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Storage Management with Worst-case Guarantee
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Abstract—The fluctuations of electricity prices in demand
response schemes and intermittency of renewable energy supplies
necessitate the adoption of energy storage in microgrids. How-
ever, it is challenging to design effective real-time energy stor-
age management strategies that can deliver assured optimality,
without being hampered by the uncertainty of volatile electricity
prices and renewable energy supplies. This paper presents a
simple effective online algorithm for the charging and discharging
decisions of energy storage that minimizes the electricity cost in
the presence of electricity price fluctuations and renewable energy
supplies, without relying on the future information of prices,
demands or renewable energy supplies. The proposed algorithm
is supported by a near-best worst-case guarantee (i.e., competitive
ratio), as compared to the offline optimal decisions based on full
future information. Furthermore, the algorithm can be adapted
to take advantage of limited future information, if available. By
simulations on real-world data, it is observed that the proposed
algorithms can achieve satisfactory outcomes in practice.

Index Terms—Energy Storage Management; Online Algo-
rithms; Competitive Analysis

NOMENCLATURE

t Index of an one-hour time slot
B Capacity of energy storage
p(t) Electricity market price at time slot t, where

m ≤ p(t) ≤M
ϕ Ratio between maximum and minimum prices

(
M
m

)
a(t) Excessive demand at time slot t
max(a) Peak excessive demand (maxt a(t))
x(t) Energy storage level at time slot t
ηc(≤ 1) Charging efficiency of energy storage
ηd(≥ 1) Discharging efficiency of energy storage
µc Charging rate constraint
µd Discharging rate constraint
d(t) Energy discharged from energy storage at time slot t
r(t) Excessive renewable energy at time slot t
rb(t)Energy from renewable energy to energy storage at

time slot t
v(t) Energy from the grid at time slot t
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va(t)Energy from the grid for demand at time slot t
vb(t)Energy from the grid to energy storage at time slot t
ρ Ratio of total excessive renewable energy over total

excessive demand, normalized by charging and dis-
charging efficiencies

(
ηc
ηd
·
∑T
t=1 r(t)∑T
t=1 a(t)

)
θ Threshold of market price that triggers charging oper-

ation in the threshold based algorithm
B̂ Maximum energy storage level, up to which the thresh-

old based algorithm charges from the grid
W Lookahead window size for the lookahead algorithm
[ · ]+Positivity operator (max{ · , 0})

I. INTRODUCTION

The rise of renewable energy can deliver a clean energy fu-
ture, while innovative demand response management by time-
varying dynamic pricing schemes can facilitate more efficient
balance between energy supplies and demands. Microgrids are
a new paradigm of electric systems that integrate both local
renewable energy supplies and distributed power management.
Thus, energy storage is crucial in microgrids for harnessing
excessive renewable energy and reducing the electricity cost
in a fluctuating electricity market.

To harness both renewable energy and dynamic electricity
prices, energy storage systems are required to make real-time
charging and discharging decisions intelligently. However, the
energy storage management decisions for dynamic electricity
prices and renewable energy are coupled with one another.
The decisions favoring electricity acquisition from the grid
may saturate the energy storage too soon, preventing it from
harnessing excessive renewable energy in the future. On the
contrary, the decisions that reserves more capacity for storing
future renewable energy may limit the chance of acquiring
electricity at low electricity prices. Hence, it is important to
strike a subtle balance between the two factors. Nonetheless,
there is considerable uncertainty in both renewable energy
availability and electricity price fluctuations. The fluctuations
of electricity prices tend to reflect the wide-area demands,
whereas the renewable energy availability may only be specific
to the local regions of microgrids. The different considerations
of uncertainty present a major challenge to the design of an
effective strategy for energy storage management.

In the extant literature, there are three common approaches
for energy storage management. First, one can rely on pre-
dictions on the renewable energy availability, price fluctua-
tions and demands [1], which require accurate modeling and
extensive training data. The drawback is the heavy reliance
on accurate prediction models or specifically trained learning
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classifiers for the particular environments, which are difficult
to be adopted to new environments with noisy or limited
historical data for calibration.

Second, one can utilize stochastic optimization [2], [3],
which relies on standard probability models to handle un-
certainty or noisy data [4]. The solutions are usually ob-
tained in the sense of probabilistic expectation. There may
be considerable deviation between the real-world outcomes
and the standard probability model. Recently, a Lyapunov
stochastic optimization approach has been proposed [5] for
energy storage management, by which a control policy is
developed that asymptotically converges to the optimal pol-
icy, when the inputs are assumed to be i.i.d. or stationary
Markovian. Nonetheless, the inputs in practice (e.g., demands,
renewable energy supplies, and electricity prices) are often
non-stationary. Furthermore, Lyapunov stochastic optimization
relies on averaging over infinite time horizon, whereas only
finite time horizon is considered in practice. The asymptotic
optimality result is obtained in terms of scaling-law, when the
storage size is approaching infinity. However, for small-to-
medium-sized energy storages, the gap between the outcome
and the optimal may be large. Our experiments based on
real-world traces in Sec. VI confirm that Lyapunov stochastic
optimization does not produce satisfactory outcome for small-
to-medium-sized energy storages.

The third approach is based on robust optimization [6],
which handles uncertainty by optimizing the solutions with
respect to a range of parameters. To the best of our knowledge,
there is no known results from robust optimization that can
qualify the worst-case guarantee to the optimal solutions based
on perfect knowledge without uncertainty. Also, applying
the existing robust optimization to online decision-making
problems over a long time horizon can suffer from the curse
of dimensionality.

As a departure from the aforementioned approaches, this
paper pursues an online competitive algorithmic approach,
which has been employed in a wide range of online decision-
making problems [7], without relying on the knowledge of
future inputs. This approach can cope with arbitrary (non-
stationary or adversarial) future inputs, with a finite or infinite
time horizon, and can provide a worst-case optimality assur-
ance in terms of competitive ratio (as compared to the offline
optimal decisions based on full future information) without
asymptotic or stochastic assumptions.

We propose an effective online algorithm for energy storage
management based on a simple notion of threshold based
decisions, which can be conveniently adopted in the existing
energy storage systems. Furthermore, we derive the lower
bounds of competitive ratio for any deterministic online al-
gorithms, which show that the proposed algorithm can attain
a near-best competitive ratio. The proposed algorithm can also
be adapted to take advantage of limited future information, if
available. Not only supported by its worst-case guarantee, it is
observed from simulations on real-world data that the proposed
algorithms can achieve satisfactory outcome in practice.

The contributions of this paper are summarized as follows:
1) An online algorithm is proposed for tackling the electric-

ity cost minimization problem of energy storage man-

agement with price fluctuations and renewable energy
supplies. The competitive ratio for the proposed algo-
rithms is derived against the offline optimal algorithm.

2) The lower bounds of competitive ratio for any determin-
istic online algorithms are derived, which are within a
constant factor of that of the proposed algorithm.

