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Abstract—We consider the problem of exploring travel demand
statistics to optimize ride-sharing routing, in which the driver of a
vehicle determines a route to transport multiple customers with
similar itineraries and schedules in a cost-effective and timely
manner. This problem is important for unleashing economical
and societal benefits of ride-sharing. Meanwhile, it is challenging
due to the need of (i) meeting travel delay requirements of
customers, and (ii) making online decisions without knowing
the exact travel demands beforehand. We present a general
framework for exploring the new design space enabled by
the demand-aware approach. We show that the demand-aware
ride-sharing routing is fundamentally a two-stage stochastic
optimization problem. We show that the problem is NP-Complete
in the weak sense. We exploit the two-stage structure to design
an optimal solution with pseudo-polynomial time complexity,
which makes it amenable for practical implementation. We carry
out extensive simulations based on real-world travel demand
traces of Manhattan. The results show that using our demand-
aware solution instead of the conventional greedy-routing scheme
increases the driver’s revenue by 10%. The results further show
that as compared to the case without ride-sharing, our ride-
sharing solution reduces the customers’ payment by 9% and the
total vehicle travel time (indicator of greenhouse gas emission)
by 17%. The driver can also get 26% extra revenues per slot by
participating in ride-sharing.

I. INTRODUCTION

Thanks to the fast growth of mobile Internet technologies,
ride-sharing systems such as UberPool [1] and LyftLine [2]
become popular in today’s urban mobility. Ride-sharing allows
multiple customers with similar itineraries and time schedules
to share a vehicle. It can significantly increase vehicles’
occupancy rate, alleviate traffic congestion, and reduce the
energy consumption of urban commuting. Take Manhattan
as an example. The study in [3] shows that allowing two
customers to share a taxi can reduce taxis’ cumulative trip
length by 40%, and the authors in [4] show that 3000 vehicles
each shared by at most four customers can meet 98% of the
demands that are currently served by 13000+ taxis.

Ideally, ride-sharing represents a win-win-win transportation
paradigm: customers pay less if they are willing to tolerate
minor extra delay, drivers achieve higher income rates by
transporting multiple customers in a single trip, and the
service provider like Uber boosts its service capacity. Two
key modules in the ride-sharing system are customer-vehicle
matching and ride-sharing routing.

The customer-vehicle matching module concerns with two
issues: (i) how to group customers to create proper ride-
sharing opportunities, and (ii) how to match the formed
groups to vehicles. Recent studies have been focusing on

designing and optimizing the matching module; see e.g., [3]–
[13]. Meanwhile, ride-sharing routing is to determine a path
for the driver to pick up and deliver customer(s) in the formed
group. Different choices of paths can lead to different cost or
profit to the driver and/or service providers. If the customer
travel demands are given, the driver can simply follow the
path with minimum cost or maximum profit. In [3], [4], a
shortest-path-like routing algorithm is applied for each formed
group. In the design in [3], [4], the matching and routing are
coupled with each other when doing ride-sharing decisions. In
particular, the weights used in matching are closely related to
the routing choices [3], [4].

One main difficulty of performing the matching and routing
is that future demands are unknown when making decisions.
Existing works outline two approaches to addressing this
difficulty. The first one is to assume that all future travel
demands are known at each matching decision epoch, i.e., in
an offline fashion; see e.g., [3]. Such assumption may not hold
in practice. The second one is to assume zero knowledge of
future demands, i.e., in a complete demand-oblivious fashion;
see e.g., [4], [6], [10], [11].

In our study, we observe that even though we cannot know
the future demands exactly, customer travel demands usually
show weekly and daily pattern [14] and thus their statistics can
be learned to improve the matching and routing decisions. In
particular, we advocate a demand-aware approach of leverag-
ing travel demand statistics to improve ride-sharing routing
performance. This introduces a new design space into the
important ride-sharing routing problem. We also discuss how
to use our demand-aware routing algorithm as a building block
to improve matching decisions with demand statistics in our
technical report [15]. We make the following contributions.
B In Sec. II, to explore the new design space in our

demand-aware approach, we propose a probabilistic model for
customer travel demands. The model is general and can be
used to incorporate demand statistics into ride-sharing routing
optimization.
B In Sec. III, we formulate the demand-aware ride-sharing

routing problem of revenue maximization subject to cus-
tomers’ travel delay constraints. It is fundamentally a two-
stage stochastic optimization problem. We prove that the
problem is NP-Complete, which implies that it is impossible
to obtain the exact solution in polynomial time unless P = NP.
B In Sec. IV, we propose a pseudo-polynomial-time algo-

rithm to solve the demand-aware ride-sharing routing problem
optimally with time complexity O(∆max

s,d |V|2 + |V|3), where
|V| is the number of nodes of the transportation network



(a) Road graph G0 = (V0, E0). (b) Region-based (constructed) graph
G = (V, E).

