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ABSTRACT
We consider the problem of optimizing truck operations, where

heavy-duty trucks haul freights that requires timely delivery. The

trucks are equipped with engines that intelligently switches among

multiple fuel injection strategies for efficient emission profiles. Our

objective is to minimize the emission, by optimizing both routing

and speed planning while accommodating that modern combustion

engines come with multiple control strategies switching at runtime

based on the engine speed. Besides the combinatorial nature of

simultaneous routing and speed planning that already makes the

problem NP-complete, the problem also face the unique challenge

that the emission is non-continuous, non-convex with respect to

the vehicle speed. We identify a special structure in the problem

to provide an analytical solution for the optimal speed profile, and

then develop an efficient heuristic for both path planning and speed

planning to deal with problems on the scale of national highway

systems. We perform simulation on the US highway system, and

demonstrate that our approach reduces on average 18% emission

compared to the baseline with a single control strategy. Compared

to the fastest path approach that is adopted in common practice,

our scheme reduces 72% emission on average.

CCS CONCEPTS
•Mathematics of computing→ Paths and connectivity prob-
lems; • Applied computing→ Transportation.
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Figure 1: NOx emission model for different injection strate-
gies [6], and themodel corresponding to the code in Figure 2
(shown in thick black line).
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1 INTRODUCTION
The trucking industry is vital to the economy. In 2018, trucks hauled

11.49 billion tons of freight in the United States (US), or 71.4% of the

total tonnage. It generated $796.7 billion in revenue, nearly a $100

billion increase from the previous year ($700.1 billion in 2017) [4].

It would rank 18th in the world if measured against the GDPs

of countries. This trend will likely continue, as the global freight

activity is predicted to increase by a factor of 2.4 by 2050 [19].

Meanwhile, heavy duty vehicles are a major source of emissions

including Carbon Dioxide (CO2), Nitrogen Oxides (NOx), and fine

particle matter (PM 2.5), thus controlling their exhaust emissions is

critical for cleaner environment. Although heavy duty trucks only

account for 4% of the total vehicle population, they produce more

than one-third of the CO2 (the primary greenhouse gas causing

global warming) emitted in the transportation sector around the

world [19]. In US, heavy duty trucks emit about 16-18% of NOx, a

pollutant linked to heart and lung disease [11]. In California, one

of the most polluted areas in US, heavy duty trucks contribute to

over 70% of the NOx emissions from on-road vehicles [10].

A recent effort to reduce the emissions in the transportation

sector is the introduction of multiple injection strategies for inter-

nal combustion engines, which also improves fuel economy and

https://doi.org/10.1145/3408308.3427608
https://doi.org/10.1145/3408308.3427608
https://doi.org/10.1145/3408308.3427608
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#define ω1 1000
#define ω2 2000
#define ω3 4000
#define ω4 6000

task Engine_control_task {
 ω = read_engine_speed();
 f1();
 if (ω ≤ ω1)  f2();
 if (ω ≤ ω2)  f3();
 if (ω ≤ ω3)  f4();
 if (ω ≤ ω4)  f5();

}

Figure 2: Typical engine control software that switches
strategies with the engine speed. [9].

reduces combustion noise [17]. Specifically, the engine control sys-

tem determines the timing and amount of fuel injected in the engine,

triggered at predefined rotation angles of the engine crankshaft. In

each engine revolution, the engine control system determines the

timing and amount of fuel for a number of possible injections: (i)

the main injection which provides the bulk of the fuel; (ii) several

optional injections (called pilot injections or pre-injections) before

the main injection to heat the combustion chamber and ensure a

more uniform fuel-air mixture; (ii) one or two optional injections

(called post-injections) after the main injection to burn the resid-

ual and decrease the amount of pollutants. Figure 1 illustrates the

model for the emission of NOx as a function of the engine speed for

different injection strategies [6], where the curve for each strategy

is approximated with an exponential function that is convex in the

engine speed range. In addition, these functions are monotonically

decreasing with the number of injections: for any engine speed, the

higher the number of injections, the lower the emission is.

However, multiple injections come with the cost of higher com-

putational load. At high engine speeds, the time interval for one en-

gine revolution is small which may not allow sophisticated control

strategies (and multiple injections). Hence, engine control systems

are designed to be self-adaptive in that they switch to simplified con-

trol strategies (such as single-injection) at high engine speeds [9].

Figure 2 shows the typical engine control software that is realized

as a sequence of conditional if statements [6, 9]. The control strat-

egy at a speed higher than ω4 (i.e., ω > ω4) only executes function

f1() for single-injection, but multiple functions (f1()–f5()) for
quintuple-injection at ω1. This in general makes the cost model

discontinuous at the switching speeds (thus non-convex). As an

example, the overall NOx emission model corresponding to the

code in Figure 2 is plotted as a thick black line in Figure 1.

We consider a common truck operation scenario where a long-

haul truck drives across a national highway. Our objective is to

select the path and speed profile of the truck, to minimize the total

emission subject to a deadline constraint. Timely transportation

is a common requirement in the trucking industry, due to three

reasons [12]: (i) the nature of the goods (such as fresh food) [5]; (ii)

service-level agreements to guarantee delivery delay such as those

in Amazon
1
, uShip

2
and Uber Freight

3
; and (iii) ease of scheduling

and operation in the logistics [26]. For instance, mobile applications

1
Place an Order with Guaranteed Delivery, Amazon, http://amazon.com

2
uShip, https://www.uship.com/

3
Uber Freight, https://freight.uber.com/

Table 1: Comparison of our work and existing studies on op-
timizing timely truck operations.

Studied Design Space Deadline Cost

Problem Path Speed Constraint Cost Model

Planning Planning

RSP [14, 21, 25] ✓ ✗ ✓ Any Constant

PASO [12, 13] ✓ ✓ ✓ Fuel Convex, twice-

[23, 24, 37] differentiable

Other, e.g., [15] ✗ ✓ ✗ Fuel Any function

Other, e.g., [7] ✓ ✗ ✗ Fuel Constant

This work ✓ ✓ ✓ Emission Non-convex

like uShip and Uber Freight collect freight transportation requests

for truck operators, which are often associated with pickup and

delivery time requirements.

Although our approach is applicable to any cost function that

satisfies the assumptions in Section 3, we focus on minimizing

the emission since this is the main benefit of multiple injection

strategies in modern internal combustion engines. Our design space

includes path planning and speed planning as in several previous

studies [12, 13, 23, 24, 37]. However, the consideration of adaptive

engine control strategies makes the problem uniquely challenging

as the overall emission is a non-continuous, non-convex function

with respect to the speed, due to the switching among these control

strategies at runtime.

Table 1 summarizes the comparison between our work and re-

lated studies on optimizing truck operations, and the details will be

presented later in Section 2. In conclusion, we are the first to study

the problem of optimizing the operation of a long-haul heavy truck

subject to a deadline constraint, where the engine is equipped with

multiple injection strategies. Solving our problem requires to simul-

taneously optimize path planning and speed planning while dealing

with the unique challenge that the cost function is non-convex. We

make the following specific contributions in this paper.

▷We prove that our problem is NP-hard. We show that dynam-

ically switching among multiple engine control strategies makes

the emission rate function non-continuous and non-convex, hence

imposing a unique challenge compared to existing studies which

all deal with convex cost functions.

