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SHO-FA: Robust compressive sensing with
order-optimal complexity, measurements, and bits

Mayank Bakshi, Sidharth Jaggi, Sheng Cai, Minghua Chen

Abstract—Suppose x is any exactly k-sparse vector in
�n. We present a class of “sparse” matrices A, and
a corresponding algorithm that we call SHO-FA (for
Short and Fast1) that, with high probability over A,
can reconstruct x from Ax. The SHO-FA algorithm is
related to the Invertible Bloom Lookup Tables (IBLTs)
recently introduced by Goodrich et al., with two important
distinctions – SHO-FA relies on linear measurements, and
is robust to noise and approximate sparsity. The SHO-FA
algorithm is the first to simultaneously have the following
properties: (a) it requires only O(k) measurements, (b)
the bit-precision of each measurement and each arithmetic
operation is O (log(n) + P ) (here 2−P corresponds to the
desired relative error in the reconstruction of x), (c) the
computational complexity of decoding is O(k) arithmetic
operations, and (d) if the reconstruction goal is simply
to recover a single component of x instead of all of
x, with high probability over A this can be done in
constant time. All constants above are independent of all
problem parameters other than the desired probability of
success. For a wide range of parameters these properties
are information-theoretically order-optimal. In addition,
our SHO-FA algorithm is robust to random noise, and
(random) approximate sparsity for a large range of k. In
particular, suppose the measured vector equals A(x+z)+e,
where z and e correspond respectively to the source tail and
measurement noise. Under reasonable statistical assump-
tions on z and e our decoding algorithm reconstructs x
with an estimation error of O(||z||1 + (log k)2||e||1). The
SHO-FA algorithm works with high probability over A,
z, and e, and still requires only O(k) steps and O(k)
measurements over O(log(n))-bit numbers. This is in
contrast to most existing algorithms which focus on the
“worst-case" z model, where it is known Ω(k log(n/k))
measurements over O(log(n))-bit numbers are necessary.2

I. INTRODUCTION

In recent years, spurred by the seminal work on compres-
sive sensing of [2], [3], much attention has focused on
the problem of reconstructing a length-n “compressible”
vector x over � with fewer than n linear measure-
ments. In particular, it is known (e.g. [4], [5]) that
with m = O(k log(n/k)) linear measurements one can

1Also, SHO-FA sho good! In fact, it’s all O(k)!
2A poster based on this work was presented at ISIT 2012 in

Recent Results [1].

computationally efficiently obtain a vector x̂ such that
the reconstruction error ||x − x̂||1 is O(||x − xk

∗||1),
where xk

∗ is the best possible k-sparse approximation to
x. A number of algorithms give such performance, such
as l1-optimization algorithms (e.g. [2], [3]), and iterative
decoding algorithms (e.g. [6], [7]). Similar results, (with
an additional additive term in the reconstruction error)
hold even if the measurements also have noise added
to them (e.g. [4], [5]). The fastest of these algorithms
use ideas from the theory of expander graphs, and have
running time O(n log(n/k)) [8]–[10]. These results are
very strong – they hold for all x vectors, including those
with “worst-case tails”, i.e. even vectors where the com-
ponents of x smaller than the k largest coefficients are
chosen in a worst-case manner. In fact [11] prove that to
obtain a reconstruction error that scales linearly with the
l1-norm of the z (the tail of x) requires Ω(k log(n/k))
linear measurements.
Number of measurements: In some applications such a
lower bound for “worst-case z” may be too pessimistic.
For instance, it is known that if x is exactly k-sparse
then based on Reed-Solomon codes [12] one can effi-
ciently reconstruct x with O(k) noiseless measurements
(e.g. [13]) via algorithms with decoding time-complexity
O(n log(n)), or via codes such as in [14], [15] withO(k)
noiseless measurements with decoding time-complexity
O(n). In the regime where k = θ(n), [16] show that
O(k) = O(n) measurements suffice to reconstruct x.
Noise/Approximate sparsity: If the length-n source
vector is the sum of any exactly k-sparse vector x
and a “random” source noise vector z (and possibly
y = A(x+z) also has a “random” noise vector e added
to it), then as long as the noise variances are not “too
much larger" than the signal power, the work of [17]
demonstrates that O(k) measurements suffice (though
the algorithms require time exponential in n). Indeed,
even the work of [11], whose primary focus was to prove
that Ω(k log(n/k)) linear measurements are necessary
to reconstruct with the worst case z, also notes as an
aside that if x corresponds to an exactly sparse vector
plus random noise, then in fact O(k) measurements
suffice. The work in [18], [19] examines this phe-
nomenon information-theoretically, and [20] show how
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to computationally efficiently achieve this performance
by exactly reconstructing x with O(d̄(X)n)+o(n) sam-
ples in time O(n). Corresponding lower bounds showing
Ω(k log(n/k)) samples are required in the higher noise
regime are provided in [21], [22].
Number of measurement bits: However, most of the
works above focus on minimizing the number of linear
measurements in Ax, rather than the more information-
theoretic view of trying to minimize the number of bits
in Ax over all measurements. Some recent work attempts
to fill this gap [23], [24] uses “multi-layered non-linear
measurements”, and “one-bit compressive sensing” [25],
[26] (the corresponding decoding complexity is some-
what high since it involves solving an LP).
Decoding time-complexity: The emphasis of the dis-
cussion thus far has been on the number of linear mea-
surements/bits required to reconstruct x. The decoding
algorithms in most of the works above have decoding
time-complexities3 that scale at least linearly with n. In
regimes where k is significantly smaller than n, it is
natural to wonder whether one can do better. Indeed,
algorithms based on iterative techniques answer this in
the affirmative. These include Chaining Pursuit [27],
group-testing based algorithms [28], and Sudocodes [29]
– each of these have decoding time-complexity that can
be sub-linear in n (but at least O(k log(k) log(n))), but
each requires at least O(k log(n)) linear measurements.
Database query: Finally, we consider a database query
property that is not often of concern in the compressive
sensing literature. Suppose, in addition to the properties
above, one also wishes to reconstruct (with constant
probability) just “a few” (O(1)) specific components of
x in O(1) time. If the matrix A is “dense” (most of its
entries are non-zero) then one can directly see that this
is impossible, but SHO-FA has this property. 4

