
1

Utility Maximization in Peer-to-Peer Systems with

Applications to Video Conferencing
Minghua Chen, Miroslav Ponec, Sudipta Sengupta, Jin Li, and Philip A. Chou

Abstract— In this paper, we study the problem of utility
maximization in P2P systems, in which aggregate application-
specific utilities are maximized by running distributed algorithms
on P2P nodes, which are constrained by their uplink capacities.
For certain P2P topologies, we show that routing along a linear
number of trees per source can achieve the largest rate region
that can be possibly obtained by intra-session and inter-session
network coding. This observation allows us to develop a simple
multi-tree formulation for the problem. For the resulting non-
strictly concave optimization problem, we develop a Primal-dual
distributed algorithm and prove its global convergence using our
proposed sufficient conditions. These conditions are general and
add understanding to the convergence of primal-dual algorithms
under non-strictly concave settings. We implement the proposed
distributed algorithm in a peer-assisted multi-party conferencing
system by utilizing only end-to-end delay measurements between
P2P nodes. We demonstrate its superior performance through
actual experiments on a LAN testbed and the Internet.

I. INTRODUCTION

The problem addressed in this paper is motivated by Peer-

to-Peer (P2P) multi-party conferencing applications in which

providing Quality-of-Service (QoS) is a crucial challenge.

Because the Internet is not a dedicated network, voice or video

conferencing applications must share the available network

resource with other applications, and adjust the coding rate,

protection scheme and network delivery path to maximize the

quality of experience of all peers involved. We measure the

quality of experience of the conferencing peer by a utility

function. For video conferencing, it can be the Peak-Singal-

to-Noise Ratio (PSNR) of the decoded video, or a more

sophisticated subjective quality measure such as [1].

Traditional multi-party conferencing (VoIP and/or video

conferencing) is conducted using either a client-server archi-

tecture or in an ad hoc simulcast way.

In the client-server approach, every peer sends its au-

dio/video session to a centralized server and the server repli-

cates the session and redistributes the copies to all other

participating conference peers. This approach ensures that the

entire upload bandwidth of each peer can be used for the

delivery of just that peer’s audio/video session; however, it

places a heavy CPU and network bandwidth burden on the

central server.

In the ad hoc simulcast approach, each user splits its uplink

bandwidth equally among all receivers and sends its video

to each receiver separately. Though simple to implement, this

approach suffers from poor quality of service, especially when

An earlier (and shorter) version of this paper appeared in ACM
SIGMETRICS 2008. Minghua Chen is with Department of Informa-
tion Engineering, The Chinese University of Hong Kong. His e-mail is
minghua@ie.cuhk.edu.hk. Miroslav Ponec is with Akamai Technologies
GmbH. His e-mail is mponec@akamai.com. Sudipta Sengupta, Jin Li and
Philip A. Chou are with Microsoft Research, Redmond. Their e-mails are
{sudipta, jli, pachou}@microsoft.com, respectively.

there is one peer with low upload bandwidth, as that peer

is forced to use a low coding rate that degrades the overall

experience of the other peers.

In contrast, the P2P approach for multiparty video confer-

encing that we consider in this paper does not necessarily rely

on centralized infrastructure and allows a peer to not only

use its uplink to send its video stream but also to forward the

video stream of other peers. This approach facilitates optimal

use of peer uplink bandwidth in the system and naturally

accommodates peer uplink heterogeneity.

A. Related Work

In the past decade, network utility maximization have

attracted significant attention. In the seminal framework in-

troduced in [2] and [3], network protocols are understood

as distributed algorithms that maximize aggregate user utility

under wired or wireless network resource constraints. In the

framework, user’s utility function is typically assumed to

be strictly concave function of user rate, and the resource

constraints set is linear. Various types of fairness across users

can be warranted by choosing different utility functions [4].

The framework not only provides a powerful tool to reverse

engineer existing protocols such as TCP [5], but also allows

systematic design of new protocols. See [6] for a comprehen-

sive review.

There have been work on extending the framework from

its original single-path unicast setting [2], [3] to multi-path

unicast scenarios [7] [8] [9], as well as single-tree multicast

scenarios [10] [11]. For utility maximization in multi-path

unicast scenarios, the utility function is non-strictly concave

with respect to the individual path rate due to multi-path

routing. The challenge is to design distributed algorithms

to solve non-strictly concave optimization problems with

provable fast convergence and easy implementation. Primal

and Dual algorithms, and proximal approach are proposed to

address such challenges [7] [8] [9].

For utility maximization in single-tree multicast scenarios

where routers enable multicast functionality, the multicast

session rate over a link on the tree is the maximum of the

rate of all downstream receivers of the session. Consequently,

every link capacity constraint in general involves multiple non-

differentiable max(·) terms, i.e., the sum of multiple multicast

session rates is less than the physical link capacity. In [10]

and [11], distributed Primal and Dual algorithms are proposed

to maximize utility, under the assumptions that multicast

trees are given and every session has a unique source. The

challenge of dealing with non-differentiable max function

in the constraints is approached by either using continuous

and concave approximation of the max function [11], or

introducing auxiliary variables and applying either Proximal

or sub-gradient approaches [10].

2

There is also work focusing on multicast scenarios where

routers can perform intra-session network coding [12] [13]

[14]. The challenge is to deal with non-strictly concave opti-

mization under non-linear constraints. By exploring the Prox-

imal approach, or a slow timescale traffic engineering control

approach, or expressing the constraints involving max(·) terms

with equivalent linear ones, distributed Primal, Dual subgradi-

ent and Primal-dual algorithms are proposed to maximize the

sum of non-concave utility functions, or minimize the cost of

using the network [12] [13] [14].

B. Our Contributions

In this paper, we consider the utility maximization problem

for multiple multicast under P2P setting, with intra- and inter-

session network coding allowed. This setting differentiates

our work from prior arts, and highlights the challenges we

encounter. Multi-party conferencing is one application of our

work. Our main contributions are as follows:

• The Optimality of Routing on P2P Topology: We

focus on typical P2P topology where peer uplinks are

the only bottleneck in the network. For multi-source

multicast on certain P2P topologies, we show that all

feasible rates can be achieved by packing polynomial

number of Steiner trees. As such, routing is optimal

even if the system contains Steiner nodes (helpers), and

surprisingly there is no gain to perform (intra- or inter-

session) network coding on peer nodes. This result is a

multi-source extension of the single source result studied

in [15].

• New Tree-based Formulation: We introduce a new

formulation for utility maximization in P2P topology in

which the variables are rates of individual trees. Our tree

based formulation uses linear constraints, thus avoiding

the nonlinear max(·) terms in the alternative path and

link based formulations in the literature. Using unique

properties of P2P topology, we show that our formula-

tion achieves maximum utility by routing along a linear

number of depth-1 or depth-2 trees for each source in the

overlay network. As such, our solution is not only optimal

but also readily implementable on today’s Internet.

• Primal-Dual Algorithm with Fast Convergence: Con-

trary to popular belief that Primal-dual algorithms in

general fail to converge in multi-path/multi-tree scenarios

with supporting evidence in [9], we design a queuing

delay based Primal-dual algorithm that solves the util-

ity maximization problem under our multi-tree setting.

The convergence of the algorithm is proved by using

our proposed general sufficient conditions. Our proposed

algorithm is distributed and is implementable by utilizing

only end-to-end delay measurements between peer nodes.

• Evaluation on the Internet: We have built a prototype

multi-party conferencing system based on the proposed

Primal-dual algorithm, using Python programming lan-

guage. We evaluated its performance for several multi-

party conferencing scenarios on a LAN testbed, in a

virtual environment, and also on the Internet. Our sys-

tem achieves low end-to-end delay packet delivery for

conferencing systems, since every packet goes through at

most one hop in the overlay and we tightly control the

queuing delay between nodes.

The rest of the paper is structured as follows. In Section II,

we state the results on optimality of routing over P2P topology,

and present the tree-rate based formulation for the utility

maximization problem in P2P systems. In Section III, we

propose a delay-based Primal-dual distributed algorithm to

this problem. Its global exponential convergence is proved

under the popular P2P settings we consider in this paper. We

discuss how to implement our proposed algorithm in practice

in Section IV. In Section V, we evaluated the performance

of our proposed algorithm in several multi-party conferencing

scenarios on a LAN testbed, in a virtual environment, and on

the Internet. Conclusions and future works are provided in

Section VI.

II. PROBLEM FORMULATION

We consider a network presented by a directed graph

G = (V, J), where V is the set of vertices, i.e., nodes in the

network, and J is the set of edges, i.e., links in the physical

network. Assume each link j ∈ J has a finite capacity Cj . Let

n = |V |.
In the P2P systems we consider, a source node s ∈ S which

is a subset of V sends its content to a set of receivers, denoted

by Rs. A set of helper nodes, denoted by H , are willing

to help in distributing the content. In this paper, we assume

a deterministic fluid model for sending rates of nodes and

ignore packet dynamics. This assumption is reasonable when

the timescale of rate control is sufficiently larger than that of

packet dynamics.