Fig. 1: An example of the road graph and the constructed region-based graph.
We divide the road graph into 6 regions as shown in Fig. 1(a). Each region
has a representative node marked as a black dot. The constructed region-based
graph in shown in Fig. 1(b). Each node in the region-based graph represents a
region in the road graph. Each edge (u, v) in the region-based graph represents
a fastest path in the road graph from the representative node of region u to that
of region v. For example, the red edge in the region-based graph in Fig. 1(b)
represents the red path in the road graph in Fig. 1(a).

and ∆max
s,d is the travel delay requirement of the original

customer (defined later as Rider-I). The complexity is pseudo-
polynomial in the sense that it is polynomial in the value of
the problem input ∆max

s,d , but is exponential in the bit length
of the problem input, i.e., log(∆max

s,d ) [16]. We remark that
the complexity is polynomial in the network size and thus the
solution is actually amendable for practical implementation.
As a byproduct, our results also show that the problem is NP-
Complete in the weak sense [17].
B In Sec. V, we carry out extensive simulations based

on real-world travel demand traces in Manhattan. We show
that as compared to a conventional greedy-routing scheme
without using demand statistics, our proposed demand-aware
ride-sharing routing solution improves the driver’s revenue by
10%. We further use our proposed solution as a building block
to show that as compared to the case without ride-sharing, ride-
sharing reduces the customers’ payment by 9%, increases the
driver’s revenue per slot by 26%, and reduces the total vehicle
travel time by 17%.

Due to the space limitation, all proofs are included in our
technical report [15].

II. SYSTEM MODEL

A. Network Model

We consider an urban road network modeled as a directed
road graph G0 , (V0, E0) with node set V0 and edge set E0, as
shown in Fig. 1(a). Time is divided into slots of equal length.
Each edge (u0, v0) ∈ E0 is a road segment from node u0 ∈
V0 to node v0 ∈ V0. We further assign a segment-dependent
travel time ξu0,v0 (unit: slots) to edge (u0, v0). To introduce
our customer travel demand model later in this section, we
construct a region-based graph G , (V, E) with node set V
and edge set E , as shown in Fig. 1(b). More specifically, we
partition the road graph G0 into multiple regions. For each
region, we assign a representative node from which all other
nodes in this region can be reached in a given number of slots,

TABLE I: Key Notations.
(Note that all nodes and edges below are on the region-based graph G)

Notation Meaning
δu,v Travel time of edge (u, v) (unit: slots)
β The discounting rate (unit: dollars per slot)
∆F

i,j The minimal travel time from node i to node j (unit: slots)

∆max
i,j

The maximum travel delay of the customer from node i
to node j (unit: slots)

UNRS
i,j

The non-ride-sharing payment of the customer from
node i to node j (unit: dollars)

URS
i,j (τ)

The ride-sharing payment of the customer from node i to
node j if the customer’s travel time is τ slots (unit: dollars)

Pi(t)
The probability that there is a customer request at node i
at slot t

Pi,j(t)
The probability that the customer is from node i to node j,
conditioning on that there is a customer request at node i
at slot t

P̂i(t)
The probability that there is a feasible customer request
at node i at slot t

wi,j(t)
The total revenue of the driver if picking up a new
customer from node i to j at slot t (unit: dollars)

wi(t)
The expected total revenue of the driver, conditioning on
that the driver picks up a new customer at node i
at slot t (unit: dollars)

e.g., 5 slots, represented by the black dots in Fig. 1(a)1. Then
each node v ∈ V in the region-based graph G represents a
region in the road graph G0. We add a directed edge (u, v)
from node u to node v in G, as illustrated in 1(b), if there
exists one or multiple paths from the representative node of
the former corresponding region to that of the latter one in the
road graph such that the major fraction of the path is within
those two regions2. Let δu,v be the travel time of the fastest
path. All our later modeling and analysis are based on the
region-based graph G unless otherwise specified.

B. Ride-sharing Scenario

Suppose that a driver has already picked up a customer
(Rider-I) at slot 0 at the source node s and needs to transport
Rider-I to the destination node d, as exemplified in Fig. 2.
Consider the ride-sharing scenario where the driver may pick
up another customer (Rider-II) along its way3. Conventionally,
without considering the likelihood of encountering Rider-II,
the driver follows a fastest/shortest path from s to d to deliver
Rider-I. Consequently, there may be little chance of picking
up Rider-II to share the ride by following such a demand-
oblivious route, resulting in sub-optimal ride-sharing revenue
for the driver and failure to maximize the social benefit of
ride-sharing. In this paper, we advocate demand-aware ride
sharing routing. That is to take likelihood of encountering
Rider-II into account when planning the route between s and d
of Rider-I. Being demand-aware can improve the ride-sharing

1For a general urban road network, constructing the regions is equivalent to
solving a clustering problem to find a set of clusters. Location points within
each cluster are close to each other. The problem can be solved by using
celebrated algorithms like k-means [18]. For a dense and regular urban road
network like Manhattan, one can simply partition the district into regions of
equal area. We adopt this method in the simulation in Sec. V.

2More specifically, for any two nodes u, v ∈ V , we denote T (u, v) as the
minimal travel time from the representative node of region u to that of region
v in the road graph. Then there is an edge from u to v in the region-based
graph if T (u, v) ≤ α · (T (u, k) + T (k, v)) for any region k ∈ G. In our
simulation in Sec. V, we set α = 0.8.

3We discuss how to extend our solution into the case of picking up two or
more customers in our technical report [15].



s

i

2

d

j

4

Planning Path
Ride-sharing Path

Rider-I

Rider-II

1

3

1

Fig. 2: The system model for ride-sharing routing on the region graph. The
driver has already picked up a customer (Rider-I) at the source node s and
should deliver the customer to the destination node d. The driver then follows
a planning path (s → 1 → i → 4 → d) to deliver Rider-I. Suppose that at
node i, the driver meets the a customer (Rider-II) whose destination is node
j. Then the driver picks up Rider-II and the service provider re-optimizes the
routing choice. The output path is the ride-sharing path. Here at node i, the
driver changes the path from the planning path (s → 1 → i → 4 → d) to
the ride-sharing path (i→ 3→ j → d). Following the ride-sharing path, the
driver delivers both Rider-I and Rider-II before their deadlines.

performance in terms of increasing a driver’s revenue and
reducing the total travel distance, as showed in our simulation.

