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Learning-Aided Stochastic Network
Optimization With State Prediction

Longbo Huang , Minghua Chen, Senior Member, IEEE, and Yunxin Liu, Senior Member, IEEE

Abstract— We investigate the problem of stochastic network
optimization in the presence of state prediction and non-
stationarity. Based on a novel state prediction model featured
with a distribution-accuracy curve, we develop the predictive
learning-aided control (PLC) algorithm, which jointly utilizes
historic and predicted network state information for decision
making. PLC is an online algorithm that consists of three
key components, namely, sequential distribution estimation and
change detection, dual learning, and online queue-based con-
trol. We show that for stationary networks, PLC achieves a
near-optimal utility-delay tradeoff. For non-stationary networks,
PLC obtains an utility-backlog tradeoff for distributions that last
longer than a time proportional to the square of the prediction
error, which is smaller than that needed by backpressure (BP) for
achieving the same utility performance. Moreover, PLC detects
distribution change O(w) slots faster with high probability (w is
the prediction size) and achieves a convergence time faster than
that under BP. Our results demonstrate that state prediction
helps: 1) achieve faster detection and convergence and 2) obtain
better utility-delay tradeoffs. They also quantify the benefits of
prediction in four important performance metrics, i.e., utility
(efficiency), delay (quality-of-service), detection (robustness), and
convergence (adaptability) and provide new insight for joint
prediction, learning, and optimization in stochastic networks

Index Terms— Network optimization, learning, prediction.

I. INTRODUCTION

ENABLED by recent developments in sensing, monitoring,
and machine learning methods, utilizing prediction for

performance improvement in networked systems has received
a growing attention in both industry and research. For instance,
recent research works [2]–[4] investigate the benefits of uti-
lizing prediction in energy saving, job migration in cloud
computing, and video streaming in cellular networks. On the
industry side, various companies have implemented different
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ways to take advantage of prediction, e.g., Amazon utilizes
prediction for better package delivery [5] and Facebook
enables prefetching for faster webpage loading [6]. However,
despite the continuing success in these attempts, most existing
results in network control and analysis do not investigate
the impact of prediction. Therefore, we still lack a thor-
ough theoretical understanding about the value-of-prediction in
stochastic network control. Fundamental questions regarding
how prediction should be integrated in network algorithms,
the ultimate prediction gains, and how prediction error impacts
performance, remain largely unanswered.

To contribute to developing a theoretical foundation for
utilizing prediction in networks, in this paper, we consider
a general constrained stochastic network optimization formu-
lation, and aim to rigorously quantify the benefits of system
state prediction and the impact of prediction error. Specifically,
we are given a discrete-time stochastic network with a dynamic
state that evolves according to some potentially non-stationary
probability law. Under each system state, a control action is
chosen and implemented. The action generates traffic into net-
work queues but also serves workload from them. The action
also results in a system utility (cost) due to service completion
(resource expenditure). The traffic, service, and cost are jointly
determined by the action and the system state. The objective is
to maximize the expected utility (or equivalently, to minimize
the cost) subject to traffic/service constraints, given imperfect
system state prediction information.

This is a general framework that models various practical
scenarios, for instance, mobile networks, computer networks,
supply chains, and smart grids. However, understanding the
impact of prediction in this framework is challenging. First,
statistical information of network dynamics is often unknown
a-priori. Hence, in order to achieve good performance, algo-
rithms must be able to quickly learn certain sufficient sta-
tistics of the dynamics, and make efficient use of prediction
while carefully handling prediction error. Second, system
states appear randomly in every time slot. Thus, algorithms
must perform well under such incremental realizations of
the randomness. Third, quantifying system service quality
often involves handling queueing in the system. As a result,
explicit connections between control actions and queues must
be established.

There has been a recent effort in developing algorithms
that can achieve good utility and delay performance for
this general problem without prediction in various set-
tings, for instance, wireless networks, [7]–[10], processing
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Fig. 1. The PLC algorithm contains (i) a distribution estimator that utilizes
both historic and predicted information to simultaneously form a distrib-
ution estimation and detect distribution change, (ii) a learning component
that computes an empirical Lagrange multiplier based on the estimation,
and (iii) a queue-based controller whose decision-making information is
augmented by the multiplier.

networks, [11], [12], cognitive radio, [13], and the smart
grid, [14], [15]. However, existing results mostly focus on
networks with stationary distributions. They either assume
full system statistical information beforehand, or rely on
stochastic approximation techniques to avoid the need of
such information. Huang et al. [16] and Huang [17] pro-
pose schemes to incorporate historic system information
into control, but they do not consider prediction. Recent
results in [18]–[22] consider problems with traffic demand
prediction, and Muppirisetty et al. [23] jointly consider
demand and channel prediction. However, they focus either on
M/M/1-type models, or do not consider queueing, or do
not consider the impact of prediction error. Along a different
line of work, Zhao et al. [24], Chen et al. [25], [26], and
Hajiesmaili et al. [27] investigate the benefit of prediction from
the online algorithm design perspective. Although the results
provide new understanding about the effect of prediction, they
do not apply to the general constrained network optimization
problem in consideration, where action outcomes are general
functions of time-varying network states, queues evolve in a
controlled manner, i.e., arrival and departure rates depend on
the control policy, and prediction can contain error.

In this paper, we develop a novel control algorithm for
the general framework called predictive learning-aided control
(PLC). PLC is an online scheme that consists of three compo-
nents, sequential distribution estimation and change detection,
dual learning, and online control (see Fig. 1).

The distribution estimator conducts sequential statistical
comparisons based on prediction and historic network state
records. Doing so efficiently detects changes of the underlying
probability distribution and guides us in selecting the right
state samples to form distribution estimates. The estimated
distribution is then fed into a dual learning component to
compute an empirical multiplier of an underlying optimization
formulation. This multiplier is further incorporated into the
Backpressure (BP) controller [1] to perform realtime network
operation. Compared to the commonly adopted receding-
horizon-control approach (RHC), e.g., [28], PLC provides
another way to utilize future state information, which focuses
on using the predicted distribution for guiding action selection
in the present slot and can be viewed as performing steady-
state control under the predicted future distribution.