Let zs be the multicast rate of source s, and z = {zs, s ∈
S}. Assume all members in Rs receive s’s stream at this rate.

Let Us(zs) be the utility upon receiving the content from s at

rate zs. To prevent abusing the resources from helpers, sources

and receivers should use helpers’ resources only after they

have used up their own. Putting this into consideration, we

associate a cost, denoted by Gh(z), with using a helper h ∈ H

to distribute a content.

In this multiple multicast scenario, a natural goal is to

maximize the aggregate net utility of all receivers, subject to

rate constraints, i.e.,

max
z

∑

s∈S

Us(zs)−
∑

h∈H

Gh(z), subject to constraints on {zs}.

Before formulating the problem further, we need to under-

stand the constraint region for {zs} to optimize over and how

to achieve it.

A. Network Coding vs. Routing

The maximum achievable multicast rate of single source

multicast scenario is characterized as the minimum of the min-

cuts between the source node s and all nodes in its receiver

set R [16], i.e., mint∈R min-cut (s, t). For example, in the

classical Butterfly network shown in Fig. 1.(a), a source s

multicasts to two receivers t1 and t2. The min-cuts between

s and t1 and t2 are all 2. Thus, the maximum achievable

multicast rate is 2.

3

(a) (b) (c)

Fig. 1. (a) Butterfly network with unit link capacities. (b) Network coding
can achieve a multicast rate of 2. (c) Routing can achieve a multicast rate of
1.

If network coding is allowed, then the single source mul-

ticast rate region can be achieved for arbitrary topology by

solving the routing and coding problems separately, each

being of polynomial complexity [17]. For example, as seen

in Fig. 1.(b), by performing XOR operation in the Steiner

nodes in the Butterfly network, we can achieve the maximum

achievable multicast rate 2.

The achievable rate region for multi-source multicast scenar-

ios was recently implicitly characterized in [18], but currently

no scheme is known to achieve it. It is believed that infor-

mation from different multicast groups should be coded in a

nonlinear fashion in order to achieve the rate region (inter-

session coding). However, doing such mixing and coding is

complex and largely open.

Regardless of its power, network coding is not quite prac-

tical in today’s P2P applications. It cannot be used in the

Internet routing layer because it requires changes in all routers

(for encoding) and end-hosts (for decoding). If deployed in

the overlay (P2P layer), it will introduce new complexity in

end-host software (for encoding and decoding) and additional

delays in video delivery. A practical way to explore the

achievable rate region is by routing. Each source s packs

directed Steiner trees rooted at s and reaching all receivers in

Rs. For the general case of arbitrary topologies, this approach

of routing brings up the following difficulties:

1) For a given source, the maximum rate achieved by

routing can be a factor of up to log |V | lower than that

achieved by network coding [17]. For example, as seen

in Fig. 1.(c), by packing Steiner trees in the Butterfly

network, we can only achieve multicast rate of 1, as

compared to 2 achieved by network coding approach.

2) To achieve the maximum rate for routing, the problem

of packing directed Steiner trees is NP-hard [19].

Moreover, the number of Steiner trees used in an optimal

solution may be exponential.

As such, routing cannot achieve the optimal rate region

in general topology and its cost could be prohibitively large.

However, the fact that our problem involves a P2P topology

where peer uplinks are the only bottlenecks (in practice) in

the network allows us to tackle all of the above difficulties in

a surprisingly elegant manner.

B. Impact of P2P Topology

In P2P topology, we assume every peer can connect to

every other peer through routing in the overlay. Similar to

other P2P work [15], [20], [21], [22], we make the uplink

bottleneck assumption that node uplinks are the only rate

limiting bottlenecks in the network. In the overwhelming

majority of residential broadband connections, bottlenecks

typically are at the edge of the access networks rather than

in the middle of the Internet. Furthermore, it is common to

have the uplink capacity of a peer to be several times smaller

than the downlink capacity, thus justifying the practicality of

our assumption on P2P topology to some extent. Formally, if

a peer i has uplink capacity rUi , downlink capacity rDi , and

is a source of data at rate Ri, and a sink of data at rate R′
i

(i.e., it is not uploading this data to any other peer), then its

downlink is not a bottleneck if rDi ≥ R′
i + (rUi −Ri).

In the context of P2P topology with the above uplink

constraint assumptions, a powerful theorem established in the

Mutualcast paper [15] states the following. Consider a network

with P2P topology consisting of a source s, a set of receivers

Rs, and a set of helpers H . Then, the min-cut capacity for

source s and receivers Rs can be achieved by packing at most

1 + |Rs|+ |H | Mutualcast trees as follows:

• One depth-1 tree rooted at s and reaching all receivers in

Rs, i.e. the type (1) tree in Fig 2.

• |Rs| depth-2 trees, each rooted at s and reaching all other

receivers in Rs via different r ∈ Rs, i.e. the type (2) tree

in Fig 2.

• |H | depth-2 trees, each rooted at s and reaching all

receivers in Rs via different h ∈ H , i.e. the type (3)

tree in Fig 2.

s

r . . .

r

r’ . . .

h

r . . .

Rs – {s} Rs – {s}Rs – {s,r}

Type (1) tree Type (2) tree Type (3) tree

s s

Fig. 2. Different types of Mutualcast trees.

This result extends and simplifies Edmonds’ theorem [23]

for P2P topology, in the sense that it allows helper (Steiner)

nodes and uses only depth-1 and depth-2 Steiner trees.

Fig. 3(b) shows all 12 Mutualcast trees for a three peers and

one helper scenario where each peer wants to multicast its

content to the other two. For a special case where there is

no helper nodes in the network, authors in [21] and [20] also

derived results similar to the above-stated Mutualcast theorem

independently.

The original Mutualcast Theorem is for single source mul-

ticast scenario only, we have extended the result to the case

of a multi-source multicast scenario when there is no coding

across sessions belonging to different sources in [24].

Further, surprisingly, we show in the following theorem that

routing is optimal and inter-session network coding is not

needed, if we require that each receiver is part of every session,

i.e., Rs∪{s} = R for all s ∈ S. (Note that each receiver need

not be a source though.) Such a scenario is common in multi-

party conferencing systems.

4

Theorem 1: Consider a P2P topology in which peer uplinks
are the only bottleneck. Consider multiple multicast sessions
given by source nodes s ∈ S, receiver set Rs, and helper
nodes Hs = V −{s}−Rs for session with source s. Further,
assume that each receiver is part of every session, i.e., Rs ∪
{s} = R for all s ∈ S, and hence Hs = V − R = H for
all s. Then, the largest achievable rate region z = {zs, s ∈
S}, achievable by network coding across sessions, can be
achieved by routing along 1 + |Rs| + |Hs| Mutualcast trees
for each source s independently. Furthermore, let Co(v) be the
uplink capacity constraint for node v in V , then the largest
achievable region is given by

{

z : zs ≤ Co(s),∀s ∈ S, |R|
∑

s∈S

zs ≤
∑

v∈V

Co(v)−
1

|R|

∑

h∈H

Co(h)

}

.

Proof: Refer to Appendix A.

In contrast to the known results that inter-session coding

is needed to achieve the maximum rate region in general

topology, the unique structure of the P2P topology we consider

in this paper allows us to achieve the maximum rate region

by packing only linear number of Steiner trees per source, if

each receiver is part of every multicast session. This result is

not only surprising but also elegant.

We summarize the advantages and disadvantages of using

network coding and packing (directed) Steiner trees to achieve

multicast rate region in Table I.

C. Optimization Framework

With the packing Mutualcast trees approach, each source

s ∈ S builds a set of depth-1 and depth-2 Mutualcast trees

to send data to all receivers in Rs along the trees. We denote

this set of trees also as s, and a source is identified by the

set of trees of which it is the root. Another advantage of

this packing trees approach is that the resulting solution also

includes session scheduling; therefore, the latter need not be

solved as a separate problem.

A tree m ∈ s is a set of links and nodes that the tree passes

through; all receiver nodes on a tree receive the same content

at the same rate. We denote the rate of tree m as xm. Rates of

the trees rooted at source s sum up to the source rate zs, i.e.,
∑

m∈s xm = zs, ∀s ∈ S. The injecting rate of link j is the

aggregate rate of the trees that pass through link j, denoted

by yj , and is given by,

yj ,
∑

s∈S

∑

m∈s:j∈m

bmj xm, ∀j ∈ J, (1)

where bmj is the number of tree m’s branches that pass through

physical link j. Since different branches of a tree in the overlay

can pass through the same physical link in the underlay, the

tree rates might be counted multiple times when computing

the injecting rate of a link, hence the multiplication by bmj .

Similarly, define the forwarding rate of a helper node h as

yh ,
∑

s∈S

∑

m∈s:h∈m

bmh xm, ∀h ∈ H, (2)

where bmh is the out-degree of helper node h in multicast tree

m. Denote yH = [yh, h ∈ H].

