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Abstract—Peer-to-peer (P2P) systems provide a scalable way
to stream content to multiple receivers over the Internet. The
maximum rate achievable by all receivers is the capacity of a
P2P streaming session. We provide a taxonomy of sixteen problem
formulations, depending on whether there is a single P2P session
or there are multiple concurrent sessions, whether the given
topology is a full mesh graph or an arbitrary graph, whether the
number of peers a node can have is bounded or not, and whether
there are non-receiver relay nodes or not. In each formulation,
computing P2P streaming capacity requires the computation of
an optimal set of multicast trees, with an exponential complexity,
except in three simplest formulations that have been recently
solved with polynomial time algorithms. These solutions, however,
do not extend to the other more general formulations.

In this paper, we develop a family of constructive, polynomial-
time algorithms that can compute P2P streaming capacity and the
associated multicast trees, arbitrarily accurately for seven formu-
lations, to a factor of 4-approximation for two formulations, and
to a factor of log of the number of receivers for two formulations.
The optimization problem is reformulated in each case so as to
convert the combinatorial problem into a linear program with
an exponential number of variables. The linear program is then
solved using a primal-dual approach. The algorithms combine an
outer loop of primal-dual update with an inner loop of smallest
price tree construction, driven by the update of dual variables in
the outer loop. We show that when the construction of smallest
price tree can be carried out arbitrarily accurately in polynomial
time, so can the computation of P2P streaming capacity. We
also develop several efficient algorithms for smallest price tree
construction. Using the developed algorithms, we investigate
the impact of several factors on P2P streaming capacity using
topologies derived from statistics of uplink capacities of Internet
hosts.

I. INTRODUCTION

Consider the following problem: given a directed graph with
a source node and a set of receiver nodes, how to embed a set
of trees spanning the receivers and to determine the amount of
flow in each tree, such that the sum of flows over these trees
is maximized? Constraints of this problem include an upper
bound on the amount of flow from each node to its children,
degree of a node in each tree, and other topological constraints
of the given graph. This is the basic version of the problem
of P2P streaming capacity computation that we try to solve in
this paper.

Multicasting content over the Internet can be carried out
in two ways: a “client-server” system has one server for
each multicast session serving the given set of receivers, and
a “peer-assisted” system uses the upload capacity of each
user, rather than relying only on the server, to help scale
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the content delivery as the number of users increases. In
a typical P2P system, peering relationships are established
among users in the logical overlay network on top of the
physical underlay network, giving rise to multiple multicast
trees that simultaneously support one session. A user may be
in a different level in each of these trees. These P2P systems
have enabled scalable file sharing and video streaming since
2001, and consume between one third to half of the entire
Internet traffic volume in recent years.

The following fundamental question remains open: what is
the P2P streaming capacity and what is an optimal peering
configuration to achieve the capacity? Here, capacity is defined
as the largest rate that can be achieved for all receivers in a
multicast session with a given source, a set of receivers, and
possibly a set of helper (non-receiver relay) nodes. Notice that
it is not the queuing-theoretic or Shannon-theoretic capacity
of a network, as we have assumed infinite backlog for each
streaming session and noiseless channels.

There are sixteen formulations of this question: depending
on whether there is a single P2P session or there are multiple
concurrent sessions, whether the given topology is a full mesh
graph or an arbitrary graph, whether the number of peers
a node can have is bounded or not, and whether there are
helper nodes or not. In each formulation, computing P2P
streaming capacity requires the determination of how to embed
an optimal set of multicast trees and what should the rate in
each tree be. The majority of these problems appear to be
hard to solve exactly, except in three simplest formulations that
have recently been solved with polynomial time combinatorial
algorithms [11], [9], [15], [14], [13]. (We also show that
one of the formulations is NP-hard.) These algorithms and
their correctness proofs, however, do not extend to the other
formulations that remain open.

In this paper, we develop a family of constructive, polyno-
mial time algorithms that can compute P2P streaming capacity,
and the associated multicast trees, arbitrarily accurately for
seven formulations, to a factor of 4 approximation for two
formulations, and to a factor of log of the number of receivers
for two formulations. The optimization is reformulated to
turn the combinatorial problems into linear programs with an
exponential number of variables. The algorithms combine a
primal-dual update outer loop with an inner loop of smallest
price tree construction, driven by the update of Lagrange dual
variables in the outer loop. Graph-theoretic solutions to various
cases of the smallest price tree problem are then presented.

Certain special cases of P2P streaming capacity have been
studied recently. For example, [4] develops a primal-dual
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V : Set of all the nodes in the p2p network.
k,K: Index or total number of sessions.
r,rk: Streaming rate for the single, or the k-th session.
s,sk: Source of the single, or the k-th session.
R,Rk: Set of receivers for the single, or the k-th session.
H,Hk: Set of helpers for the single, or the k-th session.
T,T k: Set of all allowed trees on top of G(V,E).
It Set of internal nodes in tree t.
C(v): Uplink capacity of node v ∈V .
Uv: Aggregate uploading rate for node v ∈V .
xuv: Streaming rate from node u to node v.
yt : Rate of substream delivered by tree t.
mv,t : Outgoing degree of node v in tree t.
M(v): Bound of the outgoing degree of v in each tree.
u→ v: u is the parent of v in the tree discussed.
pv, p(v): Price, or the dual variable, of node v.
p, p(·): Vector or function of prices of all nodes.
Q(t, p): Price of tree t for a given p(·), or p.

Table I: Main notation.

algorithm for the following special case: undirected overlay
graph without degree bounds on nodes or the presence of
helper nodes. Existence of degree bounds and helper nodes
make the formulations in this paper more relevant to the
practice of P2P streaming. They also make the development
and analysis of the algorithms more challenging.

The rest of this paper is organized as follows. We introduce
the unifying system model in Section II and review related
work. We formulate the streaming capacity problem and
develop the main algorithms for single-session and multiple-
session applications in Sections III, IV, and V. We then present
performance evaluation in Section VI. Finally, we conclude in
Section VII. All proofs are presented in the appendices. Main
notation is summarized in Table 1.

II. P2P STREAMING MODEL AND CAPACITY DEFINITION

Consider K streaming sessions, indexed by k. A streaming
session originates from one source, and is distributed to a
given set of receivers. For example, in video conferencing,
there are multiple participants, each may initiate a session
and distribute her video to others, and each participant can
subscribe to others’ videos. In an IPTV network, different
channels may originate from different servers, with different
sets of subscribers. For the k-th session, denote by sk the
original source, by Rk the set of receivers, and by Hk the
set of helpers. We say that a session k has rate rk if all the
receivers in this session receive the streaming packets at a rate
of rk or above (bits per sec).

Now consider the P2P network as a graph G = (V,E),
where each node v ∈ V represents a user, and each edge
e = (u,v) ∈ E represents a neighboring relationship between
vertices (u,v). A user may be the source, or a receiver, or a
helper that serves only as a relay. A helper does not need to
get all packets but only the ones that it relays. This graph is
an overlay on top of the given underlay graph representing
the physical connections among users. It may constrain the
design of peering relationships: if two nodes u and v are not
neighbors, they cannot be peered. At the same time, neighbors
do not have to become peers. Neighboring relationship is given
while peering relationship is to be designed as part of the P2P
streaming capacity computation. The graph G may or may not
be full mesh. Typically, full mesh is only possible in a small

network with small number of users, while a large network
has a sparse topology. For example, in P2P systems widely
used today, such as BitTorrent or PPLive, when a user joins
the system, the server provides a small list of selected users
that can be neighbors of the new user and exchange packets
among them.

Consider a given stream and a packet in it: it starts from the
source sk, and traverses over all nodes in Rk, and some nodes
in Hk – the traversed paths form a Steiner tree in the overlay
graph G(V,E). Different packets may traverse different trees,
and we call each tree a sub-stream tree, or sub-tree or simply
tree in short, and call the superposition of all the sub-trees
belonging to the same session a multi-tree. For each tree t, we
denote by yt the rate of the sub-stream supported by this tree.

The use of a P2P protocol imposes certain constraints on
sub-trees. The most frequently encountered one is the node
degree constraint. For example, in BitTorrent, although one
node has 30−50 neighbors in G, it can upload to at most 5
of them as peers. This gives an outgoing degree bound for
each node and constrains the construction of the trees. Degree
bounds always apply to receivers and helpers, and, in some
scenarios, to the source as well. Here we examine the case of
degree bound for each node per tree. The more general case
of degree bound for each node across all the trees has recently
been treated in our separate work [12]. Let mv,t be the number
of outgoing edges of node v in tree t, and the bound be M(v):
mv,t ≤M(v),∀t. We denote by T k the set of all allowed sub-
trees for the k-th session: trees that satisfy the constraints such
as the degree bounds. Obviously, rate rk = ∑t∈T k yt for all k.