3) An improved online algorithm is presented to take
advantage of limited future information in a sliding
window fashion.

4) By evaluations with real-world data traces, it is observed
that the proposed algorithms achieve a satisfactory em-
pirical optimality ratio.

II. BACKGROUND AND RELATED WORK

There is a body of work about applying energy storage to
reduce the electricity cost. For example, to design optimal
scheduling algorithms for energy storage, [8] formulates the
problem of energy storage management by convex optimiza-
tion. [4] presents an optimal policy for energy storage man-
agement with fast-ramping generation. [3], [9] derive energy
storage control policy based on Markov decision problem.
[10] develops an online heuristic by predicting the demands
in a sliding window. These results require a-priori statistical
assumptions (e.g., i.i.d. prediction errors, Markovian arrivals,
stationary stochastic inputs), which may not hold in practice.

The Lyapunov optimization approach [5] was introduced to
investigate the cost minimization problem of energy storage,
which assumes the inputs to be i.i.d. or Markovian random
process, and relies on an asymptotic analysis by long-term av-
eraging the total cost. Various extensions have been developed
(e.g., [11]–[15]). Lyapunov optimization requires stochastic
assumption (e.g., stationary inputs), whereas our competi-
tive online approach can accept arbitrary (non-stochastic)
inputs. Furthermore, Lyapunov stochastic optimization relies
on asymptotic analysis (i.e., infinite time horizon, and very
large-sized energy storage), whereas our online algorithm can
cope with finite setting, with arbitrarily sized energy storage.

Online algorithmic approach [7] is an established approach
in optimizing the performance of various systems (e.g., com-
puter systems, microgrids [16]) with minimum knowledge of
inputs. For an online decision problem, a sequence of inputs
are revealed gradually over time. The algorithm needs to make
certain decisions and generates output instantaneously over
time, based on only the part of the inputs that has seen so
far, without knowing the rest of the inputs in the future.

Closely related to the results of this paper, [17] investigated
the classical one-way trading problem and devised competitive
online algorithms with optimal competitive ratio. In one-way
trading problem, a trader needs to exchange from one currency
to another currency, when given a sequence of exchange rates
in an online fashion. One-way trading problem can be regarded
as a continuous version to k-min/max search problem [17],
in which a trader is searching for the k-th minimum (or
maximum) price of some asset, when given a sequence of
prices in an online fashion [18]. See the detailed definitions
in the Appendix. The energy storage management problem
in this paper can be regarded as a generalized one-way
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trading problem. However, there are surprising differences.
For instance, the best possible online algorithm for one-
way minimum trading problem has competitive ratio

√
M/m,

where M and m are maximum and minimum market prices. In
energy storage management with free renewable energy, one
would think m→ 0, and hence the competitive ratio becomes
unbounded. However, we show that this is not the case.
Moreover, the energy storage management problem needs to
consider additional constraints of limited capacity, charging
and discharging operations.

III. PROBLEM FORMULATION

Consider a typical scenario of an operator of a microgrid,
who needs to manage different energy sources (e.g., electricity
grid, energy storage and renewable energy) to minimize the
total electricity cost, subject to the demand and operational
constraints. The system model of such a scenario is depicted
in Fig. 1, which has been widely used in the literature [5].
A discrete-time model is considered in this paper, such that
each time slot matches the timescale at which the energy
management decisions are updated. This paper assumes the
duration of a time slot is one hour. We denote t as a time
slot index. There are totally T time slots, and each has a unit
length, where the inputs within one time slot are sufficiently
quasi-static. For brevity, the power and energy within a time
slot are referred interchangeably.

A. System Model
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Energy 

Storage

)(tv
Grid

Fig. 1: A depiction of the system model.

The system model is consisted of the following components:
• Excessive Demand: Consider arbitrary excessive demand

(after being offset by the renewable energy at the current
time slot) at time slot t, denoted by a(t). We do not
assume any specific stochastic model of a(t). We simply
refer a(t) as the demand in this paper.

• Electricity Grid: The system can acquire energy from
the grid for the unsatisfied demand in an on-demand
manner. Let the market price at time slot t of the grid
be p(t), where m ≤ p(t) ≤M . Denote the ratio between
the maximum and minimum prices by ϕ , M

m . We
do not assume any specific stochastic model on p(t).
Denote the acquired energy for satisfying the demand
directly by va(t) and the acquired energy to charge the
energy storage by vb(t). M and m can be estimated in
advance, for example, based on historical data. Note that
the proposed algorithm still applies, even when M and
m are not known in advance.

• Energy Storage: The energy storage can reduce the total
electricity cost by exploiting price fluctuations and har-
nessing excessive renewable energy. The energy storage
has a capacity B. The level of energy storage at time slot
t is given by:

x(t+ 1) = x(t) + ηc
(
rb(t) + vb(t)

)
− ηdd(t) (1)

where d(t) is the energy discharged from the energy stor-
age, vb(t) and rb(t) are the energy charged to the energy
storage from the grid and renewable energy, respectively.
ηc ≤ 1 and ηd ≥ 1 are charging and discharging
efficiencies, respectively. To capture the limitations in
the charging and discharging rates, it is required that
d(t) ≤ µd and rb(t) + vb(t) ≤ µc. The level of energy
storage is required to satisfy the boundary conditions,
x(0) = Bs and x(T ) = Be.

• Excessive Renewable Energy: Consider arbitrary exces-
sive renewable energy (after being offset by the origi-
nal demand at the current time slot), denoted by r(t).
The energy to charge the energy storage is denoted by
rb(t) (≤ r(t)). The cost of using renewable energy is
assumed to be free, and hence, is most preferred to be
consumed for satisfying demand. Let the ratio of total
excessive renewable energy vs total excessive demand,
normalized by charging and discharging efficiencies be
ρ , ηc

ηd
·

∑T
t=1 r(t)∑T
t=1 a(t)

, which is an effective measure
of the availability of excessive renewable energy that
can be stored for satisfying future demands. ρ can be
estimated in advance, because the long-term average is
more predictable. Note that the proposed algorithm still
applies, even when ρ is not known in advance.

B. Problem Definition

The energy storage problem (ESP) is formulated as follows:

(ESP) min

T∑
t=1

p(t)
(
va(t) + vb(t)

)
(2)

s.t. x(t+ 1)− x(t)

= ηc
(
rb(t) + vb(t)

)
− ηdd(t) (3)

d(t) + va(t) = a(t) (4)
rb(t) ≤ r(t) (5)
0 ≤ x(t) ≤ B (6)
rb(t) + vb(t) ≤ µc (7)
d(t) ≤ µd (8)
x(0) = Bs, x(T ) = Be (9)

var. x(t) ≥ 0, d(t) ≥ 0, rb(t) ≥ 0, va(t) ≥ 0, vb(t) ≥ 0

Energy storage systems may also bear other tear-and-wear
and long-term maintenance costs. As in the extant literature
[4], [9], [10], this paper considers the short-term operation
of energy storage systems, such that the electricity cost
considerably outweighs the maintenance costs. Although this
paper does not explicitly consider local power generators, local
power generators with linear generation cost can be easily
modelled as a part of the market price of the grid.
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Let the inputs of the problem (i.e., the sequence of de-
mand, market prices and renewable energy supplies) be σ =(
a(t), p(t), r(t)

)T
t=1

. The problem (ESP) can be solved by
linear programming, when all inputs σ are given in advance.

