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ABSTRACT

It is a promising vision to utilize white spaces, i.e., vacant VHF and
UHF TV channels, to satisfy skyrocketing wireless data demand
in both outdoor and indoor scenarios. While most prior works
have focused on exploring outdoor white spaces, the indoor sto-
ry is largely open for investigation. Motivated by this observation
and that 70% of the spectrum demand comes from indoor envi-
ronments, we carry out a comprehensive study of exploring indoor

white spaces. We first present a large-scale measurement of out-
door and indoor TV spectrum occupancy in 30+ diverse locations in
a typical metropolis Hong Kong. Our measurement results confirm
abundant white spaces available for exploration in a wide range of
areas in metropolises. In particular, more than 50% and 70% of
the TV spectrum are white spaces in outdoor and indoor scenar-
ios, respectively. While there are substantially more white spaces
in indoor scenarios than in outdoor scenarios, there is no effective
solution for identifying indoor white spaces. To fill in this gap, we
propose the first system WISER (for White-space Indoor Spectrum
EnhanceR), to identify and track indoor white spaces in a building,
without requiring user devices to sense the spectrum. We discuss
the design space of such system and justify our design choices us-
ing intensive real-world measurements. We design the architecture
and algorithms to address the inherent challenges. We build a WIS-
ER prototype and carry out real-world experiments to evaluate its
performance. Our results show that WISER can identify 30%-50%
more indoor white spaces with negligible false alarms, as compared
to alternative baseline approaches.

Categories and Subject Descriptors

C.2.1 [Computer-communication networks]: Network Architec-
ture and Design-Network topology; C.4 [Performance of system-

s]: Design studies, Measurement techniques
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1. INTRODUCTION
The skyrocketing growth of mobile devices and applications has

triggered a need for additional radio frequency (RF) spectrum to
satisfy this demand. Since most of the frequency spectrum has been
licensed for different purposes (satellite, TV, radio, RADARs, cel-
lular, etc.), a recent concept of dynamic spectrum access (DSA) is
being explored to provide additional spectrum with little disruption
to existing licensed users and their devices.

A recent manifestation of DSA is in the TV spectrum. In 2008,
the FCC passed a historic ruling that allowed unlicensed devices
(similar to Wi-Fi) to operate in the locally unoccupied TV spec-
trum (also called the TV white spaces or simply white spaces). De-
vices, similar to the Wi-Fi devices of today, are required to detect
the available spectrum before using it for communication. Per a
2010 FCC Second Order and Report [6], the white space devices
can detect available spectrum using either spectrum sensing or by
querying a geo-location web service over the Internet.

Most white space devices and standards are being designed around
querying the web service for spectrum availability. This is primar-
ily because spectrum sensing is expensive – in cost, energy con-
sumption and complexity of the circuitry. Furthermore, it is more
difficult to accurately detect TV signals using spectrum sensing at
low thresholds with commercial, off-the-shelf hardware. In con-
trast, the geo-location approach does not require any hardware and
is easier to implement. Devices report their locations to a web ser-
vice, which in turn returns a list of TV channels that can be used at
that location1. See [8] for a survey on this line of approach. How-
ever, this approach suffers from inherent inefficiency. The geo-
location service uses propagation modeling to determine the avail-
able spectrum, and hence, is very conservative in the channels it
returns for a given location. For example, the propagation models
used by the FCC do not account for buildings, and man-made ob-
structions that exist in urban areas. In a measurement study in [36],

1To avoid interference to white space users from wireless micro-
phone usage, wireless microphone users are suggested to register
the location and frequency usage to the geo-location database. In
this way, the database can exclude the frequency occupied by wire-
less microphone at the location and within its estimated interfering
neighbors from the returned list.



an in-operation geo-location database service reports only half of
vacant channels across a major city.

In this paper we carry out measurement-driven analysis and de-
sign to white space networking in indoor environments. We first
carry out a large-scale measurement across 30+ diverse locations
in a typical metropolis, and reveal that more than 50% and 70%
of the TV spectrum are white spaces in outdoor and indoor scenar-
ios, respectively. While there are significantly more white spaces
in indoor scenarios than in outdoor scenarios, there is no effective
solution for identifying indoor white spaces. Given that most peo-
ple are indoors 80% of the time [24] and 70% of spectrum demand
comes from indoor environments [12], it will be extremely useful if
it were possible to use the vacant TV channels in indoor scenarios.

We therefore take the next step, and propose a system, called
WISER (for White-space Indoor Spectrum EnhanceR), that increas-
es the number of TV channels available for indoor white space net-
working, while (i) not requiring client devices to sense the spec-
trum, (ii) building more accurate white space database locally by
integrating outdoor and indoor sensing, and (iii) not interfering
with TV transmissions.

WISER enables buildings to become “white space enabled” us-
ing an innovative approach of profiling, sensor placement, and in-
tegration with geo-location databases. It provides a technique for
building owners or managers to get their building profiled for white
space use, based on which WISER strategically determines a few
locations to place RF sensors. These sensors capture the additional-
ly available white space spectrum in the building. Ideally we would
require a very dense placement of RF sensors to obtain every addi-
tionally available channel. However, such approach can be very ex-
pensive due to the large number of RF sensors2. Hence, we propose
an innovative clustering scheme to reduce the number of sensors
needed to (i) capture the white space variation in indoor environ-
ments, yet (ii) provide most of the additional channels for indoor
use.

Throughout this paper we make the following contributions:

• In Section 2, using comprehensive measurements in Hong
Kong, we show that more than 50% and 70% of the TV spec-
trum are white spaces in outdoor and indoor scenarios, re-
spectively. Further, in Section 3, we reveal that indoor white
spaces expresses interesting location correlation and channel
correlation. These characteristics provide insights in identi-
fying and utilizing indoor white spaces.

• In Section 4, we propose an indoor white space identifica-
tion system, called WISER, that allows additional white s-
pace spectrum to be used indoors. To the best of our knowl-
edge, this is the first system that can use the additional white
spaces without requiring client devices to sense the spectrum.
Our approach is rather general, and can be additionally used
in other spectrum monitoring applications. In Section 5, we
present channel and location clustering algorithms to reduce
the number of sensors used by WISER to monitor white s-
pace spectrum.

• In Section 6, we build a proof-of-concept WISER prototype,
deploy it in a building floor, and evaluate its performance
by real-world experiments across a four-month duration. In
particular, we demonstrate that WISER can identify 30%-
50% more indoor white spaces with negligible false alarms,
as compared to alternative baseline approaches.

2For the purpose of identifying white spaces, an RF sensor con-
sisting of USRP1, a TVRX receive-only daughter board and an an-
tenna still costs around 1K US dollars. Hence, reducing the total
sensor cost is an important system design consideration.