C. Travel Demand Model
A travel demand is consisting of a customer’s source,

destination and pick-up time. We assume that travel demands
follow time-dependent statistics patterns. Specifically, at slot
t and at node i, there is a travel demand with probability
Pi(t)

4 and the customer goes to node j with probability
Pij(t). Note that Pij(t) is a conditional probability and we
have

∑
j∈V Pij(t) = 1. In the rest of this paper, we assume

that Ps(0) = 0 (i.e., no other customer is at node s at slot
0). Otherwise, the driver can form a ride-sharing trip of two
customers at slot 0 and there is no need to perform demand-
aware routing. We further assume that customer arrivals are
independent at different nodes and different time slots.

For any customer travel from node i to node j, we associate
a maximum travel delay ∆max

i,j . That is, if the driver picks up
this customer, she must transport the customer in ∆max

i,j slots.
Note that UberPool has already provided such “Arrive By”
service [19].

D. Payment Model
For any customer from node i to node j, we define the

Non-Ride-Sharing payment as UNRS
i,j , which is the amount of

money (unit: dollars) that the customer needs to pay to the
service provider such as Uber and Lyft (or equivalently to the
driver)5 when he is served by the driver without participating
in ride-sharing. Note that in practice, the service provider like
Uber and Lyft will charge the customers according to the total
travel time and total travel distance, which further depend on

4Note that we incorporate region-based graph G to consider the travel
demand patterns since for each node on the road graph G0, it’s too small
to conclude its statistic patterns.

5Note that the driver normally can get certain portion of the payment from
the served customer. For example, Uber drivers can get 80% of trip payment
[20]. In this paper, ignoring the constant revenue-splitting coefficient and
without loss of generality, we interchangeably use service provider’s revenue
and driver’s revenue.

the current traffic condition. In this paper, we assume stable
traffic condition and as such the edge travel time δu,v is
constant. Without ride-sharing, the driver transports a customer
from node i to node j along the fastest path and the travel
delay is also constant. Thus, UNRS

i,j is time-invariant.
We define the Ride-Sharing payment of a customer from

node i to node j as

URS
i,j (τ) , UNRS

i,j − β · (τ −∆F
i,j), (1)

where τ is the travel time of the customer, β is the discounting
rate (unit: dollars per slot), and ∆F

i,j is the minimal travel
time from node i to node j. Eq. (1) shows that the payment
reduction of the customer is proportional to the extra travel
time when participating in ride-sharing. That is, the rider gets
more payment reduction if she is detoured more. We further
show that it is a fair mechanism to the customers in the sense
that the ratio of the cost (including payment and travel delay)
to the amount of service (indicated by the minimum travel
time) are the same among different customers (see more details
our technical report [15]. ). In contrast, the current scheme
used by UberPool or LyftLine is not a fair mechanism. As
it charges a customer according to his total travel time and
distance [21], Rider-I may not only suffer from longer travel
delay, but also have to pay more.

In addition, to avoid the ride-sharing payment URS
i,j (τ) from

being negative, we assume that the maximum travel delay
∆max
i,j and the discounting rate β, set by the service provider,

satisfy

0 ≤ β ≤
UNRS
i,j

∆max
i,j −∆F

i,j

,∀i, j ∈ V. (2)

We summarize key notations in Tab. I.

III. PROBLEM FORMULATION

In this work, we consider a Demand-Aware Ride-sharing
rouTing problem, denoted as DART. Our objective is to
maximize the expected total revenue of the service provider
(or equivalently the revenue of the driver)6. Our constraint is
to deliver Rider-I and Rider-II (if any) before their deadlines.
Here we assume that when the driver picks up Rider-I, there
is no available Rider-II such that they can form a ride-sharing
trip right away. Thus, the service provider should plan a path
against the uncertainty of future travel demands. If the driver
indeed picks up Rider-II, the service provider optimizes the
route again to deliver both riders and maximize its revenue.
Such a practical consideration suggests two design spaces in
our problem:
• A planning path: at slot 0, the service provider plans a

path for the driver to transport Rider-I from s to d, with
future travel demand statistics taken into account.

• A ride-sharing path: if the driver picks up Rider-II at
node i traveling to node j at slot t, the service provider
determines a ride-sharing path such that the driver can
deliver both Rider-I and Rider-II before their deadlines
and maximize his total revenue.

6For a service provider, its cost is slightly related to a single trip. Thus, we
omit the cost here and aim to maximize its revenue. For a driver, we discuss
how to take her cost into account and maximize her profit in our technical
report [15].



Note that both paths are on the region graph, where each node
represents a region. In practice, the driver may need to pick up
the customer in any location within the region. It may incur
minor extra delay, an upperbound of which can be included
when setting the travel delay requirement.

In this paper, we assume that a driver will pick up the first
feasible customer appeared along the planning path, so as to
minimize the waiting time of the customer. A customer at
node-i, whose destination node is j, is feasible if there exists
a path starting at node i and passing through both node d and
node j such that both customers can be delivered in time.

Overall, in our problem, the service provider needs to deter-
mine a planning path for the driver first. Then depending on
when and where the driver can meet the first feasible customer,
the service provider further determines a ride-sharing path to
deliver both customers. This naturally suggests a two-stage
structure for problem formulation [22]. That is, the service
provider designs a planning path to deliver Rider-I at Stage-
1 by considering future demand statistics and the expected
revenue abstained from Stage-2, where a ride-sharing path is
determined to deliver both riders.