However, σ is revealed gradually over time in reality, which
requires decisions to be made without future information. An
algorithm is called online, if the decision at the current time
only depends on the instantaneous information before or at the
current time slot tnow, namely,

(
a(t), p(t), r(t)

)
t≤tnow

. Given
input σ, let Cost(A[σ]) be the cost of algorithm A, and Opt(σ)
be the cost of an offline optimal solution (that may rely on
an oracle to obtain all future inputs). In competitive analysis
for online algorithms [7], competitive ratio is a common
performance metric, defined as the worst-case ratio between
the cost of the online algorithmA and that of an offline optimal
solution, namely,

CR(A) , max
σ

Cost(A[σ])

Opt(σ)
(10)

This paper provides competitive online algorithms for solving
ESP with a worst-case guarantee.

IV. ONLINE ALGORITHM

Algorithm Athb is a simple threshold based online algo-
rithm, which stores energy from the grid at each time slot t
up to level B̂ when the market price is below the threshold
θ. Otherwise, it discharges from the energy storage to satisfy
the demand, if available. Meanwhile, it stores any excessive
renewable energy, subject to the charging rate constraint. Let
[ · ]+ be the positivity operator (max{ · , 0}).

Algorithm 1 Athb[θ, B̂, t, a(t), p(t), r(t)]

. Store energy from renewable energy
1: rb(t)← min

{
r(t), B−x(t−1)

ηc
, µc

}
2: if p(t) ≤ θ then
. No discharging from energy storage

3: d(t)← 0
. Satisfy demand from grid

4: va(t)← a(t)
. Store energy up to B̂ from grid

5: vb(t)← min
{

[ B̂−x(t−1)ηc
− rb(t)]+, [µc − rb(t)]+

}
6: else
. Discharge from energy storage

7: d(t)← min{a(t), µd,
x(t−1)
ηd
}

. Satisfy remaining demand from grid
8: va(t)← a(t)− d(t)
. Store no energy from grid

9: vb(t)← 0
10: end if

. Obtain energy storage level
11: x(t)← x(t− 1) + ηc

(
rb(t) + vb(t)

)
− ηdd(t)

12: return
(
x(t), d(t), rb(t), va(t), vb(t)

)
It is critical to set the parameters (θ, B̂) of Athb properly.

A small θ or B̂ will make an aggressive algorithm favoring
low market prices and renewable energy, but may end up

paying more electricity cost if there is insufficient energy in
the storage to satisfy the demand. On the contrary, a large
θ or B̂ will make a conservative algorithm that may miss
low market prices and renewable energy, because the energy
storage may be saturated too soon. A proper setting of θ and
B̂ should balance the two extreme cases. Theorem 1 presents
a plausible setting of θ and B̂, supported by a competitive
ratio as the worst-case guarantee.

Theorem 1: Suppose the terminal condition x(T ) = B and
ρ ≤ 1. Setting B̂ = B(1− ρ) and

θ =

√
ρ2(M −m)2 + 4Mm− ρ(M −m)

2
· ηc
ηd
, (11)

where ϕ = M
m , the competitive ratio of algorithm Athb is

CR(Athb) =
1

2
(ρϕ+ ρ+

√
4ϕ+ ρ2(ϕ− 1)2) (12)

The proof can be found in the Appendix. The basic idea
is that we first decompose the demand a(t) into a set of
simple demands called “one-shot demand”. For each one-shot
demand, we characterize the outcome by two opposite cases:
(1) charging the energy storage from the grid according at the
threshold, (2) not charging the energy storage from the grid
because of higher-than-threshold market prices. An adversary
will select the worst among the two cases. In order to minimize
the competitive ratio given B̂ = B(1 − ρ), we select the
threshold θ, such that the optimality ratios of the two cases
are equivalent, by solving a quadratic equation.

Remarks: There are several remarks to Theorem 1.
1) When ρ = 0, then B̂ = B and θ =

√
Mm · ηcηd . The

competitive ratio becomes CR(Athb) =
√
ϕ.

When ρ = 1, then B̂ = 0 and θ = m · ηcηd , which is
equivalent to never storing energy from the grid. The
competitive ratio becomes CR(Athb) = ϕ+ 1.
One can show that m · ηcηd ≤ θ ≤

√
Mm · ηcηd and

√
ϕ ≤

CR(Athb) ≤ ϕ+ 1. The threshold setting in Theorem 1
offers a continuous transition from

√
ϕ (when ρ = 0)

to ϕ + 1 (when ρ = 1). Note that the competitive ratio
varies almost linearly as ρ, namely CR(Athb) = Θ(ρ)
(see Fig. 2 for an illustration).

0.2 0.4 0.6 0.8 1.0
r

3

4

5

6

Competitve Ratio

j+1

j

rj+r+ 4 j+r2 Hj-1L2

2

Fig. 2: An illustration of competitive ratio with ϕ = 5, ηcηd = 1.

2) Competitive ratio CR(Athb) characterizes the worst-
case guarantee of optimality. In practice, the observed
optimality ratio of Athb can be far better than the worst-
case upper bound. It is observed from simulations in
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Sec. VI that the empirical optimality ratio of Athb is
well below the competitive ratio.

3) When ρ > 1, we apply Theorem 1 as if ρ = 1. Namely,
we set B̂ = 0 and θ = m · ηcηd . The competitive ratio is
still CR(Athb) = ϕ+ 1.

4) There is an equivalence between the terminal condition
x(T ) = Be and demand a(T ) at the final timeslot.
One can substitute terminal condition x(T ) = Be by
an additional demand a(T ) = ηcBe, or vice versa.
When the terminal condition becomes x(T ) = Be < B,
one can still apply Theorem 1 by substituting ρ by
ρ̃ = ηc

ηd
· B−Be+

∑T
t=1 r(t)∑T

t=1 a(t)
in Theorem 1. The basic

idea is that at most ηc(B −Be) of the demand may be
eliminated without incurring any cost, which is similar
to the effect that the demand is satisfied by renewable
energy. However, it is observed from simulations in
Sec. VI that the boundary conditions have a marginal
effect on the empirical optimality ratio of Athb, if T is
relatively large.

5) In case that the values of M , m, ρ are not known
in advance, Athb can be adapted to estimate these
parameters dynamically. First, set M = m = p(1).
Then M and m are updated to be the maximum and
minimum market prices observed so far at time slot t. ρ
can also be estimated by the observed normalized ratio
of renewable energy over total demand at time slot t.
If T is relatively large, the estimated M , m, ρ will
converge to the true values. The empirical performance
is studied by simulations in Sec. VI.