We will make the following assumptions for streaming
applications: there is a static set of stationary users and all
desired chunks of packets are available at each node. The
issues of peer churn and chunk availability will be studied in
future work. We also assume that data rate bottlenecks only
appear at user uplinks. This assumption is widely adopted in
the P2P literature because in today’s Internet, access links
are the bottlenecks rather than backbone links, and uplink
capacity is several times smaller than downlink capacity in
access networks. Denote by C(v) the uplink capacity of node
v. We have the following bound on the total uplink rate Uv for
each node v:

Uv := ∑
u∈V

xvu ≤C(v)

where xvu is the streaming rate node v transmits to node u.
A rate is called achievable if there is a multi-tree in which

all trees satisfy the topology constraint (t ∈ T k) and transmis-
sion rates satisfy the uplink capacity constraint (Uv ≤ C(v)).
We define P2P streaming capacity C as the largest achievable
rate. When there are multiple sessions in the same given
graph G, each session’s capacity is denoted as Ck, the P2P
streaming rate region is defined as the set of {Ck} that can
be simultaneously achieved, and the P2P streaming capacity
region is the Pareto-optimal boundary of the rate region.
Except in relatively easy special cases, these fundamental
limits of P2P performance are unknown. The rest of this paper
studies the polynomial-time computation of P2P streaming
capacity or capacity region, and the multi-trees that achieve
them.
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Fig. 1. Classification of P2P streaming capacity problems: single or multiple session, full mesh or non-full mesh graph G given, bounded or
unbounded node degrees in each tree, and existence or absence of helper nodes. The combination of these four classifications leads to 16
cases of problem formulations.

Small Network Large Network
IPTV 1,2 3,4,5,6,7,8
Video Conferencing 9,10 11,12,13,14,15,16

Table II: The connections between typical application scenarios and problem
formulations (Problems 1-16 in Figure 1). IPTV is a single session for each
channel, while video conferencing typically contain multiple sessions. Full
mesh graph without degree bound models a small network, while either non-
full mesh graph or degree bounded tree models a large network.

A taxonomy of P2P streaming capacity is shown as a “tree
of problem formulations” in Figure1. Each leaf node in this
tree is a specific problem formulation. There are four levels of
dichotomy: whether there is one session or multiple sessions,
whether G is full mesh or not, whether there are degree bounds
for each node in the trees or not, and whether there are
helper nodes or not. Some formulations are significantly more
difficult than others. When G is not full mesh, not all nodes
can become neighbors in a tree. When there are degree bounds
per node per tree, the constraint set T k further complicates the
tree optimization. When there are helper nodes, capacity may
be increased but the task of computing capacity also becomes
more challenging. In formulations 1, 2, and 3, capacity can
be computed exactly and in polynomial time as shown in
recent papers using combinatorial algorithms [11], [13], [14].
The other formulations are much more difficult, and form
the subject of study in this paper. We also summarize in
Table II the connection between typical applications and our
classification, and in Table III, the state of solution for each
problem formulation in this paper.

III. SINGLE SESSION

We first consider the single session case. Typical applica-
tions include the streaming of a single channel in IPTV and
single-source video conferencing. In particular, the source of
IPTV is usually a powerful server and it is either not degree
bounded, or has a very large bound. The source of video
conference is usually a peer node, and its degree bound is
of the same order as the other peers.

Since there is only one multicast session, we remove the
superscripts k, and denote by s the sender, by R the set of
receivers, by H the set of helpers, by T the set of all allowed

Formulation Accuracy Location
1,2 1+ ε Sec III, V-A
3,4 1+ ε Sec III, V-B
5 1+ ε Sec III,V-C
6 ln |R| ln3 |V |+ ε Sec III,V-C
7 4+ ε Sec III,V-D
8 open Sec III,V-D
9,10 1+ ε Sec IV, V-A
11,12 1+ ε Sec IV, V-B
13 1+ ε Sec IV, V-C
14 ln |R| ln3 |V |+ ε Sec IV, V-C
15 4+ ε Sec IV, V-D
16 open Sec IV, V-D

Table III. Summary of the results in this paper for the sixteen problem
formulations.

sub-trees, and by r the supported streaming rate in the multi-
tree. We further use |R| and |H| to denote the number of
receivers and helpers, respectively. The total number of nodes
in the system is N = 1+ |R|+ |H|.

A. Problem Formulation

We represent the single-session streaming capacity problem
as the following optimization, where the objective function and
constraints are as explained in the previous section. For those
trees not selected in the optimizer, their rates yt are simply
0. The representation is deceptively simple: the difficulty lies
in searching through all combinations of trees t in the set of
allowed trees T .

Single-Session (Primal) Problem

maximize r = ∑t∈T yt (1)
subject to ∑t∈T mv,tyt ≤C(v) , ∀ v ∈V (2)

yt ≥ 0 ∀ t ∈ T (3)
variables yt ,∀t ∈ T (4)

From linear programming duality theory [1], solving the
above problem is equivalent to solving its dual problem, and
an optimizer of the dual problem readily leads to an optimizer
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of the primal algorithm. The dual problem associates a non-
negative variable p(v), interpreted as price, with each node v
corresponding to constraint (2). It can be derived to be the
following problem:

Single-Session Dual Problem

minimize ∑v∈V C(v)p(v) (5)
subject to ∑v∈V mv,t p(v)≥ 1 , ∀ t ∈ T, (6)

p(v)≥ 0 ∀ v ∈V (7)
variables p(v),∀v ∈V (8)

We can interpret the dual problem this way: p(v) is the
per unit flow price for any edge outgoing from v. If node v
uploads with full capacity, the incurred cost is p(v)C(v). There
are mv,t connections outgoing from node v in tree t, and thus
the total tree price for tree t, which is defined as the sum of
prices in any edge in tree t, is ∑v∈V mv,t p(v). Therefore, the
dual problem is to minimize the total full capacity tree cost
given that the tree price is at least 1, and the minimization
is over all possible p, where p := {p(v),∀v ∈V} is the price
vector. For notational simplicity, we use p(·) : V → R+ ⋃{0}
to represent p.

In general, the number of trees we need to search when
computing the right multi-tree grows exponentially in the size
of the network. This dimensionality increase is the conse-
quence of turning a difficult graph-theoretic, discrete problem
into a continuous optimization problem. Hence, the primal
problem can have possibly exponential number of variables
and its dual can have an exponential number of constraints,
neither of which suitable for direct solution if we want to
compute P2P streaming capacity in polynomial time as the
network size increases. However, the above representations
turn out to be very useful to allow a primal-dual update outer
loop that converts the combinatorial problem of multi-tree
construction into a much simpler problem of smallest price
tree construction.

B. Algorithm and Performance

We now design an iterative combinatorial algorithm that
solves the primal and dual problems approximately. We adapt
the technique for solving the maximum multi-commodity flow
problem in [6], where flows are augmented in the primal
solution and dual variables are updated iteratively. Our algo-
rithm constructs peering multi-trees that achieve an objective
function value within (1+ζ )-factor of optimal.

For a given tree t and prices p(·), let Q(t, p) denote the left-
hand-side (LHS) of constraint (6), which we call the price of
tree t. A set of prices p(·) is a feasible solution for the dual
program if and only if

min
t∈T

Q(t, p)≥ 1.

The algorithm works as follows. Start with initial weights
p(v) = δ

C(v) for all v ∈ V . Parameter δ depends on ζ and is
described in more detail later. Repeat the following steps until
the dual objective function value becomes greater than 1:

1) Compute a tree t̄ for which Q(t, p) is minimum. We call
t̄ a smallest price tree problem, algorithms for which are
developed in Section V.

2) Send the maximum flow on this tree t̄ such that uplink
capacity of at least one internal node is saturated. Let
I(t) be the set of internal nodes in tree t. The flow sent
on this tree is

y = min
v∈I(t̄)

C(v)
mv,t̄

. (9)

3) Update the prices p(v) as

p(v)← p(v)
(

1+
εmv,t̄y
C(v)

)
, ∀ v ∈ I(t̄).

where ε depends on ζ and is explained in more detail
later.

4) Increment the flow Y sent so far by y.
The optimality gap can be estimated by computing the ratio

of the primal and dual objective function values in each step of
the above iteration, which can be terminated after the desired
proximity to optimality is achieved. When the above iteration
terminates, primal capacity constraints on each uplink may be
violated, since we were working with the original (and not
the residual) uplink capacities at each stage. To remedy this,
we scale down the flows uniformly so that uplink capacity
constraints are satisfied.