▷We explore the structure of the problem to derive an analytical

solution for the optimal speed profile. We further develop a fast

heuristic for both path planning and speed planning.

▷We use the US highway system to demonstrate that our scheme

reduces on average 18% emission compared to the baseline with

a single control strategy, and saves 72% emission on average com-

pared to the fastest path approach.

2 RELATEDWORK
Restricted Shortest Path (RSP): RSP requires to find a path such that

the total cost is minimized while the path travel time is within a

deadline constraint. RSP is shown to be NP-hard [14], for which

heuristic algorithms [21] and fully polynomial time approximation

schemes (FPTAS) [14, 25] are designed. RSP only involves path

planning and assumes fixed speeds. Moreover, RSP considers a

fixed cost for passing an edge. Therefore, existing results on RSP
cannot be directly applied to the setting in this paper, where the

http://amazon.com
https://www.uship.com/
https://freight.uber.com/
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challenging design space of speed planning with non-convex cost

function has to be efficiently handled.

PAth selection and Speed Optimization (PASO) and its extensions:

PASO [12, 13] generalizes RSP with speed planning taken into

account. Deng et al. [12, 13] develop both an FPTAS and a heuristic

for PASO. Liu et al. [23, 24] extend PASO to a multi-task setting, to

fulfill multiple transportation tasks under task pickup and delivery

time window constraints. Xu et al. [37] consider dynamic traffic

conditions such that it might be beneficial to wait for benign traffic

conditions (i.e., opportunistic driving). However, all these studies

assume the fuel consumption model is convex, and cannot be easily

generalized to the problem of emission minimization, where the

cost function is non-convex due to multiple injection strategies.

Other studies: Hellström et al. [15] consider a weighted average

of travel time and fuel consumption as the cost function, and use

look-ahead information such as estimated road grade [29] to control

the truck’s speed trajectory under a given path. Boriboonsomsin et
al. [7] present an eco-routing navigation system that determines

the most fuel-economic path. Scora et al. [30] analyze the tradeoff
between the amount of fuel savings and the added travel time

relative to the fastest path. Both studies [7, 30] assume fixed road

driving speeds and hence no speed planning is involved. Alam et
al. [2] observe that improved fuel-efficiency can be obtained by

maintaining the platoon of trucks throughout a hill, motivating

subsequent studies, e.g., [1, 3], which focus on developing control

strategies for truck platooning to save fuel.

Meanwhile, emission control has been a continuous effort from

both the industry and the regulatory authorities, see a recent review

in [20]. In particular, heavy-duty engines are improving at a much

slower pace than light-duty ones [20]. However, these studies all fo-

cus on the optimization of design and operation of various parts in

the engine (e.g., fuel system and injection strategy [6, 22, 27, 31], ex-

haust after-treatment system [18]), and do not consider the planning
of path and/or speed profile. For example, Biondi et al. [6] present
methods to optimize the switching speeds of multiple injection

strategies at design time against standard driving cycles (i.e., with

fixed path and speed profile), while Peng et al. [27] propose to adjust
the switching speeds at runtime using predicted driving cycle.

Overall to our best knowledge, we are the first to study the prob-

lem of minimizing emission for a long-haul heavy truck equipped

with multiple engine control strategies. Compared to existing stud-

ies that also simultaneously optimize path planning and speed

planning under a deadline constraint [12, 13, 23, 24, 37], the consid-

eration of switching among multiple injection strategies makes our

problem uniquely challenging, since the emission rate function is

non-continuous, non-convex, as opposed to a convex cost function

for fuel-rate in [12, 13, 23, 24, 37].

3 PROBLEM DEFINITION
We model a national highway network as a directed graph G ≜
(V ,E) where an edge e ∈ E represents a road segment, and a node

v ∈ V represents a point of junction for multiple road segments.

The environmental conditions of a road segment that can impact

the emission rate of a truck, e.g., grade and surface resistance are

assumed to be homogeneous (otherwise it is broken into multiple

appropriate segments). We consider the scenario where a truck

travels from a source o ∈ V to a destination d ∈ V across the

highway network G within a hard deadline requirement T .
We denote the distance of an edge e ∈ E as De > 0. We let f e (r )

be the cost function such as the emission rate (the emission in a time

unit) for the truck to pass e following a constant speed of r . We use

vehicle speed instead of engine speed in the cost model, since the

vehicle speed is proportional to the engine speed in a vehicle [28,

Section 1.6]. We assume f e (r ) is an n piece-wise convex, staircase-

shaped function (see, e.g., Figure 1), wheren is the number of engine

control strategies. More specifically, f e (r ) is defined as

f e (r ) = f ei (r ) if r ∈ (si−1, si ] (1)

where se
0
= (rel )

−
and rel is the minimum speed on edge e , sen = r

e
u

is the maximum speed. sei is the switching speed from strategy i
to i + 1, and sei < sej ,∀i < j. Hence, (sei−1

, sei ] defines the speed

interval that adopts the strategy i and thus follows the cost model

f ei . We assume that f e (r ) satisfy the following two assumptions:

• piece-wise convex: each function f ei is convex over the

interval [rel , r
e
u ];

• staircase-shaped: they satisfy that

∀i < j ∈ [n],∀r ∈ [rel , r
e
u ], f ei (r ) < f ej (r ) (2)

where [n] denotes the set of positive integers no larger than n.
We remark that the above assumptions on the cost model is realis-

tic for a number of metrics related to the efficient and environment-

friendly truck operations. For example, the fuel-rate is described

as a polynomial function of the vehicle speed, verified with both

a theoretical study and experimental data [13]. The emitted CO2

is approximately proportional to the amount of fuel (e.g., about

10.18kg per gallon of diesel, or 8.887kg per gallon of gasoline) [33],

hence it follows the same characteristics as the fuel-rate function.

Similarly, the NOx emission is approximated with an exponential

function that remains convex in the engine speed range (hence the

vehicle speed as well) based on extensive simulation data [6]. For

the second assumption (Equation (2)), this is based on the rationale

that a more complex fuel injection strategy only makes sense if it

provides some benefit such as reduced emission, but its complexity

makes it only feasible at lower speeds [6]. In the rest of the paper

we focus on emission, but the approach is generally applicable to

any cost function that satisfies the above assumptions.

With the emission rate function f e (r ) for each edge e , we can
define its emission function ce (t) that gives the total emission for

the truck to traverse e with a travel time of t . Later in Corollary 7,

we show how to calculate ce (t) given f e (r ) and t . With ce (t), the
efficient timely truck transportation problem is formulated as

min

x ∈X,t ∈T

∑
e ∈E

xe · ce (te ) (3a)

s.t.

∑
e ∈E

xe · te ≤ T , (3b)

where X defines a simple path from o to d

X ≜ {x : xe ∈ {0, 1},∀e ∈ E, and∑
e ∈out(v)

xe −
∑

e ∈in(v)
xe = 1{v=o } − 1{v=d },∀v ∈ V }.

Here 1{·} is the indicator function, in(v) ≜ {(u,v) : (u,v) ∈ E} is
the set of incoming edges of node v , out(v) ≜ {(v,u) : (v,u) ∈ E}
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is the set of outgoing edges of nodev . The set T captures the speed

limits of all roads, which is defined as

T ≜ {t : tel ≤ te ≤ teu ,∀e ∈ E},

where tel =
De

r eu
and teu =

De

r el
are the minimum and maximum travel

times of traversing the edge e , respectively. Overall, we need to

find a routing and speed planning solution (i.e., a path from o to
d , with driving speed assigned to each edge on the path) such that

the total emission is minimized, under the constraint that the total

travel time is no greater than T .