A. Stage 2
If the driver picks up Rider-II at node i at slot t, whose

destination is node j, then the Stage-2 problem is to select a
path from node i to both node d and node j so as to maximize
the service provider’s total revenue (or equivalently the driver’s
total revenue). We denote the problem as Stage-2(i, j, t),
which can be formulated as

max
PRS∈Pi,j,d

URS
s,d(t+ τi,d(PRS)) + URS

i,j (τi,j(PRS)) (3a)

s.t. τi,j(PRS) ≤ ∆max
i,j , (3b)

t+ τi,d(PRS) ≤ ∆max
s,d , (3c)

where Pi,j,d is the set of the paths that start at node i and
pass through both node d and node j7, and τi,j(PRS) (resp.
τi,d(PRS)) is the total travel time from node i to node j (resp.
node d) along the path PRS ∈ Pi,j,d.

Now we have the following two cases:
• If there exists a path PRS ∈ Pi,j,d such that

Stage-2(i, j, t) is feasible (i.e., both customers can be
delivered in time), then the customer from node i to node
j at slot t is feasible and the driver will pick up this
customer as Rider-II.

• Otherwise, this customer is not feasible and the driver
continues along the planning path.

We denote the optimal value of problem Stage-2(i, j, t)
as wi,j(t). It represents the total revenue of the driver upon
picking up Rider-II from node i to node j at slot t.

Before we introduce our Stage-1 formulation, we denote
P̂i(t) as the probability that the driver can pick up a feasible
customer at node i at slot t, and it is given by

P̂i(t) , Pi(t) ·
∑

j∈V:j is feasible at slot t

Pi,j(t), (4)

7The path in Pi,j,d could first reach either node j or node d.

where Pi(t) is the probability that there is a customer request
at node i at slot t and

∑
j∈V:j is feasible at slot t Pi,j(t) is the

probability that the customer is feasible.
Further, conditioning on that the driver picks up a feasible

customer at node i at time t, the expected total revenue is
defined as

wi(t) ,
∑

j∈V:j is feasible at slot t

Pi(t) · Pi,j(t)
P̂i(t)

· wi,j(t), (5)

where Pi(t)·Pi,j(t)

P̂i(t)
is the probability that there is a travel

demand at node i at slot t traveling to node j, conditioning on
that the driver picks up a feasible customer at node i at slot t.

B. Stage 1
In Stage 1, the service provider needs to determine a

planning path for the driver to deliver Rider-I from node s
to node d at slot 0. Suppose that the planning path is denoted
as Pplanning = (v0, v1, v2, · · · , vn, vn+1) where v0 = s and
vn+1 = d and there are n intermediate nodes. Then along this
planning path, the driver will reach node vi (i ∈ [1, n+ 1]) at
slot

tvi , δv0,v1 + δv1,v2 + · · ·+ δvi−1,vi =

i∑
k=1

δvk−1,vk . (6)

For any i ∈ [1, n], the probability that the driver will pick
up a feasible new customer at node vi at slot tvi is

(1− P̂v1(tv1)) · (1− P̂v2(tv2)) · · · (1− P̂vi−1
(tvi−1

)) · P̂vi(tvi),

and the expected total revenue conditioning on that the driver
picks up a feasible new customer at node vi at slot tvi is
wvi(tvi) as defined in (5). The probability that the driver does
not pick up any feasible new customer along the planning path
is

(1− P̂v1(tv1)) · (1− P̂v2(tv2)) · · · · (1− P̂vn(tvn)).

The (expected) total revenue conditioning on that the driver
does not pick up any feasible new customer is UNRS

s,d − β ·
(tvn+1 − ∆F

s,d) as defined in (1). Namely, even though the
driver does not pick up any new customer, Rider-I with a solo
ride still pays the ride-sharing price [23].

Based on the total expectation theorem, the expected to-
tal revenue of the driver with planning path Pplanning =
(v0, v1, v2, · · · , vn, vn+1) is

Expected-total-revenue(Pplanning)

=

n∑
i=1

i−1∏
j=1

(1− P̂vj (tvj ))

 P̂vi(tvi)wvi(tvi)

+

n∏
j=1

(1− P̂vj (tvj ))
[
UNRS
s,d − β · (tvn+1

−∆F
s,d)
]
.

(7)

Then our State-1 problem (or the whole DART problem)
is formulated as

max
Pplanning∈Ps,d

Expected-total-revenue(Pplanning) (8a)

s.t. tvn+1
≤ ∆max

s,d , (8b)



where Ps,d is the set of all s − d paths and constraint (8b)
restricts that the driver can deliver Rider-I before his deadline
along the planning path. Note that both the total number
of intermediate nodes n and the node-vi arriving time tvi
as calculated in (6) depend on the selected planning path
Pplanning.

We now present the hardness.
Theorem 1: Problem DART is NP-complete.

Proof: We show that the well-known restricted shortest
path problem [17], [24] is a special case of our problem. Since
restricted shortest path problem is NP-complete, our problem
DART is thus also NP-complete. The detailed proof is shown
in our technical report [15].

Theorem 1 shows that it is impossible to solve DART
optimally in polynomial time unless P = NP.

IV. OPTIMAL DEMAND-AWARE RIDE-SHARING ROUTING

In this section, suggested by the two-stage structure of
our problem, we propose a dynamic-programming-based al-
gorithm to solve our problem DART optimally in pseudo-
polynomial time. We first present an efficient shortest-path-
like solution to solve the Stage-2 problem in (3) optimally
and then present our dynamic-programming-based algorithm
to optimally solve our Stage-1 problem in (8), i.e., DART.
Note that as a byproduct, our results show that problem DART
is actually NP-complete in the weak sense [17].