A. Our Contributions

Conceptually, the “iterative decoding” technique we use
is not new (for e.g. [14], [30]–[32]), but we do not know
of prior work has the same performance as our work –
namely – information-theoretically order-optimal num-

3For ease of presentation, in accordance with common practice in
the literature, in this discussion we assume that the time-complexity
of performing a single arithmetic operation is constant. Explicitly
taking the complexity of performing finite-precision arithmetic into
account adds a multiplicative factor (corresponding to the preci-
sion with which arithmetic operations are performed) in the time-
complexity of most of the works, including ours.

4Several compressive sensing algorithms (for instance [16]) are
based on “sparse” matrices A, and it can be shown that in fact these
algorithms do indeed have this property “for free” (as indeed does
our algorithm), even though the authors do not analyze this. As can
be inferred from the name, this database query property is more often
considered in the database community, for instance in the work on
IBLTs [30].

ber of measurements, bits in those measurements, and
time-complexity, for the problem of robust reconstruct-
ing a (approximately) sparse signal via (noisy) linear
measurements (along with the database query property).5

The key to this performance is our novel design of
“sparse random” linear measurements, as described in
Section II. To summarize, the desirable properties of
SHO-FA are that with high probability:
Number of measurements: For every k-sparse x, with
high probability over A, O(k) linear measurements suf-
fice to reconstruct x. This is information-theoretically
order-optimal.
Number of measurement bits: The total number of bits
in Ax required to reconstruct x to a relative error of 2−P

is O(k(log(n) + P )). This is information-theoretically
order-optimal for any k = O(n1−∆) (for any ∆ > 0).
Decoding time-complexity: The total number of arith-
metic operations required is O(k). This is information-
theoretically order-optimal.
Database queries: With constant probability 1 − ε any
single database query can be answered in O(1) time. 6

Noise: Suppose z and e have i.i.d. components drawn
respectively from N (0, σ2

z) and N (0, σ2
e). For k =

O(n1−∆) for any ∆ > 0, a modified version of SHO-FA
(mod-SHO-FA) that with high probability reconstructs x
with an estimation error of O(||z||1 + (log k)2||e||1).
Practicality: As validated by simulations (see [34, Ap-
pendix I]), most of the constant factors involved above
are not large, and are in fact significantly smaller than the
explicit constants that can be calculated via our analysis.
Different bases: As is common in the compressive
sensing literature, our techniques generalize directly to
the setting wherein x is sparse in an alternative basis
(say, for example, in a wavelet basis).
Universality: While we present a specific ensemble
of matrices over which SHO-FA operates, we argue
that in fact similar algorithms work over fairly general
ensembles of “sparse random matrices”, and further that
such matrices can occur in applications, for instance in
wireless MAC problems [35].
B. Special acknowledgements
In particular, the bounds on the minimum number of
measurements required for “worst-case” recovery and
the corresponding discussion on recovery of signals with

5While writing this paper, we became aware of a parallel work
by Pawar and Ramchandran [33] that seems to achieve similar
performance. However, at the time of submission, a preprint of this
work was not available for us to compare the two works.