Theorem 1. The problem defined in Equation (3) is NP-complete.

Proof. This directly follows the fact that the NP-complete prob-

lem PASO is a special case of our problem, where PASO only con-

tains one control strategy (and n = 1). □

4 SPEED PLANNING
In this section, we tackle the issue of speed planning: given an emis-

sion rate function f e (r ) for an edge e , how to derive its emission

function ce (t) for any given t ∈ [tel , t
e
u ]. For ease of presentation,

we omit the superscript e from the notations in the rest of the section,
e.g., f e (r ) is simplified as f (r ).

In related studies [12, 13, 23, 24, 37] where each edge has a con-

vex cost function, it is proven that the optimal solution is to drive

at a constant speed to pass the edge (see e.g., Lemma 1 of [13]). In

sharp contrast, in our problem the cost function of each edge is non-

continuous containing multiple pieces, hence is non-convex [35]

and even can be shown to be non-quasi-convex. We highlight with

Example 4.1 below that driving at a constant speed does not mini-

mize the cost of passing the edge. Despite that the cost function is

non-convex, we are able to provide a convex programming formu-

lation (Section 4.1) and even an analytical solution (Section 4.2) for

speed planning, by carefully leveraging its special structures.

Example 4.1. Let us consider the following emission rate function

f (r ) =

{
(r − 30)2/100 + 1 if 30 ≤ r ≤ 50,

(r − 50)2/100 + 10 if 50 < r ≤ 60

It is clear that the above function is a piece-wise convex function

that satisfies our assumptions. We further assume the length of the

edge is 110, and the total travel time for traversing this edge is 2.

(i) By following a constant speed of 110/2 = 55, the emission is

2 · f (55) = 2(25/100 + 10) = 20.5

(ii) In comparison, consider another solution where we first drive

at a speed of 40 for time 0.5, and then drive at a speed of 60 for

time 1.5. This solution is feasible since it traverses the edge (with a

length of 110) by a total travel time of 2. The incurred emission is

0.5 · f (40)+1.5 · f (60) = 0.5(100/100+1)+1.5(100/100+10) = 17.5

Obviously driving at a constant speed 55 incurs a larger emission

than the solution (ii), hence the former is not necessarily optimal.

4.1 A Convex Programming Formulation
Although driving at a constant speed is not necessarily optimal, we

first observe a similar lemma to Lemma 1 of [13]: for each piece

fi (r ), it is always optimal to just choose some constant speed ri in
its speed range (si−1, si ].

Lemma 2. If the total travel time ti following the speed in the range
(si−1, si ] of the i-th piece fi (r ) is given, then the optimal speed profile
is to maintain some constant speed ri for the whole duration ti .

Proof. It is proven similarly to [13, Lemma 1], by applying the

continuous Jensen’s inequality to the convex function fi (r ). □

With Lemma 2, we now formulate the problem of optimizing

the speed profile to pass an edge, where the length of the edge is D,
and the total travel time is given as t . Let ri and ti be the selected
speed and travel time for the i-th piece, respectively. We introduce

the auxiliary variable di = ri · ti to denote the driving distance for

the i-th piece, and formulate the problem as

c(t) = min

ti ≥0,di ≥0,∀i ∈[n]
∑
i ∈[n]

ti · fi

(
di
ti

)
(4a)

s.t.

∑
i ∈[n]

ti = t ,
∑
i ∈[n]

di = D (4b)

si−1ti ≤ di ≤ si ti ,∀i ∈ [n] (4c)

The objective is the total emission on the road segment. We require

the total driving distance be equal to the length D of the road

segment, and the total travel time be t . We also require the driving

speed
di
ti be within the corresponding speed range.

This formulation avoids ri but uses di and ti , the driving time

and driving distance corresponding to the i-th piece, which makes

it particularly easy to see that it is a convex program.

Theorem 3. The speed planning problem in (4) is a convex opti-
mization problem.

Proof. Obviously the constraints are all linear. The objective

function is convex with respect to each di and ti , since each sum-

mand ti · fi
(
di
ti

)
is the perspective of the convex function fi , thus

it must be convex as well [8]. □

Theorem 3 indicates that the problem of speed planning alone

can be efficiently solved as a standard convex program. However, its

proof only leverages the assumption that each piece in the emission

rate function is convex. We further provide an analytical solution

to (4), by additionally utilizing the assumption in Equation (2).

4.2 An Analytical Solution
We now rewrite problem (4) in the following equivalent form

f ∗(r̄ ) = min

βi ≥0,ri ≥0,∀i ∈[n]
∑
i ∈[n]

βi · fi (ri )

s.t.

∑
i ∈[n]

βi = 1,
∑
i ∈[n]

βi · ri = r̄

ri ∈ (si−1, si ], ∀i ∈ [n]

(5)

where βi =
ti
t , and r̄ = D

t . Essentially, problem (5) is to find

a set of speeds, one ri for each piece i , such that their convex

combination is equal to the average speed r̄ = D
t over the edge, and
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the weighted average of the emission rate is minimized (denoted

as f ∗(r̄ )). Obviously c(t) = t f ∗(D/t), that is, c(t) is the perspective
of the function f ∗ [8].

For an arbitrary emission rate function f (r ) containing n > 1

pieces, we now show how the corresponding problem (5) can be

decoupled into two subproblems, each of which concerning the

minimization of the emission rate in a convex combination. We

first define a new function
ˆf (r ) containing n − 1 pieces, which is

the same as f (r ) except that the last speed interval (sn−1, sn ] uses
the cost function of the (n − 1)-th piece fn−1.

ˆf (r ) =

{
f (r ) if r ≤ sn−2,

fn−1(r ) if r > sn−2

(6)

We define the average speed r̂ for the first n − 1 pieces as

r̂
∑
i ∈[n−1] βi =

∑
i ∈[n−1] βiri . The following optimization prob-

lem minimizes the emission rate with the cost function
ˆf and a

given average speed r̂ ∈ (s0, sn ]:

ˆf ∗(r̂ ) = min

αi ≥0,ri ,∀i ∈[n−1]

∑
i ∈[n−1]

αi · fi (ri )

s.t.

∑
i ∈[n−1]

αi = 1,
∑

i ∈[n−1]

αi · ri = r̂

ri ∈ (si−1, si ], ∀i ∈ [n − 2]

rn−1 ∈ (sn−2, sn ]

(7)

where αi is the normalized coefficient of βi , i.e., αi
∑
i ∈[n−1] βi = βi .