Given that indoor environments are crowded, and have the most
spectrum demand, our system provides a new principled approach
to make additional spectrum available in these environments. Last
but not the least, we remark that WISER is not limited to the TV
white space spectrum. It can be similarly applied to any other por-
tion of the spectrum where dynamic spectrum access techniques
will be adopted.

2. INDOOR/OUTDOOR WHITE SPACE

AVAILABILITY MEASUREMENT

2.1 Objective
We carry out a large-scale indoor/outdoor white space measure-

ment in a typical metropolitan city Hong Kong. The purpose of
our measurement is two-fold. First, we aim to understand the d-
ifference between the indoor and outdoor white space availability
patterns. Such understanding motivates our investigation on ex-
ploring indoor white spaces. Second, while various measurement
studies have been reported in the literature, we find a large-scale
indoor/outdoor measurement is missing. Such large-scale measure-
ment is critical for properly evaluating the potential of white space
networking in metropolises, where different districts observe di-
verse spectrum occupancy patterns.

Figure 1: A map showing the six principal TV transmitting stations,
23 fill-in TV transmitting stations [5], and 31 diverse measurement
locations that cover all 18 districts in Hong Kong. Principle and fill-
in TV stations are labeled using red and yellow pin-shape markers,
respectively. Measurement locations correspond to blue droplet-
shape markers. Each measurement location is covered by 1-5 TV
stations (2.2 on average) [4], and the distance to its nearest TV
station ranges from 0.97 km to 9.35 km (3.25 km on average).

2.2 Methodology

2.2.1 Equipment and Setup

The measurement equipment consists of a USRP [9], a Log Pe-
riodic PCB Antenna, a laptop computer, and a battery bank. We
use the USRP board coupled with a TVRX receiver-only daughter
board and a GNU Radio platform [3] to construct a spectrum ana-
lyzer, for measuring and detecting TV signals in the 470-806 MHz
TV spectrum band. We calibrate the measurement device using a
RF signal generator to obtain accurate power reading in dBm. We



Outdoor Indoor Indoor Bonus
Urban Sub-urban Rural Overall Urban Sub-urban Rural Overall Overall

White Space Ratio (%) 44.1 55.9 60.9 53.6 67.9 74.7 73.3 72 18.4
Number of Vacant Channels 18.5 23.5 25.6 22.5 28.5 31.4 30.8 30.2 7.7

Total Vacant Spectrum (MHz) 148 188 204 180 228 251 246 242 62

Table 1: Summary of the indoor and outdoor white space measurement results.

use energy detection to detect analog signals by comparing the re-
ceiving power spanning 100 KHz centered at their visual carriers
against -104.2 dBm. For digital TV signals, we use a feature-based
detection scheme similar to that in [22] for accurate detection; the
scheme is able to detect digital TV signal strength as low as 96
dBm/8 MHz. More details can be found in our measurement re-
port [36].

2.2.2 Measurement Locations and Design

We measure the indoor/outdoor white space availability at 31 di-
verse locations in Hong Kong, including Hong Kong Island, Kowloon
Peninsula, and New Territories. These locations cover all the 18
districts of Hong Kong, which have very different terrain and pop-
ulation characteristics [1]. For example, the urban area such as
MongKok has the world-highest population density and the skyscrap-
ers in the area have deep influence on the signal propagation. While
in remote areas such as Yuen Lang, the population and tall-building
densities are much lower. Fig. 1 shows the six principal TV station-
s, 23 fill-in TV stations3 and 31 measurement locations. More de-
tails (e.g., effective radiated power, polarization, etc.) about the TV
broadcasting network of Hong Kong are available in [7]. All mea-
surement locations are in well populated commercial/residential ar-
eas; thus our measurement results capture the representative spec-
trum occupancy patterns in Hong Kong.

At each location we measure the indoor/outdoor spectrum oc-
cupancy pattern of the TV bands at three time instants, one in the
morning, one at noon, and one in the evening. The indoor measure-
ments are taken inside various commercial buildings at the selected
locations. The time interval between two adjacent measurements is
4 hours. In each measurement, we scan all 42 analog and digital
TV channels multiple times. These channels are in the frequen-
cy range of 470-806 MHz with 8 MHz channel spacing [32]. For
ease of discussions, they are labeled as CH 1 to CH 42. Using
feature-based TV signal detection schemes, we analyze the mea-
surement results and identify locally unoccupied channels. These
unoccupied channels are labeled as white spaces available at the
corresponding locations.

2.3 Observations
We summarize the indoor and outdoor white space measurement

results in Table 1. In particular, we first group the 31 measuremen-
t locations into three areas, namely urban, sub-urban, and rural,
according to the population density [1]. Then we summarize the
indoor and outdoor white space results for each area.

Several observations can be made from the results. First, simi-
lar to the US and Europe, there are a large number of vacant TV
channels in Hong Kong – more than 50% of the TV channels are
white spaces. Together with existing white space measurement
studies [13, 20, 26], our measurements confirm abundant white-
space networking potential in metropolises, different areas in Hong
Kong observe very different white space availability patterns. For
example, in outdoor scenarios, there are on average 5 more vacant

3There are several tens of additional fill-in TV stations, but their
precise location information is not available online, and we are un-
able to estimate their broadcasting coverage accordingly.

channels in the sub-urban area than in the urban area, correspond-
ing to 54 MHz additional spectrum. Third, there are more indoor
white spaces than the outdoor white space, which is mainly due
to the signal attenuation because of the blocking effects of walls.
In particular, in indoor scenarios, there are on average 72% of the
42 TV channels are white spaces, 18.4% higher than that in out-
doors. This corresponds to 7.7 additional vacant channels and a
total amount of 62 MHz spectrum. The amount of overall indoor
white spaces is 242 MHz, enough to support one additional Wi-Fi
service in operation.

Furthermore, the indoor white spaces are less fragmented than
the outdoor ones. The average length of contiguous vacant channels
is 3.84-channel in indoor scenarios as compared to 1.87-channel in
outdoor scenarios. This indicates the indoor white spaces is of bet-
ter “quality” than the outdoor ones, since it is easier to design wire-
less devices to communicate over contiguous channels than over
fragmented ones.

3. INDOOR WHITE SPACE CHARACTER-

ISTICS MEASUREMENT
Complementary to our large-scale indoor/outdoor availability mea-

surements, we also conduct intensive indoor measurements to gain
necessary understanding of indoor white space characteristics.

Figure 2: A map showing the 65 measurement locations on the 7th
floor of a building. Each measurement location corresponds to a
dot in red color on the map.

3.1 Methodology

3.1.1 Equipment and Setup

The same equipment described in Section 2.2.1 is used for indoor
white space characteristics measurement, except an omnidirection-
al antenna with a gain of 0 dBi.