6The constant ε can be made arbitrarily close to zero, at the cost
of a multiplicative factor O(1/ε) in the number of measurements
required. In fact, if we allow the number of measurements to scale
as O(k log(k)), we can support any number of database queries,
each in constant time, with probability of every one being answered
correctly at with probability at least 1− ε.
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“random tails” in [11] led us to consider this problem in
the first place. Equally, the class of compressive sensing
codes in [16], which in turn build upon the constructions
of expander codes in [31], have been influential in
leading us to this work. While the model in [32] differs
from the one in this work, the techniques therein are of
significant interest in our work. The analysis in [32] of
the number of disjoint components in certain classes of
random graphs, and also the analysis of how noise prop-
agates in iterative decoding is potentially useful sharpen-
ing our results. The work that is conceptually the closest
to SHO-FA is that of the Invertible Bloom Lookup Ta-
bles (IBLTs) introduced by Goodrich-Mitzenmacher [30]
(though our results were derived independently, and
hence much of our analysis follows a different line of
reasoning). The data structures and iterative decoding
procedure (called “peeling” in [30]) used are structurally
very similar to the ones used in this work. However
the “measurements” in IBLTs are fundamentally non-
linear in nature – specifically, each measurement includes
within it a “counter” variable – it is not obvious how
to implement this in a linear manner. Therefore, though
the underlying graphical structure of our algorithms is
similar, the details of our implementation require new
non-trivial ideas. Also, IBLTs as described are not robust
to either signal tails or measurement noise.

II. EXACTLY k-SPARSE x AND NOISELESS

MEASUREMENTS

We first consider the simpler case when y = Ax (both
z and e are zero). The intuition presented here carries
over to the scenario wherein both z and e are non-zero,
considered separately in Section III. For k-sparse input
vectors x ∈ Rn let the set S(x) denote its support. i.e.,
its set of nonzero values. Recall that in our notation, for
some m, a measurement matrix A ∈ Rm×n is chosen
probabilistically. This matrix operates on x to yield the
measurement vector y ∈ Rm as y = Ax. The decoder
takes the vector y as input and outputs the reconstruction
x̂ ∈ Rn – it is desired that x̂ equal x (with relative error
at most 2−P ) with high probability (over A). We now
describe a probabilistic construction of the measurement
matrix A and a reconstruction algorithm SHO-FA that
achieves the following guarantees (the proof of which is
the focus of the remainder of this section).
Theorem 1. Let k ≤ n. There exists a reconstruction
algorithm SHO-FA for A ∈ Rm×n such that (i) for every
x ∈ Rn, with probability 1 − O(1/k) over the choice
of A, SHO-FA produces a reconstruction x̂ such that
||x − x̂||1/||x||1 ≤ 2−P , (ii) m = ck for some c > 0,
(iii) Expected number of steps required by SHO-FA is
O(k), and (iv) Expected number of bitwise arithmetic
operations required by SHO-FA is O(k(log n+ P ))

High-level intuition: If m = Θ(n), the task of recon-
structing x from y = Ax appears similar to that of
syndrome decoding of a channel code of rate n/m [36].
It is well-known [37] that channel codes based on bi-
partite expander graphs, i.e., bipartite graphs with good
expansion guarantees for all sets of size less than or
equal to k, allow for decoding in a number of steps that
is linear in the size of x. 7

It is tempting to think that perhaps an optimized ap-
plication of expander graphs could result in a design that
require only O(k) number of measurements. However,
as noted in [34, Lemma 2], in the compressive sensing
setting, where, typically k = o(n), it is not possible to
satisfy the desired expansion properties. 8Instead, one
of our key ideas is that we do not really need “true”
expansion. Instead, we rely on a notion of approximate
expansion that guarantees expansion for most k-sized
sets (and their subsets) of nodes on the left of our
bipartite graph. We do so by showing that any set
of size at most k, with high probability over suitably
chosen measurement matrices, expands to the desired
amount. Probabilistic constructions turn out to exist for
our desired property.9 Such a construction is shown in
Lemma 1.

Our second key idea is that in order to be able to
recover all the k non-zero components of x with at most
O(k) steps in the decoding algorithm, it is necessary
(and sufficient) that on average, the decoder reconstructs
one previously undecoded non-zero component of x,
say xj , in O(1) steps in the decoding algorithm. For
k = o(n) the algorithm does not even have enough
time to write out all of x, but only its non-zero values.
To achieve such efficient identification of xj , we go
beyond the 0/1 matrices used in almost all prior work on
compressive sensing based on expander graphs. Instead,
we use distinct values in each row for the non-zero
values in A, so that if only one non-zero xj is involved
in the linear measurement involving a particular yi (a
situation that we demonstrate happens in a constant
fraction of yi), one can identify which xj it must be
in O(1) time. Our decoding then proceeds iteratively,
by identifying such xj and canceling their effects on
yi, and terminates after O(k) steps after all non-zero xj

7Motivated by this [16] explore a measurement design that
is derived from expander graphs and show that O(k log(n/k))
measurements suffice, and O(k) iterations with overall decoding
complexity of O(n log (n/k)).

8In particular, if one tries to mimic the approach of [16], one
would need bipartite expanders such that all sets of size k on one
side of the graph “expand”.