Now we define the optimization of the convex combination

between
ˆf ∗ and fn

f ∗(r̄ ) = min

βn,rn, r̂
(1 − βn ) ˆf ∗(r̂ ) + βn fn (rn )

s.t. (1 − βn )r̂ + βnrn = r̄
0 ≤ βn ≤ 1, r̂ ∈ (s0, sn−1], rn ∈ (sn−1, sn ]

(8)

Problem (5) now can be decomposed into two subproblems that are

solved separately. (i) Given any r̂ , solve the problem (7) to derive

the optimal solution
ˆf (r̂ ); (ii) Given any r , find the optimal convex

combination to problem (8). Note that in (8) the constraint r̂ ≤ sn−1

(instead of r̂ ≤ sn ) is derived by the fact that r̂ is a convex combina-

tion of r1, ...rn−1. This decomposition is based on the observation

that the objective function in (5) is a convex combination of the

contribution from fn and those of all the other pieces fi , hence can
be optimized separately. Specifically,

f ∗(r̄ ) = min

βi ,ri ,∀i ∈[n]
∑
i ∈[n]

βi fi (ri )

= min

βi ,ri ,∀i ∈[n]
∑
i ∈[n]

βn fn (rn ) + (1 − βn )
∑

i ∈[n−1]

αi fi (ri )


(E1)
= min

βn,rn, r̂

{
βn fn (rn )

+(1 − βn ) min

r̂,αi ,ri ,∀i ∈[n−1]

∑
i ∈[n−1]

αi fi (ri )


= min

βn,rn, r̂
{βn fn (rn ) + (1 − βn ) ˆf ∗(r̂ )}

Here the equality (E1) is due to that (a) given r̂ , βn becomes inde-

pendent from r1, ...rn−1 and α1, ...αn−1; and (b)

∑
i ∈[n−1] αi fi (ri )

is independent from βn and rn .

(x2, y2)

(x1, y1)

y= g(x)

x1 x2

(x, y)(x, y)

x x x

y

Figure 3: Convex combination of a point (x1,y1) on a convex
curve y = д(x) and a point (x2,y2) that is above the curve and
to the right of x1.

(x2, y2)

(x1, y1)

y= g(x)

x1 x2

(x, y)(x, y)

x x x

y

(p, yp= g(p))

Figure 4: Convex combination of a point (x2,y2) on a convex
curve y = д(x) and a point (x1,y1) that is below the curve and
to the left of x1. (p,yp ) is the generalized point of tangency
from (x1,y1) to the curve y = д(x) with p > x1.

We note that essentially problem (8) is to find a point (r̂ , ˆf (r̂ ))

on the curve
ˆf and another one (rn , fn (rn )) on the curve fn , such

that the speed of their convex combination is r̄ , and the cost is

minimized. Like fn (·), ˆf is shown to be convex (Theorem 6). We

first introduce two lemmas that are useful for solving (8).

Lemma 4. Consider a convex function д(x), a point (x2,y2) above
the curve of y = д(x), i.e., y2 > д(x2), and x̄ ≤ x2. For every x1 < x̄ ,
let (x̄ , ȳ) be the convex combination of (x1,y1 = д(x1)) and (x2,y2)

such that the weighted average of x1 and x2 is x̄ , that is, it defines

ȳ = {(1 − β)y1 + βy2
: 0 ≤ β ≤ 1, (1 − β)x1 + βx2 = x̄} (9)

Then for every fixed x̄ and x2 ≥ x̄ , ȳ is monotonically non-increasing
with x1 for x1 < x̄ . In addition, ȳ ≥ д(x̄).

We leave the proof in Appendix 8.1. Figure 3 provides the in-

tuition behind Lemma 4: Equation (9) enforces that (x̄ , ȳ) is the
intersection between two lines: the vertical line x = x̄ and the line

connecting (x1,y1 = д(x1)) and (x2,y2). As in the figure, when x1

is moving to the right (until x̄ ) along the convex curve y = д(x), its
y intercept with the vertical line x = x̄ is always non-increasing,

i.e., ȳ is monotonically non-increasing with the increase of x1.

Lemma 4 is about the convex combination for a point on the

convex curve and another one that is right to the point and above

the curve. The following lemma discusses a different scenario, on

the convex combination of a point on the convex curve and another

one that is left to the point and below the curve.

Lemma 5. Consider a convex function д(x) and a fixed point
(x1,y1) that is below the curve of y = д(x), i.e., it satisfies y1 < д(x1).
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Define (p,yp = д(p)) as the generalized right point of tangency
from (x1,y1) to its right hand side of the curve y = д(x), i.e., p > x1

satisfies the following equation

∂−д(p) ≤
д(p) − y1

p − x1

≤ ∂+д(p) (10)

where ∂−д(p) and ∂+д(p) are the left and right derivatives of д at p.
Given x̄ > x1, for every x2 ≥ x̄ , let (x̄ , ȳ) be the convex combination

between (x1,y1) and (x2,y2 = д(x2)) such that the weighted average
of x1 and x2 is x̄ , that is, it defines

ȳ = {(1 − β)y1 + βy2
: 0 ≤ β ≤ 1, (1 − β)x1 + βx2 = x̄} (11)

Then ȳ has the following properties:
• If x̄ ≤ p, then ȳ is monotonically non-increasing with x2 until
p, and monotonically non-decreasing with x2 afterwards. In
addition, ∀x̄ ≤ x2 ≤ p, ȳ ≤ д(x̄).

• If x̄ ≥ p, then ȳ is monotonically non-decreasing with x2. In
addition, ∀x2 ≥ x̄ , ȳ ≥ д(x̄).

Note that for a convex function, the generalized point of tan-

gency in Equation (10) is well defined, since a convex function is

semi-differentiable thus allows left and right derivatives [36], and

these derivatives are always non-decreasing [35].

Similarly, we provide the proof in Appendix 8.2, while using

Figure 4 to provide an illustrative explanation for the case of x̄ ≤ p.
We now present the main result of this section, that is applicable

to any piece-wise convex, staircase-shaped cost functions. The

intuition is that the optimal solution to the subproblem (7) gives a

convex function
ˆf ∗, and the optimal solution to the subproblem (8)

can leverage Lemmas 4 and 5 to quickly find an analytical solution.

Theorem 6. Given the total travel time t and hence the average
speed r̄ = D/t to pass an edge, assume r̄ ∈ (si−1, si ] for some i ∈ [n].
In case that i > 1, let (pi , fi (pi )) be the generalized right point of
tangency from (si−1, fi−1(si−1)) to the curve fi (hence pi > si−1).
Then the optimal solution and minimized cost to problem (5) are

(i) if (i = 1) :


r1 = r̄ , β1 = 1

βj = 0,∀j , 1

f ∗(r̄ ) = f1(r̄ )

(ii) if (i > 1 ∧ r̄ ≤ pi ) :


ri−1 = si−1, ri = min{pi , si }

βi−1 =
ri−r̄

ri−ri−1

, βi =
r̄−ri−1

ri−ri−1

βj = 0,∀j , i − 1 ∧ j , i

f ∗(r̄ ) = ri−r̄
ri−ri−1

fi−1(ri−1) +
r̄−ri−1

ri−ri−1

fi (ri )

(iii) if (i > 1 ∧ r̄ ≥ pi ) :


ri = r̄ , βi = 1

βj = 0,∀j , i
f ∗(r̄ ) = fi (r̄ )

(12)

Furthermore, f ∗(r̄ ) is convex over r̄ ∈ (s0, sn ].

Proof. See Appendix 8.3. □

Corollary 7. The analytical solution of c(t) can be derived from
that of f ∗ as c(t) = t · f ∗(r̄ ) = t · f ∗(Dt ). Furthermore, c(t) is convex
over t ∈ [tl , tu ].