3.1.2 White Space Threshold

In our measurements, we label a TV channel as locally unoc-
cupied if the corresponding channel receiving power is less than
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Figure 3: (a) Relative signal strength (in dB) for all 42 TV channels in a 96-hour window. (b) Channel occupancy statuses for all 42 channels
in the same 96-hour window. White spaces are denoted in white, and occupied channels in black. (c) Three TV channels (CH 18, 19 and 30)
that move up and down around the white space thresholds (e.g., the dotted line). They become white spaces from time to time.

or equal to a pre-set white space threshold, and as occupied oth-
erwise. This energy-detection based identification method is faster
but less sensitive as compared to those used in our indoor/outdoor
large-scale measurements. We adopt the method to do fast profiling
of the white space availability at a large number of dense locations
in an operational building. We set the white space thresholds to be
-84.5 dBm/8 MHz for the digital TV signals and -104.2 dBm/100
KHz for analog TV signals (centered at their visual carriers). These
values are the maximum readings out of detected power spanning
the corresponding bands in all empty channels based on long-time
sensing results. While these white space thresholds used for de-
termining channel vacancy may seem aggressive due to hardware
limitations, we believe that the observations drawn from the mea-
surement results are general and our system is not tied with these
thresholds. We note that if improved hardware is in use to allow
a highly-conservative sensing threshold of -114 dBm as suggested
by FCC, then the identified unoccupied channels are safe to use, in
the sense that secondary users using these channels will not cause
interfere with primary TV users within a considerably large neigh-
borhood. See [6] for detailed discussions on setting interference-
safe sensing threshold for TV white space networking.

3.1.3 Measurement Locations and Design

As shown in Fig. 2, a total of 65 indoor locations on one floor
of a building are selected for measurement. At each indoor loca-
tion, every channel is scanned five times. We observe <1% differ-
ence in recorded signal strengths beyond five-time measurements.
During each scanning, each channel is measured for 0.2 seconds.
The recorded signal is then processed by a GNURadio FFT pro-
gram with a bin size of 2048 and a resolution of 3.9 KHz. We then
record the maximum values observed at each bin for the channel
during each scanning and compute the average value for that bin.
For a digital channel, we compare the total channel power over 8
MHz centered at the middle of a TV channel against the white s-
pace threshold of -84.5 dBm. For a analog channel, we compare
the power spanning 100 KHz centered at the frequency of its visual
carrier against -104.2 dBm.

We conduct two types of indoor measurements, namely indoor

long-time sensing and indoor one-time profiling. Indoor long-time
sensing is for understanding temporal features of indoor white s-
paces. We measure the received signal strengths for all 42 TV
channels at a typical indoor location consecutively for 96 hours. In-
door one-time profiling is to probe spatial features of indoor white
spaces for a typical indoor environment. We mount the measure-
ment equipment onto a movable cart and run a Python script to

scan all TV channels automatically. We then profile the 65 indoor
locations one by one. The duration for profiling one location is
about 1.5 minutes, and the whole process lasts roughly three hours.
We can obtain a 65x42 matrix containing absolute signal strengths
(in dBm) for 42 channels at the 65 indoor locations. To facilitate
comparison, we convert the absolute signal strengths to the rela-
tive signal strengths by comparing them against the corresponding
white space thresholds. We collect a total of 13 one-time profiling
data in two periods in four months.

3.2 Long-Time Indoor Sensing Results
There are several observations from the long-time indoor sens-

ing. First, from Fig. 3a, there are strong channels whose relative
signal strength exceed a large threshold most of the time. For in-
stance, we observe 14.29% channels with >10 dB relative signal
strength 95% of the time across the 96-hour interval, which means
they are long-term occupied at the typical indoor location. Sec-
ond, for weak-to-normal channels, their signal strengths express
a short-term stable yet long-term unstable pattern. Third, we ob-
serve intermittent white spaces availability from Fig. 3b. This re-
sults from the temporal signal strength variation in weak-to-normal
channels. These observations suggest that to extract the maximum
indoor white space potential, it suffices to identify strong channels
via long-time sensing and then focus resources to track the slow-
varying white space availability of weak-to-normal channels.

3.3 One-Time Spectrum Profiling Results
We have the following observations from one-time spectrum pro-

filing results. First, as shown in Fig. 4, a channel may express s-

patial variation in its relative signal strength and white space avail-
ability across different indoor locations. Such spatial variation is
caused by complex outdoor and indoor signal propagation and at-
tenuation patterns due to various factors, for example the block-
ing effects of indoor walls. This implies potential white space loss
if indoor white space availability is directly inferred from outdoor
availability results.

Second, seen from Fig. 5a, for a given channel, there is also
strong correlation in signal strengths and white space availability
across different locations. This suggests that we can infer the chan-
nel vacancies of multiple correlated locations from those of one or
a few representative locations. We refer this observation as indoor
white space location correlation.

In addition, seen from Fig. 5b, we observe that for multiple chan-
nels, there are strong correlation in their signal strengths and white
space availability patterns across all locations. The similarities a-
mong these channels can be due to that they share the same trans-
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Figure 4: (a) Typical spatial map of channel relative signal strength-
s extracted from one-time spectrum profiling data. We observe sig-
nal attenuation patterns across different locations. (b) Typical spa-
tial map of indoor white spaces (denoted in white, occupied chan-
nels in black) extracted from one-time spectrum profiling data. We
observe different channel vacancy patterns across different loca-
tions.

mission tower, similar loss and attenuation patterns in their prop-
agation. This suggests that we can group these “similar” channels
together into a group, and infer the vacancies of this group of chan-
nels from those of a representative channel in this group. We refer
this observation as indoor white space channel correlation.

The above observations on location correlation and channel cor-
relation are drawn based on one-time profiling results. They have
the potential to form useful guidelines in designing indoor white
space identification systems. One important question stands on the
way, however, is whether the correlation among channels and lo-

cations are stable across different time epochs.

3.4 Stability of Indoor Channel Correlation and
Location Correlation

To study the stability of the channel correlation and location cor-
relation, we cluster channels and locations according to their sim-
ilarity using one-time profiling data collected across seven days in
the first two-week period. We then compare one of the clustering
results (e.g., the first day) with other clustering results. If the chan-
nel correlation and location correlation are stable over time, then
we should see consistent clustering results in these seven days. We
should otherwise observe discrepancy in clustering results.

To filter out the noise in profiling data while maintain neces-
sary information about signal strengths, we first quantize the rela-
tive signal strengths as described in Section 4.5.3. We then apply
the clustering algorithms described in Section 5, and compute the
Rand Index [33] of the clustering results to exam their consistency.
The Rand Index is commonly accepted as an objective criterion for
comparing two clustering results. A Rand Index of 1 indicates two
identical clustering results, and 0 indicates total disagreement.