The aggregate utility maximization problem in P2P systems

can be formulated as follows:

max{xm}
∑

s∈S

|Rs|Us

(

∑

m∈s

xm

)

−
∑

h∈H

Gh(yh) (3)

s.t. yj ≤ Cj , ∀j ∈ J,

where |Rs|Us

(
∑

m∈s xm

)

is the aggregate utility of a group

Rs upon receiving content at rate
∑

m∈s xm = zs, and Gh(yh)
is the cost of using helper node h to deliver content at rate

yh. As discussed earlier, this cost is to prevent peers from

abusing resources from helpers – sources and receivers should

use helpers’ uplink capacities only after they use up their

own. Formally, if the optimum objective function value can

be achieved without using (or using lower) helper uplink

capacities, then this should be preferred.

We assume that the utility functions Us(·), s ∈ S, are strictly

concave, and the cost functions Gh(·), h ∈ H are strictly

convex.

This problem formulation is applicable to many P2P appli-

cations in practice. For example, in P2P video conferencing

systems with utility being the video quality, the problem in (3)

corresponds to maximizing the aggregate video quality of all

receivers. This formulation is flexible in the sense the tree loss

and delay characteristics can be easily taken into account by

adding a term emxm with negative em into the utility function

representing the delay or loss cost of using tree m.

The optimization problem in (3) is a non-strictly concave

optimization problem with linear constraints. It might have

more than one optimal {xm}. However, the optimal aggregate

rate associated with each source {z} is unique. This is because

the objective function is strictly concave with respect to {zs},

and the rate constraint region of {zs} can be shown to be

a polyhedron by eliminating the tree-rate variables xm (for

example, by Fourier-Motzkin elimination [25]).

For the concave optimization problem shown in (3), interior-

point and simplex based algorithms can be applied to solve the

problem in a centralized manner [26]. However, centralized

solutions may put a huge burden on the central solver and it

requires the central solver to know the up-to-date topology,

peer uplink rates, cross traffic, and the utility function of

each peer. Tracking these information may not be feasible

in practice and it is therefore desirable to have a distributed

algorithm that can be deployed in practice.

III. DISTRIBUTED ALGORITHMS FOR

MULTI-TREE BASED MULTICAST

The optimization problem we consider in (3) is a non-

strictly concave one due to multi-tree routing between sources

and their receivers. There are three ways to approach such a

problem in a distributed manner, namely Primal algorithms,

Dual algorithms, and Primal-dual algorithms.

Due to the non-strictly concave objective function, standard

Dual gradient algorithms fail to work since the gradient is

not everywhere defined. Alternatively, dual subgradient algo-

rithms [10] [13] and dual proximal algorithms [10] [8] are

proposed to solve the problem. However, convergence of dual

variables in these approaches are typically slow, and to recover

5

TABLE I
COMPARISONS OF APPROACHES TO ACHIEVE MULTICAST RATE REGION

single source single source multi-source multi-source complexity
multicast multicast multicast multicast

(P2P topology) (general topology) (P2P topology) (general topology)

network coding optimal optimal ? (open) ? (open) polynomial

packing optimal suboptimal optimal in suboptimal NP-hard in general,
Steiner trees certain cases polynomial in P2P

optimal primal variables requires solving another optimization

problem. Furthermore, it is not clear how to implement these

algorithms on today’s Internet.

The advantages of Primal algorithms lie in their ease of

applicability and fast convergence in multi-path/multi-tree

routing scenarios. However, in general it gives only an ap-

proximated solution to the optimization problem. Moreover,

their practical implementation typically relies on observing

packet loss due to buffer overflow in routers, which means

the buffer is full and the queuing delay is large. This may not

be desirable for real-time P2P conferencing applications that

prefer minimum end-to-end delay.

In this paper, we focus on Primal-dual algorithms. The

advantage of our Primal-dual algorithm are two folds. First,

it can be implemented by utilizing the delay measurements

between peers, which makes it particularly attractive in the

targeting conferencing applications. Second, we show that our

Primal-dual algorithm converges exponentially fast.

A. A Queuing Delay Based Primal-dual Algorithm

Another way to solve the optimization problem in (3) in a

distributed manner is to look at its Lagrangian:

L(x, p) =
∑

s∈S

|Rs|Us (zs)−
∑

h∈H

Gh(yh)−
∑

j∈J

pj (yj − Cj) ,

(4)

where pj is the Lagrangian multiplier, and can be interpreted

as the price of using link j. Since the original problem in

(3) is a concave optimization problem with linear constraints,

strong duality holds and there is no duality gap. Any optimal

solution of the problem in (3) and one of its corresponding

Lagrangian multiplier is a saddle point of L over the set {x ≥
0, p ≥ 0}, and vice versa. Further, (x, p) is one such saddle

point of L if and only if it satisfies the Karush-Kuhn-Tucker

conditions [26]: ∀s ∈ S, ∀m ∈ s, ∀j ∈ J ,

pj ≥ 0, yj ≤ Cj , pj (yj − Cj) = 0, (5)

|Rs|U
′
s(zs)−

∑

h∈m

bmh G′
h(yh)−

∑

j∈m

bmj pj = 0. (6)

The first equation is the complementary slackness condition.

The optimal Lagrangian multiplier can be nonzero only if

the capacity constraint of link j is activated, i.e., yj = Cj .

We denote the set containing all (x, p) that satisfy the above

conditions by E. As the original problem has at least one

solution, E contains at least one point and is not empty.

There could be multiple saddle points of L since the original

optimization problem is not strictly concave. To pursue one

of the saddle points, we consider the following Primal-dual

algorithm: s ∈ S, ∀m ∈ s, and j ∈ J ,

ẋm = km



|Rs|U
′
s(zs)−

∑

h∈m

bmh G′
h(yh)−

∑

j∈m

bmj pj





+

xm

(7)

ṗj =
1

Cj

(yj − Cj)
+
pj
, (8)

where km is a positive constant controlling the adaptation rate

of tree m and (yj − Cj)
+
pj

= yj(t) − Cj if pj > 0, and

is max(0, yj − Cj) otherwise. It is known that pj adapted

according to (8) can be interpreted as queuing delay [27].

Every saddle point of L is an equilibrium of the above system

in (7)-(8).

Whether the Primal-dual algorithm can be applied to multi-

path/multi-tree routing scenarios is an open problem. Served

as a negative result, it is shown that (x, p) following (7)-(8) os-

cillates indefinitely in a simple multi-path unicast scenario [9,

Section 2.5].

In this paper, we give a general sufficient condition for the

Primal-dual algorithm in (7)-(8) to converge to the optimal

solution, regardless of unicast or multicast, single path or

multipath routing. To our best knowledge, this is the first

attempt to characterize the applicability of the Primal-dual

algorithm. We believe its applicability is beyond the P2P

systems we studied in this paper.

We give the definitions and notations to be used in later anal-

ysis. Let A be the connectivity matrix, where the (i, j) entry is

the number of branches of tree j passing through link i. This

is different from traditional connectivity matrix (for unicast)

as its entries can take values other than 1 or 0. Similarly, let

AH be the helper connectivity matrix whose entries being the

number of branches of a tree passing through a helper. Let

K = diag{km,m ∈ s, s ∈ S}, C = diag{Cj , j ∈ J} where

J is assumed to contain only the bottlenecks without loss of

generality. Let B be the matrix representing the relation of

source rate, rate passing through helpers and the tree rate, with

the (i, j) entry being 1 if tree j belongs to source i, being b
j
i

if tree j passes through helper i, and 0 in any other cases.

The following Lemma shows that the nonlinear system in

(7)-(8) converges to an invariant set, over which the nonlinear

system turns into a linear one.

Lemma 1: All (x, p) trajectories of the system in (7)-(8)

converge to an invariant set, denoted by V0 = {(x̄, p̄) :
[

z̄, ȳH
]T

= Bx̄ = const}, over which the following is true:

• z̄ and ȳH are the unique solution to the problem in (3);

• the nonlinear system reduces to a linear one:
{

˙̄x = KU ′ −KAHG′ −KAT p̄
˙̄p = C−1Ax̄− 1

(9)

where U ′ and G′ are constant matrices;

6

• the above linear system is marginally stable, and all its

trajectories do not converge and form limit cycles.

Proof: Refer to Appendix B.

Shown by the above theorem, (x, p), trajectories of the

system in (7)-(8) converge to a set V0 where the source rates

z̄ are optimal. Clearly, all saddle points of L belong to V0,

and E ⊆ V0. If we also have V0 ⊆ E, then the Primal-dual

algorithm solves the problem in (3).

However, it is possible that V0 contains some (x̄, p̄) that

are not in E; ˙̄x and ˙̄p are not zero. If (x, p) moves onto these

points, then they will keep oscillating and never converge. This

is exactly the challenge of using the Primal-dual algorithm

in multi-path/multi-tree routing scenarios, and explains the

oscillations in rates and delay discussed in [9].