A. Solution to the Stage-2 Problem
In problem Stage-2(i, j, t) formulated in (3), we need to

find a path PRS ∈ Pi,j,d from node i to both node d (the
destination of Rider-I) and node j (the destination of Rider-II).
If we cannot find a path PRS such that both (3b) and (3c) are
satisfied, i.e., both Rider-I and Rider-II can be delivered before
their deadlines, then problem Stage-2(i, j, t) is infeasible.
Otherwise, problem Stage-2(i, j, t) is feasible.

According to our objective in (3a) and the ride-sharing
payment in (1), we have

URS
s,d(t+ τi,d(PRS)) + URS

i,j (τi,j(PRS))

= [UNRS
s,d − β · (t+ τi,d(PRS)−∆F

s,d)] + [UNRS
i,j − β · (τi,j(PRS)−∆F

i,j)]

= [UNRS
s,d + UNRS

i,j + β(∆F
s,d + ∆F

i,j − t)]︸ ︷︷ ︸
Constant term

−β [τi,d(PRS) + τi,j(PRS)]︸ ︷︷ ︸
Path-dependent term

.

Thus, problem Stage-2(i, j, t) is equivalent to finding a ride-
sharing path to minimize the summation of the travel time of
Rider-I from node i to node d and the travel time of Rider-II
from node i to node j while satisfying their delay constraints
in (3b) and (3c). Thus, both the objective and the constraints
in problem Stage-2(i, j, t) suggest delivering both riders as
soon as possible. We then define the following two paths

P1 , (PF
i,j ,PF

j,d), and P2 , (PF
i,d,PF

d,j). (9)

Here in (9), we denote PF
u,v as the fastest path from node u to

node v and denote (P,P ′) as a path that follows sub-path P
first and then sub-path P ′. Thus, P1 is the path that reaches
node j first by following the fastest path from i to j and then
reaches node d by following the fastest path from j to d;
while P2 is the path that reaches node d first by following the
fastest path from i to d and then reaches node j by following

Algorithm 1 Algorithm to Stage-2(i, j, t)

1: Get the fastest paths PF
i,j ,PF

j,d,PF
i,d, and PF

d,j (using the
shortest path algorithm)

2: Construct path P1 = (PF
i,j ,PF

j,d) and path P2 =

(PF
i,d,PF

d,j)
3: if P1 satisfies both (3b) and (3c) then
4: if P2 satisfies both (3b) and (3c) then
5: if τi,d(P1) + τi,j(P1) < τi,d(P2) + τi,j(P2) then
6: return P1

7: else
8: return P2

9: end if
10: else
11: return P1

12: end if
13: else
14: if P2 satisfies both (3b) and (3c) then
15: return P2

16: else
17: return Infeasible
18: end if
19: end if

the fastest path from d to j. By the following theorem, we
only need to consider P1 and P2 to check the feasibility and
find the optimal solution of problem Stage-2(i, j, t).

Theorem 2: Stage-2(i, j, t) is feasible if and only if either
P1 or P2 satisfies both (3b) and (3c). If Stage-2(i, j, t) is
feasible, then either P1 or P2 is an optimal solution.

Proof: After diving paths in Pi,j,d into two classes
according to their orders of reaching d and j, we easily see
that P1 and P2 are the best paths in their classes respectively.
Please see our technical report [15] for more details.

We summarize the above understanding into Algorithm 1 to
solve Stage-2(i, j, t) optimally. The time complexity mainly
comes from line 1 where we need to obtain four fastest paths.
By adapting the best fastest-path algorithm based on Dijkstra’s
algorithm with Fibonacci heap [25], our Algorithm 1 has a
complexity of O(|E| + |V| log |V|). In practice, we can pre-
compute and store the fastest paths of all pairs with complexity
O(|V|3) using Floyd-Warshall algorithm [25]. Consequently
Stage-2(i, j, t) can be solved with a complexity of O(1).

B. Solution to the Stage-1 Problem
For Stage-1, we propose a dynamic-programming-based al-

gorithm to solve the problem optimally in pseudo-polynomial
time. Define fi(t) as the the maximum expected total revenue
that the driver can obtain if she reaches at node i at slot t and
no new customer has appeared yet.

Then at node i at slot t, the driver possibly faces two
situations:
• A feasible customer at node i at slot t, which happens

with probability P̂i(t) (see (4)). In this situation, the
driver will pick up this feasible customer as Rider-II and
her expected total revenue is wi(t) (see (5)).

• No feasible customer at node i at slot t, which happens
with probability (1 − P̂i(t)). In this situation, the driver
cannot pick up any feasible customer at node i. She then



Algorithm 2 Algorithm to Stage-1/DART

1: Get the fastest paths of all (i, j) pairs where i, j ∈ V
2: Solve Stage-2(i, j, t) by Algorithm 1, ∀i, j ∈ V, t ∈

[0,∆s,d]
3: Get P̂i(t) according to (4), ∀i ∈ V, t ∈ [0,∆max

s,d ]
4: Get wi(t) according to (5), ∀i ∈ V, t ∈ [0,∆max

s,d ]
5: Initialize fi(t) = −∞,∀i ∈ V, t ∈ [0,∆max

s,d ]

6: Set fd(t) = UNRS
s,d − β · (t−∆F

u,v), ∀t ∈ [0,∆max
s,d ]

7: for t = ∆max
s,d ,∆

max
s,d − 1,∆max

s,d − 2, · · · , 0 do
8: for i ∈ V \ {d} do
9: for j ∈ out(i) do

10: if t+ δi,j ≤ ∆max
s,d then

11: fi(t) = max{fi(t), P̂i(t)wi(t) + (1 −
P̂i(t))(fj(t+ δi,j))}

12: end if
13: end for
14: end for
15: end for
16: return fs(0) /* the corresponding planning

path can also be returned, but we omit
the procedures here for simplicity */

continues along the planning the path and goes to one
of i’s outgoing nodes, say node j. The driver spends δi,j
slots to travel across edge (i, j) and reaches node j at slot
(t + δi,j). The driver’s expected total revenue is fj(t +
δi,j), according to our definition of fi(t).