To facilitate the illustration for Fig. 6, we define a channel group

as a group of channels that exhibit similar signal strengths across
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Figure 5: (a) Location 23, 25, 53 and 60 receive close signal
strengths from many TV channels. Each line represents the rela-
tive signal strengths received at an indoor location for 42 channels.
We observe strong location correlation. (b) CH 1 and 3 exhibit
very close signal strengths at different indoor locations. Each line
represents the relative signal strengths for a channel at 65 indoor
locations. We observe strong channel correlation.

different indoor locations, and a location group as a group of lo-
cations that receive similar signal strengths for a particular set of
channels. As shown in Fig. 6a, when we have three or more chan-
nel groups, the average Rand Index reaches 0.79 and keeps rising.
It means that we would obtain very similar channel clustering re-
sults, and the channel correlation is very consistent across different
days. Fig. 6b shows that the average Rand Index has exceeded 0.80
when there are 10 or more location groups for a group of channels
(i.e., CH 1, 3, 5 and 7), which indicates that location correlation
also exhibits consistency in time. These observations imply that
the correlations among channels and locations are very likely to be

stable in time, which is critical in gauging our designs of the in-
door white space identification system, to be discussed in the next
section.
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Figure 6: (a) Channel correlation is consistent across different days.
The input is a matrix of quantized relative signal strengths for 42
channels at 65 locations. We would obtain highly similar channel
clustering results with more then three channel groups. (b) Loca-
tion correlation consistency across different days. The input is a
matrix of quantized relative signal strengths at 65 locations for 4
channels (i.e., Ch 1, 3, 5 and 7). We would obtain highly simi-
lar location clustering results with more than five location clusters.
In both figures, clustering result of data in the first day serves as a
main reference. Both curves start with two groups. The Rand Index
is 1 when there is only one group.



3.5 Summary
In summary, our results from long-term sensing, one-time pro-

filing, and correlation stability verification reveal the following im-
portant observations:

• Strong channels are long-term stable; weak-to-normal chan-
nels are short-term stable but long-term unstable.

• Location correlation: given a channel, there are strong cor-
relations in its signal strength and white space availability
across multiple indoor locations; these correlations are sta-
ble in time.

• Channel correlation: there are strong correlations in multiple
channels in their signal strengths and white space availability
patterns across all locations; these correlations are stable in
time.

The first observation suggests that to extract the maximum in-
door white space potential, it suffices to identify strong channel-
s via long-time spectrum sensing and then track the slow-varying
white space availability of weak-to-normal channels. The rest two
observations suggest that we can focus on monitoring representa-
tive channels at representative indoor locations, and inferring the
availability of other channels at other locations by exploiting the
location and channel correlations. These observations will be uti-
lized in designing indoor white space identification systems in the
next section.

4. WISER - WHITE SPACE INDOOR SPEC-

TRUM ENHANCER
In this section, we first explore the design space of an indoor

white space identification system. We then present WISER’s archi-
tecture, which consists of real-time sensing module, white space
database, and indoor positioning module.

4.1 Design Objective and Design Space
A well-performed indoor white space identification system needs

to (i) minimize false alarms (safety), and (ii) identify as many white
spaces correctly as possible (efficiency). In addition, the sensor cost
is also a major consideration, as RF sensors can be expensive. We
define the following three metrics to evaluate a system:

• False Alarm Rate (FA Rate): the ratio between the number
of channels that a system mis-identifies as vacant and the
total number of vacant channels that the system identifies. A
system with lower FA Rate is safer.

• White Space Loss Rate (WS Loss Rate): the ratio between the
number of channels that a system mis-identifies as occupied
and the total number of actually-vacant channels. A system
with lower WS Loss Rate is more efficient.

• Sensor Cost: the total cost of all RF sensors in use.

Generally, there are several approaches to identify indoor white
spaces. The outdoor-sensing-only (OS-Only) approach performs
spectrum sensing locally on the rooftop using one outdoor sensor,
and only reports channels that are available outdoors for indoor use.
Despite of the low sensor cost, this approach is too conservative to
be efficient, as it fails to take into account of the significant attenu-
ation on TV signals due to the blocking effects of indoor obstacles
(e.g., walls).

Under the second approach called one-time-profiling-only (OTP-

Only), we only profile indoor locations once, then label every chan-
nel at each location as either 1 (vacant) or 0 (occupied), and store

such information in the white space database for later retrieval.
However, this approach assumes the indoor white space availability
to be time-invariant, which does not hold according to our indoor
white space measurements in Section 3. As a result, this approach
fails in both safety and efficiency; in particular, violating safety
would cause severe harm to primary users.

The third approach is sensor-all-over-the-place. This approach
deploys dense indoor sensors to monitor indoor white spaces. Al-
though this scheme can achieve the ideal safety and efficiency, it
comes with a forbidden sensor cost.

In summary, none of the above approaches could achieve a sat-
isfactory performance at low cost. To tackle this problem, we pro-
pose an indoor white space identification system called WISER
with excellent safety and efficiency at lower sensor cost as com-
pared to the above baseline solutions.

4.2 WISER Overview
As shown in Fig. 7, WISER consists of three components, name-

ly real-time sensing module, white space database, and indoor po-
sitioning module. WISER takes users’ locations as the inputs and
outputs the indoor white space availability at the given locations.

Outdoor sensor

Server

Indoor sensor

Profiled location

Indoor

Positioning

Module

Figure 7: Architecture schema of WISER.

4.3 Indoor Positioning Module
In WISER, a user determines its indoor location by using the

indoor positioning module. Indoor positioning has been widely
explored in recent years. Many wireless technologies can be in-
tegrated into indoor positioning, including IR, ultra-sound, RFID,
WLAN, and Bluetooth. See [17] for a recent survey. Since indoor
positioning is developing into a mature technology, WISER simply
uses one existing system as the indoor positioning module. It is
conceivable that the indoor positioning accuracy will affect WIS-
ER’s performance. We will study the relationship between indoor
positioning accuracy and the performance of WISER in Section 6.

4.4 White Space Database
The white space database receives real-time channel signal strength

reported from the sensors in the real-time sensing module, as well
as the corresponding up-to-date indoor white space availability. Af-
ter obtaining its indoor position, user queries the white space database
to retrieve a list of vacant channels for communication with a sep-
arate white space networking infrastructure. To handle dynamics
of wireless microphones, wireless microphone users are suggest-
ed to register the location and frequency usage to the white space
database, so that WISER can exclude the frequency occupied by



wireless microphone at the location and within its estimated inter-
fering neighbors from the returned list.

4.5 Real-time Sensing Module
Given an indoor environment, the real-time sensing module per-

forms real-time outdoor and indoor spectrum sensing, and reports
the results to the white space database. To realize this function-
ality, we first conduct one-time spectrum profiling at a sufficient
number of indoor locations. To exploit the observation in long-time
measurement (Section 3.2), we then group the channels into strong
and weak-to-normal channels. We also identify some permanent-
ly available channels based on the long-time outdoor sensing, and
focus on the remaining weak-to-normal channels. Then, we per-
form channel-location clustering to leverage channel and location
correlations (Section 3). Last, we place indoor sensors based on
the results of channel-location clustering to optimize the use of a
limited number of sensors and then send real-time data to server
periodically.