One way to guarantee V0 = E is to utilize the fact that

Bx̄ is constant to explore the conditions for V0 to not include

those singular points, as explored in the following theorem.

Theorem 2: All trajectories (x, p) of the system in (7)-(8)

converge globally asymptotically to one of its equilibria and

V0 = E, if p̄ is completely observable from (z̄, ȳH) through

the linear system in (9). Equivalently, V0 = E if for any

eigenvalue of C−1AKAT , denoted by λ,

rank

(

C−1AKAT − λI

BKAT

)

= |J |. (10)

Proof: Refer to Appendix C.

Furthermore, we can access a stronger convergence result

for the Primal-dual algorithm in (7)-(8), if the above condition

is satisfied.

Theorem 3: If the Primal-dual algorithm in (7)-(8) con-

verges globally asymptotically, then the following is also

true: there exists a compact set Ω such that any compact set

containing Ω is a positive invariant set of the system in (7)-

(8). Further, if (x, p) are bounded within one such compact set,

then the system trajectories (x, p) converge to the equilibria

globally exponentially.

Proof: Due to space limitation, we omit the details and

refer interested readers to [28].

The Primal-dual algorithm described in (7)-(8) can be

implemented by each link generating its queuing delay and

each source adjusting the rates of its trees by observing sum

of the queuing delays introduced by using the trees. As such,

the algorithm can be implemented in a distributed manner.

Regardless of the nice convergence properties and the easy

implementation of the Primal-dual algorithm in (7)-(8), it is

possible that with some network settings, the condition in

(10) is not satisfied and the Primal-dual algorithm may not

converge. One example is shown in [9, Section 2.5].

Interestingly, the unique structure of the P2P topology

allows us to prove that the sufficient condition can be easily

satisfied for the targeting multi-party conferencing systems, as

explored in the following subsection.

1) Multi-party Conferencing Scenarios: Consider a P2P

multi-party conferencing system with the first ns of them

being participants and the rest nh of them being helpers. Every

participant wants to receive contents from all other partici-

pants. The following theorem gives a sufficient condition for

the Primal-dual algorithm in (7)-(8) to converge to the saddle

points of L in P2P multi-party conferencing systems.

Theorem 4: For multi-party conferencing systems in P2P

topology, all (x, p) trajectories of the system in (7)-(8) con-

verge to one of its equilibria globally asymptotically, if for

source s, all its km,m ∈ s are the same.

Proof: Refer to Appendix D.

The requirement of having all km to be the same for all

m ∈ s is easy to satisfy in practice. It implies every source

should adjust its tree rates at the same adaptation rate, which

is also convenient.

IV. PRACTICAL IMPLEMENTATION

We implemented a prototype of a P2P multi-party confer-

encing system. In such a system, each participant peer is a

source of audio and video streams and at the same time wants

to receive videos from all other participants1. Some peer nodes

not interested in sending and receiving videos, such as the

MCU, may decide to become a helper and assist in the audio

and video delivery.

Implementing the Primal-dual algorithm in (7)-(8) appears

to be straightforward. We first describe the functionality im-

plemented by each peer, then highlight four important issues

we addressed in the implementation. First, we empirically find

one common utility function to use in video conferencing,

which can be modeled by logarithmic functions. Second, we

we explain how to measure and collect queuing delays along

the trees without global time synchronization and how we

define the cost of using a helper for content delivery by using

delays. Finally, we discuss how to bound the experienced delay

to meet the tight delay requirements of real-time conferencing.

(a) (b)

Fig. 3. Scenarios 1 and 2: (a) Propagation delays and uplink bandwidth
constraints for each peer and link in our experimental testbed. (b) Multicast
trees for three nodes (A, B, C) and one helper (D) from Section II-B.

A. Peer Functionality

In our implemented P2P multi-party conferencing system,

all peers, including both participants and helpers, perform the

following functions:

• Peers on a multicast tree forwards the packets from the

upstream tree branches to the downstream branches. It

achieves this by building a forwarding table, which maps

a tree number contained in every packet to a list of its

downstream peers. For instance, the helper D in Fig. 3(a)

makes two copies of every packet it receives from one

1The audio stream rate is constant and typically small compared to the video
stream rate. In practice, audio streams are transmitted to a Media Control
Unit (MCU) and delivered to peers by this central server. As such, only
transmission of video streams needs to be considered.

7

peer (A, B, or C), and unicasts the copies to the other

two peers. If a peer is the leaf node in a tree, it doesn’t

forward any packets on that tree.

• Peers on multicast trees measure queuing delay between

two peer nodes for each packet they receive and distribute

these measurements to the roots of the trees. This is done

in a simple and effective way that will be discussed later.

In addition, each participant peer, i.e. non-helper node,

performs several functions:

• Peers, as sources of the video streams, are roots of several

multicast trees which are used to deliver the videos to

other peers. They need to encode their videos at specified

rates, split the encoded data among the trees and send

data packets with routing information (i.e., a tree number)

along the trees. Each peer sets up its trees at the beginning

of the conference and adjusts them when peers join or

leave.

• Peers adjust the tree rates according to (7) based on

the queuing delay measurements they receive from other

peers.

• All peers upon receiving the data decode the video

streams of other peers and show to the user.

B. Queuing Delay Measurement and Updating of Tree Rates

We use UDP protocol to transmit video packets along tree

m according to tree rate xm(t),m ∈ s. Aside from the video

content, each packet contains a tree number and a timestamp,

representing the time when this packet was sent from the

current peer node, such that next-hop peer node can measure

the delay between the two peer nodes.

Seen from (7)-(8), the key in implementing the Primal-

dual algorithm is to measure the queuing delay pj of peer j’s

uplinks, for all j ∈ J . Under the setting that peer uplinks are

the only bottleneck in P2P systems, the end-to-end queuing

delay between peer j and its offspring peers on multicast

trees is equal to the queuing delay pj of the peer j’s uplinks.

Therefore, we can measure pj by measuring the end-to-end

delay between peer j and its offspring peers. To ensure a fully

distributed solution, it is desirable to carry out such end-to-

end delay measurement without global synchronization across

peer nodes.

In our implementation, we use the difference in relative

One-Way-Delay (ROWD) to measure the queuing delay be-

tween two peer nodes. ROWD is the relative difference be-

tween the packet sending time at the sender peer, and the

packet receiving time on the receiver peer. It is the sum of

propagation delay, queuing delay, and clock offset between the

two peers. The smallest ROWD seen in the history between

two peers simply corresponds to the sum of propagation delay

and clock offset, and is constant. By subtracting the smallest

ROWD seen in the history from the current ROWD, we can

get an measurement of current queuing delay between two

peers.

The following is a simple procedure that we follow to

measure the queuing delays of peers’ uplinks and to distribute

them among peers.

• Whenever a peer sends or forwards a packet, a timestamp

is attached to it.

• Each of its offspring peers on the tree computes the

current ROWD, subtracts the minimum ROWD observed

so far, and generates a measurement of the queuing delay

of the sender peer’s uplink.

– If the offspring peer is a source, it will piggyback

this queuing delay measurement to its next video

packet which guarantees its distribution among all

other peers.

– If the offspring peer is a helper, it will piggyback this

measurement with the packets being forwarded to the

downstream peers. Those peers (which are always

sources) distribute it to all other peers as part of the

next packet they send out through one of their trees.

The overhead of distributing the delay information is negligi-

ble as it only requires few bytes per packet and it is distributed

together with each peer’s video.

The advantage of measuring delay based on ROWD is

that it does not require time synchronization across peers.

Such method is well adopted in the context of measuring

congestion [29]. We use it in this paper for a different purpose

of measuring queuing delay. The disadvantage of using ROWD

to measure the queuing delay is that its measurement can be

inaccurate if the underlying route between peers changes; there

have been some efforts to overcome this drawback [29].

Upon collecting the necessary delay measurement pj (j ∈
Rs ∪ H ∪ {s}), source peer s computes an average queuing

delay for each peer on its trees, by doing a running average

over the last three queuing delay measurements of the peer.

The purpose of doing so is to achieve a balance between ro-

bustness to measurement noise and quick response to network

condition changes. Source s then updates its tree rates xm

(m ∈ s) according to (7)2.

It is also possible to share the helper nodes among multiple

video conferences. Our proposed algorithm will automatically

utilize as many resources from the helpers as possible to

improve the aggregate video quality across conferences. How

much server resource a conference receives depends on the

number of participating peers in the conference as well as the

utility functions involved in the conference.

C. Utility (PSNR) Modeling

In video processing, PSNR (peak-to-peak signal-to-noise

ratio) metric is the de facto standard criterion to provide

objective quality evaluation between the original frame and

the compressed one. For the original video frame f1 and the

compressed one f2, each containing N×N pixels with values

in [0, 255], the PSNR is computed as follows:

PSNR(f1, f2) = 10 log10

[

2552 ×N2

∑N

i=1

∑N

j=1(f
ij
1 − f

ij
2)2

]

,

where f
ij
1 and f

ij
2 are the pixel values in i-th row and j-th

column of frames f1 and f2, respectively.