We summarize our main contributions as follows.
i. We propose a general state prediction model featured with

a distribution-accuracy curve. Our model captures key factors

of several existing prediction models, including window-
based [22], distribution-based [29], and filter-based [26]
models.

ii. We propose a general constrained network control
algorithm called predictive learning-aided control (PLC). PLC
is an online algorithm that is applicable to both stationary
and non-stationary systems. It jointly performs distribution
estimation and change detection, dual learning, and queue-
based online control.

iii. We show that for stationary networks, PLC achieves
an [O(ε), O(log2(1/ε))] utility-delay tradeoff. For non-
stationary networks, PLC obtains an [O(ε), O(log2(1/ε)
+ min(εc/2−1, ew/ε))] utility-backlog tradeoff for distribu-

tions that last Θ(max(ε−c,e−2
w )

ε1+a ) time, where ew is the pre-
diction accuracy, c ∈ (0, 1) and a > 0 is an Θ(1) constant
(the Backpressue algorithm [1] requires an O(ε−2) length for
the same utility performance with a larger backlog).1

iv. We show that for both stationary and non-stationary
system dynamics, PLC detects distribution change O(w) slots
(w is prediction window size) faster with high probability and
achieves a fast O(min(ε−1+c/2, ew/ε) + log2(1/ε)) conver-
gence time, which is faster than the O(ε−1+c/2 + ε−c) time of
the OLAC scheme [16], and the O(1/ε) time of Backpressure.

The rest of the paper is organized as follows. In Section II,
we discuss a few motivating examples. We set up the nota-
tions in Section III, and present the problem formulation in
Section IV. Background information is provided in Section V.
Then, we present PLC and its analysis in Sections VI and VII.
Simulation results are presented in Section VIII, followed by
conclusions in Section IX. To facilitate reading, all the proofs
are placed in the appendices.

II. MOTIVATING EXAMPLES

In this section, we present a few interesting practical sce-
narios that fall into our general framework.

Matching in sharing platforms: Consider a Uber-like com-
pany that provides ride service to customers. At every time,
customer requests enter the system and available cars join
to provide service. Depending on the environment condition
(state), e.g., traffic condition or customer status, matching
customers to drivers can result in different user satisfaction,
and affect the revenue of the company (utility). The company
gets access to future customer demand and car availability,
and system condition information (prediction), e.g., through
reservation or machine learning tools. The objective is to opti-
mally match customers to cars so that the utility is maximized,
e.g., [30] and [31].

Energy optimization in mobile networks: Consider a base-
station (BS) sending traffic to a set of mobile users. The
channel conditions (state) between users and the BS are time-
varying. Thus, the BS needs different amounts of power for
packet transmission (cost) at different times. Due to higher
layer application requirements, the BS is required to deliver
packets to users at pre-specified rates. On the other hand,
the BS can predict future user locations in some short period

1Note that when there is no prediction, i.e., w = 0 and ew = ∞, we recover
previous results of OLAC [16].
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of time, from which it can estimate future channel conditions
(prediction). The objective of the BS is to jointly optimize
power allocation and scheduling among users, so as to min-
imize energy consumption, while meeting the rate require-
ments, e.g., [8], [13]. Other factors such as energy harvesting,
e.g., [32], can also be incorporated in the formulation.

Resource allocation in cloud computing: Consider an oper-
ator, e.g., a dispatcher, assigning computing jobs to servers
for processing. The job arrival process is time-varying (state),
and available processing capacities at servers are also dynamic
(state), e.g., due to background processing. Completing users’
job requests brings the operator reward (utility). The operator
may also have information regarding future job arrivals and
service capacities (prediction). The goal is to allocate resources
and to balance the loads properly, so as to maximize system
utility. This example can be extended to capture other factors
such as rate scaling [33] and data locality constraints [34].

In these examples and related works, not only can the
state statistics be potentially non-stationary, but the systems
also often get access to certain (possibly imperfect) future
state information through various prediction techniques. These
features make the problems different from existing settings
considered, e.g., [8] and [15], and require different approaches
for both algorithm design and analysis.

III. NOTATIONS

R
n denotes the n-dimensional Euclidean space. R

n
+ (Rn

−)
denotes the non-negative (non-positive) orthant. Bold symbols
x = (x1, . . . , xn) denote vectors in R

n. w.p.1 denotes “with
probability 1.” ‖·‖ denotes the Euclidean norm. For a sequence
{y(t)}∞t=0, y = limt→∞ 1

t

∑t−1
τ=0 E

{
y(τ)

}
denotes its average

(when exists). x � y means xj ≥ yj for all j. For distributions
π1 and π2, ‖π1 − π2‖TV =

∑
i |π1i − π2i| denotes the total

variation distance.

IV. SYSTEM MODEL

Consider a controller that operates a network with the goal
of minimizing the time average cost, subject to the queue
stability constraint. The network operates in slotted time,
i.e., t ∈ {0, 1, 2, ...}, and there are r ≥ 1 queues in the
network.

A. Network State

In every slot t, S(t) denotes the current network state, which
summarizes current network parameters, such as a vector of
conditions for each network link, or a collection of other
relevant information about the current network channels and
arrivals. S(t) is independently distributed across time, and
each realization is drawn from a state space of M distinct
states denoted as S = {s1, s2, . . . , sM}.2 We denote πi(t) =
Pr

{
S(t) = si

}
the probability of being in state si at time t

and denote π(t) = (π1(t), . . . , πM (t)) the state distribution.
The network controller can observe S(t) at the beginning
of every slot t, but the πi(t) probabilities are unknown.
We assume that each π(t) stays unchanged for multiple

2The independent assumption is made to facilitate presentation and under-
standing. The results in this paper can likely be generalized to systems where
S(t) evolves according to general time inhomogeneous Markovian dynamics.

timeslots, and denote {tk, k = 0, 1, ...} the starting point of
the k-th constant distribution interval Ik, i.e., π(t) = πk for
all t ∈ Ik � {tk, tk+1 − 1}. The length of Ik is denoted by
dk � tk+1 − tk.

B. State Prediction

At every time slot, the operator gets access to a prediction
module, e.g., a machine learning algorithm, which provides
prediction of future network states. Different from recent
works, e.g., [25], [26], and [35], which assume prediction
models on individual states, we assume that the prediction
module outputs a sequence of predicted distributions Dw(t) �
{π̂(t), π̂(t+1), . . . , π̂(t+w)}, where w +1 is the prediction
window size. Moreover, the prediction quality is characterized
by a distribution-accuracy curve {e(0), . . . , e(w)} as follows.
For every 0 ≤ k ≤ w, π̂(t + k) satisfies:

||π̂(t + k) − π(t + k)||TV ≤ e(k), ∀ k. (1)

That is, the predicted distribution at time k has a total-variation
error bounded by some e(k) ≥ 0.3 Note that e(k) = 0 for
all 0 ≤ k ≤ w corresponds to a perfect predictor, in that it
predicts the exact distribution in every slot. We assume the
{e(0), . . . , e(w)} curve is known to the operator and denote
ew � 1

w+1

∑w
k=0 e(k) the average prediction error.