4.5.1 One-Time Spectrum Profiling

One-time spectrum profiling aims to learn the indoor white space
characteristics, including channel and location correlations. These
locations should be as dense as possible. For example, in our study,
65 measurement locations are profiled including almost every room
and corridor on an indoor floor, as shown in Section 3.4. For a non-
profiled location, its indoor white space availability is assumed to
be the same with the nearest profiled one. The profiling data will
serve as the main reference to determine indoor sensor locations.
Ideally, we should profile all measurement locations simultaneous-
ly. However, since we observed that indoor white spaces tend to
be stable with moderate variation in the short term (e.g., hours), we
base WISER deployment on the asynchronous one-time profiling
within three hours.

4.5.2 Channel Grouping

We first group TV channels into two basic classes: strong chan-
nels and weak-to-normal channels (including permanently vacant
channels) based on one-time and long-time measurements. Weak-
to-normal channels have a higher chance to be white spaces due to
signal variation and attenuation.

We motivate the simple grouping scheme with the following rea-
sons. First of all, such classification is general. In fact, for a par-
ticular area, TV services are broadcast via one or more major TV
towers in several channels. These channels usually carry strong
signals and are distinguishable from others. In addition, due to sta-
ble TV broadcasting arrangement in the long run (e.g., years), the
obtained grouping result will also be stable accordingly unless dra-
matic changes occur (e.g., shutdown of a TV tower). Moreover, it is
efficient to group channels into such two basic classes. Because by
exploiting “always on” nature of some TV channels, indoor sensors
can focus on other time-varying channels rather than these stably
strong ones.

4.5.3 Channel-Location Clustering

The channel-location clustering aims to obtain channel-location

(CL) groups, each of which contains locations with similar signal
strengths for channels with similar propagation patterns. In our cur-
rent solution, we obtain CL groups by first clustering the channels
according to their received signal strengths across the locations.
Then, for each channel cluster, we group the locations according
to the received signal strength distribution among those channels.
More details will be described in Section 5. Nonetheless, conduct-
ing joint channel-location clustering is an alternative method, and
is left for future work.

To reduce the undesirable impact of noise, we introduce a u-

niform quantizer for received signal strengths before conducting
channel-location clustering, which is defined as below:

Sq=

{

−1, Sr ≤ 0
⌊

Sr

Q

⌋

, Sr > 0

where Sr is the received relative signal strength compared to the
pre-set white space thresholds, Q is the quantization step (e.g., 5
dB), and Sq is the quantized relative signal strength.

4.5.4 Indoor Sensor Placement

Given a set of CL groups, we aim to deploy indoor sensors to
fulfill (i) coverage requirement: every CL group is covered by at
least one sensor, and (ii) performance requirement: safety is guar-
anteed and efficiency is maximized, given a number of indoor sen-
sors. The brute-force way is to enumerate all possible combinations
to find the best one. Instead of adopting this inefficient approach,
we propose a greedy algorithm that could achieve local optimum
with guaranteed system performance, as described in Section 5.

To avoid interference with primary users, indoor white space
availability shared within each CL group is derived from real-time
sensing results in a conservative way. First of all, if a particular
CL group is covered by multiple indoor sensors, indoor white s-
paces are determined by comparing the maximum received signal
strength for a channel with the white space thresholds as follows:

WS(Cx) =

{

1, Smax(Cx, Lsensors) < WSThrx

0, otherwise

where WS(Cx) means the white space availability for channel x
at all locations in the CL group, Smax(Cx, Lsensors) means the
maximum received signal strength among multiple sensor locations
for channel x in the CL group and WSThrx is the white space
threshold for channel x.

Second, if a CL group is covered by only one indoor sensor,
a protection range (in dBm) needs to be added to minimize false
alarm rate as follows:

WS(Cx) =

{

1, S(Cx, Lsensors) < WSThr∗x

0, otherwise

where WSThr∗x = WSThrx − PRx, and the PRx is the pro-
tection range for channel x for this CL group. To exploit the statis-
tics of received channel signal strength deviation in a CL group in
training data sets, we obtain PRx by multiplying a constant (3 by
default) with the standard deviation of all received signal strengths
in channel x at locations in the CL group. This constant measures
how conservative we are and can be used to control the FA rate.

5. ALGORITHM
In this section, we first discuss the intuition of algorithms we

use in deploying real-time sensing module. We then present the
channel-location clustering and indoor sensor placement algorithm-
s.

5.1 Algorithm Intuition
As revealed in Section 3.4, there exists consistent correlation a-

mong channel signal strength at different locations. An intuitive
way to extract such correlation is clustering. Given one-time profil-
ing data, we treat signal strengths across different indoor locations
for a channel as a feature vector, and cluster similar channels to-
gether to obtain channel clusters. Then for each channel group, we
treat signal strengths in different channels of the channel group at a



location as a feature vector, and perform location clustering accord-
ingly. In this way, we obtain CL groups (recall that CL group stands
for channel-location group). Within each CL group, the channels
share similar signal strength at the locations; hence, intuitively we
can use one sensor per CL group to monitor signal strengths of the
channels (in the group) at the locations (in the group). Following
the above intuition, we design Algorithm 1 and Algorithm 2. As
the next step of the above intuition, we need to deploy one sensor
(or more) per CL group (i.e., coverage requirement), and enable
WISER to correctly identify as many indoor white spaces as pos-
sible (i.e., performance requirement). These two requirements are
very important in designing our indoor sensor placement algorith-
m (Algorithm 3) and its ranking mechanism (Algorithm 4). More
details will be discussed later in this section.

5.2 Proposed Algorithm
The proposed algorithm takes quantized relative signal strength

and the number of indoor sensors as inputs, and outputs a list of
sensor locations. In the case of multiple feasible sensor placement
options, the one with least FA rate (with first priority) and least WS
Loss rate is chosen, namely “least-false-alarm-first” criterion.

5.2.1 Channel-Location Clustering

As stated in Section 4.5.3, the channel-location clustering aims
to cluster locations that receive similar channel signal strength for
certain channels into the same group. We do so by first grouping
the channels according to their receiving signal strengths at all in-
door locations, and then within each channel group clustering the
locations according to their receiving signal strengths of this group
of channels. In our algorithm designs, we adopt Ward’s minimum
variance method [23] as the linkage criterion, and Euclidean dis-
tance as the similarity metric owing to their widespread popularity.