Fig. 4 shows PSNR curves of three videos as functions of

encoding rates. These represent the receiving video quality if a

2In the theoretical analysis we assume the rates are followed exactly, i.e.,
the variable bit rate (VBR) encoder generates the video stream at the current
source rate as the sum of aggregate tree rates.

8

source peer encodes and sends its video at these rates. We have

chosen three video sequences in CIF format: Akiy, Foreman,

and Tennis. They represent low, medium, and high motion

scenes, respectively. We encoded the videos by H.264/AVC

Reference Software Encoder (ver. 12.2) [30] with various

bitrates to get PSNR curves.

Interestingly, from Fig. 4, we observed that PSNR of a video

coded at rate z can be approximated by a logarithmic function

β log(z), with higher β for videos with large amount of motion

and lower β for rather still scenes. The β value can be obtained

from the video encoder of source s during the encoding. Based

on this empirical observation, we use utility function Us(zs) =
βs log(zs) in our experiments.

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

Bitrate [kbps]

P
S

N
R

 [
d

B
]

Akiy

Foreman

Tennis

Akiy approx.

Foreman approx.

Tennis approx.

Fig. 4. PSNR curves of three video sequences with low, medium, and high
motion and their approximation by logarithmic functions.

D. Implementing Helper Cost Function Using Delay

In order to implement the Primal-dual algorithm in (7)-

(8) in practice, we need to define helper cost functions, i.e.

Gh(yh), that are meaningful, easy to generate, and cause little

or no overhead to update source peers of its value when yh
changes. Having these goals in consideration, we use delay

based functions in our implementation.

One example is as follows: for all helper nodes h ∈ H ,

Gh(yh) = γhy
2
h, where γh is assumed to be a small positive

constant. Its derivative is: for all h ∈ H , G′
h(yh) = γhyh.

The idea is to implement it as an additional artificial delay

that helper h injects when forwarding every packet. When

peers compute the queuing delay for packets received from

a helper node h, they add a small amount of γhyh to it.

This artificial portion of delay will be then distributed back to

the source peers. In this way, the source peers will naturally

take this γhyh cost into account when adjusting the tree rates

according to (7).

The above process can be carried out for arbitrary helper

cost functions. In the P2P multi-party conferencing systems

we consider, delay is crucial for the quality of participants’

experience. As such, it is reasonable to use delay as a

cost function. The cost generation and distribution is fully

distributed and because it is included in the existing queuing

delay measurements it adds no extra overhead.

E. Bounding the Average Queuing Delay At the Equilibrium

On one hand, our solution uses only depth-1 and depth-

2 Steiner trees to deliver contents from a source peer to its

receiver peers. Consequently, every packet goes through at

most one hop (i.e., two tree branches) in the overlay before

reaching all receivers, resulting in low end-to-end propagation

delay in packet delivery. This makes our solution especially

suitable for real-time P2P multi-party conferencing systems, as

conferencing systems have a strict requirement, in particular

150 ms, on the end-to-end packet delivery delay between

participant peers.

On the other hand, one solution relies on the queuing delay

experienced by packets to control the tree rates properly.

As queuing delay also contributes to the end-to-end packet

delivery delay, it is then desirable to bound the queuing delay

experienced by packets at the steady state of the system after

the tree rates converge. Note that according to Theorem 4

and 3, tree rates converge exponentially fast in P2P multi-

party conferencing systems.

Let (x̄, p̄) be the converged tree rates and queuing delays,

and let z̄ = Bx̄, ȳH = AH x̄ and q̄ = AT p̄. Let d̄m be the

average queuing delay in packet delivery from source s to its

receiver peers along tree m at the equilibria. The following

proposition states the relationship of d̄m and utility functions:

Proposition 1: The following optimization problem, with α

being a positive constant, has the same solution as the one in

(3):

max{xm} α

[

∑

s∈S

|Rs|Us

(

∑

m∈s

xm

)

−
∑

h∈H

Gh(yh)

]

(11)

s.t. yj ≤ Cj , ∀j ∈ J,

Meanwhile, at the equilibria of the above system, for all m ∈
s, we have

d̄m ≤ 2αU ′
s(z̄s). (12)

Proof: Refer to Appendix E.

As such, we can bound d̄m with a designed value by tuning

the constant α based on a lower bound on zs for all s ∈ S. For

example, for P2P multi-party conferencing system, the system

designer may want to set a limit on how low the converged

source rate can be, since the video quality will be unacceptable

at such limited rate3. This will give a lower bound on zs, and

hence a lower bound value of U ′
s(z̄s) for all s ∈ S. Then the

designer can bound the worst-case d̄m with a designed value,

e.g., 150 ms, by solving α according to (12) with these two

values. It should be noted that in practice the converged source

rate is larger than the video rate limit, the experienced d̄m will

be therefore smaller than the worse-case bound set above.

V. EXPERIMENTAL RESULTS

We use PCs running Windows XP and Network Emulator

for Windows (NEW) connected to a LAN for Scenarios 1
and 2. NEW is a software based network emulator that allows

realistic emulation of different network characteristics such as

bandwidth emulation, packet loss and latency [31]. Scenarios

3In such case, the system designer might want to involve stronger helpers
with large uplink bandwidths to allow higher video rates.

9

1 and 2 use the topology and network conditions described by

Fig. 3(a).

We have also conducted experiments in Scenario 3, under

real Internet settings with peers being spread around the US

and virtual machines in a Virtual Lab [32], respectively.

A. Scenario 1: X-Traffic and Utility Changes

In the first experimental scenario we show how our system

adapts to network dynamics (i.e., cross traffic) and utility

changes. We have three peers A,B,C initialized with the same

utility function, i.e., parameter βA = βB = βC . At time 200
seconds βB is increased by 50%. At time 400 seconds we start

sending additional traffic of 200 kbps from peer B and stop

at 600 seconds.

Fig. 5(a) through 5(i) show the rates and total queuing

delays for each tree in the system. As seen in Fig. 5(a), peer A

does not utilize its depth-1 direct tree, because it requires twice

as much bandwidth of peer A compared to sending content

through other peers and peer A has the lowest bandwidth

capacity. Moreover, other peers are not utilizing trees in

Fig. 5(e) and 5(f) in order to avoid excessive congestion at peer

A and to allow it to fully use its upload bandwidth for trees

going through other peers (Fig. 5(d) and 5)(g) to distribute A’s

video.

In the introduction, we mentioned how ad hoc simulcast

approach would not perform well in a scenario where a peer

has very low upload bandwidth. Scenario 1 has one such peer,

A, which would encode its stream at only 64 kbps if simulcast

approach was used. Remember that with simulcast every peer

splits its uplink bandwidth equally among all receivers, for

A these are B and C. During the first 200 seconds of this

experiment simulcast would achieve utility of only up to 14.96,

while our scheme achieves the optimal utility value and the

encoding rate for peer A is twice as high. This shows that our

framework improves the aggregate utility further by optimally

utilizing bandwidth of all peers.

The sending rate of peer B starts to increase at time 200
seconds as its utility function becomes steeper, indicating the

conference participant starts to introduce a large amount of

motion in its video. Specifically, the rate of tree in Fig. 5(h)

increases at the expense of peer C (Fig. 5(h)) which has lower

utility. All peers are using peer C, the peer with the maximum

bandwidth, as can be observed from Fig. 5(g) and 5(h). The

cross traffic at peer B initiated at 400th second causes a

decrease in rates for trees in Fig. 5(b) and 5(i) as peer A stops

using congested peer B and peer B decreases utilization of the

direct depth-1 tree. The system always quickly converges to

one of the optimal solutions after network conditions or utility

function changes (in less than 20 seconds), see Fig. 5(m)).

In order to confirm the results of our distributed algorithm

we run a Mosek [33] program to solve the optimization

problem in (3) using the same topology and utility functions.

The optimal tree rates allocation generated by Mosek confirms

our above observations and the optimal utility value is shown

in Fig. 5(m) and 5(o).

It takes 76ms on average to deliver a packet containing

video from a sender to a receiver in Scenario 1 (with latencies

between peers A − B, B − C and C − A, 18, 36, 22ms,

respectively, described in Fig. 3(a), and queuing delays from

Fig. 5). If we distributed the videos in a simulcast way the

average delay would be 27ms but the maximum utility would

not be possible to achieve. We see that the proposed algorithm

incurs very little queueing delay in the system.

B. Scenario 2: Peer Joining and Helper

In the second experimental scenario (Fig. 5(n)), the three

peers are sending videos with various motion characteristics

(βB = 0.9βA, βC = 1.2βA, βD = βA). A fourth peer (D)

joins the group, first as a source&receiver peer at time 200
seconds, and as a helper at time 400 seconds. When it becomes

a helper, it is no longer generating its own video stream and

is not interested in receiving the videos from other peers but

it just helps forwarding the video content to them.