9In fact similar properties have been considered before in the
literature – for instance [38] constructed “probabilistic expanders”.
Our contribution is the way we use this property for our needs.
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and their locations have been identified (since we require
our algorithm to work with high probability for all x,
we also add “verification” measurements – this only
increases the total number of measurements by a constant
factor). Our calculations are precise to O(log(n) + P )
bits – the first term in this comes from requirements
necessary for computationally efficient identification of
non-zero xj , and the last term from the requirement
that we require that the reconstructed vector be correct
up to P -precision. Hence the total number of bits over
all measurements is O(k((log(n) + P )). Note that this
is information-theoretically order-optimal, since even
specifying k locations in a length-n vector requires
Ω(k(log(n/k)) bits, and specifying the value of the non-
zero locations so that the relative reconstruction error is
O(2−P ) requires Ω(kP ) bits.

We now present our SHO-FA algorithm in two stages.
We first use our first key idea (of “approximate”) ex-
pansion in Section II-A to describe some properties of
bipartite expander graphs with certain parameters. We
then show in Section II-B how these properties, via our
second key idea (of efficient identification) can be used
by SHO-FA to obtain desirable performance.
A. Description of graph properties
We first construct a bipartite graph G (see Example 1 in
the Appendix) with some desirable properties outlined
below that follow from Lemmas 1 and 2. In Section II-B
we then use these graph properties in the SHO-FA
algorithm. To simplify notation in what follows (unless
otherwise specified) we omit rounding numbers resulting
from taking ratios or logarithms, with the understanding
that the corresponding inaccuracy introduced is negligi-
ble compared to the result of the computation. Also, for
ease of exposition, we fix various internal parameters
to “reasonable” values rather than optimizing them to
obtain “slightly” better performance at the cost of ob-
fuscating the explanations – whenever this happens we
shall point it out parenthetically.
Properties of G:
1. Construction of a left-regular bipartite graph: The
graph G is chosen uniformly at random from the set of
bipartite graphs with n nodes on the left and m′ nodes
on the right, such that each node on the left has degree
d ≥ 7. In particular, m′ is chosen to equal ck for some
design parameter c to be specified later as part of code
design.
2. Edge weights for “identifiability”: For each node on
the right, the weights of the edges attached to it are
required to be distinct. In particular, each edge weight
is chosen as a complex number of unit magnitude,
and phase between 0 and π/2. Since there are a total
of dn edges in G, choosing distinct phases for each

edge attached to a node on the right requires at most
log(dn) bits of precision (though on average there are
about dn/m′ edges attached to a node on the right, and
hence on average one needs about log(dn/m′) bits of
precision).
3. S(x)-expansion: In Lemma 1, we note that with a high
probability over G defined in Property 1 above, every
set of k nodes on the left and all its subsets “expand”
by a factor at least 2d/3. Daskalakis et al. [38, Lemma
4] prove this property in the context of error correcting
codes for graphs that have slightly different parameters
than ours. As such, we omit the proof here and refer the
reader to [34, Lemma 1] for a detailed proof.
4. “Many” S(x)-leaf nodes: For any set S(x) of at most
k nodes on the left of G, we call any node on the right
of G an S(x)-leaf node if it has exactly one neighbor
in S(x), and we call it a S(x)-non-leaf node if it has
two or more neighbours in S(x). (If the node on the
right has no neighbours in S(x), we call it a S(x)-zero
node.) Assuming S(x) satisfies the expansion condition
in Property 3 above, it can be shown that at least a
fraction 1/2 of the nodes that are neighbours of any
S ′(x) ⊆ S(x) are S ′(x)-leaf nodes.This statement is
the subject of Lemma 2 and follows from a counting
argument similar to that used in expander codes [31].
For completeness, the reader is referred to [34, Lemma
3] for a proof.
Lemma 1. (S(x)-expansion): Let k < n ∈ � be
arbitrary, and let c ∈ � be fixed. Let G be chosen
uniformly at random from the set of all bipartite graphs
with n nodes (each of degree d) on the left and m′ = ck
nodes on the right. Then, for any S(x) of size at most
k and any S ′(x) ⊆ S(x), with probability 1 − o(1/k)
(over the random choice G) there are at least 2d/3 times
as many nodes neighbouring those in S ′(x), as there are
in S ′(x).
Lemma 2. Let S(x) be a set of k nodes on the left
of G such that the number of nodes neighbouring those
in any S ′(x) ⊆ S(x) is at least 2d/3 times the size of
S ′(x). Then at least a fraction 1/2 of the nodes that are
neighbours of any S ′(x) ⊆ S(x) are S ′(x)-leaf nodes.