The following theorems provide the lower bounds of com-
petitive ratio of any deterministic online algorithm for the
extreme cases ρ = 0 and ρ = 1. Hence, threshold based
algorithm Athb attains a competitive ratio that is within a
constant factor of the lower bounds.

Theorem 2: Consider zero excessive renewable energy (ρ =
0). The competitive ratio of any deterministic online algorithm
A is CR(A) ≥ 1

2

(
1 +
√
ϕ
)
.

Theorem 3: Consider abundant excessive renewable energy
(ρ ≥ 1). The competitive ratio of any deterministic online
algorithm A is CR(A) ≥ ϕ.

V. LOOKAHEAD ALGORITHM

In certain circumstances, limited future information for a
lookahead window of size W (i.e.,

(
a(τ), p(τ), r(τ)

)t+W
τ=t

))
may be available, possibly due to predictions of the near future
market prices, renewable energy and demands. While this
paper does not investigate the prediction mechanisms, we can
adapt our threshold based online algorithm to take advantage
of the limited future information in a sliding window manner.

We present lookahead threshold based algorithm Alka
thb as

a heuristic to integrate the offline optimal solution within
lookahead window W and the threshold based online decisions
of charging the energy storage. The computations are carried
out in a sliding window fashion. Namely, at every time slot
t, the decisions are computed from t to t + W , but only the
decision at t is applied.

Algorithm 2 Alka
thb

[
θ, B̂, t, x(t− 1),

(
a(τ), p(τ), r(τ)

)t+W
τ=t

]
. Store renewable energy as much as possible

1: for τ ∈ [t, t+W ] do
2: rb(τ)← min

{
r(τ), B−x(τ−1)

ηc
, µc

}
3: x(τ)← x(τ − 1) + ηcrb(τ)
4: end for
. Obtain offline optimal solution within window W

5:
(
x(τ), d(τ), va(τ), vb(τ)

)t+W
τ=t

← Aofl

[
x(t− 1),

(
a(τ), p(τ), x(τ)

)t+W
τ=t

]
. Find min-price time slot within window W

6: if t = arg mint≤τ≤t+W
{
p(τ)

}
and p(t) ≤ θ then

. Find residual capacity w.r.t. offline decisions
7: x̃← maxt≤τ≤t+W

{
x(τ)

}
8: y ← min

{
B − x̃, [B̂ − x(t+W )]+

}
. Store energy from grid

9: vb(t)← min
{

[ yηc − rb(t) + d(t)]+, [µc − rb(t)]+
}

10: x(t)← x(t− 1) + ηc
(
rb(t) + vb(t)

)
− ηdd(t)

11: end if
12: return

(
x(t), d(t), rb(t), va(t), vb(t)

)

Let Aofl be the algorithm for computing offline optimal so-
lution within a lookahead window W , given the initial energy
storage level x(t− 1) and inputs

(
a(τ), p(τ), x(τ)

)t+W
τ=t

. Aofl

assumes that the renewable energy has been properly stored
in the energy storage beforehand, and hence does not consider
renewable energy.

The decisions are computed as follows. First, it stores
the renewable energy as much as possible within lookahead
window W . Second, it invokes Aofl to obtain the optimal
solution within lookahead window W . Third, it stores energy
up to the level B̂ from the grid at the current timeslot t, if the
market price at t is the minimum within the next W timeslots
and is below the threshold θ. To avoid the interference with
the offline decisions, the amount of stored energy at t is less
than B−x̃ and [B̂−x(t+W )]+, where x̃ is maximum level of
energy storage within [t, t+W ] that is computed from offline
optimal solution.

The parameters (θ, B̂) of Alka
thb are set according to The-

orem 1. It is observed from simulations in Sec. VI that the
empirical ratio between Alka

thb and the offline optimal solution
can be significantly improved when W increases.

VI. EMPIRICAL EVALUATION

The empirical optimality of the proposed algorithms is
evaluated based on the simulation studies using real-world data
traces. Apart form comparing with the offline optimal solution,
the online algorithm is also compared with Lyapunov stochas-
tic optimization algorithm, whereas the lookahead algorithm
is compared with receding horizon control algorithm.

A. Data Traces and Parameters

• Demand: The demand traces are obtained from California
Commercial End-Use Survey (CEUS) [19] of a college
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Fig. 8: Average cost vs. capacity (when x(0) = x(T ) = B).

in San Francisco, which consumed about 154 GWh elec-
tricity per year. The data traces contain hourly electricity
demands in year 2002. As shown in Fig. 3, regular daily
pattern is observed in peak and off-peak hours, with
typical weekday and weekend variations.

• Renewable Energy: The wind power traces are obtained
from [20]. The power output data is used within the same
time period with a resolution of 1 hour of an offshore
wind farm right outside San Francisco with an installed
capacity of 12MW. The wind power trace is shown in
Fig. 3. Roughly speaking, the renewable energy supplies
about 10% of the total energy demand.

• Electricity Prices: The electricity price data are obtained
from PG&E [21] and are shown in Fig. 3. Both the
electricity demands and the prices show strong diurnal
properties: in the daytime, the demands and prices are
relatively high; at nights, both are low. This suggests the
feasibility of reducing the operating cost by charging the
energy storage from the grid during night and discharging
the energy storage to satisfy demand during daytime.

• Energy Storage: The charging and discharging rate con-
straints µc and µd are set as 30MWh/h. The charging and
discharging efficiencies are set set as ηd = 1.1, ηc = 0.9.

B. Observations of Threshold Based Algorithm

The optimality of online threshold based algorithm Athb

(thb) is compared with that of offline optimal solution (ofl)
and Lyapunov stochastic optimization algorithm (lyp), under
different values of energy storage capacity B (normalized by
the peak excess demand max(a)). The basic idea of Lyapunov
stochastic optimization is to solve a relaxed version of ESP,
without the capacity constraint (6). Based on the concept of
Lyapunov drift, Lyapunov stochastic optimization uses per-
turbed parameters to limit the violation of capacity constraint,
when the capacity is large, and averaged over a sufficiently
long time horizon. The implementation of Lyapunov stochastic
optimization algorithm follows from that in [5]. In Fig. 4, the
instantaneous energy storage level x(t) for is plotted for ofl,
lyp and Athb. It is observed that lyp tends to store energy from
the grid at a higher level than Athb.

In all three algorithms, the electricity cost decreases as the
capacity B increases, because more energy storage capacity
allows more opportunities to harness renewable energy and
price fluctuations. The observed optimality ratios of Athb

and lyp are plotted in Fig. 6. The observed optimality ratio
of Athb is far better than the worst-case upper bound in
Theorem 1. It is observed that Athb outperforms lyp, in
particular with small or medium sizes of capacity B. When
B is sufficiently large, both algorithms approach the offline

6



optimal cost. The optimality ratio of Athb increases initially
for small B, because the offline optimal cost decreases more
initially than the cost of Athb does.