Proof. This directly follows the fact that c(t) is the perspective
of the convex function f ∗ [35]. □

5 AN EFFICIENT HEURISTIC
With the analytical solution to the speed planning for a given travel

time t on an edge e and hence a closed-form formula for ce (t), we
consider the overall problem (3) which now amounts to find a path

and assign a travel time to each edge on the path, such that the

emission is minimized and the total travel time is no larger than the

deadline T . We design an efficient heuristic based on Lagrangian

relaxation, and derive a theoretical condition under which our

heuristic must output the optimal solution. As in the experiments,

for the scale of the US national highway network, our heuristic

always quickly finds close-to-optimal solutions.

5.1 Lagrangian Relaxation and Dual Problem
We introduce a Lagrangian dual variable λ ≥ 0, and derive the

Lagrangian relaxation for problem (3) as

L(x , t , λ) ≜
∑
e ∈E

xe · ce (te ) + λ · (
∑
e ∈E

xe · te −T )

=
∑
e ∈E

xe · (ce (te ) + λ · te ) − λ ·T .

The corresponding dual function is defined as

D(λ) ≜ min

x ∈X,t ∈T
L(x , t , λ).

and the dual of the original problem (3) is maxλ≥0
D(λ).

Given λ, we have the following observation onD(λ) by following
its definition above:

D(λ) = −λT + min

x ∈X

min

t ∈T

∑
e ∈E

xe · (ce (te ) + λte )


= −λT + min

x ∈X

∑
e ∈E

xe · min

t el ≤t
e ≤t eu

(ce (te ) + λte )

(a)
= −λT + min

x ∈X

∑
e ∈E

xe ·
[
ce (te∗(λ)) + λ · te∗(λ)

]
(b)
= −λT + min

x ∈X

∑
e ∈E

xe ·we (λ)

(c)
= −λT +

∑
e ∈p∗(λ)

we (λ), (13)

Here te∗(λ) in (a) is defined as

te∗(λ) ≜ arg min

t el ≤t
e ≤t eu

(
ce (te ) + λte

)
. (14)

i.e., te∗(λ) is the optimal travel time that minimizes ce (te )+ λte for

edge e ∈ E,we (λ) in (b) is the corresponding optimal cost

we (λ) ≜ ce (te∗(λ)) + λ · te∗(λ), (15)

and p∗(λ) in (c) is the resulting minimum-cost path where each

edge is associated with an edge cost ofwe (λ). Given a value to the

dual variable λ, Equation (13) suggests that we can figure out D(λ),
the value of the dual function, by finding a shortest path with each

edge e assigned an edge cost of we (λ). In the following, we first

derive an analytical solution to te∗(λ) and hence we (λ) for each
edge e ∈ E, then in Section 5.2 we propose an iterative procedure

to find an appropriate value for λ.
In Theorem 6, for each edge e ∈ E we provide an analytical

solution for f e∗, from which the function ce (t) = t · f e∗(De/t)
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can easily be derived. Furthermore, Corollary 7 shows that ce (t)
is convex, hence it allows left and right derivatives. The following

lemma provides an analytical solution to te∗(λ) and hencewe (λ).

Lemma 8. In case that ∂+ce (tel ) ≤ −λ ≤ ∂−c
e (teu ), define t

∗ as
any t such that ∂−ce (t) ≤ −λ ≤ ∂+c

e (t), which is well-defined since
the derivatives of the convex function ce (t) are non-decreasing. Then
te∗(λ) is given as

te∗(λ) =


tel , if λ + ∂+ce (tel ) > 0

t∗, if ∂+ce (tel ) ≤ −λ ≤ ∂−c
e (teu )

teu , if λ + ∂−ce (teu ) < 0

(16)

Proof. Observe that ce (t) + λt is also convex with respect to t .
Hence its derivatives are non-decreasing.

If λ + ∂+c
e (tel ) > 0, then ce (t) + λt is non-decreasing for t ≥ tel ,

hence its minimum is achieved at the lower bound of t , i.e., tel . If

λ+ ∂−c
e (teu ) < 0, then ce (t)+λt is non-increasing for t ≤ teu , hence

its minimum is achieved at the upper bound of t , i.e., teu .
If ∂+c

e (tel ) ≤ −λ ≤ ∂−c
e (teu ), then the derivatives of ce (t) + λt

remain to be non-positive for t < t∗, and then are always non-

positive for t > t∗, hence its minimum is achieved at t∗. □

When ∂+c
e (tel ) ≤ −λ ≤ ∂−c

e (teu ), we can find t∗ with a binary

search scheme, since the derivatives of the convex function ce is

non-decreasing. The complexity is O(log

⌈
t eu−t

e
l

ϵt

⌉
) where ϵt is the

level of error tolerance for t .

5.2 Our Heuristic Algorithm
For a given λ, we define δ (λ) as follows

δ (λ) ≜
∑

e ∈p∗(λ)

te∗(λ), (17)

which is the total travel time of the minimum-cost path p∗(λ) for a
given λ. We introduce an important observation on δ (λ) below.

Lemma 9. δ (λ) is non-increasing over λ ∈ [0,+∞).

Proof. Refer to [13, Thm. 3], which is still applicable to our

problem since it only uses the facts that te∗(λ)minimizes ce (t)+ λt
and p∗(λ) is the minimum-cost path. □

By the Lagrangian dual relaxation, the value ofD(λ) as calculated
in (13) is always a lower bound of the minimized emission to the

original problem (3). Hence, we observe that the Lagrangian dual

variable λ∗ with δ (λ∗) = T defines the optimal solution P∗(λ∗). By
Lemma 9, our heuristic suggests to use a binary-search scheme to

update λ to approach λ∗, by comparing δ (λ) with T . The details of
our heuristic is described in Algorithm 1, where ϵλ is the level of

error tolerance for λ. λ can be interpreted as a price on the delay,

hence λmax can be set as the upper bound on the emission rate.

In the algorithm, whenever we find a λ such that δ (λ) = T
(Line 8), it must be the optimal value λ∗. If δ (λ) > T (Line 10), then

the deadline constraint is violated, and we set λ as the new lower

bound λl . Otherwise (Line 12), besides setting λ as the new upper

bound λu , it can also be used to derive a feasible solution.

We highlight that our heuristic has a strong theoretical perfor-

mance guarantee, as stated in the following theorem.

Algorithm 1 Our Heuristic Approach

1: procedure
2: Set λl = 0 and λu = λmax

3: while λu − λl > ϵλ do
4: Set λ = λl+λu

2

5: Obtain te∗(λ) according to Lemma 8 for all e ∈ E
6: Setwe (λ) according to Equation (15) for all e ∈ E
7: Get the shortest path p∗(λ) from o to d in G
8: if δ (λ) = T then
9: return p∗(λ) and {te∗(λ),∀e ∈ E}
10: else if δ (λ) > T then
11: Set λl = λ
12: else
13: Set λu = λ, p∗ = p∗(λ), and {te∗ = te∗(λ),∀e ∈ E}

14: return p∗ and {te∗,∀e ∈ E}

Theorem 10. If Algorithm 1 returns in Line 9, then the returned
solution is optimal to our problem. Otherwise if Algorithm 1 returns
in Line 14, the returned solution S = (p∗ and {te∗,∀e ∈ E}) satisfies
the deadline constraint T and hence is feasible. Furthermore, it has
the following theoretical performance guarantee:

C(S) − OPT ≤ λ× · (T − δ (λ×)), (18)

whereC(S) is the total emission of the solution S, OPT is the optimal
emission of our problem, and λ× is the value of the dual variable
corresponding to the returned solution S.