Note here that, in contrast to the “usual” definition
of “vertex expansion” [37] (wherein the expansion prop-
erty is desired “for all” subsets of left nodes up to a
certain size) Lemma 1 above only gives a probabilistic
expansion guarantee for any subset of S(x) of size k. In
fact, for the parameters of interest to us, [34, Lemma 2]
shows that “for all”-type expanders cannot exist.
B. Description of SHO-FA
Given a graph G satisfying properties 1- 4, we now
describe our encoding and decoding procedure. We begin
with a description of the measurement matrix A.
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Matrix structure and entries: The encoder’s measure-
ment matrix A is chosen based on the structure of G
(recall that G has n nodes on the left and m′ nodes on the
right). To begin with, the matrix A has m = 2m′ rows,
and its non-zero values are unit-norm complex numbers.
This choice of using complex numbers rather than real
numbers in A is for notational convenience only. One can
equally well choose a matrix A′ with m = 4m′ rows,
and replace each row of A with two consecutive rows
in A′ comprising respectively of the real and imaginary
parts of rows of A. Since the components of x are real
numbers, hence there is a bijection between Ax and
A′x – indeed, consecutive pairs of elements in A′x are
respectively the real and imaginary parts of the complex
components of Ax. Also, as we shall see, the choice
of unit-norm complex numbers ensures that “noise” due
to finite precision arithmetic does not get “amplified”. In
particular, corresponding to node i on the right-hand side
of G, the matrix A has two rows. The jth entries of the
(2i − 1)th and 2ith rows of A are respectively denoted
a

(I)
i,j and a(V )

i,j respectively. (The superscripts (I) and (V )
respectively stand for Identification and Verification, for
reasons that shall become clearer when we discuss the
process to reconstruct x.)

Identification entries: If G has no edge connecting node
j on the left with i on the right, then the identification
entry a(I)

i,j is set to equal 0. Else, if there is indeed such

an edge, a(I)
i,j is set to equal eιjπ/(2n). (Here ι denotes

the positive square root of −1.) This entry a(I)
i,j can also

be thought of as the weight of the edge in G connecting
j on the left with i on the right. In particular, the phase
jπ/(2n) of a

(I)
i,j = eιjπ/(2n) will be critical for our

algorithm. As in Property 2 in Section II-A, our choice
above guarantees distinct weights for all edges connected
to a node i on the right

Verification entries: Whenever the identification entry
a

(I)
i,j equals 0, we choose to set the corresponding veri-

fication entry a(V )
i,j also to be zero. On the other hand,

whenever a(I)
i,j 6= 0, then we set a(V )

i,j to equal eιθ
(V )
i,j for

θ
(V )
i,j chosen uniformly at random from [0, π/2] (with
O(log(k)) bits of precision).10

Reconstruction: Since the measurement matrix A has
interspersed identification and verification rows, this in-
duces corresponding interspersed identification observa-

10This choice of precision for the verification entries contributes
one term to our expression for the precision of arithmetic required.
As we argue later in Section II-D, this choice of precision guarantees
that if a single identification step returns a value for xj , this is indeed
correct with probability 1−o(1/k). Taking a union bound over O(k)
indices corresponding to non-zero xj gives us an overall 1 − o(1)
probability of success.

Input: (A,y)
Output: x̂

1 x̂(1)← 0n, ỹ(I)(1)← y(I), ỹ(V )(1)← y(V ) ;
2 D(1)← {i : y

(I)
i 6= 0}, t← 1;

3 while D(t) 6= φ do
4 x̂(t+ 1)← x̂(t);
5 Pick random i(t) ∈ D(t);

6 θ(I)(t)← ∠
(
ỹ

(I)
i(t)(t)

)
, θ(V )(t)← ∠

(
ỹ

(V )
i(t) (t)

)
;

7 if 2n
π θ

(I)(t) ∈ � then
8 j(t)← 2n

π θ
(I)(t); // Identify

9 if θ(V )(t) = θ
(V )
i(t),j(t) ; // Verify leaf

10 then
11 x̂j(t+1) ← |ỹ

(I)
i(t)(t)| ; // Decode

12 ∆x← x̂(t+ 1)− x̂(t); // Update
13 D(t+ 1)← D(t) \ {i : (A∆x)i 6= 0};
14 ỹ(I)(t+ 1)← ỹ(I)(t+ 1)−A∆x;
15 ỹ(V )(t+ 1)← ỹ(V )(t)−A∆x;
16

17 t← t+ 1;
// Terminate when D(t) = φ

18 end
Algorithm 1: SHO-FA Reconstruction Algorithm

tions y(I)
i and verification verifications observations y(V )

i

in the observation vector y = Ax. Let y(I) = {y(I)
i }

denote the length-m identification vector over �, and
y(V ) = {y(V )

i } denote the length-m verification vector
over �.

Given the measurement matrix A and the observed
(y(I),y(V )) identification and verification vectors, the
decoder’s task is to find any k-sparse vector x̂ such
that Ax̂ results in the corresponding identification and
observation vectors. We shall argue below that if we
succeed, then with high probability over A (specifically,
over the verification entries of A), this x̂ must equal x.