The pseudo-code for the above procedure is provided in
Figure 2. Array f low(v) keeps track of the traffic on uplink
of node v as the algorithm progresses. The dual objective
function value is tracked by variable D which is initialized
to 0. After the “while” loop terminates, the maximum factor
by which the uplink capacity constraint is violated on any
uplink is computed as α , which divides the total flow Y , and
the resulting value is output as r∗.

Primal-Dual Algorithm: Single-Session
p(v) ← δ

C(v) , f low(v) ← 0, ∀ v ∈ V , Y ← 0,
D← 0

while D < 1
Pick tree t ∈ T with the smallest Q(t, p)
y←minv∈I(t)C(v)/mv,t
t̄ ← argminv∈I(t)C(v)/mv,t
f low(v)← f low(v)+ ymv,t̄ ,∀v ∈ I(t̄)
Y ← Y + y
p(v)← p(v)(1+ ε mv,t̄ y

C(v) )
D← ∑v∈V C(v)p(v)

end while

Compute scaling factor α ←maxv∈V
f low(v)

C(v) ;
Output capacity r∗← Y/α ;

Fig. 2. The Primal-Dual Algorithm for Single-session P2P Streaming Capacity
Computation.

The following theorem, proved in Appendix A, states the
accuracy and complexity properties of the algorithm:

Theorem 1. For any given ζ > 0, the Single-Session Primal-
Dual Algorithm computes a solution with objective function
value within (1 + ζ )-factor of the optimum, for algorithmic
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parameters ε(ζ ) = 1− 1√
1+ζ

and δ (ζ ) = 1+ε
[(1+ε)|V |]1/ε . It runs

in time polynomial in the input size and 1
ε : O

( |V | log |V |
ε2 Tspt

)
,

where Tspt is the time to compute a smallest price tree.

This unifying primal-dual framework works for all of the
single session problems in Section II. The core issue now
lies with the inner loop of smallest price tree computation:
can this be accomplished in polynomial time for a given
price vector? This graph-theoretic problem is generally more
tractable than the original problem of searching for the multi-
tree that maximizes the achievable rate. However, when the
given graph G is not full mesh, or when there are degree
bounds on nodes in each tree, or when there are helper nodes,
computing a smallest price tree becomes difficult. These are
described in Section V, which is devoted to constructing
smallest price trees for the various cases.

IV. MULTIPLE SESSIONS

Now we turn to the more general case of K concurrent
streaming sessions sharing the same P2P network. Each ses-
sion is supported by a multi-tree. This models the multi-
channel IPTV and multi-party video conference scenarios.
Here the notion of capacity becomes a region in the K-
dimensional space, with tradeoffs among the sessions quan-
tified by the shape of this capacity region.

A. Problem Formulation

Given a session rate demand vector [r1,r2, · · · ,rK ], let λ
be the maximum multiplier such that session rate λ rk can be
supported for session k. Hence, we have

∑
t∈T k

yt = λ rk, k = 1,2, · · · ,K .

The total uplink traffic at node v is ∑k ∑t∈T k mv,tyt . Upload
link capacity constraint becomes

∑
k

∑
t∈T k

mv,tyt ≤C(v), ∀ v ∈V.

For a given “rate region direction vector” {rk}, solving the
following problem provides one point on the capacity region.
By varying {rk}, all points can be traced. This is the same
as scalarization of a vector-valued optimization problem and
sweeping through the scalarization parameter to obtain the
entire boundary of the tradeoff region, a polyhedron in this
case.

Multi-Session (Primal) Problem

maximize λ (10)
subject to ∑t∈T k yt = λ rk, k = 1,2, · · · ,K (11)

∑k ∑t∈T k mv,tyt ≤C(v), ∀ v ∈V (12)
yt ≥ 0 , ∀ t ∈ T k, k = 1,2, · · · ,K (13)

variables λ ,yt ,∀t ∈ T k, k = 1,2, · · · ,K (14)

In the special cases of formulations 1 and 2 in Figure 1, the
set of trees T k for session k can be chosen to comprise of a

linear of Mutualcast trees [11] and this guarantees the solution
to be optimal. Hence, the linear program is of polynomial size
and can be solved in polynomial time in these cases.

We can also readily derive the dual linear programming
problem for the multi-session case. The dual problem as-
sociates a variable zk with each session k corresponding to
constraint (11), and a non-negative variable p(v) with each
node v corresponding to constraint (12).

Multi-Session Dual Problem

minimize ∑v∈V C(v)p(v) (15)
subject to ∑v∈V mv,t p(v)≥ zk , ∀ t ∈ Tk, ∀ k = 1, · · · ,K(16)

∑K
k=1 rkzk ≥ 1 (17)

p(v)≥ 0 ∀ v ∈V (18)
variables p(v),∀v ∈V ,zk∀k = 1, · · · ,K (19)

B. Algorithm and Performance

For multi-session P2P streaming capacity region computa-
tion, we again construct an outer loop of primal-dual update
that is complemented by an inner loop of smallest price tree
construction. A key observation is that, from constraint (16),
for each session k, zk can be set to be the minimum value of
LHS, over all t ∈ T k, under given prices p(v) for all v ∈ V .
Hence, a set of prices p(v) is a dual feasible solution if
constraint (17) is satisfied, after zk is determined. If constraint
(17) is not satisfied for a given set of prices p(v), these prices
can be scaled to satisfy the constraint.

Start with initial prices p(v) = δ
C(v) for all v ∈ V . The

algorithm proceeds in phases. In each phase, we route rk units
of flow from node sk to receivers in Rk along the multi-trees
in T k, for each session k. A phase ends when all sessions
k = 1,2, · · · ,K have been routed.

The flow of value rk of session k is routed from sk to
receivers in Rk in multiple iterations. In each iteration, a tree
t ∈ T k that minimizes the LHS of constraint (16) under current
prices p(v) is computed. The maximum flow u that can be
sent on this tree t subject to original node uplink constraints
is given by

u = min
v∈V,mv,t>0

C(v)
mv,t

.

The amount of flow sent along tree t, denoted by yt , in an
iteration is the minimum of (i) the quantity u, and (ii) the
remaining amount of flow that needs to be sent from sk to
receivers in Rk to make a total of rk.

After the flow of value yt is sent along tree t, the prices
p(v) and the uplink flow values at each node are updated as
follows:

1) Update the prices p(v) as

p(v)← p(v)
(

1+
εmv,tyt

C(v)

)
, ∀ v ∈V.

2) Increment the uplink flow value for each node v by
mv,tyt .
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This update happens after each iteration associated with rout-
ing a portion of flow rk for each session k. The algorithm
terminates when the dual objective function value becomes
less than unity.

When the algorithm terminates, dual feasibility constraints
will be satisfied. However, link capacity constraints (12) in
the primal solution will be violated, since we were working
with the original (not the residual) uplink capacities at each
stage. To remedy this, we scale down the traffic at each node
uniformly so that uplink capacity constraints are satisfied.

Again, we need smallest price tree algorithms in the next
section to compute a tree t ∈ T k that minimizes the LHS of
constraint (16) during each iteration.

Primal-Dual Algorithm: Multi-Session
p(v)← δ

C(v) , f low(v)← 0, ∀ v ∈V , phase← 0

repeat
for each k = 1,2, · · · ,K do

r = rk ;
while r > 0

Compute minimum cost tree t ∈ T k under
prices p(v) so as to minimize ∑v∈V mv,t p(v) ;
u←minv∈V,mv,t>0

C(v)
mv,t

;
yt = min(r,u) ;
for each v ∈V do

p(v)← p(v)
(

1+ εmv,t yt
C(v)

)
;

f low(v)← f low(v)+mv,tyt ;
end for
r ← r− yt ;

end while
end for
phase← phase+1 ;
D← ∑v∈V C(v)p(v) ;

until D≥ 1 ;

Compute L(v)←maxv∈V
f low(v)

C(v) ,
Computer scaling factor L←maxv∈V scale(v) ;
Output λ = phase/L ;

Fig. 3. The Primal-Dual Algorithm for Multi-Session P2P Streaming Capacity
Computation.

The pseudo-code for the above procedure is described in
Figure 3. Array f low(v) keeps track of the uplink traffic at
node v. After the completion of a phase, the variable phase
equals the number of phases completed. The dual objective
function value is computed as D at the end of each phase. The
iteration over the phases in the “repeat” loop continues as long
as this value remains less than one. After the “repeat” loop
terminates, the maximum factor by which the uplink capacity
constraint at a node v gets violated is computed into variable
L. Finally, the value of λ is output.

Similar to the single-session case, the multi-session primal-
dual algorithm also achieves an objective function value within
(1 + ζ )-factor of the optimum, as stated in the following
theorem proved in Appendix B.