Based on these two situations, we obtain the following
dynamic-programming structure for fi(t). Let out(i) be the
set of all outgoing nodes of i,

fi(t) = max
j:j∈out(i),t+δi,j≤∆s,d

{
P̂i(t)wi(t)+

(1− P̂i(t))(fj(t+ δi,j))
}
,∀t,∀i ∈ V \ {d}, (10)

with initial condition

fd(t) = URS
s,d(t) = UNRS

s,d − β · (t−∆F
u,v), t = 0, 1, ...,∆s,d.

Clearly, our objective is to calculate fs(0), which is the
maximum revenue the driver can get. Based on the recursive
structure in (10), we design a dynamic-programming algorithm
(Algorithm 2) to obtain fs(0). We show the correctness and
the time complexity of Algorithm 2 in the following theorem.

Theorem 3: Algorithm 2 solves problem DART optimally
and the time complexity is O(∆max

s,d |V|2 + |V|3).
Proof: Please see our technical report [15].

Our proposed algorithm (Algorithm 2) has a pseudo-
polynomial time complexity in the sense that the complexity
is polynomial in the value of the problem input ∆max

s,d , but is
exponential in the length of the problem input, i.e., log(∆max

s,d )
[16]. However, we should note that the complexity of Algo-
rithm 2 is polynomial in the network size and thus the solution
is amenable for practical implementation. Note that Theorem 3
together with Theorem 1 also shows that our problem DART
is actually NP-complete in the weak sense [17].

V. SIMULATION

We carry out numerical experiments based on real-world
data traces to evaluate the performance of our proposed solu-
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Fig. 3: Probability heat maps for Pi(t) in Manhattan.

tion and the benefit of ride-sharing. Our objectives are two-
fold. First, we compare the performance of our algorithm with
that of a demand-oblivious greedy-routing scheme [4], which
serves as a baseline. Second, using our proposed solution
as a building block, we gauge the benefit of ride-sharing
to customers, drivers and the society. As compared to the
evaluation in [4] [3], our simulation uniquely demonstrates the
benefit of exploiting demand statistics to improve ride-sharing
performance.

A. Dataset and Methodology
Dataset. We use a public dataset of taxi trips in Manhattan,

New York City [26]. We consider 10.6 GB data of 58, 271, 050
trips in 6 months (2016-01-01 to 2016-06-30). For each trip,
we obtain the pick-up time and location as well as the drop-off
location. We use such trip information to construct the travel
demand model (Sec. II-C).

We get the Manhattan map from OpenStreeMap [27] and
then construct the road graph G0 using the open-sourced Net-
workX [28] and OSMnx [29] packages. For each edge (u0, v0)
in the node-based graph G0, we get its length du0,v0 (km). We
further assume that the taxi speed is 15km/h according to a
mobility report from NYC Department of Transportation [30].
The travel time of edge (u0, v0) is then estimated as

ξu0,v0 =

⌈
60 · du0,v0

15

⌉
(minutes).

Next we divide the whole area of 59.5 km2 into small
rectangular regions of length 700 meters and width 600 meters.
And we have in total 147 regions. We then construct the
region-based graph G according to the procedure in Sec. II-A.
Recall that the travel time δu,v (minutes) of each link (u, v) ∈
E in the region-based graph G is the travel time of the fastest
path from the representative node of region u to that of region
v in the road graph.

Demand Statistics. We set the slot length to be one minute
and consider one whole day as the time span. Thus, we have
in total 24 × 60 = 1440 slots. In our problem formulation,
we need to input parameters Pi(t) and Pi,j(t)

8. Based on

8Note that in our system model, slot t is relative to the start time of Rider-I
at node s, which we denote as slot 0. However, here in our simulation, we
use absolute time, i.e., slot t is the t-th minute in a day (t ∈ [1, 1440]). Thus
if the start time of Rider-I at node s is slot t0, then we should interpret Pi(t)
in our system model as Pi(t+ t0) in our simulation here.
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Fig. 4: Average revenues over time with α = 1.3 and β = 0.05. Empirically,
our proposed algorithm gains 10% more revenue than the fastest path
algorithm.

our dataset with 182-day trip information, for any node
i ∈ [1, 147], any slot t ∈ [1, 1440] and any day k ∈ [1, 182],
we define

Ai,t,k =

 1, If there is at least one customer
at node i at slot t in day k;

0, Otherwise.

Then we estimate Pi(t) as
∑182

k=1 Ai,t,k

182 , which is the frequency
of days when at least a customer appears at node i at slot t
(e.g., 2 pm).

We further estimate Pi,j(t) as the average ratio of the
number of customers at node i at slot t that go to node j
to the total number of customers at node i at slot t among all
those days when there exists at least one customer at node i
at slot t.