To find such a x̂ we consider an iterative decoding
scheme presented in Algorithm 1. In Step 1, we start
by setting the initial signal estimate vector x̂(1) to
the all-zero vector, and the initial residual measurement
identification/verification vectors ỹ(I)(1) and ỹ(V )(1) to
y(I) and y(V ) respectively. Next, we identify the set
of non-zero indices of y(V ), and initializes the D(1),
which we call the neighborly set as the set of non-
zero indices of the verification vector y(V ) In the first
iteration we then pick a uniformly random index i from
the neighborly set. Next, the decoder attempts to recover
the signal value at some index j ∈ S(x) by looking at
y

(I)
i and “estimating” which j on the left of G could have

“caused the identification observation y(I)
i ”. If index i is
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not a S(x)-leaf node, the decoder does not succeed in
reconstructing xj , it declares the iteration as a failure,
and starts the second iteration by again choosing a new
uniformly random index i from the neighborly set. On
the other hand, if index i is a S(x)-leaf node, the cor-
responding signal coordinate j will indeed be identified
(Step 8) (and “verified” using the verification entry a(V )

i,j

and the verification observation y
(V )
i in Step 9)11; then

the algorithm will decode the corresponding signal value
in Step 11, and update the residual measurement vectors
ỹ(I) and ỹ(V ) by subtracting the “contribution” of the
coordinate xj to the measurements it influences (there
are exactly d of them since the degree of the nodes on
the left side of G is d) and remove i from the neighborly
set (Steps 12- 15), and finally pick a new random index i
from the neighbourly set for the next (second) iteration.
The decoder performs the above operations repeatedly
until x̂ has been completely recovered. We also show
that (with high probability over A) in O(k) steps this
process does indeed terminate. Our algorithm proceeds
iteratively, and has O(k) overall (expected) number of
iterations, with t being the variable indexing the iteration
number.
Expected number of iterations: We first argue that,
with a constant probability, each iteration result in re-
covering a new non-zero coordinate from x. Towards
this, for each t = 1, 2, . . ., let S(t) be the support of
x−x̂(t). Note that D(t) = N(S(t)) and S(x) = S(1) ⊇
S(2) ⊇ . . .. Then, according to Lemma 2 and the way
we generate the measurement matrix A, with a high
probability, for each t, the probability that there exists
a node i(t) in ỹ(I)(t) so that it is an S(t)-leaf node is
lower bounded by 1/2. Consequently, exactly one non-
zero coordinate in S(t) completely determines ỹ

(I)
i(t)(t)

and ỹ
(V )
i(t) (t). The algorithm identifies this coordinate as

j for the tth iteration and at the end of iteration, recovers
x̂j . Thus, whenever i(t) is an S(t)-leaf node, the set
of recovered coordinates increases by 1. When i(t) is
not an S(t)-leaf node, our reconstruction process wastes
one iteration and will start another iteration by picking
another node from the neighborly set D(t) uniformly
at random. Hence, the operations among different it-
erations are independent, and each iteration succeeds
with probability 1/2. Since there are at most k non-
zero coordinates in x, the number of iterations before the
algorithm terminates follows a Pascal distribution with
parameters (k, 1/2). The expected number of iterations
is then simply 2k.
Correctness: Next, we show that x̂ = x with a high

11As Ronald W. Reagan liked to remind us, “doveryai, no
proveryai”.

probability. To show this, it suffices to show that each
non-zero update to the estimate x̂(t) sets a previously
untouched coordinate to the correct value with a high
probability.

Note that if i(t) is a leaf node for S(t), and if all non-
zero coordinates of x̂(t) are equal to the corresponding
coordinates in x, then the decoder correctly identifies
the parent node j(t) ∈ S(t) for the leaf node i(t) as the
unique coordinate that passes the phase identification and
verification checks.

Thus, the tth iteration ends with an erroneous up-
date only if ∠(

∑
p∈N({i(t)}) xpe

ιθ
(I)

i(t),p) = θ
(I)
i(t),j(t) for

some j such that there are more than one non-
zero terms in the summation on the left. Recall that
∠(
∑

p∈N({i(t)}) xpe
ιθ

(V )

i(t),p) = θ
(V )
i(t),j(t). Since V (i(t), j)

is drawn uniformly at random from {1, 2, . . . , d4ne}, the
probability that this equality holds with more than one
non-zero term in the summation on the left is at most
1/(4n). The above analysis gives an upper bound on
the probability of incorrect update for a single iteration
to be 1/(4n). Finally, as the total number of updates is
at most k, by applying a union bound over the updates,
the probability of incorrect decoding is upper bounded
by k/4n. Since k = o(n) by assumption, it follows that
the error probability vanishes as n and k grow without
bound.
C. Database query
A useful property of our construction of the matrix A
is that any desired signal component xj can be recon-
structed with a constant probability given the measure-
ment vector y = Ax in a constant time. The following
Lemma makes this precise. The proof is in Appendix A.

Lemma 3. Let x be k-sparse. Let j ∈ {1, 2, . . . , n} and
let A ∈ Cck×n be randomly drawn according to SHO-
FA. Then, there exists an algorithm A such that given
inputs (j,y), A produces an output x̂j with probability
at least (1− (d/c)d) such that x̂j = xj with probability
(1− o(1/k)).