Theorem 2. For any ζ > 0, the Multi-Session Primal-Dual
Algorithm computes a solution with objective function value
within (1 + ζ )-factor of the optimum, if the algorithmic pa-

rameters are ε(ζ ) = 1− (1−ζ )1/3 and δ (ζ ) =
(

1−ε
|V |

)1/ε
. It

runs in time O
(

K logK
ε log1+ε

|V |
1−ε Tspt

)
, where Tspt is the time

to compute a smallest price tree.

V. COMPUTING SMALLEST PRICE TREE

For iterative algorithms for both the single and multiple
session cases, efficiently and accurately computing a smallest
price tree (SPT) for a given set of node prices is the key
module in each outer loop. Theorems 1 and 2 can also be
readily extended to show that, if there is an α-approximation
algorithm (α ≥ 1) for the SPT problem, then the primal-
dual algorithm can guarantee an approximation factor of
1/(α + ζ ) for any ζ > 0. We now develop SPT algorithms
for increasingly more general problem formulations.

A. Full Mesh Graph without Degree Bound

We start with the simplest case: the given graph G is full
mesh (all nodes are neighbors of each other), and there is
no degree bound in the trees (each node can form peering
relationship with any number of other nodes).

When there is no helper node, it is easy to construct the
smallest price tree t∗ in the following way. Given p(·), let
v∗ ∈ argminv∈V p(v) be the node with the smallest price. If
there are multiple such nodes, we can randomly pick one. If
v∗ = s, let t∗ be a 1-hop tree: s→ v,∀v ∈ R. Otherwise, let t∗
be a 2 hop tree: s→ v∗→ v,∀v 6= v∗ ∈ R. The resulting tree is
a smallest price tree with p(t∗) = p(s)+(|R|−1)p(v∗).

The presence of helpers complicate the SPT computation.
We define an effective price for all the nodes in the following
way:

p̂(v) =
{ p(v) if v ∈ s

⋃
R

p(v) |R|
|R|−1 if v ∈ H.

(20)

With the effective prices, it turns out that we can treat helpers
the same way as receivers, and have the following algorithm
for both the cases with or without helpers, as described in
Figure 4.

SPT Computation: Full Mesh Graph, No Degree Bound

Pick v∗ ∈ argminv∈V p̂(v)
If v∗ = s, construct t∗ : s→ v,∀v ∈ R.
If v∗ ∈ R, construct t∗ : s→ v∗,v∗→ v,∀v 6= v∗ ∈ R.
If v∗ ∈ H, construct t∗ : s→ v∗,v∗→ v,∀v ∈ R.

t∗ is the smallest price tree.

Fig. 4. The SPT Computation Module: Full mesh graph G, and no
degree bound in multicast trees.

The following theorem is proved in Appendix C:

Theorem 3. For a full mesh graph with no degree bound on
trees, the algorithm in Figure 4 computes an SPT optimally
in linear time.
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B. Full Mesh Graph with Degree Bound

We now study a more complicated case, where the given
graph is still full mesh, but the outgoing degree in each tree
in the P2P design is bounded.

With degree bounds, we cannot simply find the smallest
price node and forward all receivers from that node. Instead,
we need more than two internal nodes, and we want the
internal nodes to have as small prices as possible. We make
I smallest price receivers be the internal node, and let these
small price nodes forward with maximum degrees until all
receivers are included in the tree. For the R receivers, we order
them by their capacity so that

C(1)≤C(2)≤ ·· · ≤C(|R|) .
For a given positive integer n, define

I(n,M) = min{i ∈ R :
i

∑
v=1

M(v)≥ n}. (21)

Receivers 1 to I(n,M) can support n nodes altogether. If
source s has m(s) children, it is obvious that the smallest price
tree with source degree m(s), denoted by tm(s), satisfies the
following properties:

m(v) =
{ m(s), if v = s

M(v), if 1≤ v < I(|R|−m(s),M
mI , if v = I(|R|−m(s),M)
0, if v > I(|R|−m(s),M)

where mI := |R| −m(s)−∑I(|R|−m(s),M)−1
j=1 M( j). This means

that, in tree tm(s), node 1 to I(|R|−m(s),M)−1 have maximum
degrees and the last internal node I(|R| −m(s),M) take the
remaining receivers as children. The smallest price tree is thus
the minimum price tree among tm(s) for all m(s) : 1≤ m(s)≤
M(s), and

Q(t∗, p) =
M(s)
min
m=1

Q(tm, p) .

Based on the above argument, we design the algorithm in
Figure 5 for the case without helper nodes.

SPT Computation: Full Mesh Graph, Degree Bound, No Helper

Pick v ∈ R with the smallest price
A = {s,v},B = R−{v}
s→ v, m(s) = 1, m(v) = 0,∀v ∈ R

while A 6= V
Ã = {v ∈ A : m(v) < M(v)}
Pick va ∈ Ã with the smallest price
m′ = min(|B|,M(va)−m(va))
Find m′ smallest price nodes in B, denote the set by D
A = A

⋃
D, B = B−D

va → v,∀v ∈ D, m(va) = m(va)+m′
end while

Fig. 5. The SPT Computation Module: Full mesh graph G with degree
bounds on nodes in the multicast trees and no helper nodes.

The following result is proved in Appendix D:

Theorem 4. For a full mesh graph with degree bound on trees,
the algorithm in Figure 5 computes an SPT optimally in linear
time.

SPT Finding: Full Mesh, Degree Bound, with Helpers

m = min(Mp, |R|)
p̂(v) = p(v)(1+ 1

m−1 ),∀v ∈ H, p̂(v) = p(v),∀v ∈ R
⋃

s
Pick v ∈ R

⋃
H with the smallest effective price p̂(v)

A = {s,v},B = R
⋃

H−{v}
s→ v, m(s) = 1, m(v) = 0,∀v ∈ R

while B
⋂

R 6= /0
n = ∑v∈A,v 6=s(M(v)−m(v))
if n≥ |B⋂

R|
break

end if
m = min(Mp, |B

⋂
R|−n), p̂(v) = p(v)(1+ 1

m−1 ),∀v ∈ H
Pick u ∈ B with the smallest effective price
if P̂(u)≥ p(s)

break
end if
Ã = {v ∈ A : m(v) < M(v)}
Pick va ∈ Ã with the smallest effective price
va → u, m(va) = m(va)+1, A = A

⋃
u, B = B−u.

end while

B = B
⋂

R
while B 6= /0

Ã = {v ∈ A : m(v) < M(v)}
Pick va ∈ Ã with the smallest price
m′ = min(|B|,M(va)−m(va))
Find m′ smallest price nodes in B, denote the set by D
A = A

⋃
D, B = B−D

va → v,∀v ∈ D, m(va) = m(va)+m′
end while

Fig. 6. The SPT Finding Module. Full mesh graph with homogeneous
non-source peer degree bound, with helpers.

We now allow the presence of helper nodes, and study a
special case for this scenario: M(v) = Mp,∀v ∈ R

⋃
H, and

M(s) = ∞. From Subsection V-A, we have already seen that,
if a tree contains a helper, it contains more edges than the
helper-free tree. Therefore, if p(vh) < p(vr),vh ∈ H,vr ∈ R,
it does not necessarily mean that vh is more favored to be
a parent than vr. To compare a helper with a receiver, we
need to define some “effective prices” under the degree bound
M(v) = Mp,∀v ∈ R

⋃
H.

Consider a tree t containing a helper vh. A leaf helper is
meaningless, and we suppose vh has m ≤Mp children. If we
wish to remove this helper, we can replace vh with a leaf node
vr, and let vr support the children of vh. By replacing vh with
vr, the degree of vr’s parent node is decreased by 1, and we
can thus let vr support m−1 children and let vr’s old parent
node support the last child. Then we arrive at a new tree t ′
where

Q(t ′, p)−Q(t, p) = (m−1)p(vr)−mp(vh) .

Therefore, we should compare mp(vh)/(m− 1) with p(vr)
when deciding who should be the parent. We redefine the
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effective price for vh to be p̂(vh) = (1 + 1/(m− 1))p(vh) if
vh is to support m children. Only when the effective price of
a helper is smaller than the price of receiver vr, vh is more
favored than vr to be a parent.

Based on the above analysis, we modify the helper-free
algorithm in Figure 5 and arrive at a linear-complexity SPT
computation algorithm in Figure 6.

C. General Graph without Degree Bound

We now study the cases where the given graph G is not
full mesh, thus for any given node, not all other nodes are
its neighbors that can be peered. First are the cases without
degree bounds in the trees. For the helper-free case, the SPT
computation problem becomes the minimum cost arborescence
problem (rooted directed spanning tree), which was solved in
[3]. Hence, we consider the case with the presence of helpers.
In this case, the SPT computation problem is a minimum cost
directed Steiner tree problem with symmetric connectivity and
a special structure on the costs – costs of all edges going out
of a node are equal. We leverage these two special features to
accelerate the algorithm through a graph transformation.