In this scenario we see that the system adapts the sending

rates quickly to accommodate the new joining peer at time

200 seconds. Maximum utility is achieved within 30 seconds

and note that the convergence rate can be controlled by the

km parameter in (7). As each video has to be delivered to

more peers, we see a drop in the total rates. The system

adapts again as the peer becomes a helper at time 400 seconds,

where the rates react to fully utilize the available bandwidth

and maximize the utility function (Fig. 5(o)). Note that with

the helper, rate of each source monotonically increases and

the converged utility is higher than the one without helper,

i.e., before second 200 seconds.

C. Scenario 3: Internet Experiment - 3 Peers

In this scenario we run a short 2-minute 3-party conferenc-

ing over the Internet using 3 computers spread around the US.

In this case, every peer will use 3 spanning trees to deliver its

contents. Uplink bandwidth limits are 384 kbps for peer A, 256
kbps for peer B, and 128 kbps for peer C. The utility functions

for all peers are set to be the same. The average round trip time

between peers are: 79 ms between A and B, 40 ms between A

and C, and 65 ms between B and C. Fig. 6 shows the source

rates, tree rates and average tree branch delays for each peer.

Fig. 6 also shows the utility achieved in the experiments as

well as theoretical optimum. We use the same km for all the

trees of a peer. As such, we use kA, kB and kC to denote the

tree rates adaptation speeds for A, B, and C, respectively.

Seen from Fig. 6(a), the source rate of A ramps up fastest

among the three peers, this is because we set kA to be the

largest among the three. Similarly, the source rate of C ramps

up slowest since kC is the smallest among the three.

We observe that the queuing delay varies as the programs

adjust the tree rates. We also observe from Fig. 6(a) that the

average tree branch delays for A, B and C are about 19 ms,

20 ms, and 45 ms, respectively. Shown in Section IV-E, the

average packet delivery delay is approximately twice the sum

of the average one way propagation delay and the average

tree branch delay. Therefore, the average packet delivery times

for A, B and C are about 91 ms, 105 ms, and 128 ms,

respectively. These values are within the acceptable range for

smooth conferencing experience.

10

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

50

100

150

R
a

te
 [

k
b

p
s
]

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

50

100

150

R
a

te
 [

k
b

p
s
]

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

50

100

150

R
a

te
 [

k
b

p
s
]

(a) Tree (A→B,A→C) (b) Tree (B→A,B→C) (c) Tree (C→A, C→B)

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

R
a

te
 [

k
b

p
s
]

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

R
a

te
 [

k
b

p
s
]

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

R
a

te
 [

k
b

p
s
]

(d) Tree (A→B, B→C) (e) Tree (B→A, A→C) (f) Tree (C→A, A→B)

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

50

100

150

200

R
a

te
 [

k
b

p
s
]

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

50

100

150

200

R
a

te
 [

k
b

p
s
]

0 100 200 300 400 500 600 700 800
0

500

1000

D
e

la
y
 [

m
s
]

Time [s]

0 100 200 300 400 500 600 700 800
0

50

100

150

200

R
a

te
 [

k
b

p
s
]

(g) Tree (A→C, C→B) (h) Tree (B→C, C→A) (i) Tree (C→B, B→A)

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

R
a
te

 [
k
b
p
s
]

Time [s]
0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

R
a
te

 [
k
b
p
s
]

Time [s]
0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

R
a
te

 [
k
b
p
s
]

Time [s]

(j) Aggregate rate for A (k) Aggregate rate for B (l) Aggregate rate for C

0 100 200 300 400 500 600 700 800
11

12

13

14

15

16

17

18

19

Time [s]

U
ti
lit

y

measured

optimal

Utility change

Cross traffic added

Cross traffic removed

0 100 200 300 400 500 600
0

50

100

150

200

250

Time [s]

R
a
te

s
 [
k
b
p
s
]

A

B

C

D/helper

0 100 200 300 400 500 600
11

12

13

14

15

16

17

18

19

20

Time [s]

U
ti
lit

y

measured

optimal

4th peer joined

4th peer
becomes helper

(m) Utility (Scenario 1) (n) Rates (Scenario 2) (o) Utility (Scenario 2)

Fig. 5. Scenario 1 – (a) through (i): Sending rates and total delays for trees with edges and topology shown in Fig. 3(a). (j) through (l): Coding rates of
each video nodes A, B, and C are sending. (m) Utility value achieved compared to the optimum. Scenario 2 – (n) and (o): Coding rates and utility values.

11

Fig. 6. Experimental results for Scenario 3: (a) Source rates of A, B, and C, respectively, with the average tree branch delays. (b) Tree rates for trees of
A, B and C, respectively, with the tree branch delays. (c) The aggregate utility achieved by the system, and the utilities per source.

VI. CONCLUSION AND FUTURE WORK

We investigate the multi-source multicast utility maximiza-

tion problem in P2P systems. The nature of P2P topologies

allows us to tackle difficulties arising in the general network

case in a surprisingly elegant manner. We show that routing

along a linear number of trees per source can achieve the same

rate region as that obtained through (inter-session) network

coding. We develop a new multi-tree routing formulation for

the multicast utility maximization problem. It not only elimi-

nates some mathematical difficulties associated with previous

formulations, but also leads to practical solutions. We further

develop a Primal-dual distributed algorithm to maximize the

aggregate utility. We propose a sufficient condition to evaluate

convergence of the Primal-dual algorithm in multi-path routing

scenarios, and prove its global exponential convergence under

different P2P scenarios we studied. Our approach naturally ac-

commodates helper nodes within the optimization framework.

The developed algorithms are practical and easy to implement

in a P2P overlay over the current Internet. Experimental results

over both testbed and the Internet show that our solution

converges quickly to the optimal utility, and re-optimizes itself

after network conditions or utility function change. It is also

resilient to peer nodes joining and leaving over time. Its

scalability is also studied.

We are investigating the scalability of our solution in large

P2P systems. The scalability of our current solution is limited

by the fact that branching out-degree of multicast trees used is

linear in the number of receivers. We extended this framework

to apply to multi-rate multicast where different receivers can

receive the same video at different bitrates using scalable

coding [34].

REFERENCES

[1] T. Liu, Y. Wang, J. Boyce, Z. Wu, and H. Yang, “Subjective quality
evaluation of decoded video in the presence of packet losses,” in IEEE

International Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2007, pp. 1125–1128.

[2] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: shadow prices, proportional fairness, and stability,” Journal
of the Operationl Research Society, pp. 237–252, 1998.

[3] S. H. Low and D. E. Lapsley, “Optimization flow control, i: Basic
algorithm and convergence,” IEEE/ACM Trans. Networking, no. 6, pp.
861–875, Dec. 1999.

[4] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Networking, no. 5, pp. 556 – 567, Oct. 2001.

[5] F. P. Kelly, “Fairness and stability of end-to-end congestion control,”
European Journal of Control, pp. 159–176, 2003.

[6] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition:a mathematical theory of network archi-
tectures,” Proc. IEEE, vol. 95, no. 1, pp. 255–312, Jan. 2007.

[7] H.Han, S. Shakkottai, C. Hollot, R. Srikant, and D. Towsley, “Multi-
path TCP: A joint congestion control and routing scheme to exploit
path diversity in the internet,” IEEE/ACM Trans. Networking, 2006.

[8] X. Lin and N. B. Shroff, “Utility maximization for communication
networks with multi-path routing,” IEEE Trans. Automat. Contr., 2006.

[9] T. Voice, “Stability of congestion control algorithms with multi-path
routing and linear stochastic modelling of congestion control,” Ph.D.
dissertation, University of Cambridge, Cambridge, UK, May 2006.

[10] K. Kar, S. Sarkar, and L. Tassiulas, “Optimization based rate control for
multirate multicast sessions,” in IEEE INFOCOM, Anchorage, 2001.

[11] S. Deb and R. Srikant, “Congestion control for fair resource allocation
in networks with multicast flows,” IEEE Trans. Automat. Contr., no. 2,
pp. 274–285, Apr. 2004.

[12] L. Chen, T. Ho, S. H. Low, M. Chiang, and J. C. Doyle, “Optimization
based rate control for multi-cast with network coding,” in Proceedings
of IEEE INFOCOM, Anchorage, Alaska, May 2007.

[13] Y. Wu and S.-Y. Kung, “Distributed utility maximization for network
coding based multicasting: a shortest path approach,” IEEE J. Select.

Areas Commun., no. 8, pp. 1475–1488, Aug. 2006.

[14] D. S. Lun, N. Ratnakar, M. M. edard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet
networks,” IEEE Trans. Inform. Theory, no. 6, June 2006.

[15] J. Li, P. A. Chou, and C. Zhang, “Mutualcast: an efficient mechanism for
content distribution in a p2p network,” in Proceedings of Acm Sigcomm
Asia Workshop, Beijing, China, Apr. 2005.

[16] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inform. Theory, no. 4, July 2000.