Algorithm 1 Channel Clustering

1: Input: S: the M ×N training data set
{M is the total number of locations, N is total number of chan-
nels to be clustered}
k: the number of channel clusters

2: Output: k channel clusters with sizes of M ×n1, M ×n2, ...,
M × nk , where

∑k

i=1
ni = N

3: if k == N then

4: return N channel clusters with a size of M × 1
5: end if

6: let each channel object (M × 1) be a cluster
7: compute the proximity matrix
8: repeat

9: merge two “closest” clusters based on the linkage criterion
10: update the proximity matrix
11: until k clusters remain
12: return k channel clusters with sizes of M × n1, M × n2, ...,

M × nk , where
∑k

i=1
ni = N

As mentioned in Section 5.1, we need deploy a given number of
sensors for CL groups. One straightforward way to determine the
number of CL groups is to let it be equal to the number of sensors.
With a larger number of CL groups, we may not guarantee the cov-
erage requirement; with fewer CL groups, it tends to be a waste of
sensor resources, which is undesirable. Provided a number of CL
groups, the next question is how to decide the desirable number of
channel clusters, and also the desirable number of location clusters
for each channel group. There are various ways to probe the true
number of clusters, including a model-based approach [16]. In this
study, we are more interested in the relationship between the num-

ber of indoor sensors and system performance instead of seeking
for the true number of channel or location clusters. In our curren-
t solution, we permutate all possible numbers of channel clusters,
and assign numbers of location clusters to channel clusters that are
proportional to sizes of channel clusters. For instance, given 20 CL
groups, we may try out 3 (or other possible numbers from 1 to 20)
channel clusters, and obtain clusters with sizes of 8, 16 and 16 via
channel clustering. Then, we will assign 4, 8 and 8 location clusters
to 3 channel clusters accordingly before location clustering. Note
that when multiple combinations are possible, WISER will choose
the one according to the “least-false-alarm-first” criterion.

Algorithm 2 Location Clustering

1: Input: Si: the M ×Ni channel cluster
{M is the total number of locations to be clustered, Ni is total
number of channels}
ki: the number of location clusters

2: Output: ki location clusters with sizes of m1×Ni, m2×Ni,
..., mki

×Ni, where
∑ki

j=1
mj = M

3: if ki == M then

4: return M location clusters with the size of 1×Ni

5: end if

6: let each location object (1×Ni) be a cluster
7: compute the proximity matrix
8: repeat

9: merge two “closest” clusters based on the linkage criterion
10: update the proximity matrix
11: until ki clusters remain
12: return ki location clusters with sizes of m1 ×Ni, m2 ×Ni,

..., mki
×Ni, where

∑ki

j=1
mj = M

The channel clustering algorithm is illustrated in Algorithm 1.
As shown in Line 6-7, we let each channel object be its own cluster
at the initial stage and compute pair-wise proximity matrix (i.e.,

Euclidean distance). Then we apply Ward’s minimum variance
method to merge two “closest” clusters and update the proximity
matrix accordingly (Line 9-10). We repeat the process until a re-
quired number of clusters is obtained. In case of multiple training
data sets as the input, we can extend the dimension of channel ob-
jects by treating signal strengths across different locations across
different days for a channel as a 2-dimension vector, and perfor-
m channel clustering in the same way. One potential advantage of
training with multiple data sets is that we can improve clustering
accuracy and be robust to noise in individual data sets. The loca-
tion clustering algorithm (Algorithm 2) is conducted in a similar
way, except that we let the vector containing signal strengths in d-
ifferent channels at a location be a location object during the whole
process. We find our cluster algorithms achieving decent perfor-
mance in experiments to be discussed in Section 6. However, they
do not necessarily achieve the best possible performance for the
problems considered in this study. It would be an interesting direc-
tion to consider alternative linkage criteria and similarity metrics in
the clustering algorithm design to further improve the performance.

5.2.2 Indoor Sensor Placement

As mentioned in Section 4.5.4, we need to meet coverage and
performance requirements in determining sensor location based on
the result of channel-location clustering. To avoid brute-force enu-
meration of indoor sensor locations (e.g., CN

65 given 65 indoor lo-
cations and N indoor sensors), we introduce a greedy sensor place-
ment algorithm as shown in Algorithm 3. Initially, all CL groups
are not covered, and all indoor locations are candidates for sensor



placement. We rank candidates according to their ranks (Line 5).
More details about the ranking algorithm (Algorithm 4) will be il-
lustrated later. In Line 6-12, we check for each candidate one by
one, starting from the highest ranking one, whether any not-covered
CL groups can be covered if we place one sensor at that location.
If yes, we remove the covered CL groups from the not-covered list,
add this location to the sensor location pool and repeat the pro-
cess for the remaining candidate locations; otherwise, we exam the
next candidate until a suitable one is found. Our algorithm termi-
nates the while loop (Line 4-13) when all initially not-covered CL
groups are covered by at least one sensor. Since one indoor location
may belong to different CL groups with respect to different channel
groups, it is possible that we are able to cover multiple CL groups
by deploying one sensor, and cover all CL groups with fewer sen-
sors. Hence, upon the termination of the while loop, our algorithm
guarantees that all CL groups will be covered. If there are still ad-
ditional quota for sensor locations, we rank remaining candidates
again and choose higher-ranking locations consecutively until the
expected number of sensor locations is reached (Line 14-17).

Algorithm 3 Indoor Sensor Placement

1: Input: N : given sensor quota
2: Output: L: a set of sensor locations
3: Initialize: L← NULL

4: while there are not-covered Channel-Location groups do

5: C ← remaining ranked candidate locations
6: for i = 1 to length(C) do

7: if C[i] can cover any not-covered Channel-Location
group then

8: L← L+C[i]
9: N ← N − 1

10: break

11: end if

12: end for

13: end while

14: if length(L) < N then

15: C ← ranked remaining candidate locations
16: L← first (N − length(L)) candidates in C

17: end if

18: return L

The ranking algorithm is crucial in fulfilling the performance re-
quirement, as illustrated in Algorithm 4. At each stage, we rank
candidate locations by comparing their “contribution” to the over-
all performance, which is quantized in items of evaluated FA rate
and WS Loss rate after their individual participation in the current
sensor pool. In Line 5-8, we first add a candidate location to exist-
ing sensor location pool, and then compute corresponding FA rate
and WS Loss rate f ′ and w′. We repeat the process for all candidate
locations, and then compare their FA rates and WS Loss rates. By
applying the “least-false-alarm-first” criterion, we will finally ob-
tain the desirable ranking for given candidate locations (Line 10).