Let [v1,v2] represent the pair of links connecting two neigh-
boring nodes v1 and v2. We want to find the minimum price
directed Steiner tree connecting source s and a set of receivers
in R. We transform the directed graph G to an undirected
graph G′ = (V ′,E ′), which represents the adjacency between
link pairs and the source node s:
• For source node s, we copy it into G′.
• For every two neighboring nodes v1,v2 ∈V , we map the

link pair [v1,v2] to a node n[v1,v2] in G′.
• For every node v1 ∈ V in G, we map it to a series of

undirected links connecting nodes n[v1,v2] and n[v1,v3] in
G′ where v2 and v3 are any neighbors of v1 in G; we set
the prices of these undirected links to p(v).

• In graph G′, we connect any two of nodes s and n[s,v],
with a series of undirected links, where v is any neighbor
of s in G; we set the prices of these links to be p(s).

An example of such transformation is illustrated in Fig. 7.

s c

a b

p(s)

p(a) p(b)

p(c)

(a)

s

n[s,a]

n[s,c]

n[c,a]

n[c,b]n[a,b]

p(s) p(s)
p(s)

p(a)
p(a)

p(a)
p(b)

p(c)

p(c)

p(c)

(b)

Fig. 7. (a) An overlay graph with source node s, receiver nodes a and b, and
Steiner node c with node prices being ps, pa, pb, and pc respectively; (b) The
undirected graph mapped from the overlay graph in (a); for example, the link
pair between a and b in (a) maps to the node n[a,b] in b), and node a maps
to three links with link cost pa in (b).

For the undirected graph G′, we consider the following
group Steiner tree problem. For every receiver r ∈ R in G, we
group all the nodes n[r,v] ∈V ′ , v∈V , into a set, denoted by gr.
Set gr in G′ corresponds to the set of link pairs in G connecting

r to all its neighbors. We also construct a set gs that contains
only the source s in G′. The group Steiner tree problem in
G′ is to find the minimum price Steiner tree that connects at
least one node from each of sets gs and gr, r ∈ R. Solving the
group Steiner tree problem in undirected graph is NP-hard [7].
The authors in [7] proposed a polynomial time algorithm that
achieves an approximation factor of 1

O(lnNg ln3 Nm)
, where Ng is

the number of groups and Nm is total number of nodes.
The following theorem, proved in the appendix, states that

finding the minimum cost Steiner tree in G is equivalent to
searching the minimum cost group Steiner tree in G′.

Theorem 5. Consider finding a Steiner tree in G that connects
s and all nodes in R, and searching a group Steiner tree in
G′ that connects at least one node from each of node sets gs
and gr, r ∈ R, the followings are true:

1) a directed Steiner tree in G can be mapped to a group
Steiner tree in G′ with the same price in polynomial
time.

2) a group Steiner tree in G′ can be mapped to a directed
Steiner tree in G with the same or less price in polyno-
mial time.

Consequently, the optimal group Steiner tree in G′ can be
mapped to the optimal directed Steiner tree in G in polynomial
time and vice versa. Furthermore, their prices are equal.

The minimum cost directed Steiner tree problem is hard
to approximate to a factor better than 1

ln |R| [5]. An 1
O(|R|ε ) -

factor approximation algorithm that runs in polynomial time
for any fixed ε > 0 was given in [2]. Theorem 5 states that the
directed Steiner tree problem in graph G can be approached by
studying a group Steiner tree problem in G′. We first apply the
randomized algorithm proposed in [7] to G′, and get a group
Steiner tree with an approximation factor of 1

O(ln |R| ln3 Nm)
. Nm

corresponds to total number of link pairs in G, and is at most
|V |2. We then map this group Steiner tree to a directed Steiner
tree in G. Since this mapping keeps or reduces the price,
at the end we compute a directed Steiner tree in G with an
approximation factor of 1

O(ln |R| ln3 |V |) in polynomial time. In the
case where |V | = O(|R|), we can compute a directed Steiner
tree with an approximation factor of 1

O(ln4 |R|) in polynomial
time.

D. General Graph with Degree Bound

The most general cases of SPT computation are much
harder than all cases before: the given graph G is not full
mesh and there are degree bounds in the multicast trees.
Even determination of the existence of a feasible tree is
NP-hard. When there are no helpers, the problem can be
solved as a special case of a factor-4 approximation recently
developed in [10]. It remains an open problem on whether
this approximation can be further improved by leveraging
the special structure in SPT computation that the prices of
all the links going out of a node are equal. When there are
helpers, polynomial-time computation of SPT for any factor
of approximation accuracy is completely open.
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Optimal

Unsolved Case: 8, 16p2p capacity problem

1,2,3,9,10
Approximate solutionoptimal solution

1,2,9, 10: Mutualcast Primal−Dual Iterative Approximatino Algorithm

Single Session Multiple Session
iteration iteration

SPT Finding Module in each iteration

3: Ref [12]

4−7, 11−15

6,7,14,15

Approximation

All but 6,7,14,15

Fig. 8. Schematic for algorithms for the P2P streaming capacity
problem. All approximation algorithms are contributions of this
paper.

E. Summary

As illustrated in Figure 8, before this paper the approach
towards computing P2P streaming capacity was entirely com-
binatorial and successful only for the simple cases such as
formulations 1, 2, and 3. Now we have added an alternative
approach: an outer-loop of primal-dual update that provides
pricing guidance on how much more can a node be of help to
distribute the content, embedding an inner-loop of the less
challenging, though sometimes still difficult, combinatorial
problem of SPT computation for the given prices. As long as
SPT computation can be carried out accurately and efficiently,
P2P streaming capacity can be computed accurately and effi-
ciently as in Theorems 1 and 2. Polynomial time computation
of SPT is now shown as the case for 10 of the 16 formulations
of the P2P streaming capacity problem.

VI. NUMERICAL EVALUATION

The algorithms developed in this paper can be used either as
an offline benchmarking tool or embodied in the control plane
of P2P streaming systems to construct peering relationships
that achieves the capacity. In our simulations, we consider
networks with n = 10,100,1000,10000 nodes and draw the
node uplink capacities from a distribution that is obtained from
real peer usage data as reported in [8]. The possible uplink
capacities of peers and their respective fractions in the peer
population is summarized in Table VI.

Uplink Capacity (Kbps) 64 128 256 384 768
Fraction (%) 2.8 14.3 4.3 23.3 55.3

Table IV: Peer Uplink Capacity Distribution

A. Algorithm Accuracy

We first examine a scenario with a full-mesh G, degree
bound M = 2, and no helpers. We compare the streaming
rates computed by two different algorithms – the primal-dual
(and SPT) based algorithm in Sections 3 and 4, which is

applicable for the general case, and the mutualcast algorithm
in [11], which only works optimally for the case of full-mesh
G without degree bounds. It turns out that in this numerical
example M = 2 is sufficiently loose that it becomes equivalent
to the case of no degree bound. We plot the rmax vs. C(s)
curve for each for a range of source uplink capacities C(s) in
Figure 9. This experimentally validates the 1/(1 + ζ )-factor
approximation optimality of the primal-dual algorithm, where
in this case we set ζ = 10%.

0100200300400500600

0 2000 4000 6000 8000 10000Str
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(Kb
ps
)

Source Uplink Capacity (Kbps)

Primal-dualMutualcast
Fig. 9. Streaming Rate for different algorithms (for IPTV case) as a
function of source uplink capacity; n = 1000 nodes, degree bound
M = 2.

As the source capacity increases, the streaming rate first
increases sharply, since at this point the source uplink capacity
bounds the streaming rate. Later the streaming rate (almost)
flattens out, since now all peers’ capacities have been used up
and the extra rate for each user must come from the source
directly. From such curves we can determine the most efficient
source uplink capacity: the smallest value at which all peers’
capacities are (almost) fully utilized.

B. Streaming Rate
We study the impact of the degree bound M on the maxi-

mum streaming rate, total node degree per node across all the
trees, and maximum receiver delay. The results in the rest of
this section are for the single session scenario on a full-mesh
graph with degree bound M on all nodes (including the source
node) in each tree. They are obtained using the primal-dual
algorithm in Section 3 with optimality guarantee of ζ = 10%.
The source node uplink capacity is fixed at 768 Kbps and the
uplink capacities of other nodes are chosen according to the
empirical distribution above.

In Figure 10, we plot the maximum streaming rate as a
function of the degree bound M for the different topologies.
We observe a big jump in streaming rate as the degree
bound is relaxed from M = 1 to M = 2. The streaming rate
(approximately) flattens out at M = 2 onwards in this example.
The rate for the n = 10 topology is higher than that of the
others, simply due to the random sampling of uplink capacities
for a small number of nodes resulting in a higher fraction of
768 Kbps uplink capacity nodes.

