laboratory (NREL) [35]
in United States. These data are collected from: California,
Chicago, Atlanta, San Antonio, and Houston. We also get
another data trace from Aalborg University in Denmark [36].
For each vehicle, the driving data is recorded for one week.
The statistical measurements of the data (by each area) are
listed in Table II. Figure 5 depicts the probability distribution
of the stop length for all the vehicles in these areas. These
distributions are different from the exponential distribution (as
assumed in [17]) according to the Kolmogorov-Smirnov test,
mostly due to their heavy tails.

1) Worst Case CR: For SSV (where the break-even interval
B is estimated at 28 seconds), the results are shown in Figure 6
for each of the six areas. For vehicles without SSS (where B
is set to be 47 seconds), Figure 7 draws the comparison. From
the figures, either ONAIR or ONAIRE always provides smaller
worst case CR than the other strategies, except for CLA
which has access to complete statistical information. Although
ONAIR and ONAIRE are only aware of two statistics, they
perform quite close to CLA.

Figure 6b shows the worst CR in different cities for SSV.
Take the city Chicago as an example, although TOI is the
optimal strategy for most vehicles in Chicago, there are some
vehicles whose optimal strategy is N-Rand while TOI leads to
a higher CR. Because ONAIR is able to select the best strategy
among TOI, DET, and N-Rand with statistics µB- and qB+ , it
also selects N-Rand for these vehicles. As a result, worst case
CRs are similar between N-Rand and ONAIR for Chicago.
The case in Aalborg has the same reason for the similarity of
the worst case CR between N-Rand and ONAIR.

To give a more intuitive comparison, we divide the plane
of µB- and qB+ into a 20 × 20 grid. half of the plane is
infeasible region because of the constraint µB- + qB+B ≤ B
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Fig. 8: Worst Case CR from Experimental Results, B = 47. (Note: CR = 0 represents no data in the figures)
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Fig. 6: Result on real-world driving data: SSV

(offline expected cost µB- + qB+B is smaller than that of
any online algorithm, including TOI whose cost is B). Due
to the limitation of the data, not every point is covered by
the data used for evaluation, so the worst case CR bounds
derived from experimental results are not as complete as
the theoretical bounds in Figure 3. ONAIR and ONAIRE
outperform other strategies in terms of lowering worst case
CR bounds, except for the CLA strategy which has access to
the complete distribution information.

2) Average Case CR: In addition, we also compare the
average case competitive ratio for different cities, as in Fig-
ure 6a and Figure 7a. While ONAIR and ONAIRE provide
smaller bound of CR, they also outperform the other solutions
in average CR. Among all the 1236 qualified vehicles (each
vehicle experienced more than 30 stops), ONAIR achieves
the best average CR in 1212 of them for SSV (B = 28).
The mean CR of our algorithm is 1.13 (California), 1.35
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Fig. 7: Result on real-world driving data: w/o SSS

(Chicago), 1.12 (Atlanta), 1.17 (San Antonio), 1.14 (Houston),
and 1.58 (Aalborg, Denmark) respectively, lowest among all
strategies. If B = 47 (for vehicles without SSS), our strategy
achieves best performance in 1019 vehicles. The mean CR
is 1.37 (California), 1.43 (Chicago), 1.36 (Atlanta), 1.43
(San Antonio), 1.37 (Houston), and 1.59 (Aalborg, Denmark)
respectively, lower than the existing strategies. ONAIRE has
similar performance with ONAIR. In summary, our algorithms
not only provide the lowest upper bound on the CR, but
also exhibit great performance in terms of the average CR
in different areas.

Take the city of Aalborg in Figure 6a as an example, in
all cities except for Aalborg, mean CRs of all vehicles are
similar between TOI and ONAIR. This is because B is small
for SSV, turning off immediately does not incur too much cost,
when the stops are usually long, as seen in Figure 5. However,
Aalborg has a different stop length distribution compared with
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others. Most stops in Aalborg are very short. TOI always turns
the engine off immediately, so even a 1 or 2 second stop would
incur the engine turning off and restart, which degrades its
performance. On the other hand, ONAIR is able to select the
best strategy among TOI, DET, and N-Rand. For Aalborg city,
N-Rand is usually preferred, which performs better than TOI.
That is the reason why the mean CR of TOI in Aalborg is
much higher than that of ONAIR.