6. PROOF-OF-CONCEPT WISER PROTO-

TYPE AND EXPERIMENTS
In this section, we deploy a proof-of-concept WISER prototype

and conduct actual experiments across four months to evaluate its
performance. The WISER prototype takes user indoor positions as
inputs, and outputs a list of vacant channels at the positions. Our
objectives are: (i) to evaluate the performance of the deployed WIS-
ER prototype, and compare it with alternative solutions in a typical
indoor scenario; (ii) to demonstrate its ability of providing accurate

Algorithm 4 Candidate Location Ranking

1: Input: S:already selected sensor locations, M :candidate loca-
tions

2: Output: M ′: ranked candidate locations
3: Initialize: F ← NULL {FA rate}, W ← NULL {WS Loss

rate}
4: for i = 1 to length(M) do

5: S′
← S +M(i)

6: [f ′, w′]← evaluated performance for S′

7: F [i]← f ′

8: W [i]← w′

9: end for

10: M ′
← ranked M according to (F , W )

{Candidate locations with less FA rate (first priority) and less
WS Loss rate get higher ranking}

11: return M ′

indoor white space information across a long period of time (in this
case four months) and that there is no need to re-configure WISER
frequently; (iii) to demonstrate how to choose a suitable number of
indoor sensors for the target indoor scenario; (iv) to illustrate the
impact of indoor positioning errors on WISER’s performance.

6.1 Scenario and Settings

6.1.1 Scenario

We build a proof-of-concept WISER prototype for one floor of
a typical office building to evaluate its performance using actual
experiments. As shown in Fig. 2, this scenario contains individu-
al office rooms with various sizes, common rooms of larger sizes,
and corridors, all of which are separated by walls or glass. A to-
tal of 13 one-time spectrum measurements were taken during the
months of October 2012 to March 2013 with the same equipment
and procedures as described in Section 2.2.1.

6.1.2 Settings

We set the white space threshold to be -84.5 dBm/8 MHz for
digital TV channels and -104.2 dBm/100 KHz for analog channels.
To capture real-world outdoor sensing, we perform outdoor long-
time sensing for 30 hours by placing the equipment on the rooftop.
We observe 5 channels who signal strengths are always far below
the white space threshold, and hence treat them as outdoor-sensor-
reported white spaces. We also remove 11 long-term strong chan-
nels (whose received signal strengths are 10 dB higher than the
white space threshold) that have little chance to be white spaces
indoors even in the presence of signal attenuation, and focus on
tracking the availability of the remaining channels to maximally
extract the indoor white space potential.

To ensure the quality of channel-location clustering , we use two
sets of one-time profiling data as inputs into the clustering algorith-
m. We are aware of the potential over-fitting problem in clustering,
and with only one one-time profiling data set, the deployed WISER
tends to cause severe false alarms in the future prediction. It turns
out that WISER can effectively alleviate the potential over-fitting
problem by using two data sets. We use the remaining 11 data sets
for actual experiments.

6.2 Performance Evaluation
For any indoor WS identification system, we are interested in

the FA Rate and WS Loss Rate as defined in Section 4.1. The ob-
jectives of this experiment are (i) to quantify the performance of
our WISER prototype using the above two metrics, (ii) to com-
pare it with the performance of WISER with those of two alter-



Exp. ID 1 2 3 4 5 6 7 8 9 10 11 Avg.

Extra White Space (%) 30.14 44.99 37.79 34.20 31.76 50.37 39.62 35.51 35.20 40.00 43.40 38.47
WISER False Alarm Rate (%) 0.16 0.23 0.14 0.15 0 1.08 1.09 0 0.15 0.41 0.50 0.36

Table 2: Extra white spaces and FA rate achieved by our WISER prototype as compared to the OS-Only approach in eleven experiments
across four months.

natives OS-Only and OTP-Only discussed in Section 4.1, and (iii)
to demonstrate WISER’s ability to providing accurate white space
information in a long period of time.

In this experiment, the WISER prototype consists of a total of
20 indoor sensors and one outdoor sensor. OTP-Only labels chan-
nels at each location as 0 (occupied) or 1 (available) based on one
of the training data sets for the WISER prototype, and use this in-
formation to report white spaces in the future. We assume perfect
indoor positioning accuracy at this stage and will study the impact
of indoor positioning errors in Section 6.4.

We have several observations. First, as shown in Table 2, our
WISER prototype is able to identify 30-50% more white spaces
with negligible average FA rate (i.e., 0.36%) as compared to OS-
Only. Fig. 8a shows that OTP-Only is not suitable for identify-
ing indoor white spaces in long term due to its unacceptable false
alarm rate, and WISER outperforms OS-Only as shown in Fig. 8b.
Second, WISER is able to provide accurate indoor white space in-
formation with negligible false alarms across a long period of time
– four months in our experiments. Note that as WISER is built on
channel-location correlations that are determined by surrounding
environments, such as building structures, nearby buildings, etc., it
needs to be re-calibrated when environment changes substantially
(e.g., a skyscraper is built nearby). Although WISER may give a
FA rate of 1% occasionally, one can systematically lower WISER’s
FA rate by using more training data sets as inputs and using more
conservative signal strength threshold in determining white spaces.
We believe that our principled design behind WISER is general and
does not depend on particular choices of system design parameters
and inputs.
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Figure 8: (a) Averaged FA rate and WS Loss rate for WISER, OS-
Only and OTP-Only. The FA rate is 18.53% for OTP-Only, which
may cause severe interference to primary users. As compared to
OS-Only, WISER is able to report 38% more white spaces on av-
erage with negligible false alarm rate. (b) Averaged CDF curves of
WS Loss rate for WISER and OS-Only. With OS-Only, 90% loca-
tions would suffer a WS Loss rate of 60%. This number is <5% if
using WISER. Note that we excluded OTP-Only from this compar-
ison, as OTP-Only will result in high FA rate despite of its seeming
high WS Loss rate, which makes itself undesired in the first place.
Also, we did not plot the CDF curves for the FA rate for WISER
and OS-Only, as both of them result in negligible FA rate and their
CDF curves for the FA rate are not very informative.

6.3 Number of Indoor Sensors to Use in WIS-
ER

For a specific indoor scenario, it is important to balance between
WISER performance and the sensor cost. To understand their rela-
tionship, we vary the number of indoor sensors during WISER de-
ployment and evaluate WISER performance in actual experiments
under the same setting.

As shown in Fig. 9, the WS Loss rate and FA rate decrease ac-
cordingly with more sensors. Note that the average FA rate drops
to 0.4% when there are over 18 indoor sensors and remain rather
low afterwards. To meet certain safety requirement (e.g., less than
0.4% average FA rate in this example), the optimal number of in-
door sensors would be 18; if the worst-case FA rate needs to be
lower than 1.0%, WISER requires a minimum of 20 indoor sensors.
In practice, we would jointly consider safety, efficiency and sensor
cost to determine the optimal number of indoor sensors required.
It also implies that for a typical indoor scenario, we could conduct
multiple sets of one-time profiling, using some of them for WISER
deployment and others for probing the suitable sensor number.