C. Node Total Degree
Since multiple trees support the same streaming session, the

total number of children a node has is the sum of the number of
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Fig. 10. Streaming Rate (Kbps) vs. Degree Bound M.
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Fig. 11. Average Degree Usage in Overlay vs. Degree Bound M.

children in all the trees. We refer to this as the total-out-degree
of a node. In Figure 11, we plot the average node total-out-
degree as a function of the degree bound M for the different
topologies. At degree bound M = 2, the average degree usage
in the overlay is about 50 for topologies with n >= 100 nodes.
For M = 5 onwards, we see that the overlay degree can be
up to an order-of-magnitude higher than the degree bound M
per tree – about few hundreds for the larger networks (n =
1000,10000). This suggests that for large topologies, bounding
the out-degree per tree is not effective in keeping the total-
out-degree in the overlay to a small value. Future work needs
to address the challenging issue of computing P2P streaming
capacity under total-out-degree across for each node across all
the trees.

We also make the following observation about the effect of
the approximation parameter θ in the primal-dual algorithm on
the total-out-degree distribution. If we set θ to be very small
(e.g., 1%), it leads to the usage of additional trees with very
small rates assigned to them. This increases the streaming rate
a little while raising the node total-out-degree significantly.
Given the resource constraints such as CPU per node, it is
desirable to avoid too large a total-out-degree, implying that
θ should not be too close to zero.

D. Delay

Delay properties of P2P streaming were not the main focus
of this paper and is generally under-explored. Here we provide
a brief exploration. In Figure 12, we plot the maximum

050
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Degree bound M

n=10n=100n=1000n=10000

Fig. 12. Maximum Receiver Delay (sec) vs. Degree Bound M.

receiver delay as a function of the degree bound M for the
different topologies. Here, delay for a receiver is the maximum
delay experienced by that receiver across all trees that it
receives data from. For each tree, the delay is the time it
takes from a packet originating at the source of the tree to
its reaching the receiver. This delay is a function of both
propagation delay, which is set at 20 ms between two directly
connected peers in this example, and fan-out delay at a node,
which is the by-product of the peering relationships of the
multicast trees. The fan-out delay at a node in a tree is the
delay involved in pushing out a packet to each of its children
peers sequentially. For example, for a packet of 1 kB, if this
node uses an uplink rate of u bps to distribute content on
this tree, then the beginning of data transfer to the i-th child
node starts with a delay of [(i− 1) ∗ 1000 ∗ 8/u] seconds –
this is the fan-out delay experienced by the i-th child node.
Clearly, minimizing receiver delay involves a tradeoff between
minimizing propagation delay through small tree depth and
minimizing fan-out delay through low out-degree.

From Figure 12, we observe that for all networks consid-
ered, the delay is under 1 min and of the order of few tens
of seconds, for degree bound values from M = 2 to M = 5.
Beyond M = 5, the contribution of fan-out delay leads to a
larger increase in maximum delay.

VII. CONCLUSION

P2P has become an essential part of content distribution
and streaming applications on the Internet, with applications
ranging from IPTV to video conferencing. But just how much
content can P2P systems stream to all the users remains un-
known, in part because of the difficult combinatorial problems
involved in multicast tree construction. This paper presents the
first comprehensive framework to answer this question.

We provide a taxonomy of sixteen problem formulations
and develop a general framework of iterative primal-dual
algorithms for computing the P2P streaming capacity (or,
capacity region in the multiple sessions case), under topology
constraints, node degree bounds, and possible presence of
helpers. The results can be used to quantify the impact of
these factors on P2P capacity in streaming applications. To
complete each step in the primal-dual updates, we also develop
efficient and accurate algorithms to compute smallest price
trees, as guided by the given dual variables at that iteration
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and further guiding the primal-dual-variable update in the
next iteration. For some of the formulations, these algorithms
benchmark P2P streaming systems in polynomial time rather
than the apparent need for exponential time search of multi-
trees. For two formulations, polynomial time computation of
P2P streaming capacity remains open.
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APPENDIX

A. Correctness and complexity proof: Single session

We begin with some notation, then state some useful lem-
mas, and finally conclude with the proof of Theorem 1 from
the previous section. The proof is adapted from techniques
used in [6].

Given a set of dual weights p(v), let D(p) denote the dual
objective function value and let Γ(p) denote the minimum
value of the LHS of dual program constraint (6) over all trees
t ∈ T . Then, solving the dual program is equivalent to finding a
set of weights p(v) such that D(p)/Γ(p) is minimized. Denote
the optimal objective function value of the latter by θ , i.e.,
θ = minp D(p)/Γ(p).

We introduce some more notation before stating an im-
portant lemma. Let pi−1 denote the weight function at the
beginning of iteration i of the while loop, and let Ai−1 be the
value of ∑t∈T yt (primal objective function) up to the end of
iteration i−1. Suppose the algorithm terminates after iteration
L.

Lemma 6. At the end of every iteration i, 1 ≤ i ≤ L of the
Single-Session Primal-Dual Algorithm, the following holds

D(pi)≤ Nδ
i

∏
j=1

[1+
ε
θ

(A j−A j−1)]

Proof: Let t = t̄ be the node for which V (t) is minimum.
Recall that the weights are updated as

pi(v) = pi−1(v)(1+
εmv,t̄y
C(v)

) ∀ v ∈ I(t̄)

where y is the total flow sent on tree t during iteration i. Using
this, we have

D(pi) = ∑
v∈V

C(v)pi(v)

= ∑
v∈V

C(v)pi−1(v)+ ε ∑
v∈V

pi−1(v)mv,t̄y

= D(pi−1)+ ε ∑
t∈T

pi−1(v)mv,t̄y

= D(pi−1)+ εyΓ(pi−1)
= D(pi−1)+ ε(Ai−Ai−1)Γ(pi−1)

Using this for each iteration down to the first one, we have

D(pi) = D(p0)+ ε
i

∑
j=1

(A j−A j−1)Γ(p j−1) (22)

From the definition of θ , we have θ ≤ D(p j−1)
Γ(p j−1) , whence

Γ(p j−1) ≤ 1
θ D(p j−1). Also, D(p0) = Nδ . Using these in

equation (22), we have

D(pi)≤ Nδ +
ε
θ

i

∑
j=1

(A j−A j−1)D(p j−1) (23)

The property claimed in the lemma can now be proved using
inequality (23) and mathematical induction on the iteration
number i. We omit the details here, but point out that the induc-
tion basis case (iteration i = 1) holds since p0(v) = δ

C(v) ∀ v∈V
and D(p0) = Nδ .

We now estimate the factor by which the objective function
value value AL in the primal solution when the algorithm
terminates needs to be scaled to ensure that link capacity
constraints are not violated.

Lemma 7. When the Single-Session Primal-Dual Algorithm
terminates, the primal solution needs to be scaled by a factor
of at most log1+ε

1+ε
δ to ensure primal feasibility.

Proof: Consider the uplink of any node v and associated
weight p(v). The value of p(v) is updated when flow is
augmented on uplink of node v. Let the sequence of flow aug-
mentations (per iteration) on uplink of node v be ∆1,∆2, . . . ,∆k,
where k ≤ L. Let ∑k

i=1 ∆i = κC(v), i.e., the total flow routed
on uplink of node v exceeds its capacity by a factor of κ .