C. Observations of Lookahead Algorithm
The optimality of lookahead threshold based algorithm Alka

thb

(lka.thb) is compared with that of offline optimal solution (ofl)
and receding horizon control algorithm (rhc), under different
values of energy storage capacity B (normalized by the peak
demand max(a)). The receding horizon control algorithm
optimizes the energy storage management decisions within
a lookahead window W , and proceeds in a sliding window
manner as time goes on. The key difference between rhc and
lka.thb is that lka.thb makes online decisions to acquire extra
energy from the grid to charge the energy storage (using the
same market price threshold as Athb), whereas rhc does not
consider any online decisions.

Both Alka
thb and rhc are compared with the same time

window size W . In Fig. 5, the instantaneous energy storage
level x(t) for is plotted for ofl, rhc andAlka

thb. The cost averaged
by T of Alka

thb, offline optimal solution and rhc are plotted in
Fig. 7. Alka

thb is a heuristic that integrates offline computation
within lookahead window W (like rhc) and threshold based
online decisions to charge energy storage (like Athb). It is
observed that the cost achieved by Alka

thb is significantly lower
than rhc, when W is small. rhc only outperforms Alka

thb slightly,
when W is larger. ButAlka

thb approaches the offline optimal cost
closely, when W becomes about 8 hours.

D. Impact of Unknown Parameters and Boundary Conditions
When the parameters of M , m, or ρ is not known a-priori,

Athb is adapted to estimate these parameters dynamically. In
Fig. 8, thb.est estimates M and m by the maximum and
minimum market prices observed so far at time t, whereas
thb.rho estimates ρ by the observed normalized ratio of
renewable energy over total demand at time t. It is observed
that the estimated M , m, ρ converge fast to the true values.
Both thb.est and thb.rho behave similarly as Athb (that knows
M , m and ρ a-priori).
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Fig. 9: The average cost of thb.est under different boundary
conditions, as compared with ofl (when x(0) = x(T ) = 0).

The impacts of boundary conditions x(0) = Bs and x(T ) =
Be are studied in Figs. 9-10, with three different boundary
conditions are considered: (1) x(0) = x(T ) = B, (2) x(0) =
x(T ) = 0, (3) x(0) = x(T ) = B

2 . It is observed that the
boundary conditions have a marginal effect on the empirical
optimality ratio of Athb, because when T is relatively large,
the demand has the dominant effect.
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Fig. 10: The average cost of thb.rho under different boundary
conditions, as compared with ofl (when x(0) = x(T ) = 0).

E. Impact of Charging and Discharging Rate Constraints

The impact of charging and discharging rate constraints
(µc and µd) is studied in Fig. 11, where µd is varied from
5MWh/h to 40MWh/h and µc = µd. All three algorithms
perform better with increasing µd and µc. When µd increases
to about 20MWh/h, the costs achieved by the algorithms
reach the minimum and do not decrease any more. This is
because 20MWh is roughly the peak power demand of this
trace. The maximum benefit of energy storage is attained by
discharging to satisfy the peak power demand when the market
price attains the maximum. Consequently, with a maximum
discharging rate of larger than the peak demand, the cost
cannot be further reduced.
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Fig. 11: Average cost vs. µd and µc.

F. Impact of Charging and Discharging Efficiencies

The impact of charging and discharging efficiencies (ηc and
ηd) is studied in Fig. 12, where the ratio ηd

ηc
is varied from

1 to 7. The costs obtained by the three algorithms increase
monotonically with increasing ηd

ηc
. It is observed that Athb

performs close to the offline optimal solution when ηd
ηc
≤ 1.5,

which is a reasonable setting in most energy storage.
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Fig. 12: Average cost vs. ηdηc .

VII. CONCLUSION

This paper studied the online algorithms for energy storage
management in the presence of price fluctuations and renew-
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able energy sources, for minimizing the electricity cost from
the grid. Competitive online algorithms are devised that can
cope with arbitrary inputs, any energy storage capacity and
finite time horizon. It is observed that the proposed algorithms
can outperform the other extant algorithms, such as Lyapunov
optimization and receding horizon control algorithms. In con-
trast to the deterministic online algorithms studied in this
paper, one can also consider randomized online algorithms
for energy storage management. However, it is shown that
randomized online algorithms cannot outperform deterministic
online algorithms for one-way minimum trading problem in
terms of the order magnitude of competitive ratio [18]. There-
fore, randomized online algorithms cannot give a superior
performance in the more general energy storage management
problem considered in this paper. In future work, the presence
of local power generators with non-linear generation cost will
be considered.
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APPENDIX

A. 1-Min Search and One-way Trading Problems

In 1-min search problem, a trader is searching for the
minimum price of some asset. At each time slot t, the trader
is presented a price p(t) and must decide whether or not to
accept this price. Once the trader decides to accept the price
p(t), the search ends and the trader’s cost is p(t). If the trader
does not accept any price for the first T − 1 time slots, he
needs to accept any price at time slot T . According to [17],
the online algorithm that accepts the first price below threshold√
Mm has a competitive ratio

√
ϕ, and any deterministic

online algorithm attains a competitive ratio at least Ω(
√
ϕ).

In one-way (minimum) trading problem, a trader needs to
exchange some currency to another currency. At each time
slot t the trader is presented a price p(t) and must decide
what portion of currency to be exchanged. [17] shows that
the search problem and one-way trading problem are closely
related: any deterministic (or randomized) one-way trading
algorithm can be interpreted as a randomized search problem
and vice versa. However, [18] shows that randomization does
not improve the competitive ratio of 1-min search problem
(and one-way trading problem) better than Ω(

√
ϕ).

ESP differs from 1-min search and one-trading problems in
several aspects: (1) there are multiple demands appearing over
time, (2) there is a limitation by the capacity of energy storage,
(3) there are operational constraints of charging/discharging
efficiencies and rates, and (4) there is also renewable energy.

B. One-shot Decomposition

Definition 1: Demand (a(t))Tt=1 is called a one-shot de-
mand, if there is a unique time slot tnz ∈ [1, T ] such that

a(t) =

{
0 if t 6= tnz
ā if t = tnz

(13)

where ā is the peak demand of (a(t))Tt=1.

The simplest form of demand is “one-shot demand”. 1-min
search and one-trading problems can be regarded as a special
case of ESP, when there is zero amount of renewable energy
(i.e., ρ = 0), a one-shot demand with peak demand ā = B, and
ideal energy storage (i.e., ηc = ηd = 1 and µc = µd = ∞).
We next decompose demand a(t) into a set of proper one-shot
demands, and then solve each individually.