Proof. By Equation (13), for a given dual variable λ, the duality
gap of our problem is:

Duality Gap = λ · (T − δ (λ)), (19)

hence the theorem holds. □

We now analyze the complexity of Algorithm 1. The total num-

ber of iterations is O(log
λmax

ϵλ
). Within each iteration, the calcu-

lation of the optimal te∗(λ) and we (λ) for all edges takes time

O(m·log

⌈
tmax−tmin

ϵt

⌉
)wherem is the number of edges in the highway

network, tmax (tmin) is the maximum (minimum) travel time among

all edges. The shortest path finding step takes timeO(m +k · logk),
where k is the number of vertices. Hence, overall Algorithm 1 has a

time complexity of O(log
λmax

ϵλ
(m · log

⌈
tmax−tmin

ϵt

⌉
+m + k · logk)).

6 PERFORMANCE EVALUATION
In this section, we present the experimental results on the US na-

tional highway system (NHS) consisting of 84504 nodes and 178238

directed edges, which is constructed from the Map-based Educa-

tional Tools for Algorithm Learning (METAL) project [32]. Road

grade is derived from the elevations of each node provided by the

Elevation Point Query Service [34]. The NHS graph is then pre-

processed as follows: (i) non-intersection roads with the same grade

(we use 0.4% as the span of a grade level) are merged into a single

road segment, and (ii) the “eastern" US is divided into 22 regions as

shown in Fig. 5, where the node nearest to each region’s center is

used as the source and destination nodes in the experiments. After

pre-processing, the number of nodes is 38213 and the number of
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7.1DatasetTransportationNetwork:ToconstructUnitedStatesNationalHighwaySystems(NHS),weusethegraphdataset
fromClinchedHighwayMapping(CHM)Project[17].The
wholegraphfileisspecifiedin[2]whichconsistsof84504
nodes(waypoints)and89119edges.Eachnodehasitslat-
itude/longitudecoordinateswhileeachedgeisrepresented
byapairofnodes.Thegraphdatahasareasonablelevelof
accuracyforustomodeltheNHSnetwork.
Elevation:Inthispaper,weonlyconsiderthegrade/slope
effectwhenmodelingroad-dependentfuel-rate-speedcon-
sumptionfunction.Inordertoobtainthegradeofeach
roadsegment,weusetheElevationPointQueryService[7]
providedU.S.GeologicalSurvey(USGS).Wewriteascript
toqueryelevationsofall84504nodesintheNHSgraph.
SpeedLimits:AlthoughusuallyU.S.highwayswillspec-
ifyitsmaximalspeedlimit,itisgenerallymeaninglesstouse
themaximalspeedlimit.Instead,itismorereasonableto
usetheaveragespeedlimitaccordingtohistoricalflowdata
foreachroadsegments.HEREmap[6]hasputspeedde-
tectorsovermanycountriesincludingU.S.,anditprovides
someAPIstoquerylocation-basedreal-timespeedinforma-
tion.Forourpurpose,usingthecorridorparameterisa
suitablechoice[6].Foreachedge(roadsegment),weuse
thelatitude/longitudecoordinatesofitstwoendpointsand
awidthof100meterstospecifythecorridor.Wearekeep-
ingcollectingthereal-timespeedinformationforthewhole
NHSgraphandusingtherunningaverageastheaverage
speedofeachroadsegments.
FuelConsumptionData:Itishardforustogetgood
real-worldfuelconsumptionfunctiondata.Inthispaper,
weinsteadusethewidely-usedADVISORsimulator[14]to
collectfuelconsumptiondata.
Heavy-DutyTruck:Fuelconsumptionhighlydepen-
dentsonwhichtruckisused.Anotherbenefitofusing
ADVISORisthatitalsoprovidessomeheavy-dutytruck
profiles.Inthissimulation,weusetheKenworthT800Ve-
hicle[3],aClass8heavy-dutytruck.Itisdefaultedspeci-
fiedinfilesVEH_KENT800Trailer.mandHeavyTruck_in.min
ADVISORwiththefollowingparametersinTab.1.

Table1:TruckParameters(KenworthT800).
DragCoefficient
cd
Frontalarea
Af
Glider
Mass
Cargo
Mass
0.78.5502m22,552kg33,234kg

PreprocessingNetwork:IntheoriginalNHSgraph
fromCHM[2],alotofroadsegmentsareveryshort.Tobe
added...

Table2:NetworkStatistics.“O”istheoriginalnet-
workand“E”isthe“eastern”USwithlongitude≥
−1000and“M”isthegraphaftermerging.θisthe
grade.

Gnm
avgDe
(mile)
avgRlbe
(mph)
avgRlbe
(mph)
avg|θ|
(%)
O845041782382.0837.455.970.64
E655201375211.9737.355.550.58
M38213827813.2636.4354.190.82
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7.2Fuel-Rate-
Speed

Function Mode
lingWewi

l
l use the followin g fuel-rate-speed functi

o
n model,

f e (x ) = ae x 3 + be x 2 + ce x + de , ∀e ∈ E (22)

whichcancapture most cases in [8–10,15] and als
o

our physi-
calinter
p
retati on in A ppendix A . Here x is the s

p
e
e

d in unit
ofmphand f e (x ) is the fuel rat e consumption in unit of gph
(gallonsper hour) . A lt hough our model (22) c

a
n capture

anyroad-dependent features, e.g., grade, rolling r
e
s
i

stance,
andairde
n

sity, etc., in this simulati on, we only consider the
roadgr
a
de. T his is because that grade is a maj

o
r factor for

truckf
u
e
l

consumption [?].
Collecti ng Da ta fro m A D V I SO R : T o lear

n
the pa-

rameter
s
ae , be , ce , de in (22) , we collect ion data f

r
o

m A D VI -
SOR[14]. We use the A D V I SOR wit hout the G U

I
by invok-

ingfunction adv_no_gui ( act i on, i nput ) where we specify
action=dr i ve_cyc l e to run a driv ing cyc le test, s

e
e

AD V I -
SORdocument [1, Ch . 2.3].
Asme
n
tioned in Sec. 7.1, we choose the def

a
u

lt vehicle
fileHeavyTr uck_i n where we use vehicle typ e VEH_KENT800.
Thisspec
i
fies all parameters for the class 8 heavy -

d
uty truck,

Kenwor
t
h

T 800.
Ne
xt
we need to specify the drivi ng cyc le. We g

e
nerate a

drivingc
y
cle file for our purp ose where we specif

y
a constant

speed(s
a
y x ) profile over a total of 4 hours and a constant
grade/s
l
ope (say θ) over the whole speed profile. T hen after
runningAD V I SOR , we can get total fuel consum

p
tion w

(gallons)over a 4-hour drivi ng tim e with speed x and over
aroadw
i
t

h grade θ. S ince almost all the tim e the tr
u

ck wil l
runningw
i

th constant speed x , we can get the cor
r
e
s

ponding
fuel-rateconsumption as w/ 4 (gph).
Bye
n
umerating x from 10mph to 70mph wit h a step of
0.2mph,and enumerati ng θ from -10.0% to 10.

0
% with a

stepof0.1%, we collection many (x, θ, w/ 4) data points.
Fittin
g

: F or each grade θ from 10.0% to 10
.