[17] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhiuzen, “Polynomial time algorithms for multicast network code
construction,” IEEE Trans. on Info. Thy., vol. 51(6), 2005.

[18] X. Yan, R. W. Yeung, and Z. Zhang, “The capacity region for multi-
source multi-sink network coding,” in 2007 IEEE International Sympo-
sium on Information Theory (ISIT2007), Nice, France, June 2007.

[19] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing steiner trees,”
in 14th ACM-SIAM Symp. on Discrete Algorithms (SODA), Jan. 2003.

[20] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p
streaming systems,” in Proc. IEEE INFOCOM, Anchorage, 2007.

[21] D. M. Chiu, R. W. Yeung, J. Huang, and B. Fan, “Can network coding
help in p2p networks?” in Proc. of IEEE NetCod, Boston, 2006.

[22] L. Massoulié, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in INFOCOM, 2007, pp. 1073–
1081.

[23] J. Edmonds, “Edge-disjoint branchings,” Combinatorial Algorithms, R.
Rustin, ed., pp. 91–96, 1973.

[24] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. Chou, “Utility maximiza-
tion in peer-to-peer systems,” in Proc. ACM SIGMETRICS, Annapolis,
MD, June 2008.

12

[25] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization.
Athena Scientific, 1997.

[26] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[27] S. H. Low, L. Peterson, and L. Wang, “Understanding vegas: A duality

model,” Journal of ACM, vol. 49, no. 2, pp. 207–235, Mar. 2002.
[28] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou, “Utility

Maximization in Peer-to-Peer Systems,” Microsoft Research Technical

Report, August 2007.
[29] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement

methodology, dynamics, and relation with tcp throughput,” IEEE/ACM
Trans. Networking, vol. 11, pp. 537–549, Aug. 2003.

[30] H. Kalva, “The h.264 video coding standard,” IEEE Trans. Multimedia,
vol. 13, no. 4, pp. 86–90, Oct. 2006.

[31] Z. Ni, “Network Emulator for Windows/CE,” Microsoft Research Asia,
Internal documentation.

[32] V. Padman and N. Memon, “Design of a virtual laboratory for infor-
mation assurance education and research,” in Proceedings of the 2002
IEEE Workshop on Information Assurance and Security, NY, 2002.

[33] MOSEK ApS, “MOSEK Optimization Software.” [Online]. Available:
http://www.mosek.com/products mosek.html

[34] M. Ponec, S. Sengupta, M. Chen, J. Li, and P. A. Chou, “Multi-rate
peer-to-peer video conferencing: A distributed approach using scalable
coding,” in IEEE International Conference on Multimedia & Expo

(ICME), June 2009.
[35] R. Srikant, The Mathematics of Internet Congestion Control.

Birkhäuser, 2004.
[36] F. Callier and C. Desoer, Linear System Theory. Springer-Verlag, 1991.

APPENDIX

A. Proof of Theorem 1

Proof: Let In(v) and Out(v) be the set of incoming and

outgoing edges of node v, respectively. Assume every edge e

in E have infinite capacity. Let f(e) : e → [0,∞) be the rate

assigned to edge e in E. We denote f(E) = [f(e), e ∈ E] as

the edge rate vector defined on E. The node upload capacity

constraints are expressed as follows:
∑

e∈In(v) fz(e) ≤ Co(v).
Let z = (zs, s ∈ S) be a rate vector achieved by assigning

a set of edge rates to E and perform scheduling, routing and

coding. For one z, there could be many f(E) that can achieve

z. Define a set Fz(E) = {f(E) : z is achieved by f(E)}.

Definition: A edge rate vector f∗
z (E) ∈ Fz(E) is irreducible

with respect to z, if there does not exist f ′
z(E) ∈ Fz(E) s.t.

∑

v∈V

∑

e∈Out(v)

f ′
z(e) <

∑

v∈V

∑

e∈Out(v)

f∗
z (e).

Irreducible edge rate vector represents the most efficient

edge rate assignment that achieves z. There can be multiple

irreducible edge rate vectors in Fz(E).
Under the problem setting of Theorem 1, we have Rs ∪

{s} = R and Hs = H for all s in S. Let N = |R| − 1.

The following Lemma describes an important property of

any irreducible edge rate vectors, under our settings in this

section.

Lemma 2: For any feasible rate vector z, let f∗
z (E) be

irreducible with respect to z. We have
∑

h∈H

∑

e∈Out(h)

f∗
z (e) ≤ N

∑

h∈Hs

∑

e∈In(h)

f∗
z (e).

Proof: Suppose it is not true, then
∑

h∈H

cout(h) ≥
∑

h∈H

∑

e∈Out(h)

f∗
z (e) = M

∑

h∈H

∑

e∈In(h)

f∗
z (e)

(13)

for some M > N .

We now show f∗
z (E) can not be irreducible, by constructing

a f ′
z(E) as follows:

• for all e between any two nodes in S, let f ′
z(e) = f∗

z (e);
• for all e between any two nodes in H , let f ′

z(e) = 0;

• for all r in R that originally send information to H in

the assignment f∗
z (E), let them send the same amount of

information
∑

h∈H

∑

e∈In(h) f
∗
z (e) to H . This is done

by filling every helper h in H one by one, each at an

amount of at most 1
N
cout(h). Such operation is doable

according to (13). Each helper then replicates the bits it

receives from node r in R, and broadcast to all other

nodes in R.

By carrying out all the above steps, all r in R in the assignment

f ′
z(E) have same information from other nodes in R as in

the assignment f∗
z (E). Further, all r in R also have all the

information that entering H from R in the assignment f∗(E).
If r originally gets coded packets from helpers in H in the

assignment f∗
z (E), then it can generate the same coded packets

by itself in the assignment f ′
z(E). As such, all r in R in the

assignment f ′
z(E) also have same information from helper

nodes in H as in the assignment f∗
z (E).

Therefore, z are still achieved by f ′
z(E), and for

∑

h∈H

∑

e∈Out(h)

f ′
z(e) = N

∑

h∈H

∑

e∈In(h)

f∗
z (e) <

∑

h∈H

∑

e∈Out(h)

f∗
z (e).

Summing the rates of all outgoing edges of all nodes for

f ′
z(E) and f∗

z (E), we have

∑

v∈V

∑

e∈Out(v)

f ′
z(e) <

∑

v∈V

∑

e∈Out(v)

f∗
z (e).

As such, f∗
z (E) is not irreducible, leading to contradiction.

Now we show packing Mutualcast trees is optimal under

the problem settings. Given an achievable rate vector z =
(z1, . . . , z|S|), it must be achievable by at least one irreducible

rate vector. Denote one of such vector as fz(E).
Considered a receiver node r in R, its aggregate consump-

tion rate must be no more than the sum of fZ(e) over all edges

e in In(r). That is,
∑

s:r∈Rs
zs ≤

∑

e∈In(r) fZ(e). Note

this is true even if network coding is allowed in information

transmission. Summing over all receiver nodes r in R, we

have a necessary condition for z to be feasible as follows:

N
∑

s∈S

zs ≤
∑

r∈R

∑

e∈In(r)

fZ(e)

=
∑

v∈V

∑

e∈In(v)

fZ(e)−
∑

h∈H

∑

e∈In(h)

fZ(e)

=
∑

v∈R

∑

e∈Out(v)

fZ(e) +
∑

h∈H

∑

e∈Out(h)

fZ(e)

−
∑

h∈H

∑

e∈In(h)

fZ(e)

(by Lemma 2)

≤
∑

v∈R

cout(v) +

(

1−
1

N

)

∑

h∈H

∑

e∈Out(h)

fZ(e)

≤
∑

v∈V

cout(v) −
1

N

∑

h∈H

cout(h).

13

The sum of first two terms is the total system upload band-

width, the third term is the bandwidth consumed by the

helper nodes. Thus the aggregate term is the upload bandwidth

available to receivers.
An outer bound for z is then given by

{

z : zs ≤ Co(s),∀s ∈ S; N
∑

s∈S

zs ≤
∑

v∈V

Co(v)−
1

N

∑

h∈H

Co(h)

}

.

The above set is exactly the achievable rate regions of |S|
independent multicast sessions superposition on top of each

other, where session s uses a set of N + |H |+ 1 Mutualcast

trees to broadcast to all receivers in R at rate zs.

B. Proof of Lemma 1

Proof: Let (x∗, p∗) be one point in the non-empty set E,
which is a saddle point for L as defined in Section III and is
an equilibrium point of the system. Similar to [9, Section 2.6]
and [35, Section 3.4], we define a function V as follows:

V (x, p) =
∑

m∈s,s∈S

∫ xm

0

(w − x∗

m)

km
dw+

∑

j∈J

∫ pj

0

Cj(w− p
∗

j) dw.