D. Information-theoretically optimal number of bits
We recall that the reconstruction goal for SHO-FA is to
reconstruct x up to relative error 2−P ., that is, ||x −
x̂||1/||x||1 ≤ 2−P .

We first present a sketch of an information-theoretic
lower bound of Ω (k (P + log n)) bits holds for any
algorithm that outputs a k-sparse vector that achieves
this goal with high probability.

To see this is true, consider the case where the
locations of k non-zero entries in x are chosen uni-
formly at random among all the n, entries and the
value of each non-zero entry is chosen uniformly at
random from the set {1, . . . , 2P }. Then recovering even
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the support requires at least log
(
2kP
(
n
k

)
)
)

bits, which
is Ω(k log(n/k)). Also, at least a constant fraction of
the k non-zero entries of x must be be correctly es-
timated to guarantee the desired relative error. Hence
Ω (k (P + log n)) is a lower bound on the measurement
bit-complexity.

The following arguments show that the total number
of bits used in our algorithm is information-theoretically
order-optimal for any k = O(n1−∆) (for any ∆ > 0).
First, to represent each non-zero entry of x, we need
to use arithmetic of Ω(P + log(k)) bit precision. Here
the P term is so as to attain the required relative error
of reconstruction, and the log(k) term is to take into
account the error induced by finite-precision arithmetic
(say, for instance, by floating point numbers) in O(k)
iterations (each involving a constant number of finite-
precision additions and unit-magnitidue multiplications).
Second, for each identification step, we need to use
Ω(log(n) + log(k)) bit-precision arithmetic. Here the
log(n) term is so that the identification measurements
can uniquely specify the locations of non-zero entries
of x. The log(k) term is again to take into account
the error induced in O(k) iterations. Third, for each
verification step, the number of bits we use are 3 log(k).
Here, by the Schwartz-Zippel Lemma [39], [40], 2 log(k)
bit-precision arithmetic guarantees that each verification
step is valid with probability at least 1− 1/k2 – a union
bound over all O(k) verification steps guarantees that
all verification steps are correct with probability at least
1−O(1/k). Therefore, the total number of bits needed
by SHO-FA O(k(log(n)+P )). As claimed, this matches,
up to a constant factor, the lower bound sketched above.

III. APPROXIMATE RECONSTRUCTION IN THE

PRESENCE OF NOISE

The design presented above relies on exact determination
of all the phases and magnitudes of the measurement
vector Ax. However, we often desire that the measure-
ments and reconstruction be robust to corruption both
before and and during measurements. We now show
that SHO-FA may be made robust to such "noise". We
consider the following setup. Let x ∈ �n be a k-
sparse signal with support S(x) = {j : xj 6= 0}.
Let z ∈ �n have support {1, 2, . . . , n} \ S(x) with
each zj distributed according to a Gaussian distribution
with mean 0 and variance σ2

z . Denote the measurement
matrix by A ∈ �m×n and the measurement vector by
y ∈ �m. Let e ∈ �m be the measurement noise with
ei distributed as a Complex Gaussian with mean 0 and
variance σ2

e along each axis. y is related to the signal as
y = A(x + z) + e. We propose a design procedure for
A satisfying the following properties.

Theorem 2. Let k = O(n1−∆) for some ∆ > 0. There
exists a reconstruction algorithm SHO-FA for A ∈ �m×n
such that (i) m = ck, (ii) SHO-FA consists of at most
4k iterations, each involving O(1) arithmetic operations
with a precision of O(log n) bits, and (iii) For some
C = C(σz, σe) > 0, with probability 1 − o(1/k) over
the design of A and randomness in e and z,

||x̂− x||1 ≤ C
(
||z||1 + (log k)2||e||1

)
.

Recall that in the exactly k-sparse case, each arith-
metic operation must have low reconstruction error, as
an error in an earlier iteration can propagate and cause
potentially catastrophic errors. With noisy z and e this
problem is accentuated. For instance, SHO-FA may be
unable to identify whether yi is a leaf node, or be unable
to identify the j-coordinate of x it corresponds to. Even
if it correctly estimates these quantities, the error due
to components of z and e may propagate through the
iterative decoding procedure and “amplify”. To over-
come these hurdles, our design takes the noise statistics
into account to ensure that each iteration is resilient to
noise with a high probability. This is achieved through
several new ideas presented below. Key to this analysis
is bounding the effect of propagation of estimation error
as the decoder steps through the iterations.12

Key ideas:
Truncated reconstruction: In the presence of noise it is
unlikely that xj whose magnitudes are comparable to
those of the noise values can be successfully recovered.
Thus the decoder does not try to reconstruct these values
as long as the overall penalty in l1-norm is not high.
The following argument shows that this is indeed the
case. Let Sδ(x) , {j : |xj | < δ/k} and let xSδ ∈ Rn
be the vector such that, for each j, (xSδ)j equals xj
if j lies in Sδ and is 0 otherwise. Similarly, define
xScδ which has non-zero entries only within the set
S(x) \ Sδ(x). Then the total l1 norm of xSδ is “small”,
since ||xSδ ||1 =

∑
j∈Sδ(x) |xj | ≤ |Sδ(x)| δk ≤ δ..