B. Synthetic Data

Finally, we generate synthetic data to validate the perfor-
mance of the algorithms under different traffic conditions.
Although different areas have different average stop length
(possibly due to different traffic conditions), their shapes of the
stop length distributions are quite similar, as in Figure 5. As
an example, we generate simulation driving data by following
the distribution of Chicago, but scaling its mean value. We
then check the average case CR for each mean stop length.

Figures 9a and 9b illustrate the results. It can be seen
that our strategies always achieve the lower CR under any
traffic condition (average stop time). On the contrary, DET
algorithm only functions well for good traffic conditions (with
short average stop time), and TOI only works well for bad
conditions (with long average stop time). The two randomized
algorithms N-Rand and MOM-Rand, although robust, are
consistently outperformed by our proposed algorithms. This
validates our proposal that µB- and qB+ can provide valuable
information to improve the online algorithm design.
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Fig. 9: Average case CR vs. average stop lengths

As shown in Figure 9a and Figure 9b, when the average stop
length of whole Chicago is large (most vehicles are expected
to experience more long stops), ONAIR performs close to TOI
in general. Because for long stops, the best strategy is to turn
the engine off earlier, so that we can avoid excessive idling
cost. When the average stop length of whole Chicago is small
(most vehicles are expected to experience more short stops),
ONAIR performs close to DET. Because for short stops, the
best strategy is to keep the engine idle to avoid cost caused
by frequent restart, where DET would perform well for most
vehicles. The advantage area of TOI, DET, N-Rand can be seen
from Figure 8. In both Figure 9a and Figure 9b, the curve
representing ONAIR overlaps with that of ONAIRE. This
means that, for anti-idling application, the sub-optimal solution
based ONAIR strategy performs as well as the numerically
optimal solution ONAIRE.

Compared with the CLA strategy which is aware of full
statistical information, ONAIR and ONAIRE follows closely

with CLA, so that they can also adapt to different driving envi-
ronments. This is especially important for manufacturers who
have no idea where the car would be driving. The advantage
of CLA relies on the access to full statistical information that
is usually not available. In addition, CLA would change with
the adversary’s distribution, while ONAIR and ONAIRE are
valid for any distribution satisfying the constraints.

C. Dependence among Consecutive Stops

The worst case CR for the ski rental problem is the upper
bound of the performance ratio between the online algorithm
and the offline algorithm, as defined in (5). This bound is
valid for stops with arbitrary distribution (under constraints if
applicable), including the stops whose lengths are correlated.

For the vehicle idling problem, in some cases, there is
certain correlation between consecutive stops, such as in heavy
traffic jams. However, according to the data used in this work,
there is no obvious correlation between previous stops’ length
and the next stop’s length. Take the stops information from
Chicago as an example, assuming that B = 28, hence the stops
shorter than B = 28 are viewed as short stops, and the others
as long stops. The probability of short stops P {y ≤ B} =
0.5487. The conditional probability of short stops given the
previous one is short is P {yn ≤ B|yn−1 ≤ B} = 0.5301.
The conditional probability of short stops given the previous
two stops are short is P {yn ≤ B|yn−1 ≤ B, yn−2 ≤ B} =
0.5114. As a result, there is no significant dependence of next
stop length on the previous ones. Nevertheless, this might be
due to the source data we have at hand. We plan to investigate
more on this issue in future work.

VI. CONCLUSIONS

In this paper, we formulate the vehicle idling reduction
as the classical ski rental problem. Besides incorporating
existing solutions, we propose a constrained ski rental problem
with additional statistical information. We derive two online
algorithms, the sub-optimal closed-form solution, and the
optimal numerical solution. With real-world driving data and
simulation, we demonstrate that the proposed algorithm is
robust and advantageous for different types of vehicles under
different traffic conditions.
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