Define the tree price q = AT p. V ’s Lee derivative satisfies

V̇ ≤ (p− p
∗)T (y − y

∗)− (q − q
∗)T (x− x

∗)

+
∑

s∈S

∑

m∈s

(xm − x
∗

m)

(

|Rs|U
′

s(zs)−
∑

h∈m

b
m
h G

′

h(y
∗

h)− q
∗

m

)

+
∑

j∈J

(pj − p
∗

j)
(

y
∗

j − Cj

)

+
∑

h∈H

(yh − y
∗

h)(G
′

h(y
∗

h)−G
′

h(yh)).

The first two terms simply cancel. Based on the unique struc-

ture of the optimization problem we consider, we have q∗m, z∗

and y∗h are unique, U ′
s is a decreasing function, and G′ is an

increasing function. We also have (pj − p∗j)
(

y∗j − Cj

)

≤ 0
since y∗j ≤ Cj and p∗j = 0 if y∗j < Cj .

Therefore, we have V̇ ≤ 0. By La Salle principle, the system

will asymptotically converge to an invariant set in V0 = {x̄, p̄ :
V̇ = 0}, which indicates

∑

m∈s x̄m = z∗s , ȳh = y∗h, and p̄j
can only be nonzero at link j satisfying y∗j = Cj .

Observed that z̄ and ȳH are unique overV0, the nonlinear

system turns into a linear one. We consider the worst case

where prices on all links are positive in the converged set,

and express the linear system as follows:

[

z̄

ȳH

]

= Bx̄, ˙̄x = KU ′−KAHG′−KAT p̄, ˙̄p = C−1Ax̄−1,

where U ′ and G′ are constant matrices. The characteristic

function of the above linear system, denoted by F , is a product

of a positive diagonal matrix and a skew-symmetric matrix, as

follows:

F =

[

K 0
0 C−1

] [

0 −AT

A 0

]

.

Since all eigenvalues of a skew-symmetric matrix are either

zero or purely imaginary, so do those of F . Consequently,

trajectories of the linear system will not converge.

C. Proof of Theorem 2

Proof: Observed [z̄, ȳH] is constant, if the system state

p̄ is complete observable from [z̄, ȳH], then p̄ can be fully

determined by all orders of Lee derivatives of [z̄, ȳH] and must

be constant. According to [36], this is true if and only if for

any λ, the eigenvalue of C−1AKAT ,
[

C−1AKAT − λI

BKAT

]

has rank |J |. (14)

If above condition is satisfied, then ˙̄p = 0 because:

dn z̄

dtn
= 0,

dn ȳH

dtn
= 0, n = 1, 2, . . . ⇒ Mp̄ = const.

If ˙̄p = 0, then ˙̄x = const. Observing that x̄ ≥ 0 in V0 and z

is constant, we must have ˙̄x = 0. Therefore, V0 contains only

the equilibria of the system in (7)-(8).

D. Proof of Theorem 4

Proof: Following the setting, we have km = ks for all m

in s. Correctness of the theorem is easy to verify for the case

where ns = 1. In the rest of this proof, we focus on the case

where ns ≥ 2.

Let KS = diag{ks, s ∈ S}. In the P2P multi-party

conferencing scenario we consider, we have H ∩ S = ∅ and

H ∪ S = V . Let ns = |S| and nh = |H |. Under the setting,

every helper forwards messages from a participant to other

ns − 1 participants. Matrix B is an then n× (n · ns) matrix,

and can be expressed as follows:

B =











11×n · · · 0
...

. . .
...

0 · · · 11×n

(0|(ns − 1)Inh
) · · · (0|(ns − 1)Inh

)











.

The connectivity matrix A is given by A =
[A1, A2, · · · , Ans

] where

Ai = (ns − 2)In +Di +

[

0 0
0 Inh

]

, 1 ≤ i ≤ ns,

and Di is an n × n 1 − 0 matrix with all entries of the i-th

row being one and zero elsewhere.

To show that
[

C−1AKAT − λI

BKAT

]

has rank n for any eigenvalue λ of matrix C−1AKAT , it is

sufficient to show BKAT has rank n. Let kΣ =
∑

s∈S ks, we

give BKAT as the following block matrix:
[

KS [nIns
+ (ns − 2)1ns×ns

] (ns − 1)KS1ns×nh

(ns − 1)1nh×ns
KS (ns − 1)2kΣInh

]

.

Its determinant is given by 4

det((ns − 1)2k̄Inh
) det (KS [nIns

+ (ns − 2)1ns×ns
]

−
nh

kΣ
KS1ns×ns

KS

)

.

4Determinant of a block matrix

[

M1 M2

M3 M4

]

is det(M4) det(M1 −

M2M
−1

4
M3).

14

We are done if the determinant is non-zero. Define a matrix

Q as follows:

Q , nIns
+ (ns − 2)1ns×ns

−
1

k̄
1ns×nh

1nh×ns
KS .

To show Q has full rank, it is sufficient to show that (Q+QT)
is positive definite. We notice that

1ns×nh
1nh×ns

= nh1ns×ns
= UTΛU,

where

U =

















1√
ns

−1√
2

0 · · · 0
1√
ns

0 −1√
2

· · · 0

...
...

...
. . .

...
1√
ns

0 0 · · · −1√
2

1√
ns

1√
2

1√
2

· · · 1√
2

















,

and

Λ =











1
ns

0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0











.

For a nonzero vector ξ = [ξ1, ξ2, · · · , ξns
]T , we study

U(Q+QT)UT as follows:

ξ
T
U(Q+Q

T)UT
ξ

= 2nξT ξ + 2
ns − 2

ns

ξ
2

1 − 2
nh

n2
s

k1

kΣ

ns
∑

i=1

ξ1ξi +

nh

ns

kns

kΣ

(

ξ1ξns − ξ
2

1

)

>
nh

n2
s

k1

kΣ

[

(

n
2

s + 1
)

ξ
2

1 +

ns
∑

i=2

ξ
2

i

]

− 2
nh

n2
s

k1

kΣ

ns
∑

i=1

ξ1ξi +

nh

ns

kns

kΣ

(

2ξ21 + ξ
2

ns

)

+
nh

ns

kns

kΣ

(

ξ1ξns − ξ
2

1

)

=
nh

n2
s

k1

kΣ

ns
∑

i=2

(ξ1 − ξi)
2 +

nh

ns

kns

kΣ
(ξ1 + ξns)

2 ≥ 0.

Thus, U(Q+QT)UT is positive definite, and so does Q+QT .

Consequently, Q has full rank.

E. Proof of Proposition 1

Proof: Clearly the problem in (11) and the problem in

(3) have the same optimal solution.

According to (7)-(8), at the system equilibria, for all s ∈ S

and m ∈ s, we have

˙̄xm = km|Rs|

(

αU ′
s(z̄s)−

α

|Rs|

∑

h∈m

bmh G′
h(ȳh)−

1

|Rs|
q̄m

)

= 0,

where q̄m =
∑

j∈m bmj p̄j is the aggregate queuing delay

experienced by packets passing all the branches on tree m.

In our solution, the total number of branches on a tree m is

|Rs| if it does not contain a helper, and is |Rs|+1 if it contains

one (note there is at most one helper per tree in our solution).

Combining with this observation and the definition of q̄m, the

average queuing delay experienced by packets passing through

a branch on tree m at the equilibria is bounded by 1
|Rs| q̄m.

Let d̄m be the average queuing delay in packet delivery

from source s to its receiver peers along tree m at the

equilibria. Noticing that a packet at most passes through two

tree branches, we can bound d̄m as follows:

d̄m ≤
2

|Rs|
q̄m ≤ 2αU ′

s(z̄s)−
2α

|Rs|

∑

h∈m

bmh G′
h(ȳh) ≤ 2αU ′

s(z̄s).

Minghua Chen is currently professor at CUHK,
Hong Kong. He received his B.Eng. and M.S. de-
grees from the Department of Electronics Engineer-
ing at Tsinghua University in 1999 and 2001, respec-
tively, and his Ph.D. degree from the Department
of Electrical Engineering and Computer Sciences at
University of California at Berkeley in 2006.

Miroslav Ponec is currently at Akamai Technologies
GmbH, Germany. He received his M.S. degree from
Czech Technical University in Prague in 2005, and
his Ph.D. degree from the Computer and Information
Science Department at Polytechnic University in
New York in 2008.

Sudipta Sengupta is currently at Microsoft Re-
search. He received a Ph.D. and an M.S. in EECS
from Massachusetts Institute of Technology (MIT),
USA, and a B.Tech. in Computer Science from
Indian Institute of Technology (IIT), Kanpur, India.

Jin Li is currently at Microsoft Research. He re-
ceived his B.S., M.S and Ph.D. degree from the Elec-
tronic Engineering Department, Tsinghua University,
Beijing, China, all with honors.

Philip A. Chou is currently at Microsoft Research.
He received the BSE degree from Princeton Uni-
versity, Princeton, NJ, in 1980, and the MS degree
from the University of California, Berkeley, in 1983,
both in electrical engineering and computer science,
and the Ph.D. degree in electrical engineering from
Stanford University in 1988.