Definition 2: Define a one-shot decomposition by:

1sDecompose
[
(a(t))Tt=1

]
= (tis, t

i
nz, ā

i)mi=1 (14)

where m is the number of decomposed one-shot demands, tinz
is the non-zero demand time slot and āi is the peak demand
of the i-th one-shot demand, and tis (≤ tinz) is the minimum
starting time slot for the i-th one-shot demand. 1sDecompose
is subject to the following constraints:
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(D1) a(t) can be reconstructed by the one-shot demands:

a(t) =
∑
i:tinz=t

āi for all t (15)

(D2) There is a non-decreasing order on the starting time slots
and non-zero demand time slots:

tis ≤ ti+1
s and tinz ≤ ti+1

nz for all i (16)

(D3) Let D be the set of one-shot demands that have non-
zero duration, namely, D , {i | tis < tinz}. Let D(i)
be the set of one-shot demands in D other than i, such
that the peak demands also lie within [tis, t

i
nz], namely,

D(i) , {j ∈ D\{i} | tis ≤ tjnz ≤ tinz}. If i ∈ D, then

∑
j:∈D(i)

āj + āi ≤ B

ηd
(17)

Eqn. (17) ensures that satisfying the other one-shot
demands in [tis, t

i
nz] using the energy storage still leaves

sufficient capacity in the energy storage for the i-th
one-shot demand. We set each tis to be as minimum as
possible subject to Eqn. (17). When tis = tinz, then the
one-shot demand needs to acquire energy from the grid.

1sDecompose can be constructed in a simple manner. Define
the accumulative demand curve by Acc[a(t)] =

∑t
t′=0 a(t′),

and Acc[a(t)] + B
ηd

is the upward shift by B
ηd

. The one-shot
demands are constructed by the rectanglizing the region sand-
wiched between Acc[a(t)] + B

ηd
and Acc[a(t)]. Each one-shot

demand (tis, t
i
nz, ā

i) corresponds to a rectangle of (tinz−tis)×āi,
which is maximally inscribed in the sandwiched region. See
Fig. 13 for an illustration.
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Fig. 13: An illustration of one-shot decomposition
1sDecompose, which decomposes a(t) into a set of
one-shot demands that satisfy (D1)-(D3). The decomposed
one-shot demands are truncated by Trunc[·] to subtract those
can be satisfied by the stored energy initially.

Since the initial level of energy storage x(0) may be non-
zero, we need to subtract the demand that can be satisfied
by the stored energy initially. We define a function Trunc[·],
which truncates the decomposed one-shot demands that sum
up to x(0)

ηd
(according to the order output by 1sDecompose).

See Fig. 13 for an illustration.

C. Proof of Theorem 1

Theorem 1: Suppose the terminal condition x(T ) = B and
ρ ≤ 1. Setting B̂ = B(1− ρ) and

θ =

√
ρ2(M −m)2 + 4Mm− ρ(M −m)

2
· ηc
ηd
, (18)

the competitive ratio of online algorithm Athb is

CR(Athb) =
1

2
(ρϕ+ ρ+

√
4ϕ+ ρ2(ϕ− 1)2) (19)

Proof: Let (tis, t
i
nz, ā

i)mi=1 = 1sDecompose
[
(a(t))Tt=1

]
.

First, we consider Âofl, which applies one-shot decompo-
sition 1sDecompose and Trunc, and then solves the each
decomposed one-shot demand by Aofl sequentially. Since the
one-shot decomposition satisfies (D1)-(D3), Âofl computes the
offline optimal solution for a(t), and

Cost
(
Âofl[a(t)]

)
=

m∑
i=1

Cost
(
Aofl[tis, t

i
nz, ā

i]
)

(20)

Algorithm 3 Âofl

[(
a(t), p(t), r(t)

)T
t=1

]
1: (tis, t

i
nz, ā

i)mi=1 ← Trunc
[
1sDecompose

[(
a(t)

)T
t=1

]]
2: for each i ∈ {1, ...,m} do
3:

(
xi(t), di(t), rib(t), via(t), vib(t)

)tinz
t=tis

← Aofl

[
x(tis − 1), (tis, t

i
nz, ā

i),
(
p(t), r(t)

)tinz
t=tis

]
4: for each t ∈ [tis, t

i
nz] do

5: x(t)← x(t) + xi(t), d(t)← d(t) + di(t)
6: rb(t)← rb(t) + rib(t), va(t)← va(t) + via(t)
7: vb(t)← vb(t) + vib(t)
. Subtract consumed renewable energy

8: r(t)← r(t)− rib(t)
. Subtract satisfied demand

9: a(t)← a(t)− di(t)− via(t)
10: end for
11: end for
12: return

(
x(t), d(t), rb(t), va(t), vb(t)

)T
t=1

Next, define algorithm A1d
thb as Athb, such that the input

is one-shot demand (ts, tnz, ā), and B̂ = ā(1 − ρ). Let
Âthb be the algorithm which applies one-shot decomposition
1sDecompose and Trunc, and then solves each decomposed
one-shot demand by A1d

thb sequentially. Note that Âofl and Âthb

are introduced for the convenience of proof, as both have
similar structures.

It follows that

Cost
(
Âthb[θ, a(t)]

)
=

m∑
i=1

Cost
(
A1d

thb[θ, tis, t
i
nz, ā

i]
)

(21)

Note that the terminal condition x(T ) = B can be equiva-
lently considered by adding a dummy demand a(T ) = B

ηd
in

the end, and hence, fully charging the energy storage will not
store unnecessary energy in the storage.

Since Athb and Âthb use the same threshold θ and the
one-shot decomposition satisfies (D1)-(D3), charging up the
energy storage to level B̂(1− ρ) with respect to demand a(t)
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Algorithm 4 A1d
thb[θ, (ts, tnz, ā), p(t), r(t)]

1: if t ≥ ts then
2: ā(t)←

{
ā if t = tnz
0 otherwise

3: return Athb[θ, ā(1− ρ), t, ā(t), p(t), r(t)]
4: end if

Algorithm 5 Âthb

[
θ,
(
a(t), p(t), r(t)

)T
t=1

]
1: (tis, t

i
nz, ā

i)mi=1 ← Trunc
[
1sDecompose

[(
a(t)

)T
t=1

]]
2: for each t ∈ [tis, t

i
nz] do

3: for each i ∈ {1, ...,m} do
4: if t ≥ tis and t ≤ tinz then
5:

(
xi(t), di(t), rib(t), via(t), vib(t)

)
← A1d

thb

[
θ, (tis, t

i
nz, ā

i), p(t), r(t)
]

6: x(t)← x(t) + xi(t), d(t)← d(t) + di(t)
7: rb(t)← rb(t) + rib(t), va(t)← va(t) + via(t)
8: vb(t)← vb(t) + vib(t), r(t)← r(t)− rib(t)
9: a(t)← a(t)− di(t)− via(t)

10: end if
11: end for
12: end for
13: return

(
x(t), d(t), rb(t), va(t), vb(t)

)T
t=1

in Athb is equivalent to charging up to level ā(1−ρ) for each
decomposed one-shot demand in Âthb. It follows that

Cost
(
Athb[θ, a(t)]

)
=

m∑
i=1

Cost
(
A1d

thb[θ, tis, t
i
nz, ā

i]
)

(22)

Hence, the ratio of total costs can be decomposed as follows.