We show Pi(t) for the whole 147 regions at 2:00 a.m. (off-
peak hour) and 6:00 p.m. (peak hour) in Fig. 3. As seen, at 6:00
p.m., there are more travel demands in the lower Manhattan
and midtown Manhattan than the upper Manhattan. Even at
2:00 a.m., the demand in the lower Manhattan is quite high,
as it is the business and cultural center of the City of New
York.

Parameters. In our simulation, we set the maximum travel
delay from node i to node j, ∆max

i,j as

∆max
i,j = α ·∆F

i,j , ∀i, j ∈ V, (11)

where ∆F
i,j is the minimum travel delay from node i to j and

α ≥ 1 is a parameter to tune the maximum travel delay. We
set the non-ride-sharing payment UNRS

i,j as

UNRS
i,j = 0.4 ·∆F

i,j , ∀i, j ∈ V, (12)

where the coefficient 0.4 (customer’s travel payment per
minute) is in line with the real-world New York taxi rate [31].

We further use the tuple (s, d, t0) to denote a problem
instance where s, d, and t0 are respectively the source node,
the destination node, and the pick-up time/slot of Rider-I.
Then in following subsections, we randomly choose 1000
(s, d) pairs and t0 at each hour among a day, i.e., in total
1000 × 24 = 24, 000 problem instances. We evaluate our
algorithm and other algorithms on those 24, 000 instances and
compute the average performance.

B. Performance Evaluation of Our Algorithm as Compared to
the Baseline

In this paper, we propose a demand-aware ride-sharing
routing scheme by exploiting the demand statistics. As we
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Fig. 5: Average revenues with different α and β.

mentioned in Sec. II-B, in the common practice without
demand statistics, the driver “greedily” follows the short-
est/fastest path from s to d to deliver Rider-I and potentially
picks up new customers along the way. To see the benefit
of exploring demand statistics, we use this greedy-routing
scheme as a demand-oblivious baseline and compare it with
the demand-aware algorithm we propose.

For both our algorithm and the baseline algorithm, in each
problem instance (s, d, t0), we first get the theoretical revenue
according to our problem DART. We then apply the two
algorithms to the real-world trace and obtain the empirical
revenue, as the average revenue of the driver over 182 days.
(See our technical report [15] for more details).

Fig. 4 shows the revenues of our algorithm and the baseline
algorithm over 24 hours of a day, averaged over 182 days. As
we can see, on average our demand-aware algorithm achieves
10% more revenue for the service provider (or equivalently
the driver) than the baseline demand-oblivious algorithm.
This shows that exploiting demand statistics indeed brings
substantial benefits in ride-sharing. While one may think 10%
is not significant, the detailed simulation result shows that
the driver tends to pick up a Rider-II with much shorter
travel distance than that of Rider-I, because travel distances
of most demands in the dataset are short. Hence, 10% extra
revenue is quite substantial under this setting. One of our
future work is to consider sequential ride-sharing for the cases
that Rider-I travels a long distance. We also observe that the
theoretical revenue is close to the empirical one, which verifies
the effectiveness of our modeling approach. In addition, we
observe that in the morning rush hours (6 - 9 a.m.), the driver
can obtain high revenue, due to the high travel demand.

We further evaluate the impacts of parameters α and β to
the revenue, shown in Fig. 5. Recall that we set the maximum
travel delay of the customer from node u to node v to be
α · ∆F

u,v (see (11)). If we increase α, we allow more travel
delay of the customers, which potentially increases the chance
of ride-sharing. Thus, the driver may get more revenue, as
shown in Fig. 5(a). Meanwhile, as α increases, the travel time
may increase (as shown later in Fig. 6(a)) and the customers
get more discounts (i.e., the driver gets less revenue). Overall,
this leads to a diminishing return observation in Fig. 5(a). Also,
recall that β is the discounting rate for the customer (see (1)).
Thus, larger β leads to less revenue of the driver, as shown
in Fig. 5(b). Meanwhile, when β increases, the driver has
incentive to travel along a faster path and thus the customer’s
travel time decreases (as shown later in Fig. 6(b)). Overall,
the driver’s revenue decreases almost linearly as β increases.
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Fig. 6: Customer-time ratios and customer-payment ratios with different α
and β.

C. The Benefit of Ride-sharing to Customers
We use our solution as a tool to evaluate the benefit of ride-

sharing. From a customer’s perspective, we evaluate his travel
time and payment in both ride-sharing and non-ride-sharing
scenarios. In the non-ride-sharing scenario, we assume that
each customer shall travel along the fastest path and thus the
customer from node i to node j experiences a travel time of
TNRS
i,j = ∆F

i,j , and the payment is UNRS
i,j = 0.4·∆F

i,j (see (12)).
In the ride-sharing scenario and each problem instance

(s, d, t0), we run our algorithm using real-world data trace and
then get the actual travel time of the customer(s). The travel
time of a ride-sharing customer (which could be either Rider-
I or Rider-II) from node i to node j is denoted as TRS

i,j . The
ride-sharing payment of a customer from node i to node j, i.e.,
URS
i,j (TRS

i,j ) is calculated according to (1). We then compute the
ratios of the travel time (and payment) under the ride-sharing
scenario to those under non-ride-sharing as

γTi,j =
TRS
i,j

TNRS
i,j

, and γPi,j =
URS
i,j (TRS

i,j )

UNRS
i,j

.

For Rider-I, we obtain the average of γTi,j (resp. γPi,j) among
24000 instances, denoted as γT1 (resp. γP1 ), which we call
the Rider-I customer-time ratio (resp. the Rider-I customer-
payment ratio). Similarly, for Rider-II, we obtain the Rider-
II customer-time ratio γT2 and the Rider-II customer-payment
ratio γP2 . The results responding to different parameters α and
β are shown in Fig. 6.