It is often possible to achieve prediction guarantees as
in (1), e.g., by adopting a maximum likelihood estimator
[36, Sec. 5.1] based on historic state data. Also note that the
prediction model in (1) is general and captures key features
of several existing prediction models: (i) the exact distribution
prediction model in [29], where the future demand distribution
is known (e(k) = 0 for all k), (ii) the window-based prediction
model, e.g., [22], where each π̂(t + k) corresponds to the
indicator for the true state, and (iii) the error-convolution
prediction model in [25], [26], and [35], which captures key
features of the Wiener filter and Kalman filter.

C. The Cost, Traffic, and Service

At each time t, after observing S(t) = si, the controller
chooses an action x(t) ∈ Xi. The set Xi is called the feasible
action set for network state si and is assumed to be time-
invariant and compact for all si ∈ S. The cost, traffic, and
service generated by the action x(t) = xi are as follows:

(a) The chosen action has an associated cost given by the
cost function f(t) = f(S(t), x(t)) = f(si, xi) : Xi �→
R+ (or Xi �→ R− in reward maximization problems).4

(b) The amount of traffic generated by the action to
queue j is determined by the traffic function Aj(t) =
Aj(S(t), x(t)) = Aj(si, xi) : Xi �→ R+, in units of
packets.

(c) The amount of service allocated to queue j is given by
the rate function μj(t) = μj(S(t), x(t)) = μj(si, xi) :
Xi �→ R+, in units of packets.

3We focus on state distribution prediction instead of predicting individual
states. In this case, it makes sense to assume a deterministic upper bound of
the difference because we are dealing with distributions.

4We use cost and utility interchangeably in this paper.



HUANG et al.: LEARNING-AIDED STOCHASTIC NETWORK OPTIMIZATION WITH STATE PREDICTION 1813

Here Aj(t) can include both exogenous arrivals from outside
the network to queue j, and endogenous arrivals from other
queues, i.e., transmitted packets from other queues to queue j.
We assume the functions −f(si, ·), μj(si, ·) and Aj(si, ·) are
time-invariant, their magnitudes are uniformly upper bounded
by some constant δmax ∈ (0,∞) for all si, j, and they are
known to the operator. Note that this formulation is general
and models many network problems, e.g., [8], [15], and [37].

D. Problem Formulation

Let q(t) = (q1(t), . . . , qr(t))T ∈ R
r
+, t = 0, 1, 2, ... be

the queue backlog vector process of the network, in units of
packets. We assume the following queueing dynamics:

qj(t + 1) = max
[
qj(t) − μj(t) + Aj(t), 0

]
, ∀j, (2)

and q(0) = 0. By using (2), we assume that when a queue does
not have enough packets to send, null packets are transmitted,
so that the number of packets entering qj(t) is equal to Aj(t).
We adopt the following notion of queue stability [1]:

qav � lim sup
t→∞

1
t

t−1∑

τ=0

r∑

j=1

E
{
qj(τ)

}
< ∞. (3)

We use Π to denote an action-choosing policy, and use fΠ
av to

denote its time average cost, i.e.,

fΠ
av � lim sup

t→∞
1
t

t−1∑

τ=0

E
{
fΠ(τ)

}
, (4)

where fΠ(τ) is the cost incurred at time τ under policy Π.
We call an action-choosing policy feasible if at every time
slot t it only chooses actions from the feasible action set Xi

when S(t) = si. We then call a feasible action-choosing policy
under which (3) holds a stable policy.

In every slot, the network controller observes the current
network state and prediction, and chooses a control action,
with the goal of minimizing the time average cost subject to
network stability. This goal can be mathematically stated as5:

(P1) min
Π

fΠ
av , s.t. (3).

In the following, we call (P1) the stochastic problem, and
we use fπ

av to denote its optimal solution given a fixed
distribution π. It can be seen that the examples in Section II
can all be modeled by our stochastic problem framework.

Throughout our paper, we make the following assumption.
Assumption 1: For every system distribution πk, there

exists a constant εk = Θ(1) > 0 such that for any valid
state distribution π′ = (π′

1, . . . , π
′
M ) with ‖π′−πk‖TV ≤ εk,

there exist a set of actions {x(si)
z }z=1,2,...,∞

i=1,...,M with x
(si)
z ∈ Xi

and variables ϑ
(si)
z ≥ 0 for all si and z with

∑
z ϑ

(si)
z = 1

for all si (possibly depending on π′), such that:
∑

si

π′
i

{∑

z

ϑ(si)
z [Aj(si, x

(si)
z ) − μj(si, x

(si)
z )]

}

≤ −η0, ∀ j, (5)

where η0 = Θ(1) > 0 is independent of π′. ♦
5When π(t) is time-varying, the optimal system utility needs to be defined

carefully. We will specify it when discussing the corresponding results.

Assumption 1 corresponds to the “slack” condition commonly
assumed in the literature with εk = 0, e.g., [37] and [38].6

With εk > 0, we assume that when two systems are relatively
close to each other (in terms of π), they can both be stabilized
by some (possibly different) randomized control policy that
results in the same slack.

E. Discussion of the Model

Two key differences between our model and previous ones
include (i) π(t) itself can be time-varying and (ii) the operator
gets access to a prediction window Ww(t) that contains
imperfect prediction. These two extensions are important to the
current network control literature. First, practical systems are
often non-stationary. Thus, system dynamics can have time-
varying distributions. Thus, it is important to have efficient
algorithms to automatically adapt to the changing environ-
ment. Second, prediction has recently been made increasingly
accurate in various contexts, e.g., user mobility in cellular
network and harvestable energy availability in wireless sys-
tems, by data collection and machine learning tools. Thus,
it is critical to understand the fundamental benefits and limits
of prediction, and its optimal usage. Finally, note that the
convexity of the problem (P1) depends largely on the structure
of the feasible action sets. In the case, when all feasible action
sets are convex, it can be shown that the resulting problem is
convex using a similar argument as that in [39].