CR(Athb) = max
σ

Cost
(
Athb[a(t)]

)
Cost

(
Aofl[a(t)]

) (23)

= max
σ

∑m
i=1 Cost

(
A1d

thb[tis, t
i
nz, ā

i]
)∑m

i=1 Cost
(
Aofl[tis, t

i
nz, ā

i]
) (24)

In the following, we first consider unconstrained charging
and discharging rates, where µc, µd ≥ B. With respect to each
one-shot demand (tis, t

i
nz, ā

i), there are two cases:
Case 1: Market price p(t) > θ for all t ∈ [tis, t

i
nz]. Then A1d

thb will
not store energy from the grid, but only from renewable
energy. Let γiāi be the amount of demand that can
be satisfied by renewable energy stored in the energy
storage, where γi ≤ 1. But A1d

thb needs to acquire energy
from the grid for the rest of demand (1 − γi)āi at a
market price at most M at time slot tinz. Aofl needs to
store energy from the grid for at least an amount of
(1−γi)āi ηdηc at a market price at least θ within [tis, t

i
nz).

Hence,

Cost
(
A1d

thb[tis, t
i
nz, ā

i]
)
≤ (1− γi)āiM

Cost
(
Aofl[tis, t

i
nz, ā

i]
)
≥ (1− γi)āiθ ηdηc

Case 2: Market price p(t) ≤ θ for some t ∈ [tis, t
i
nz]. Then A1d

thb

will store energy from the grid for an amount (1−ρ)āi ηdηc
at a market price at most θ, and store the rest of energy
from renewable energy, if available. However, if there

is insufficient renewable energy, A1d
thb needs to acquire

energy from the grid for an amount of [ρ− γi]+āi at a
market price at most M at time slot tinz, whereas Aofl

needs to acquire energy from the grid for an amount of
(1− γi)āi at a market price at least m. Hence,

Cost
(
A1d

thb[tis, t
i
nz, ā

i]
)
≤ (1− ρ)āiθ ηdηc + [ρ− γi]+āiM

Cost
(
Aofl[tis, t

i
nz, ā

i]
)
≥ (1− γi)āim

Note that γi may be larger than ρ for some i, but∑m
i=1 γ

iāi = ρ
∑m
i=1 ā

i.
Let A1 be the set of indices of one-shot demands in Case 1,
A2 be the set of indices of one-shot demands in Case 2 such
that γi < ρ, and A3 be the set of indices of one-shot demands
in Case 2 such that γi ≥ ρ. Define a ,

∑m
i=1 ā

i, and

a1 ,
∑
i∈A1

āi, a2 ,
∑
i∈A2

āi, a3 ,
∑
i∈A3

āi

b1 ,
∑
i∈A1

γiāi, b2 ,
∑
i∈A2

γiāi, b3 ,
∑
i∈A3

γiāi

Note that b1 ≤ a1, b2 ≤ ρa2, ρa3 ≤ b3 ≤ a3, a1 +a2 +a3 = a
and b1 + b2 + b3 = ρa.

Let

f(a1, b1, a2, b2) , ζ1(a1,b1)+ζ2(a2,b2)+ζ3(a−a1−a2,ρa−b1−b2)
ξ1(a1,b1)+ξ2(a2,b2)+ξ3(a−a1−a2,ρa−b1−b2)

,

where

ζ1(a1, b1) , (a1-b1)M, ξ1(a1, b1) , (a1-b1)θ ηdηc
ζ2(a2, b2) , (1-ρ)a2θ

ηd
ηc

+ (ρa2-b2)M, ξ2(a2, b2) , (a2-b2)m

ζ3(a3, b3) , (1-ρ)a3θ
ηd
ηc
, ξ3(a3, b3) , (a3-b3)m

Let F be the feasible set of (a1, b1, a2, b2) subject to b1 ≤ a1,
b2 ≤ ρa2 and ρ(a− a1 − a2) ≤ ρa− b1 − b2 ≤ a− a1 − a2.

The competitive ratio from Eqn. (24) is obtained as follows.

CR(Athb) = max
(a1,b1,a2,b2)∈F

f(a1, b1, a2, b2) (25)

≤ max
{θ ηdηc + ρM

m
,
M + ρθ ηdηc

θ ηdηc

}
(26)

where Eqn. (26) follows from Lemma 1.
By substituting (a1 = b1 = 0, a2 = (1 − ρ)a, b2 = 0, a3 =

b3 = ρa), we obtain f(a1, b1, a2, b2) =
θ
ηd
ηc

+ρM

m . Also, by
substituting (a1 = (1 − ρ)a, b1 = 0, a2 = b2 = 0, a3 =

b3 = ρa), we obtain f(a1, b1, a2, b2) =
M+ρθ

ηd
ηc

θ
ηd
ηc

. Hence,

CR(Athb) = max
{ θ ηdηc +ρM

m ,
M+ρθ

ηd
ηc

θ
ηd
ηc

}
.

An adversary will select the worst among the two options in
Eqn. (26). In order to minimize the competitive ratio, we set
θ
ηd
ηc

+ρM

m =
M+ρθ

ηd
ηc

θ
ηd
ηc

. Equivalently, (θ ηdηc )2+ρ(M−m)(θ ηdηc )−

Mm = 0, where θ =

√
ρ2(M−m)2+4Mm−ρ(M−m)

2
ηc
ηd

is the
positive root. Thus, the competitive ratio is

CR(Athb) =
θ ηdηc + ρM

m
=

1

2
(ρϕ+ ρ+

√
4ϕ+ ρ2(ϕ− 1)2)

Finally, we consider constrained charging and discharging
rates, where µc < B or µd < B. If µc < B, then there exists a
decomposed one-shot demand that needs to store energy from
the grid in at least two time slots, instead of one time slot with
unconstrained charging rate. In this case, the offline optimal
solution may not always be able to acquire energy from the
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grid at the time slot of the lowest market price. Threshold-
based Athb uses the same threshold θ throughout the process.
Therefore, the competitive ratio with constrained charging rate
is not higher than the one with unconstrained charging rate.

If µd < B, then some demand may not be satisfied by
energy storage as in the setting of unconstrained discharging,
but by acquiring energy from the grid at the moment the
demand arrives. This affects both online and offline algorithms
to the same extent. Therefore, the competitive ratio with
constrained discharging rate is not higher than the one with
unconstrained discharging rate.

Lemma 1:

max
(a1,b1,a2,b2)∈F

f(a1, b1, a2, b2) ≤ max
{θ ηdηc + ρM

m
,
M + ρθ ηdηc

θ ηdηc

}
where m ≤ θ ηdηc ≤

√
Mm.