0% with a
stepof0.1%, we use all (x, w/ 4) points to fit the model
(22)byusing MATLA B ’s f i t function. We sample

d
several

gradepoi
n

ts in T ab. 3, where we also put the convex region
forthefitted fuel-rate-speed function f e (x ). A s we can see,
thefuel
-
r
a

te-speed funct ion f e (x ) is convex in re
a

sonable re-
alistics
c
e
n

arios. F or example, when grade is 0 (a flat road),
thefuel
-
r
a

te-consumption funct ion is convex if t
h

e speed is
largerthan 16.78mph, which holds generally in r

e
a

lity. Th is

Figure 5: USmap (the eastern part is divided into 22 regions).
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Figure 6: Reduced emission fromMFI compared to PASO vs.
switching speed. The dashed line denotes the average speed
to meet the deadline (24 hours) along the fastest path.

edges (road segments) is 82781. We set the maximum speed reu of a

road segment e as the historical average speed, by collecting real-

time speed data from HERE map [16] for 2 weeks. The minimum

speed rel is manually set to be rel = min{30mph, reu }, where mph

(miles per hour) is the unit for speed. The emission model follows

that of [6], which considers two fuel injection strategies: single-

injection and triple-injection, and the fuel rate function of each

strategy is approximated with an exponential function. The overall

emission rate function satisfies the two assumptions in Section 3.

We compare three methods in the experiments:

• MFI: our heuristic algorithm with multiple injection strate-

gies, where we set ϵλ and ϵt to be both 0.01.

• PASO: the baseline approach from [12, 13], which only con-

siders the single injection.

• FAST: the fastest path driving at its maximum speed.

We first use a representative pair (o,d) = (11, 14) of source and

destination to demonstrate the benefit of our approach, i.e., the

source node o is in region 11, and the destination node d is in

region 14. For this pair, the travel time of FAST is about 18.23 hours.

We study how the switching speed affects the amount of emission

reduction. We set the deadline to be 24 hours, or about 1.32 times

of the travel time in the fastest path, and vary the switching speed.

This also leads to an average speed of about 50mph if driving along

the fastest path. As in Figure 6, the reduced emission compared

to PASO is very small when the switching speed is below 44mph,

which is significantly smaller than the average speed. Hence, despite
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Figure 7: Reduced emission fromMFI compared to PASO vs.
deadline. The dashed line denotes the travel time driving at
the switching speed (49mph) along the fastest path, and the
dotted line is the travel time driving at the minimum speed
(30mph) along the shortest path.

the existence of the triple-injection strategy that provides better

emission, our approach is largely unable to leverage it and has to

use the single-injection strategy most of the time. Hence, it does not

reduce emission compared to PASO. However, when the switching

speed goes up, the percentage of reduced emission rises quickly, to

finally reach about 23%. In all cases, the emission from MFI is at
least 1.5 times less than that of FAST, indicating the importance of

speed planning for emission reduction.

We then study how the reduced emission varies with the dead-

line. We set the switching speed to be 49mph, and vary the deadline

from 20 hours (1.10 times the travel time of FAST) to 26 hours (1.42
times the travel time of FAST). Figure 7 illustrates the relative emis-

sion reduction of MFI compared to PASO. As in the figure, when

the deadline is relatively small (less than 21 hours), the truck is

forced to drive in the speed range of the single injection strategy,

hence providing no benefit compared to PASO. However, MFI can
still provide substantial emission reduction, even if the deadline

is significantly smaller than the total travel time of driving at the

switching speed 49mph along the fastest path (denoted as dashed

line in the figure), hence only allowing a portion of the edges to

drive below the switching speed. The relative reduced emission

after the dashed line mostly follows the relative gap between the

emissions of single-injection and triple-injection strategies. It be-

comes smaller when the speed becomes smaller (hence with longer

travel time), and saturates after the dotted line (the minimum travel

time, i.e., driving at the minimum speed along the shortest path).

We now simulate over a large number of source-destination

pairs, by randomly select a source region from the eastern US and

another different region as the destination. We set the deadline

for MFI and PASO as 1.33 times of the travel time of FAST, and
fix the switching speed to be 49mph. For these instances, on av-

erage MFI saves about 72.2% of the emission compared to FAST,
by selecting a path and speed profile that minimize the emission

while still meeting the deadline. Compared to PASO,MFI reduces
about 18.2% of the total emission, demonstrating our capability of

leveraging adaptive injection strategy to operate trucks in a more

environmental friendly fashion.



Minimizing Emission for Timely Truck Transportation with Adaptive Fuel Injection BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

7 CONCLUSION
In this paper, we consider the scenario that a truck to haul freights

across a national highway system within a given deadline. We

ride on the recent advancement in engine control that adaptively

selects the fuel injection strategy to effectively reduce the emission.

We show that the problem is NP-complete, and the adaptive fuel

injection strategy imposes a unique challenge compared to existing

studies, as the emission rate function is non-continuous and non-

convex. We leverage the special problem structure to derive an

analytical solution to optimize speed profile. We then propose an

efficient heuristic for the overall problem of path planning and

speed planning, and derive a performance gap for the heuristic.

We evaluate our solutions using real-world traces over the US

national highway system. Our solutions can save on average 18%

emission compared to the baseline with a single control strategy.

Compared to the fastest path approach that is adopted in common

practice, our scheme reduces 72% emission on average. Our future

work includes the consideration of dynamic traffic condition and

multiple transportation tasks.
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8 APPENDIX
8.1 Proof of Lemma 4
We first restate a useful lemma for univariate convex functions [35].

Lemma 11. [35] Suppose д(x) is a function of one real variable x .
Consider the slope S(x1,x2) =

д(x2)−д(x1)

x2−x1

of the line connecting two
points (x1,д(x1)) and (x2,д(x2)) on the curve. д is convex if and only
if S(x1,x2) is monotonically non-decreasing in x1, for every fixed x2.

Now we prove the lemma.

Proof (of Lemma 4). For any given x1, it is easy to see that β is

uniquely determined as β = x̄−x1

x2−x1

. Hence,

ȳ =
x2 − x̄

x2 − x1

y1 +
x̄ − x1

x2 − x1

y2

= y2 +
д(x2) − д(x1)

x2 − x1

(x̄ − x2) +
(x2 − x̄)(y2 − д(x2))

x1 − x2

By Lemma 11 and that (x̄−x2) is non-positive, the second summand

on the right hand side is monotonically non-increasing with x1.

The third summand is also monotonically non-increasing with x1,

since both (x2 − x̄) and (y2 − д(x2)) are non-negative. Hence, ȳ is

also monotonically non-increasing with x1. □

8.2 Proof of Lemma 5
We first consider a lemma similar to Lemma 11, which concerns

the slope connecting a point below the curve of a convex function

and any point on the curve but to the right of the first point.
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Lemma 12. Suppose д(x) is a convex function of one real variable
x . For a point (x1,y1) that is below д(x) (i.e., y1 < д(x1)), the slope of
the line connecting (x1,y1) to any point (x2,д(x2)) on the right (i.e.,
x1 < x2) is first monotonically non-increasing with x2 before p, then
monotonically non-decreasing with x2 after p, where p > x1 is the
generalized right point of tangency from (x1,y1) to the curve д(x).

Proof. The slope of the line connecting (x1,y1) and (x2,д(x2))

is T (x2) =
д(x2)−y1

x2−x1

. Consider two values b and a for x2 such that

b ≥ a > x1.