V. THE DETERMINISTIC PROBLEM

For our later algorithm design and analysis, we define the
deterministic problem and its dual problem [40]. Specifically,
the deterministic problem for a given distribution π is defined
as follows [40]:

min : V
∑

si

πif(si, x
(si))

s.t.
∑

si

πi[Aj(si, x
(si)) − μj(si, x

(si))] ≤ 0, ∀ j,

x(si) ∈ Xi ∀ i = 1, 2, . . . , M. (6)

Here the minimization is taken over x ∈ ∏
i Xi, where

x = (x(s1), . . . , x(sM ))T , and V ≥ 1 is a positive constant
introduced for later analysis. The dual problem of (6) can be
obtained as follows:

max : g(γ, π), s.t. γ � 0, (7)

where g(γ, π) is the dual function for problem (6) and is
defined as:

g(γ, π) = inf
x(si)∈Xi

∑

si

πi

{

V f(si, x
(si))

+
∑

j

γj

[
Aj(si, x

(si)) − μj(si, x
(si))

]
}

. (8)

γ = (γ1, . . . , γr)T is the Lagrange multiplier of (6). It is
well known that g(γ, π) in (8) is concave in the vector γ for
all γ ∈ R

r. Hence, the problem (7) can usually be solved

6Note that η0 ≥ 0 is a necessary condition for network stability [1].
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efficiently, e.g., using dual subgradient methods [41]. If the
cost functions and rate functions are separable over different
network components, the problem also admits distributed
solutions [41]. We use γ∗

π to denote the optimal multiplier
corresponding to a given π and sometimes omit the subscript
when it is clear. Denote g∗π the optimal value of (7) under a
fixed distribution π. It was shown in [42] that:

fπ
av = g∗π. (9)

That is, g∗π characterizes the optimal time average cost of the
stochastic problem. For our analysis, we make the following
assumption on the g(γ, πk) function.

Assumption 2: For every system distribution πk, g(γ, πk)
has a unique optimal solution γ∗

πk
�= 0 in R

r. ♦
Assumption 2 holds for many network utility optimization
problems, e.g., [8], [40], and [43].

VI. PREDICTIVE LEARNING-AIDED CONTROL

In this section, we present the predictive learning-aided con-
trol algorithm (PLC). PLC contains three main components:
a distribution estimator, a learning component, and an online
queue-based controller. Below, we first present the estimation
part. Then, we present the PLC algorithm.

A. Distribution Estimation and Change Detection

Here we specify the distribution estimator. The idea is
to first combine the prediction in Ww(t) with historic state
information to form an average distribution, and then perform
statistical comparisons for change detection. We call this
module the average distribution estimate (ADE).

Specifically, ADE maintains two windows Wm(t) and
Wd(t) to store network state samples, where Wd(t) roughly
contains the most recent d state samples, and Wm(t) contains
at most Tl state samples after Wd(t). The formal definition of
them are given below, i.e.,

Wd(t) = {bs
d(t), . . . , b

e
d(t)}, (10)

Wm(t) = {bm(t), . . . , min[bs
d(t), bm(t) + Tl]}. (11)

Here bs
d(t) and bm(t) mark the beginning slots of Wd(t) and

Wm(t), respectively, and be
d(t) marks the end of Wd(t). Ide-

ally, Wd(t) contains the most recent d samples (including the
prediction) and Wm(t) contains Tl subsequent samples (where
Tl is a pre-specified number). We denote Wm(t) = |Wm(t)|
and Wd(t) = |Wd(t)|. Without loss of generality, we assume
that d ≥ w + 1. This assumption is made because, d grows
with our control parameter V while prediction power is often
limited in practice. We also denote Ww(t) � {t, . . . , t + w}.

We use π̂d(t) and π̂m(t) to denote the empirical distribu-
tions of Wd(t) and Wm(t), i.e.,7

π̂d
i (t) =

1
d

( t−1∑

τ=(t+w−d)+

1[S(τ)=si] +
∑

τ∈Ww(t)

π̂i(τ)
)

π̂m
i (t) =

1
Wm(t)

∑

τ∈Wm(t)

1[S(τ)=si].

7Note that this is only one way to utilize the samples. Other methods such
as EWMA can also be applied when appropriate.

Fig. 2. Evolution of Wm(t) and Wd(t). (Left) No change detected: The
samples satisfy the criteria in Steps (i) and (ii). Thus, Wd(t) advances by
one slot and Wm(t) increases its size by one. (Right) Change detected:
The samples violate at least one of the conditions in (i) and (ii). Thus, both
windows set their start and end points to t + w + 1.

That is, π̂d(t) is the average of the empirical distribution of the
“observed” samples in Wd(t) and the predicted distribution,
whereas π̂m(t) is the empirical distribution of Wm(t).

The formal procedure of ADE is as follows (parameters
Tl, d, εd will be specified later).

Average Distribution Estimate (ADE(Tl, d, εd)): Initialize
bs
d(0) = 0, be

d(0) = t + w and bm(0) = 0, i.e., Wd(t) =
{0, . . . , t+w} and Wm(t) = φ. At every time t, update bs

d(t),
be
d(t) and bm(t) as follows:

(i) If Wm(t) ≥ d and ||π̂d(t) − π̂m(t)||TV > εd, set
bm(t) = t + w + 1 and bs

d(t) = be
d(t) = t + w + 1.

(ii) If Wm(t) = Tl and there exists k such that ||π̂(t+k)−
π̂m(t)||TV > e(k) + 2M log(Tl)√

Tl
, set bm(t) = bs

d(t) =
be
d(t) = t + w + 1. Mark t + w + 1 a reset point.

(iii) Else if t ≤ bs
d(t − 1), bm(t) = bm(t − 1), bs

d(t) =
bs
d(t − 1), and be

d(t) = be
d(t − 1).8

(iv) Else set bm(t) = bm(t − 1), bs
d(t) = (t + w − d)+ and

be
d(t) = t + w.

Output an estimate at time t as follow:

πa(t) =
{

π̂m(t) if Wm(t) ≥ Tl
1

w+1

∑w
k=0 π̂(t + k) else ♦ (12)

The idea of ADE is shown in Fig. 2.
The intuition of ADE is that if the environment is changing

over time, we should rely on prediction for control. Else
if the environment is stationary, then one should use the
average distribution learned over time to combat the potential
prediction error that may affect performance. Tl is introduced
to ensure the accuracy of the empirical distribution and can
be regarded as the confidence-level given to the distribution
stationarity. A couple of technical remarks are also ready.
(a) The term 2M log(Tl)/

√
Tl is to compensate the inevitable

deviation of π̂m(t) from the true value due to randomness.
(b) In Wm(t), we only use the first Tl historic samples. Doing
so avoids random oscillation in estimation and facilitates
analysis.

Prediction is used in two ways in ADE. First, it is used in
step (i) to decide whether the empirical distributions match
(average prediction). Second, it is used to check whether
prediction is consistent with the history (individual prediction).
The reason for having this two-way utilization is to accom-
modate general prediction types. For example, suppose each
π̂(t+k) denotes the indicator for state S(t+k), e.g., as in the

8This step is evoked after we set bm(t′) = bs
d(t′) = t′ + w + 1 ≥ t for

some time t′, in which case we the two windows remain unchanged until t
is larger than t′ + w + 1.
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look-ahead window model [22]. Then, step (ii) is loose since
e(k) is large, but step (i) will be useful. If π̂(t+k) gets closer
to the true distribution, both steps will be useful.