Proof: The maximum of f(a1, b1, a2, b2) is attained ei-
ther as an interior point (i.e., a1 > 0, a2 > 0, a3 > 0) or a
boundary point (i.e., a1 = 0, or a2 = 0, or a3 = 0). Suppose
that the maximum is an interior point, then it is a stationary
point, namely, the partial derivative of f(a1, b1, a2, b2) at each
parameter is zero. However, by differentiation, one obtains

∂f(a1,b1,a2,b2)
∂a2

= Mρ
(θ
ηd
ηc
−m)(a1−b1)+am(1−ρ) 6= 0

Hence, the maximum of f(a1, b1, a2, b2) is a boundary point.
We consider a boundary point by three cases:

1) a1 = 0: This implies that b1 = 0 because 0 ≤ b1 ≤ a1.

f(0, 0, a2, b2) = ζ2(a2,b2)+ζ3(a-a2,ρa-b2)
ξ2(a2,b2)+ξ3(a-a2,ρa-b2)

(a)

≤ θ
ηd
ηc

+ρM

m

Inequality (a) follows from algebraic operations:(
ξ2(a2, b2) + ξ3(a− a2, ρa− b2)

)(
θ ηdηc + ρM

)
−
(
ζ2(a2, b2) + ζ3(a− a2, ρa-b2)

)
(m)

= mM
(
ρa− ρa2 − (ρ2a− b2)

)
≥ mMρ(a3 − b3) ≥ 0

2) a2 = 0: Also, b2 = 0 because 0 ≤ b2 ≤ a2.

f(a1, b1, 0, 0) = ζ1(a1,b1)+ζ3(a-a1,ρa-b1)
ξ1(a1,b1)+ξ3(a-a1,ρa-b1)

(b)

≤ M+ρθ
ηd
ηc

θ
ηd
ηc

Inequality (b) follows from algebraic operations:(
ξ1(a1, b1) + ξ3(a− a1, ρa− b1)

)(
M + ρθ ηdηc

)
−
(
ζ1(a1, b1) + ζ3(a− a1, ρa− b1)

)(
θ ηdηc

)
= b1

(
m(M + ρθ ηdηc )− ρ

(
θ ηdηc

)2)
−(a1 − (1− ρ)a)

(
m(M + ρθ ηdηc )−

(
θ ηdηc

)2) ≥ 0

Because b1 ≥ a1 − (1 − ρ)a ⇔ a3 ≥ b3, and θ ηdηc ≤√
Mm.

3) a3 = 0: Also, b3 = 0 because 0 ≤ b3 ≤ a3. Namely,
a2 = a− a1 and b2 = ρa− b1. By algebraic operations,
one can show that

f(a1, b1, a-a1, ρa-b1) ≤ max
{ θ ηdηc

m , M
θ
ηd
ηc

}
≤ max

{ θ ηdηc +ρM

m ,
M+ρθ

ηd
ηc

θ
ηd
ηc

}
Therefore, the upper bound of f(a1, b1, a2, b2) is the maxi-
mum of the three cases of boundary points.

D. Proof of Theorem 2

Theorem 2: Consider zero excessive renewable energy (ρ =
0). The competitive ratio of any deterministic online algorithm
A is CR(A) ≥ 1

2

(
1 +
√
ϕ
)
.

Proof: It suffices to show that it is true for certain inputs.
Consider µc, µd ≥ B, boundary conditions x(0) = x(T ) = B,
and the two following inputs with T = 3:

1) Input σ1 =
(
a1(t), p1(t)

)3
t=1

:

a1(1) = B
ηd
, a1(2) = 0, a1(3) = 0

p1(1) = M, p1(2) =
√
Mm, p1(3) = m

(27)

2) Input σ2 =
(
a2(t), p2(t)

)3
t=1

:

a2(1) = B
ηd
, a2(2) = 0, a2(3) = 0

p2(1) = M, p2(2) =
√
Mm, p2(3) = M

(28)

Note that any feasible deterministic online algorithm A will
discharge the energy storage from B to 0 for σ1 and σ2 to
satisfy the demands a1(1) and a2(1) because the market prices
p1(1) and p2(1) attain the maximum value M .

Then at t = 2, both σ1 and σ2 are indistinguishable. Let the
amount of energy charged to the energy storage by A at t = 2
be z. Both online and offline must store energy up to level B
from the grid because of the terminal condition x(T ) = B.

1) For σ1, Opt(σ1) = m B
ηc

and

Cost(A[σ1]) =
z

ηc

√
Mm+m

B − z
ηc

(29)

2) For σ2, Opt(σ2) =
√
Mm B

ηc
and

Cost(A[σ2]) =
z

ηc

√
Mm+M

B − z
ηc

(30)

The adversary can choose either σ1 or σ2 to maximize the
competitive ratio, whereas A needs to optimize z to minimize
the competitive ratio. Hence, the competitive ratio of A is
lower bounded by:

CR(A) ≥ minz

(
max

{ z
ηc

√
Mm+mB−z

ηc

m B
ηc

,
z
ηc

√
Mm+M B−z

ηc
B
ηc

√
Mm

})
= minz

(
max

{
z
√
Mm+m(B−z)

m , z
√
Mm+M(B−z)√

Mm

})
= 1

2

(
1 +
√
ϕ
)

(31)
where the minimum is attained at value z = B

2 , when
z
√
Mm+m(B−z)

m = z
√
Mm+M(B−z)√

Mm
.

E. Proof of Theorem 3

Theorem 3: Consider abundant excessive renewable energy
(ρ ≥ 1). The competitive ratio of any deterministic online
algorithm A is CR(A) ≥ ϕ.

Proof: Given deterministic online algorithm A, we input
p(t) = m, a(t) = 0, r(t) = 0 at every time slot t until it is
observed that A stores energy from the grid, say at time slot t′.
Then, we input r(t′+ 1) = B

ηc
, p(t′+ 2) = M,a(t′+ 2) = B

ηd
(which is always possible because ρ ≥ 1). If A ever stores
energy from the grid, then the competitive ratio is unbounded,
as the offline optimal cost is zero (from free renewable energy).
If A has a bounded competitive ratio, then A never stores
energy from the grid. In this case, the CR(A) = ϕ.

11


	Nomenclature
	I Introduction
	II Background and Related work
	III Problem Formulation
	III-A System Model
	III-B Problem Definition

	IV Online Algorithm
	V Lookahead Algorithm
	VI Empirical Evaluation
	VI-A Data Traces and Parameters
	VI-B Observations of Threshold Based Algorithm
	VI-C Observations of Lookahead Algorithm
	VI-D Impact of Unknown Parameters and Boundary Conditions
	VI-E Impact of Charging and Discharging Rate Constraints
	VI-F Impact of Charging and Discharging Efficiencies

	VII Conclusion
	References
	Appendix
	A 1-Min Search and One-way Trading Problems
	B One-shot Decomposition
	C Proof of Theorem ??
	D Proof of Theorem ??
	E Proof of Theorem ??