Case 1: a ≤ b ≤ p. In this case, it is

T (a) =
д(a) − y1

a − x1

(I1)
≥

д(b) + ∂−д(b)(a − b) − y1

b − x1

(I2)
≥

д(b) +
д(b)−y1

b−x1

(a − b) − y1

a − x1

=
д(b) − y1

b − x1

= T (b)

Here inequality (I1) is because д is convex hence д(a) − д(b) ≥

∂−д(b)(a − b), and inequality (I2) is because b is no larger than the

generalized right point of tangency p.
Case 2: b ≥ a ≥ p. In this case, we have

T (b) =
д(b) − y1

b − x1

(I3)
≥

д(a) + ∂+д(a)(b − a) − y1

b − x1

(I4)
≥

д(a) +
д(a)−y1

a−x1

(b − a) − y1

b − x1

=
д(a) − y1

a − x1

= T (a)

Here inequality (I3) is because д is convex hence д(b) − д(a) ≥

∂+д(a)(b − a), and inequality (I4) is because a is no smaller than

the generalized right point of tangency p. □

We now proceed to prove Lemma 5.

Proof of Lemma 5. It is easy to see that β = x̄−x1

x2−x1

. Hence,

ȳ =
x2 − x̄

x2 − x1

y1 +
x̄ − x1

x2 − x1

y2 = y1 +
д(x2) − y1

x2 − x1

(x̄ − x1)

By Lemma 12 and that (x̄ − x1) is non-negative, the monotonicity

of the second summand in the above equation and hence of ȳ
follows that of T (x2): monotonically non-increasing before p, then
monotonically non-decreasing after p.

If x̄ ≤ p, since ȳ is monotonically non-increasing with x2, ∀x2 ∈

[x̄ ,p], we have

ȳ = y1 +
д(x2) − y1

x2 − x1

(x̄ − x1) ≤ y1 +
д(x̄) − y1

x̄ − x1

(x̄ − x1) = д(x̄)

If x̄ ≥ p, since ȳ is monotonically non-decreasing with x2, ∀x2 ≥

x̄ ≥ p, we have

ȳ = y1 +
д(x2) − y1

x2 − x1

(x̄ − x1) ≥ y1 +
д(x̄) − y1

x̄ − x1

(x̄ − x1) = д(x̄)

□

8.3 Proof of Theorem 6
Proof by induction.

Base case n = 1. This is straightforward since the only feasible

(and thus also optimal) solution to problem (5) is r1 = r̄ , β1 = 1.

This is consistent with Equation (12) where it is described by Case 1.

Hence f ∗(r̄ ) = f1(r̄ ), which is obviously convex too.

Induction Step. Assume the theorem holds for n = k . Now
consider an arbitrary emission rate function f (r ) containing n =

k + 1 pieces, we define a new function
ˆf (r ) containing k pieces,

as defined in Equation (6). By the inductive assumption,
ˆf ∗(r ) is

convex. In addition, by the assumption in Equation (2) and the fact

that
ˆf ∗(r ) is a convex combination of f1(r ), ..., fk (r ), it must be that

ˆf ∗(r ) < fk+1
(r ),∀r (20)

By Equation (8), the problem of finding f ∗ for a given r̄ is essen-

tially to find a point (r̂ , ˆf ∗(r̂ )) on the convex curve
ˆf ∗ and another

one (rk+1
, fk+1

(rk+1
)) on the curve fk+1

such that the speed of the

convex combination is r̄ , and the cost is minimized. By Equation (20)

and that r̂ < rk+1
, Lemma 4 and Lemma 5 are both applicable. Note

that it must be r̂ ≤ r̄ since rk+1
> r̂ .

Case 1: r̄ ∈ (s0, sk ]. In this case, by Lemma 4, r̂ = r̄ , and the

optimal cost to problem (8) is always no smaller than
ˆf ∗(r̄ ). On the

other hand, the solution r̂ = r̄ , βk+1
= 0 achieves a cost equal to

ˆf ∗(r̄ ), hence it must be an optimal solution to problem (8). This

solution essentially is to use only the first k pieces in f (·), which

follows the optimal solution in
ˆf ∗(r̄ ), and by recursion goes to the

i-th piece that r̄ sits in.
Case 2: r̄ ∈ (sk , sk+1

]. By Lemma 4, r̂ = sk , which implies that

rk = sk and βj = 0,∀j < k .
By Lemma 5, the optimal solution to problem (8) follows that

of the Case 2 or Case 3 in Equation (12), for which i = k + 1.

Specifically, if r̄ ≤ pk+1
, then since

ˆf ∗(r̄ ) is monotonically non-

increasing before pk+1
and non-decreasing afterwards, the optimal

assignment to rk+1
is the maximum value before reaching pk+1

, i.e.,

min(pk+1
, sk+1

). If r̄ ≥ pk+1
, the optimal assignment to rk+1

is its

lower bound r̄ , which implies βk = 0 and βk+1
= 1.

We now prove the convexity of f ∗(r̄ ). As above, f ∗(r̄ ) contains

two parts, the first is that of Case 1 where f ∗(r̄ ) = ˆf ∗(r̄ ), the
second is that of Case 2, and the breakpoint is sk . Within the

part of Case 2, there might also exist two pieces: it contains a

linear segment connecting (sk , ˆf ∗(sk )) to (rk+1
, fk+1

(rk+1
)) where

rk+1
= min{pk+1

, sk+1
}, and a possible second segment using fk+1

if pk+1
< sk+1

. We only need to prove that the left derivative ∂− f
∗

is no larger than the right derivative ∂+ f
∗
at both these breakpoints

sk and pk+1
, since f ∗ is convex within each piece.

At the breakpoint sk , we have

∂+ f
∗(sk ) =

fk+1
(rk+1

) − ˆf ∗(sk )

rk+1
− sk

(I5)
≥

ˆf ∗(rk+1
) − ˆf ∗(sk )

rk+1
− sk

(I6)
≥ ∂+ ˆf ∗(sk )

(I7)
≥ ∂− ˆf ∗(sk ) = ∂− f

∗(sk )

Here inequality (I5) is fromEquation (20). Inequalities (I6) is because

of the inductive assumption that
ˆf ∗ is convex, hence its curve lies

above the right tangent at sk . Likewise, (I7) holds because the left

derivative of the convex function
ˆf ∗ is no larger than its right

derivative at any point, in particular sk .
At the breakpoint pk+1

(which only exists if pk+1
< sk+1

), it is

∂− f
∗(pk+1

) =
fk+1

(pk+1
) − ˆf ∗(sk )

pk+1
− sk

(I8)
≤ ∂+ fk+1

(pk+1
) = ∂+ f

∗(pk+1
)

Here inequality (I8) holds because (pk+1
, fk+1

(pk+1
)) is the gener-

alized right point of tangency from (sk , ˆf ∗(sk )) to the curve fk+1
.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Speed Planning
	4.1 A Convex Programming Formulation
	4.2 An Analytical Solution

	5 An Efficient Heuristic
	5.1 Lagrangian Relaxation and Dual Problem
	5.2 Our Heuristic Algorithm

	6 Performance Evaluation
	7 Conclusion
	References
	8 Appendix
	8.1 Proof of Lemma 4
	8.2 Proof of Lemma 5
	8.3 Proof of Theorem 6