B. Predictive Learning-Aided Control

We are now ready to present the PLC algorithm (shown
in Fig. 1). The formal description is given below.

Predictive Learning-aided Control (PLC): At time t, do:
1) (Estimation) Update πa(t) with ADE(Tl, d, εd).
2) (Learning) Solve the following empirical problem and

compute the optimal Lagrange multiplier γ∗(t), i.e.,9

max : g(γ, πa(t)), s.t. γ � 0, (13)

If γ∗(t) = ∞, set γ∗(t) = V log(V ) ·1. If Wm(t−1) =
Tl and πa(t) �= πa(t−1), set q(t+w+1) = 0, i.e., drop
all packets currently in the queues.

3) (Control) At every time slot t, observe the current
network state S(t) and the backlog q(t). If S(t) = si,
choose x(si) ∈ Xi that solves the following:

max : −V f(si, x) +
r∑

j=1

Qj(t)
[
μj(si, x) − Aj(si, x)

]

s.t. x ∈ Xi, (14)

where Qj(t) � qj(t) + (γ∗
j (t) − θ)+. Then, update the

queues according to (2) with Last-In-First-Out. ♦
For readers who are familiar with the Backpressure (BP)

algorithm, e.g., [1] and [44], the control component of PLC
is the BP algorithm with its queue vector augmented by the
empirical multiplier γ∗(t). Also note that packet dropping is
introduced to enable quick adaptation to new dynamics if there
is a distribution change. It occurs only when a long-lasting
distribution ends, which avoids dropping packets frequently
in a fast-changing environment.

We have the following remarks. (i) Prediction usage:
Prediction is explicitly incorporated into control by forming
an average distribution and converting the distribution estimate
into a Lagrange multiplier. The intuition for having Tl =
max(V c, e−2

w ) is that when ew is small, we should rely on
prediction as much as possible, and only switch to learned
statistics when it is sufficiently accurate. (ii) Connection
with RHC: It is interesting to see that when Wm(t) < Tl,
PLC mimics the commonly adopted receding-horizon-control
method (RHC), e.g., [28]. The main difference is that, in RHC,
future states are predicted and are directly fed into a predictive
optimization formulation for computing the current action.
Under PLC, distribution prediction is combined with historic
state information to compute an empirical multiplier for aug-
menting the controller. In this regard, PLC can be viewed
as exploring the benefits of statistics whenever it finds the
system stationary (and does it automatically). (iii) Parameter
selection: The parameters in PLC can be conveniently
chosen as follows. First, fix a detection error probability

9The dual problem (13) is always concave [41]. Thus, it can be solved
efficiently with existing convex optimization methods. Moreover, our results
can be generalized to the case when the optimal Lagrange multiplier is
computed only approximately. In particular, our results can be similarly proven
if we obtain γ̃∗(t) = γ∗(t) + err. In this case, the utility bound remains
the same and the delay bound will increase by O(err).

δ = V − log(V ). Then, choose a small εd and a d that satisfies
d ≥ 4 log(V )2/ε2d+w+1. Finally, choose Tl = max(V c, e−2

w )
and θ according to (16).

While recent works [16] and [17] also design learning-
based algorithms that utilize historic information, they do not
consider prediction and do not provide insight on its benefits
and the impact of prediction error. Moreover, Huang et al. [16]
focuse on stationary systems and Huang [17] adopts a frame-
based scheme.

VII. PERFORMANCE ANALYSIS

This section presents the performance results of PLC.
We focus on four metrics, detection efficiency, network utility,
service delay, and algorithm convergence. The metrics are
chosen to represent robustness, resource utilization efficiency,
quality-of-service, and adaptability, respectively. Since our
main objective is to investigate how these metrics behave
under our algorithm, we treat network parameters M and
r as constants.

A. Detection and Estimation

We first look at the detection and estimation part. The
following lemma summarizes the performance of ADE, which
is affected by the prediction accuracy as expected.

Lemma 1: Under ADE(Tl, d, εd), we have:
(a) Suppose at a time t, π(τ1) = π1 for τ1 ∈ Wd(t) and

π(τ2) = π2 �= π1 for all τ2 ∈ Wm(t) and max |π1i − π2i| >
4(w + 1)ew/d. Then, by choosing εd < ε0 � max |π1i −
π2i|/2− (w +1)ew/d and d > ln 4

δ · 1
2ε2d

+w +1, if Wm(t) ≥
Wd(t) = d, with probability at least 1−δ, bm(t+1) = t+w+1
and Wm(t + 1) = φ, i.e., Wm(t + 1) = 0.

(b) Suppose π(t) = π ∀ t. Then, if Wm(t) ≥ Wd(t) = d,
under ADE(Tl, d, εd) with d ≥ ln 4

δ · 2
ε2

d

+w+1, with probability

at least 1 − δ − (w + 1)MT
−2 log(Tl)
l , bm(t + 1) = bm(t). ♦

Proof: See Appendix A. �
Lemma 1 shows that for a stationary system, i.e., π(t) = π,

Wm(t) will likely grow to a large value (Part (b)), in which
case πa(t) will stay close to π most of the time. If instead
Wm(t) and Wd(t) contain samples from different distribu-
tions, ADE will reset Wm(t) with high probability. Note that
since the first w + 1 slots belong to prediction, PLC detects
changes O(w) slots faster compared to methods without
prediction. The condition max |π1i − π2i| > 4(w + 1)ew/d
can be understood as follows. If we want to distinguish two
different distributions, we want the detection threshold to be
no more than half of the distribution distance. Now with
prediction, we want the potential prediction error to be no
more than half of the threshold, hence the factor 4. Also note
that the delay involved in detecting a distribution change is
nearly order-optimal, i.e., d = O(1/ mini |π1i − π2i|2) time,
which is known to be necessary for distinguishing two distribu-
tions [45]. Moreover, d = O(ln(1/δ)) shows that a logarithmic
window size is enough to ensure a high detection accuracy.

B. Utility and Delay

In this section, we look at the utility and delay performance
of PLC. To state our results, we first define the following
structural property of the system.



1816 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

Definition 1: A system is called polyhedral with parameter
ρ > 0 under distribution π if the dual function g(γ, π)
satisfies:

g(γ∗, π) ≥ g(γ, π) + ρ‖γ∗
π − γ‖. ♦ (15)

The polyhedral property often holds for practical systems,
especially when action sets are finite (see [40] for more
discussions).