Because of the way in which augmented flow y is chosen
in accordance with equation (9), we have ∆i ≤C(v) for all i.
Hence, the dual weight p(v) is updated by a factor of at most
1+ε after each iteration. Since the algorithm terminates when
D(p)≥ 1, and since dual weights are updated by a factor of at
most 1+ε after each iteration, we have D(pL) < 1+ε . Since
the weight p(v), with coefficient C(v), is one of the summing
components of D(p), we have C(v)pL(v) < 1 + ε . Also, the
value of pL(v) is given by

pL(v) = δ
k

∏
i=1

(1+
∆t

C(v)
ε)

Using the inequality (1+ cx)≥ (1+ x)c ∀ x≥ 0 and any 0≤
c≤ 1 and setting x = ε and c = ∆t

C(v) ≤ 1, we have

1+ ε
C(v)

> pL(v) ≥ δ
k

∏
i=1

(1+ ε)∆t/C(v)

= δ (1+ ε)∑k
i=1 ∆t/C(v)

= δ (1+ ε)κ

whence,

κ < log1+ε
1+ ε

δ

Proof of Theorem 1: Using Lemma 6 and the inequality 1+x≤
ex ∀ x > 0, we have

D(pi) ≤ Nδ
i

∏
j=1

e
ε
θ (A j−A j−1)

= NδeεAt/θ
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The simplification in the above step uses telescopic cancel-
lation of the sum (A j − A j−1) over j. Since the algorithm
terminates after iteration L, we must have D(pL)≥ 1. Thus,

1≤ D(pL)≤ NδeεAi/θ

whence,

θ
AL

≤ ε
ln 1

Nδ
(24)

From Lemma 7, the objective function value of the feasible
primal solution after scaling is at least

AL

log1+ε
1+ε

δ

The approximation factor for the primal solution is at most
the gap (ratio) between the primal and dual solution. Using
(24), this is given by

θ
AL

≤ ε log1+ε
1+ε

δ
ln 1

Nδ

=
ε

ln(1+ ε)
ln 1+ε

δ
ln 1

Nδ

The quantity ln 1+ε
δ / ln 1

Nδ equals 1/(1− ε) for δ = (1 +
ε)/[(1 + ε)N]1/ε . Using this value of δ , the approximation
factor is upper bounded by

ε
ln(1+ ε)

1
(1− ε)

≤ ε
(ε− ε2/2)(1− ε)

≤ 1
(1− ε)2

Setting 1+ζ = 1/(1−ε)2 and solving for ε , we get the value
of ε stated in the theorem.

To obtain the running time for the Single-Session Primal-
Dual Algorithm, we first consider the running time of each
iteration of the algorithm during which a tree t̄ is chosen
to augment flow. Selection of this tree involves a smallest
price tree computation which takes Tspt time (say). All other
operations within an iteration are absorbed (up to a constant
factor) by the time taken for this smallest price computation,
leading to a total of O(Tspt) time per iteration.

We next estimate the number of iterations before the al-
gorithm terminates. Recall that in each iteration, flow y is
augmented along the tree tv such that the total flow sent on
any node uplink v during that iteration is at most C(v). Thus,
for at least one node v, mv,ty = C(v) and p(v) increases by
a factor of 1 + ε . Accordingly, with each iteration, we can
associate a weight p(v) which increases by a factor of 1+ ε .

Consider the weight p(v) for fixed v∈V . Since p0(v) = δ
C(v)

and pL(v) ≤ 1+ε
C(v) (as deduced in the proof of Lemma 2), the

maximum number of times that this weight can be associated
with any iteration is

log1+ε
1+ ε

δ
=

1
ε
(1+ log1+ε N) = O(

1
ε

log1+ε N)

Since there are a total of n weights C(v), hence the total
number of iterations is upper bounded by O(N

ε log1+ε N).
Multiplying this by the running time per iteration, we obtain
the overall algorithm running time as O

(
N
ε2 Tspt logN

)
.

B. Correctness and complexity proof: Multiple sessions

We first introduce some notation, then state some useful
lemmas, and finally provide the proof of Theorem 2 from the
previous section. The proof is adapted from techniques used
in [6].

Recall that the Multi-Session Primal-Dual Algorithm runs
in phases. In each phase, we route rk units for session k from
source sk to receivers in Rk during iteration k for each k =
1,2, . . . ,K. The rate rk for session k in phase i is routed in
multiple steps. In step s of phase i of session k, we compute a
smallest price tree t ∈ T k (under current value of prices pv for
all v∈V ) and route flow along the associated tree. The weights
p(v) for nodes in the tree t are then adjusted as described
earlier.

Let rk
i,s represent the remaining amount of flow to be sent

in steps s+1,s+2, . . . in phase i for session k. Since we have
to route rk units of flow for session k in each phase, we have
rk

i,0 = rk for all phases i. Let pi,k,s−1 represent the node prices
at the beginning of step s for routing session k during phase
i. In this step, we determine the tree in T k with smallest price

pricek(pi,k,s) = min
t∈T k

∑
v∈V

mv,t pi,k,s(v)

Denote this tree by t i,k,s and the amount of flow routed on it
by f i,k,s. Then, rk

i,s = rk
i,s−1− f i,k,s. The prices associated with

each node v are updated as

pi,k,s(v) = pi,k,s−1(v)

(
1+

εmv,t i,k,s f i,k,s

C(v)

)

To simplify the notation, we will drop the superscript
(corresponding to step number) when we refer to prices at
the end of routing one session during a phase or at the end
of a complete phase, e.g., pi,k(v) will denote the price after
routing session k during phase i, and pi,K(v) will denote the
same after completion of phase i.

Let D(p) denote the dual objective function value. The
Multi-Session Primal-Dual Algorithm terminates at the first
phase ρ for which D(pρ,K) ≥ 1. Define a function Γ on the
prices that computes the LHS of (16) of the dual program,
that is

Γ(p) =
K

∑
k=1

rk pricek(p)

Then, solving the dual program is equivalent to finding a set
of weights pv such that D(p)/Γ(p) is minimized. Denote the
optimal objective function value for the latter by β , i.e., β =
minp D(p)/Γ(p).

Lemma 8. When the Multi-Session Primal-Dual Algorithm
terminates, the primal solution needs to be scaled by a factor
of at most log1+ε(1/δ ) to ensure primal feasibility (i.e.,
satisfying node uplink capacity constraints).

Proof: Consider any node v and associated price p(v).
The value of p(v) is updated when flow is augmented on
the uplink of node v because of routing on a tree. Let the
sequence of flow augmentations on the uplink of node v be
∆1,∆2, . . . ,∆`. Let ∑`

i=1 ∆i = κC(v), i.e, the total flow routed
on the uplink of node v exceeds its capacity by a factor of κ .
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Since the algorithm terminates when D(p) ≥ 1, and since
prices are updated by a factor of at most 1 + ε after each
iteration, we have D(pρ−1,K) < 1 and D(pρ ,K) < 1+ ε . Since
the quantity C(v)p(v) is one of the summing components of
D(p), hence C(v)pρ−1,K(v) < 1. Also, the value of pρ−1,K(v)
is given by

pρ−1,K(v) =
δ

C(v)

`

∏
i=1

(1+
∆i

C(v)
ε)

Using the fact that (1+cx)≥ (1+x)c ∀ x≥ 0 and any 0≤ c≤ 1
and setting x = ε and c = ∆i

C(v) ≤ 1, we have

1 > C(v)pρ−1,K(v) ≥ δ
`

∏
i=1

(1+ ε)∆i/C(v)

= δ (1+ ε)∑`
i=1 ∆i/C(v)

= δ (1+ ε)κ

whence,

κ < log1+ε
1
δ

Lemma 9. At the end of ρ phases in the Multi-Session Primal-
Dual Algorithm, we have

β
ρ−1

≤ ε
(1− ε) ln 1−ε

nδ

Proof: We first derive inequalities to relate the values of
D(p) across consecutive steps during routing of a given session
during a phase. Using this, the relation between values of D(p)
across consecutive phases is derived. At the end of step s for
routing session k during phase i, we have

D(pi,k,s) = ∑
v∈V

C(v)pi,k,s(v)

= ∑
v∈V

C(v)pi,k,s−1(v)+ ε f i,k,s ∑
v∈V

mv,t i,k,s pi,k,s−1(v)

= D(pi,k,s−1)+ ε f i,k,s pricek(pi,k,s−1)
≤ D(pi,k,s−1)+ ε f i,k,s pricek(pi,k,s)

Note the use of the fact that the weights pv are non-decreasing
as the algorithm progresses. Summing the last inequality over
all steps for routing session k during phase i, we have

D(pi,k)≤ D(pi,k,0)+ εrk pricek(pi,k)

We now sum over all iterations during phase i to obtain

D(pi,K) ≤ D(pi,0)+ ε
K

∑
k=1

rk pricek(pi,K)

= D(pi,0)+ εΓ(pi,K)
or, D(pi,K) ≤ D(pi−1,K)+ εΓ(pi,K)

Since β ≤ D(pi,K)
Γ(pi,k) , we have

D(pi,K)≤ D(pi−1,K)
1− ε

β

Using the initial value D(p1,0) = nδ , we have for i≥ 1

D(pi,K)≤ nδ
1− ε

e
ε(i−1)
β (1−ε)

The last step uses the assumption that β ≥ 1. The procedure
stops at the first phase ρ for which

1≤ D(pρ ,K)≤ nδ
1− ε

e
ε(ρ−1)
β (1−ε)

which implies that

β
ρ−1

≤ ε
(1− ε) ln 1−ε

nδ

Proof of Theorem 3: Let γ represent the ratio of the dual to
the primal solution. Then, we have

γ <
β

ρ−1
log1+ε

1
δ

Substituting the bound on β
ρ−1 from Lemma 9, we obtain

γ <
ε log1+ε

1
δ

(1− ε) ln 1−ε
nδ

=
ε

(1− ε) ln(1+ ε)
ln 1

δ
ln 1−ε

nδ

Setting δ =
( 1−ε

n

) 1
ε , we get γ ≤ (1− ε)−3. Equating the

desired approximation factor (1+ζ ) to this ratio and solving
for ε , we get the value of ε stated in the theorem.