0 10 20 30 40 50 60 70
0

20

40

60

# of Indoor Sensors for WISER

W
S

 L
o

s
s
 R

a
te

 (
%

)

 

 

Max.
Avg.
Min.

(a)

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

# of Indoor Sensors for WISER
F

A
 R

a
te

 (
%

)
 

 

Max.
Avg.
Min.

(b)

Figure 9: (a) The average, minimum (best-case), and maximum
(worse-case) WS Loss rate v.s. the number of indoor sensors. The
more indoor sensors are used, the lower WS Loss rate WISER is
able to achieve. (b) The average, minimum (best-case), and maxi-
mum (worst-case) FA rate v.s. the number of indoor sensors. The
FA rate tends to be high with fewer indoor sensors used, and gets
lower when the number of indoor sensors increases. The average
rate becomes stable when there are more than 18 indoor sensors.

6.4 Impact of Indoor Positioning Errors
Previous experiments show that WISER has good performance

if the indoor positioning is accurate. In practice, indoor positioning
may incur errors. Therefore, it is important to evaluate the perfor-
mance of our WISER prototype in the presence of indoor position-
ing errors.

Ideally, WISER returns the accurate indoor WS information at
the user’s position that is determined by the indoor positioning sys-
tem without any false alarms. However, due to positioning errors,
the user could appear in anywhere within the circle that is centered
at the reported position with a radius of a certain positioning error
(in meter). Positioning errors are problematic as they can mani-
fest themselves in terms of both white space loss and (even worse)
false alarms. To avoid false alarms, WISER returns the commonly



0 1 2 3 4 5
0

5

10

15

20

Positioning Errors (m)

W
S

 L
o
s
s
 R

a
te

 (
%

)

Figure 10: Additional WS Loss rate (averaged) introduced by in-
door positioning errors. The WISER prototype consists of 20 in-
door sensors and one outdoor sensor.

available channels within the circle, which would result in an addi-
tional loss of white spaces. In this way, indoor positioning errors
will not result in additional false alarms. To quantify this impact
of positioning errors, we compute WS Loss rates of WISERs with
and without positioning errors respectively, and measure this addi-
tional loss against the positioning error. We show the average case
for the 65 locations in Fig. 10. Note that with a positioning error
of 5 meters, we would incur an average of 20% additional WS loss.
To ensure the efficiency of WISER, the indoor positioning system
should incur positioning error less than a couple of meters.

7. RELATED WORK
Existing works on TV White Space mostly focus on outdoor sce-

narios. These works include setting up a single Wi-Fi like AP sys-
tem [10], implementing a network system for dynamic spectrum
access [14, 37], and designing a prototype system for spectrum
sensing [11]. In this paper, we develop a white space identifica-
tion system for indoor scenarios where outdoor solutions do not
perform well. We first carry out a large-scale measurement of out-
door and indoor white spaces, and then design WISER based on our
observations. In fact, several measurement studies have investigat-
ed the opportunity for using white spaces in outdoor environments.
Some of them focus on metropolitan cities including Chicago [26,
34], Singapore [20] and Guangzhou [13]. However, those measure-
ments are limited in scope, whereas our outdoor measurement is a
large-scale one that better capture the spectrum occupancy patterns
across the entire city. Meanwhile, there are existing works focus on
quantitative analysis on the availability of white spaces. In [29], the
authors provide a theoretical analysis on the spectrum opportunity
of TV white spaces in United Kingdom. [21] investigates the UHF
white spaces in 11 Europe countries via an estimated methodology.
Both the measurements and quantitative results show that there ex-
ists abundant white space spectrum in those cities. Different from
their quantitative analysis based on propagation models or cover-
age maps, we base our analysis on more accurate local spectrum
measurements.

As spectrum sensing is no longer compulsory due to sensing effi-
cacy, the FCC mandated the use of a geo-location service at a given
location [2]. The geo-location approach has been widely studied
[15, 18, 25, 28]. These works use databases to store dynamic white
space information for clients querying. However, in metropoli-
tan cities, such as Hong Kong, wireless environment tends to be
more complicated due to blocking effects of high density build-
ings and uneven distribution of TV towers in Hong Kong [36].
Actually, by comparing calculated results using different models
and ground-truth measurements, the model-based approach fails to
identify many vacant TV channels, and local spectrum measure-
ments may obtain more accurate white space availability results. In

[19], the authors investigate the white space availability in a differ-
ent perspective. They quantify the white space availability in terms
of pollution from existing television stations and self-interference,
as well as the expected transmission rage of white space devices.

Although 70% of spectrum demand comes from indoors [12],
there is little prior work on indoor white space availability. In [30],
the authors assess the feasibility of white space devices in short-
range indoor environment with focus on interference mechanisms.
In [31], the authors perform a series of measurements in both lab-
oratory and real environments to verify an indoor TV white space
opportunity prediction model. They both focus on how to utilize
indoor white spaces instead of how to identify them. An evaluation
of spectrum availability in both indoor and outdoor environments
is presented in [35]. The authors perform local spectrum sensing
in the band from 20 MHz to 3 GHz on the rooftop and in a room
of an office building, and confirm that considerably less occupancy
was measured. In [27], an experimental spectrum sensor test-bed is
built to investigate indoor radio environmental map, and it is recog-
nized to be extremely challenging unless sophisticated conditions
are considered. In this paper we analyze the temporal and spatial
characteristics of indoor white spaces, and propose an innovative
system to identify additional indoor white spaces.

8. CONCLUSIONS AND FUTURE WORK
White spaces promise to provide additional spectrum for wire-

less applications. However, the current rulings in the US and Cana-
da (and being considered elsewhere), use a geo-location database to
determine spectrum availability, which although works reasonably
well, has severe limitations in both outdoor and indoor settings.

In this paper, we carry out a measurement-driven approach to ex-
plore white space networking potential in Hong Kong, with the fo-
cus on indoor environments. We show that the indoor white spaces
have different characteristics from the outdoor ones. For example,
there are more contiguous unutilized TV channels indoors, which
are able to support high bandwidth communication. We then pro-
pose a system, called WISER, that is able to utilize the additional
white space channels without requiring the clients to actually sense
the wireless medium. Our system is incrementally deployable. Any
interested building can adopt our techniques to make the building
“white space enhanced” and utilize the additionally available va-
cant TV channels.

There are several interesting and important future directions that
could be explored. First, it would be very interesting to extend
our 2-dimensional system design, deployment and experiments to
3-dimensional (i.e., from one floor to multiple floors in the build-
ing) by jointly exploring channel, location and space correlations.
Second, it is also important to evaluate WISER’s performance on
different test-beds (e.g., halls, residential buildings, etc.) other than
office buildings. Third, it is also interesting to improve the indoor
sensor placement by taking into account of “hotpot” locations with
human activities.
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