1) Stationary System: We first consider stationary systems,
i.e., π(t) = π. Our theorem shows that PLC achieves the near-
optimal utility-delay tradeoff for stationary networks. This
result is important, as any good adaptive algorithm must be
able to handle stationary settings well.

Theorem 1: Suppose π(t) = π, the system is polyhedral
with ρ = Θ(1), ew > 0, and q(0) = 0. Choose 0 < εd <
ε0 � 2(w + 1)ew/d, d = log(V )3/ε2d, Tl = max(V c, e−2

w ) for
c ∈ (0, 1) and

θ = 2 log(V )2(1 +
V√
Tl

). (16)

Then, with a sufficiently large V , PLC achieves the following:
(a) Utility: fPLCav = fπ

av + O(1/V )
(b) Delay: For all but an O( 1

V ) fraction of traffic, the aver-
age packet delay is D = O(log(V )2)

(c) Dropping: The packet dropping rate is O(V −1). ♦
Proof: Omitted due to space limitation. Please see [46]

for proof details. �
Here c is a constant used for deciding the learning time

Tl. Choosing ε = 1/V , we see that PLC achieves the near-
optimal [O(ε), O(log(1/ε)2)] utility-delay tradeoff. Moreover,
prediction enables PLC to also greatly reduce the queue size
(see Part (b) of Theorem 2). Our result is different from the
results in [20] and [22] for proactive service settings, where
delay vanishes as prediction power increases. This is because
we only assume observability of future states but not pre-
service, and highlights the difference between pre-service and
pure prediction. Note that the performance of PLC does not
depend heavily on εd in Theorem 1. The value εd is more
crucial for non-stationary systems, where a low false-negative
rate is critical for performance. Also note that although packet
dropping can occur during operation, the fraction of packets
dropped is very small, and the resulting performance guarantee
cannot be obtained by simply dropping the same amount of
packets, in which case the delay will still be Θ(1/ε).

Although Theorem 1 has a similar form as those
in [16] and [17], the analysis is very different, in that
(i) prediction error must be taken into account, and (ii) PLC
performs sequential detection and decision-making.

2) Piecewise Stationary System: We now turn to the non-
stationary case and consider the scenario where π(t) changes
over time. In this case, we see that prediction is critical as
it significantly accelerates convergence and helps to achieve
good performance when each distribution only lasts for a finite
time. As we know that when the distribution can change arbi-
trarily, it is hard to even define optimality. Thus, we consider
the case when the system is piecewise stationary, i.e., each
distribution lasts for a duration of time, and study how the
algorithm optimizes the performance for each distribution.

The following theorem summarizes the performance of PLC
in this case. In the theorem, we define Dk � tk + d − t∗,
where t∗ � sup{t < tk + d : t is a reset point}, i.e., the
most recent time when a cycle with size no smaller than Tl

ends (recall that reset points are marked in step (ii) of ADE
and d ≥ w + 1).

Theorem 2: Suppose dk ≥ 4d and the system is polyhe-
dral with ρ = Θ(1) for all k,. Also, suppose there exists
ε∗0 = Θ(1) > 0 such that ε∗0 ≤ infk,i |πki − π′

k−1i| and
q(0) = 0. Choose εd < ε∗0 in ADE, and choose d, θ and
Tl as in Theorem 1. Fix any distribution πk with length
dk = Θ(V 1+aTl) for some a = Θ(1) > 0.10 Then, under
PLC with a sufficiently large V , if Wm(tk) only contains
samples after tk−1, we achieve the following with probability
1 − O(V −3 log(V )/4):

(a) Utility: fPLCav = fπk
av + O(1/V ) + O(Dk log(V )

TlV 1+a )
(b) Queueing: qav = O((min(V 1−c/2, V ew)+1) log2(V )+

Dk + d).
(c) In particular, if dk−1 = Θ(TlV

a1) for a1 = Θ(1) > 0
and Wm(tk−1) only contains samples after tk−2, then with
probability 1−O(V −2), Dk = O(d), fPLCav = fπk

av + O(1/V )
and qav = O(min(V 1−c/2, V ew) + log2(V )). ♦

Proof: Omitted due to space limitation. Please see [46]
for proof details. �

A few remarks are in place. (i) Theorem 2 shows that,
with an increasing prediction power, i.e., a smaller ew, it is
possible to simultaneously reduce network queue size and the
time it takes to achieve a desired average performance (even
if we do not execute actions ahead of time). The requirement
dk = Θ(V 1+aTl) can be strictly less than the O(V 2−c/2+a)
requirement for RLC in [17] and the O(V 2) requirement of
BP for achieving the same average utility. This implies that
PLC finds a good system operating point faster, a desirable
feature for network algorithms. (ii) The dependency on Dk

is necessary. This is because PLC does not perform packet
dropping if previous intervals do not exceed length Tl. As a
result, the accumulated backlog can affect decision making
in the current interval. Fortunately the queues are shown to
be small and do not heavily affect performance (also see
simulations). (iii) To appreciate the queueing result, note that
BP (without learning) under the same setting will result in an
O(V ) queue size.

Compared to the analysis in [17], one complicating factor
in proving Theorem 2 is that ADE may not always throw
away samples from a previous interval. Instead, ADE ensures
that with high probability, only o(d) samples from a previous
interval will remain. This ensures high learning accuracy and
fast convergence of PLC. One interesting special case not
covered in the last two theorems is when ew = 0. In this
case, prediction is perfect and Tl = ∞, and PLC always
runs with πa(t) = 1

w+1

∑w
k=0 π̂(t + k), which is the exact

average distribution. For this case, we have the following
result.

Theorem 3: Suppose ew = 0 and q(0) = 0. Then, PLC
achieves the following:

10The constant a here is introduced to show that our results hold as long
as dk is larger than O(V Tl).
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(a) Suppose π(t) = π and the system is polyhedral with
ρ = Θ(1). Then, under the conditions of Theorem 1, PLC
achieves the [O(ε), O(log(1/ε)2)] utility-delay tradeoff.

(b) Suppose dk ≥ d log2(V ) and the system is polyhedral
with ρ = Θ(1) under each πk. Under the conditions of
Theorem 2, for an interval dk ≥ V 1+ε for any ε > 0,
PLC achieves that fPLCav = fπk

av + O(1/V ) and E
{
q(tk)

}
=

O(log4(V )). ♦
Proof: Omitted due to space limitation. Please see [46]

for proof details. �
The intuition is that since prediction is perfect, i.e., πa(t) =

πk during [tk + d, tk+1 −w]. Therefore, a better performance
can be achieved. The key challenge in this case is that PLC
does not perform any packet dropping. Thus, queues can build
up and one needs to show that the queues will be concentrating
around θ · 1 even when the distribution changes.