To obtain the running time for the Multi-Session Primal-
Dual Algorithm, we first upper bound the number of phases
after which the algorithm terminates. Using weak-duality from
linear programming theory, we have

1≤ γ <
β

ρ−1
log1+ε

1
δ

Hence, the number of phases ρ is less than 1+β log1+ε(1/δ ),
and is upper bounded by ρ = dβ

ε log1+ε
n

1−ε e.
For each step in an iteration, except possibly the last one, we

increase the weight pv associated with at least one node v by
a factor of 1+ε . Since each weight has an initial value of δ

C(v)
and a final weight less than 1+ε

C(v) , the number of steps exceeds
the number of iterations by at most n log1+ε

1+ε
δ . Thus, the

total number of steps is at most (2K logK +n)dβ
ε log1+ε

n
1−ε e

and each such step takes Tspt time. Assuming that β ≤ 2,
the running time of the algorithm is obtained as stated in the
theorem.

Using a technique similar to that outlined in [6], the node
uplink capacities and/or session rates can be scaled (without
incurring any additional running time overhead up to a con-
stant factor) so that 1≤ β ≤ 2. We omit the details here. Hence,
the assumption on β is not restrictive.

2

C. Proof of SPT for full mesh graph without degree bound

We use ps, pr, and ph to denote the price of the source s, the
smallest price of receiver nodes, and the smallest price of the
helper nodes. Clearly, SPT has no leaf helper nodes. If there is
no helper node involved, then there are altogether N +1 nodes
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and N edges in the tree, and thus the total outgoing degree is
N. As the root is the source, the source degree is at least 1.
Denote the tree price by Pt , we have

Pt ≥ ps +(N−1)min(ps, pr)

If there are m (m ≥ 1) helper internal nodes in the tree, then
there are altogether N + m edges, and there are N + m total
outgoing degrees. We have

Pt ≥ ps +(N−1+m)min(ps, pr, ph)≥≥ ps +N min(ps, pr, ph)

So, we know that

Pt ≥ ps +min((N−1)ps,(N−1)pr,N ph) ,

Since the algorithm in Figure 4 reaches the right hand side of
the above inequality, it is optimal.

D. Proof of SPT for full mesh graph with degree bound

Each tree has N + 1 nodes and N edges (and thus N total
outgoing degrees). As the root is the source, at least one edge
is from the source. Index the first edge from the source by 1,
and index the remaining N−1 edges from 2 to N. Denote the
price of the l-th edge (the price of the outgoing node of the
edge) by p(l), and denote the tree price by Pt , then

Pt = ps +
N

∑
l=2

p(l)

Index all the N +1 nodes (no matter source or receivers) from
1 to N + 1 by their prices, such that, pi ≤ p j,∀i < j. Then,
for smallest price tree purpose, we should use as many low
indexed nodes as possible for internal nodes, and we have

pt ≥ ps +
I

∑
i=1

p(i) ,

where I is the smallest number such that
I

∑
i=1

M̃(i)≥ N−1 ,

and M̃(i) = M(i) if i∈R, and M̃(i) = M(s)−1 if i is the source.
It is straightforward to see that the algorithm in Figure 5
constructs a tree whose tree price equals to the right hand
side of the above inequality, so it is optimal.

E. Proof of SPT for general graph without degree bound

We start by proving the first claim. Let t be a directed
Steiner tree in G rooted at s. We map t to a group Steiner
tree t ′ in G′ as follows:
• for source node s in t, we map it to s in G′ and include

s into t ′.
• for every directed link in t that connects node v1 to node

v2, we map it to node n[v1,v2] in G′ and include n[v1,v2]
into tree t ′.

• for all the nodes n[s,v] in t ′, we include the link in G′ that
connects s and n[s,v] into t ′;

• for every intermediate node v in t with parent node vp
and a set of children, denoted by Cld(v), we include the

s

c

a b
(a)

s

c

n[c,a] n[c,b]

n[s,c]

(b)

Fig. 13. a) A direct Steiner tree t in G connecting s, a and b; b) The group
Steiner tree t ′ in G′, mapped from t in a); for example, the edge from s to
c in t maps to the node n[s,c] in t ′, and node c in t maps to two undirected
edges connecting n[s,c] to n[c,a] and to n[c,b], respectively.

links connecting node n[vp,v] and every n[v,vc], vc ∈Cld(v),
into t ′ (Note these links in t ′ have the same price pv).

Fig. 13 shows one example of the above mapping. Clearly the
complexity is polynomial in the number of links in t.

We now show that t ′ is a tree. First, every link in t maps
to a node in t ′, and the shared vertexes of any two links in
t maps to the links connecting the corresponding nodes in t ′.
Hence t ′ is a connected subgraph.

Second, there is no loop in t ′. Otherwise, there exist two
nodes in t ′, between which there are two disjoint paths. This
means there are two links in t between which there are two
disjoint paths (i.e., a loop). But this is not possible since t is
a tree and contains no loop.

By this mapping, the source node s and every link in t
maps to a node in t ′. Consequently, for the node sets gs and
gr, r ∈R, in G′, at least one node from each set (corresponding
to at least one link coming out of s or going into r, r ∈ R) is
included in t ′. Therefore, t ′ is a group Steiner tree in G′.

Moreover, source node s and every intermediate node in t
maps to a series of links in t ′, the number of which is exactly
the number of children the node has in t. The price of t ′ is
hence sum of the products of every node v’s (v ∈ t) upload
price and its number of children, and is the same as the price
of t.

We now prove the second claim. Let t ′ be a group Steiner
tree in G′ connecting at least one node from each of node sets
gs and gr, r ∈ R. We map it to a directed Steiner tree t in G as
follows. This mapping is slightly complicated since now every
node in t ′ corresponds to a pair of links in G and we need to
specify which to map to.
• For source s in t ′, we map it to s in G and include s into

t.
• we sort the nodes in t ′ into levels, according to their hop

distances to s. That is, level i are the nodes i hops away
from s.

• We map a node in level 1, say n[s,v1], in t ′ to the directed
link from s to its neighbor v1 in G and include it into t.
We then deal with n[s,v1]’s child nodes in the next level.
If its name is of the form n[v1,v2], then we map it to the
directed link from v1 (s’s neighbor) to v2 in G and include
it into t; otherwise, its name must be of the form n[v2,s],
and we map it to the directed link between s and v2 in G
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and include it into t. We continue this process until every
node in t ′ has been mapped into a directed link in t.

• for every directed link in t, we also include its two
endpoint nodes into t. This way, all the nodes in G that
are mapped from links in t ′ are included into T . The links
in t are also connected since nodes are connected in t ′.
This way, t has the same cost as t ′, since all links in t ′
map to nodes in t and the number of children of a node
in t is exactly the same as the number of links this node
corresponds to in t ′.

• we perform a breath first search to construct a directed
spanning tree in t rooted at s and reaching all nodes in
t. We remove any leaf node in the resulted spanning tree
that is not a receiver in R, as well as the directed links
reaching these leaf nodes. We finally set t to be the pruned
directed tree. This procedure can only reduce the price of
t.

Fig. 14 shows one example of the above mapping. By above
procedure, a group Steiner tree in T ′ maps to a directed Steiner
tree in T with the same or less price. The complexity is again
polynomial.

s

n[c,b]

n[s,c]

n[a,b]

n[s,a]

n[c,a]

(a)

s c

a b
(b)

s c

a b
(c)

Fig. 14. a) A group Steiner tree t ′ in G′ connecting at least one node from each
of the groups: {s}, {n[s,a],n[a,b],n[c,a]} and {n[a,b],n[b,c]}; b) The connected
subgraph in G, mapped from t ′ in a); c) the final directed Steiner tree t in G
after pruning the connected subgraph mapped from t ′ in a).

By the two claims, a minimum group Steiner tree in G′,
denoted by t̄, can be mapped to a minimum directed Steiner
tree in G, denoted by t∗, with the same price and vice versa,
following the two mapping procedures we describe above.

We first prove the forward direction. Suppose it is not true.
Following the second mapping procedure we describe above, t̄
maps to a tree in G with a price higher than t∗. We then map t∗
to a group Steiner tree in G′ using the first mapping procedure.
Then this new group Steiner tree has smaller price than t̄,
which contradicts with the setting that t̄ has the minimum
price. Hence, our assumption cannot be correct and t̄ must
map to a minimum cost Steiner tree in G.

The reverse direction can be proved by a similar set of
arguments.
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