Fig. 6 shows that, as compared to the non-ride-sharing
case, customers participating in ride-sharing can save up to
9% in payment if they can tolerate 17% more travel time.
In addition, as seen from Fig. 6(a), When α increases and
thus the maximum travel delay is larger, the driver can deliver
customers with more detours, resulting in longer travel time
of the customers (i.e., the customer-time ratio increases).
According to our payment mechanism defined in (1), the
customer’s payment is lower when the travel time increases
for fixed discounting rate β, i.e., the customer-payment ratio
decreases. Further, from Fig. 6(b), we can see that both the
customer-time ratio and customer-payment ratio decrease as
β increases. This is because: (i) the customer’s travel time
decreases if the discounting rate β increases as the driver tends
to detour less, and (ii) the customer pays less when β increases
and saves less when the travel time decreases according to (1)
in our payment model (Section II-D), but the overall effect is
that the customer’s payment will decrease as β increases.

Also, we can see that Ride-I suffers more extra delay.
Intuitively, Rider-II only gets detoured when the driver de-
livers Rider-I first, but for Rider-I, the driver may detour to
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Fig. 7: Drivers’ revenues per slot with different α and β.
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Fig. 8: Vehicle-time ratio with different α and β.

pick up Rider-II and may also deliver Rider-II first. Besides,
our demand-aware routing strategy generates a planning path
which detours from the fastest path of Ride-I so as to explore
more ride-sharing opportunities, leading to a extra delay of
Rider-I. As a compensate, Rider-I gets more discount accord-
ing to our payment scheme (Section II-D) and as shown in
Fig. 6, which shows the fairness of our payment scheme.

D. The Benefit of Ride-sharing to Drivers
In Sec. V-B, we have evaluated the total revenue of drivers.

However, besides the total revue, drivers also care about their
revenue per unit time [32]. Thus, in this section, we evaluate
the revenue per slot of drivers in both ride-sharing and non-
ride-sharing scenarios.

In the non-ride-sharing scenario, as we set up in (12), the
revenue per slot is fixed as 0.4. In the ride-sharing scenario
and each problem instance, we run our algorithm over the
real-world data trace and then get the actual total travel time
and revenue of the driver. Then the revenue per slot of the
driver equals to the driver’s revenue divided by the driver’s
total travel time. We show the results in Fig. 7.

In Fig. 7, we can see that the ride-sharing revenue per slot
decreases as α or β increases. When α increases, i.e., the
allowable maximum travel delay increases, the driver may
detour more to explore more ride-sharing opportunities to
pursue higher revenue. However, the resulting travel time also
increases and the overall effect is that the revenue per slot
decreases as α increases. In addition, as the discounting rate β
increases, the customer gets more discounts due to additional
travel delay and thus the driver gets less revenue per slot.
Overall, in terms of revenue per slot, ride-sharing always
outperforms non-ride-sharing and the driver can gain up to
26% extra revenue per slot when participating in ride-sharing.

E. The Benefit of Ride-sharing to the Society
As discussed in Sec. I, ride-sharing has well-recognized

societal benefits. In this subsection, we consider the total travel



time of the drivers, which we called vehicle time, in both
ride-sharing and non-ride-sharing scenarios. We argue that the
reduction of vehicle time directly indicates the reduction of
social travel distance which amounts to air pollution reduction
and the alleviation of traffic congestion.

In each problem instance (s, d, t0), when using our demand-
aware routing algorithm for ride-sharing, suppose that the
driver picks up a new customer from node i to node j and
the resulting ride-sharing path is PRS. Then the vehicle time
with ride-sharing to deliver both riders is TRS

society which is
difference between the time when the driver picks up Rider-I
and the time when she finishes delivering both Rider-I and
Rider-II. On the other hand, without ride-sharing, if we need
to deliver both riders (one from node s to node d and one from
node i to node j), we need two vehicles and the vehicle time
is TNRS

society = ∆F
i,j + ∆F

s,d. We now evaluate the vehicle-time
ratio as TRS

society/T
NRS
society. The average ratios among all problem

instances with regard to different α and β are shown in Fig.
8.

We can see that when we increase α and thus the allowable
maximum travel delay, the vehicle time increases as the driver
may detour more to exploit more ride-sharing opportunities.
Similarly, when we increase the discounting rate β, the driver
tends to detour less to ensure her revenue and thus the vehicle
time decreases. Overall, ride-sharing can reduce the vehicle-
time by up to 17% as compared to non-ride-sharing.

VI. CONCLUDING REMARKS

In this paper, we propose a general framework incorporating
travel demand statistics to improve the performance of ride-
sharing systems, with an emphasis on the routing module. We
show that demand-aware ride-sharing routing is fundamentally
a two-stage stochastic optimization problem. We then show
that the problem is NP-complete and thus it is impossible to
get the optimal solution in polynomial time unless P = NP.
By exploiting the problem structure, we propose a dynamic-
programming algorithm to optimally solve our problem with
pseudo-polynomial time complexity. This also indicates that
the problem is NP-complete in the weak sense [17]. We
use real-world dataset to show that our proposed demand-
aware routing algorithm achieves 10% more revenue for the
driver than the conventional demand-oblivious greedy-routing
algorithm. In our technical report [15], we further discuss how
to extend our results to more practical settings, including how
to take the driver’s cost into consideration, how to consider
the cases of picking up two or more riders, and how to
perform demand-aware ride-sharing matching. In particular,
we believe that optimizing the demand-aware ride-sharing
matching module would be an interesting and important future
direction.
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