C. Convergence Time

We now consider the algorithm convergence time, which
is an important evaluation metric and measures how long it
takes for an algorithm to reach its steady-state. While recent
works [16], [17], [47], and [48] also investigate algorithm
convergence time, they do not consider utilizing prediction
in learning and do not study the impact of prediction error.

To formally state our results, we adopt the following defin-
ition of convergence time from [16].

Definition 2: Let ζ > 0 be a given constant and let π be
a system distribution. The ζ-convergence time of a control
algorithm, denoted by Tζ , is the time it takes for the effective
queue vector Q(t) to get to within ζ distance of γ∗

π , i.e.,11

Tζ � inf{t | ||Q(t) − γ∗
π|| ≤ ζ}. ♦ (17)

With this definition, we have the following theorem. Recall
that w ≤ d = Θ(log(V )2).

Theorem 4: Assuming all conditions in Theorem 2, except
that π(t) = πk for all t ≥ tk. If ew = 0, under PLC,

E
{
TG

}
= O(log4(V )). (18)

Else suppose ew > 0. Under the conditions of Theorem 2,
with probability 1 − O( 1

V Tl
+ Dk

V 2Tl
),

E
{
TG

}
= O(θ + Tl + Dk + w) (19)

E
{
TG1

}
= O(d). (20)

Here G = Θ(1) and G1 = Θ(Dk + 2 log(V )2(1 + V ew)),
where Dk is defined in Theorem 2 as the most recent reset
point before tk. In particular, if dk−1 = Θ(TlV

a1) for some
a1 = Θ(1) > 0 and θ = O(log(V )2), then with probability
1 − O(V −2), Dk = O(d), and E

{
TG1

}
= O(log2(V )). ♦

Proof: Omitted due to space limitation. Please see [46]
for proof details. �

The assumption π(t) = πk for all t ≥ tk is made to
avoid the need for specifying the length of the intervals. It is
interesting to compare (18), (19) and (20) with the convergence
results in [16] and [17] without prediction, where it was shown

11Tζ is essentially the hitting time of the process Q(t) to the area {||Q(t)−
γ∗

π || ≤ ζ} [49].

Fig. 3. A single-server two-queue system. Each queue receives random
arrivals. The server can only serve one queue at a time.

that the convergence time is O(V 1−c/2 log(V )2 + V c), with
a minimum of O(V 2/3). Here although we may still need
O(V 2/3) time for getting into an G-neighborhood (depending
on ew), getting to the G1-neighborhood can take only an
O(log2(V )) time, which is much faster compared to previous
results, e.g., when ew = o(V −2) and Dk = O(w), we have
G1 = O(log2(V )). This confirms our intuition that predic-
tion accelerates algorithm convergence and demonstrates the
power of (even imperfect) prediction.

VIII. SIMULATION

In this section, we present simulation results of PLC in
a two-queue system shown in Fig. 3. Though being simple,
the system models various settings, e.g., a two-user downlink
transmission problem in a mobile network, a CPU scheduling
problem with two applications, or an inventory control system
where two types of orders are being processed.

Aj(t) denotes the number of arriving packets to queue j at
time t. We assume Aj(t) is i.i.d. being 1 or 0 with probabilities
pj and 1−pj , and use p1 = 0.3 and p2 = 0.6. Thus, λ1 = 0.3
and λ2 = 0.6. Each queue has a time-varying channel
condition. We denote CHj(t) the channel condition of queue j
at time t. We assume that CHj(t) ∈ CHj with CH1 = {0, 1}
and CH2 = {1, 2}. The channel distributions are assumed to
be uniform. At each time, the server determines the power
allocation to each queue. We use Pj(t) to denote the power
allocated to queue j at time t. Then, the instantaneous service
rate qj(t) gets is given by:

μj(t) = log(1 + CHj(t)Pj(t)). (21)

We assume that Pj(t) ∈ P = {0, 1, 2} for j = 1, 2, and at
each time only one queue can be served. The objective is to
stabilize the system with minimum average power. It can be
verified that Assumptions 1 and 2 both hold in this example.

We compare PLC with BP in two cases. The first case
is a stationary system where the arrival distributions remain
constant. The second case is a non-stationary case, where we
change the arrival distributions during the simulation. In both
cases we simulate the system for T = 5 × 104 slots with
V ∈ {20, 50, 100, 150, 200, 300}. We set w + 1 = 5 and
generate prediction error by adding uniform random noise to
distributions with max value e(k) (specified below). We also
use εd = 0.1, δ = 0.005 and d = 2 ln(4/δ)/ε2+w+1. We also
simplify the choice of θ and set it to θ = log(V )2.

We first examine the long-term performance. Fig. 4 shows
the utility-delay performance of PLC compared to BP in the
stationary setting. There are two PLC we simulated, one is
with ew = 0 (PLC) and the other is with ew = 0.04 (PLC-e).
From the plot, we see that both PLCs achieve a similar utility
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Fig. 4. Utility and delay performance comparison between PLC and BP.

Fig. 5. Convergence comparison between PLC and BP for queue 1 under
V = 100. PLC (ew = 0) is the perfect case and PLC (ew = 0.04) contains
prediction error. Both versions converge much faster compared to BP.

as BP, but guarantee a much smaller delay. The reason PLC-e
has a better performance is due to packet dropping. We observe
around an average packet dropping rate of 0.06. As noted
before, the delay reduction of PLC cannot be achieved by
simply dropping this amount of packets.

Next, we take a look at the detection and convergence
performance of PLC. Fig. 5 shows the performance of PLC
with perfect prediction (ew = 0), PLC with prediction error
(ew = 0.04) and BP when the underlying distribution changes.
Specifically, we run the simulation for T = 5000 slots and
start with the arrival rates of p1 = 0.2 and p2 = 0.4. Then,
we change them to p1 = 0.3 and p2 = 0.6 at time T/2.

We can see from the green and red curves that PLC quickly
adapts to the change and modifies the Lagrange multiplier
accordingly. By doing so, the actual queues under PLC (the
purple and the brown curves) remain largely unaffected. For
comparison, we see that BP takes a longer time to adapt
to the new distribution and results in a larger queue size.
We also see that during the 5000 slots, PLC (ew = 0.04)
drops packets 3 times (zero for the first half), validating
the results in Lemma 1 and Theorem 1. Moreover, after the
distribution change, PLC (ew = 0.04) quickly adapts to the
new equilibrium, despite having imperfect prediction. The fast
convergence result also validates our theorem about short term
utility performance under PLC. Indeed, if we look at slots
during time 200−500, and slots between 2500−3500, we see
that when BP is learning the target backlog, PLC already
operates near the optimal mode. This shows the benefits of
prediction and learning in stochastic network control.

IX. CONCLUSION

We investigate the problem of stochastic network opti-
mization in the presence of imperfect state prediction and
non-stationarity. Based on a novel distribution-accuracy curve
prediction model, we develop the predictive learning-aided
control (PLC) algorithm. PLC is an online algorithm that
contains three main functionalities, sequential distribution esti-
mation and change detection, dual learning, and online queue-
based control. We show that PLC simultaneously achieves
good long-term performance, short-term queue size reduction,
accurate change detection, and fast algorithm convergence.
Our results demonstrate that state prediction can help improve
performance and quantify the benefits of prediction in four
important metrics, i.e., utility (efficiency), delay (quality-of-
service), detection (robustness), and convergence (adaptabil-
ity). They provide new insight for joint prediction, learning
and optimization in stochastic networks.

APPENDIX A - PROOF OF LEMMA 1

(Proof of Lemma 1) We prove the performance of ADE(Tl,
d, ε) with an argument inspired by Bifet and Gavald [50].
We make use of the following concentration result.

Theorem 5: [51] Let X1, …, Xn be independent random
variables with Pr

{
Xi = 1

}
= pi, and Pr

{
Xi = 0

}
= 1 − pi.

Consider X =
∑n

i=1 Xi with expectation E
{
X

}
=

∑n
i=1 pi.

Then, we have:

Pr
{
X ≤ E

{
X

} − m
} ≤ e

−m2
2E{X} , (22)

Pr
{
X ≥ E

{
X

}
+ m

} ≤ e
−m2

2(E{X}+m/3) . ♦ (23)

Proof: (Lemma 1) (Part (a)) In this case, it suffices to
check condition (i) in ADE. Define

π̃d
i (t) � 1

d

( t−1∑

τ=(t+w−d)+

1[S(τ)=si] +
∑

τ∈Ww(t)

πi(τ)
)

,

i.e., π̃d
i (t) is defined with the true distributions in Wd(t).

Denote ε1 = (w+1)ew/d, we see then ‖π̃d(t)− π̂d(t)‖ ≤ ε1.
Thus, for any ε > 0, we have:

Pr
{‖π̂d(t) − π̂m(t)‖TV ≤ ε

}

≤ Pr
{‖π̃d(t) − π̂m(t)‖TV ≤ ε + ε1

}

≤ Pr
{|π̃d

i (t) − π̂m
i (t)| ≤ ε + ε1

}
. (24)

Choose ε = 1
2 max |π1i − π2i| − 2ε1 > 0 and let ε0 = ε + ε1.

Fix α ∈ (0, 1) and consider i ∈ argmaxi |π1i−π2i|. We have:

Pr
{|π̃d

i (t) − π̂m
i (t)| ≤ ε0

}

≤ Pr
{{|π̃d

i (t) − π1i| ≥ αε0}
∪{|π̂m

i (t) − π2i| ≥ (1 − α)ε0}
}

≤ Pr
{|π̃d

i (t) − π1i| ≥ αε0
}

+Pr
{|π̂m

i (t) − π2i| ≥ (1 − α)ε0
}
. (25)

Here the first inequality follows because if we have both
{|π̃d

i (t) − π1i| < αε0} and {|π̂m
i (t) − π2i| < (1 − α)ε0, and

|π̃d
i (t) − π̂m

i (t)| ≤ ε0, we must have:

|π1i − π2i|≤|π̃d
i (t) − π1i|+ |π̂m

i (t) − π2i| + |π̃d
i (t) − π̂m

i (t)|
= 2ε0 < |π1i − π2i|,



HUANG et al.: LEARNING-AIDED STOCHASTIC NETWORK OPTIMIZATION WITH STATE PREDICTION 1819

which contradicts the fact that i achieves maxi |π1i − π2i|.
Using (25) and Hoeffding inequality [52], we first have:

Pr
{|π̂m

i (t) − π2i| ≥ (1 − α)ε0
}

≤ 2 exp(−2((1 − α)ε0)2Wm(t)). (26)

For the first term in (25), we have:

Pr
{|π̃d

i (t) − π1i| ≥ αε0
}

≤ 2 exp(−2(αε0)2(Wd(t) − w − 1)). (27)

Equating the above two probabilities and setting the sum equal

to δ, we have α =
√

Wm(t)/(Wd(t)−w−1)

1+
√

Wm(t)/(Wd(t)−w−1)
, and

ε0 =

√

ln
4
δ
· 1 +

√
(Wd(t) − w − 1)/Wm(t)

√
2(Wd(t) − w − 1)

. (28)

In order to detect the different distributions, we can choose
εd < ε0, which on the other hand requires that:

εd

(∗)
≤

√

ln
4
δ
·
√

1
2(d − w − 1)

< ε0

⇒ d > ln
4
δ
· 1
2ε2d

+ w + 1. (29)

Here (*) follows because Wd(t) = d ≤ Wm(t). This shows
that whenever Wd(t) = d ≤ Wm(t) and the windows are
loaded with non-coherent samples, error will be detected with
probability 1 − δ.

(Part (b)) Note that for any time t, the distribution will
be declared changed if ||π̂d(t) − π̂m(t)||TV > εd. Choose
εd = 2ε1. Similar to the above, we have:

Pr
{‖π̂d(t) − π̂m(t)‖TV ≥ εd

}

≤ Pr
{‖π̃d(t) − π̂m(t)‖TV ≥ εd − ε1

}

≤ Pr
{‖π̂d(t) − π‖TV ≥ αεd/2

}

+Pr
{‖π̂m(t) − π‖TV ≥ (1 − α)εd/2

}
. (30)

Using the same argument as in (25), (26) and (27), we get:

Pr
{‖π̂d(t) − π̂m(t)‖TV ≥ εd

} ≤ δ.

This shows that step (i) declares change with probability δ.
Next we show that step (ii) does not declare a distribution

change with high probability. To do so, we use Theorem 5
with m = 2 log(Tl)

√
Tl to have that, when Wm(t) ≥ Tl,

Pr
{‖πm

i (t) − πi‖ >
2 log(Tl)√

Tl

} ≤ e−2 log(Tl)
2

= T
−2 log(Tl)
l .

Using the union bound, we get

Pr
{‖πm(t) − π‖ >

2M log(Tl)√
Tl

} ≤ MT
−2 log(Tl)
l . (31)

Thus, part (b) follows from the union bound over k. �
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