Applying the triangle inequality, it then follows that
||x̂−x||1 ≤ ||x̂−xScδ ||1 +||xSδ ||1 ≤ ||x̂−xScδ ||1 +δ. Our
reconstruction x̂ can now be shown to satisfy the crite-
rion that ||x̂−xScδ ||1 is at most C1(||z||1 +(log k)2||e||1)
with high probability, while simultaneously ensuring that

12For simplicity, the analysis presented here relies only on an
upper bound on the length of the path through which the estimation
error introduced in any iteration can propagate. This bound follows
from known results on size of largest components in sparse hyper-
graphs [41]. We note, however, that a tighter analysis that relies on
a finer characterization of the interaction between the size of these
components and the contribution to total estimation error may lead
to better bounds on the overall estimation error. Indeed, as shown
in [32], such an analysis enables a tighter reconstruction guarantee
of the form ||x− x̂||1 = O(||z||1 + ||e||1)
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our choice δ satisfies δ < C2||z||1 for some C1, C2.
Phase quantization: In the noisy setting, even when i
is a leaf node for S(x), the phase of yi may differ
from the phase assigned by the measurement. To over-
come this, we modify our decoding algorithm to work
with "quantized" phases, rather than the actual received
phases. The idea behind this is that if i is a leaf node
for S(x), then quantizing the phase to one of the values
allowed by the measurement identifies the correct phase
with a high probability. The following lemma facilitates
this simplification. For a desired error probability ε′,
it suffices to let α = (1/2) log(1/2ε′). Appendix C
examines this in more detail.

Lemma 4 (Almost bounded phase noise). Let x, z ∈ �n
with |xj | > δ/k for each j. Let A′ ∈ �m′×n be a complex
valued measurement matrix with the underlying graph G.
Let i be a leaf node for S(x). Let ∆θi = |∠yi−∠(A′x)i|.
Then, for every α > 0, Ez,e(∆θi) ≤

√
2πk2(dnσ2

z/ck+σ2
e)

δ2

and Prz,e

(
∆θi > αEz,e(∆θi)

)
< 1

2e
−(α2/π).

Repeated measurements: Our algorithm works by per-
forming a series of Γ ≥ 1 identification and verification
measurements in each iteration (instead of a single
measurement of each type as done in the exactly k-
sparse case). This is because, in the presence of noise,
even though a single set of measurements cannot exactly
identify j from a leaf yi, it helps us narrows down
the set of coordinates j that could have contributed
to give the observed phase. Performing measurements
repeatedly, each time with a different measurement, helps
us identify the index xj corresponding to a noisy leaf
yi (with high probability). Hence we first map each
j ∈ {1, 2, . . . , n} to its Γ-digit representation in base
� = {0, 1, . . . dn1/Γ − 1e}. For each j ∈ {1, 2, . . . , n},
let g(j) = (g1(j), g2(j), . . . , gΓ(j)) be the Γ-digit repre-
sentation of j. Next, we perform one pair of identification
and verification measurements (and corresponding phase
reconstructions), each of which is intended to distinguish
exactly one of the digits. We show we only need a con-
stant number of such phase measurements per iteration.

Description of measurements: As in the exactly k-
sparse case, we start with a randomly drawn left regular
bipartite graph G with n nodes on the left and m′ nodes
on the right.

Measurement matrix: The measurement matrix A ∈
�2m′Γ×n is chosen based on the graph G. The rows
of A are partitioned into m′ groups, with each group
consisting of 2Γ consecutive rows. The j-th entries of
the rows 2(i−1)Γ+1, (i−1)Γ+2, . . . , 2iΓ are denoted
by a

(I,1)
i,j , a

(I,2)
i,j , . . . , a

(I,Γ)
i,j , a

(V,1)
i,j , a

(V,2)
i,j , . . . , a

(V,Γ)
i,j re-

spectively. In the above notation, I and V are used
to refer to identification and verification measurements.
For ease of notation, for each γ = 1, 2, . . . ,Γ, we use
A(I,γ) (resp. A(V,γ)) to denote the sub-matrix of A whose
(i, j)-th entry is a(I,γ)

i,j (resp. a(V,γ)
i,j ). We define the γ-th

identification matrix A(I,γ) as follows. For each (i, j),
if the graph G does not have an edge connecting i on
the right to j on the left, then a(I,γ)

i,j = 0. Otherwise, we

set a(I,γ)
i,j to be the unit-norm complex number a(I,γ)

i,j =

eιgγ(j)π/2(|�|−1|). Next, we define the γ-th verification
matrix A(V,γ) in a way similar to how we defined the
verification entries in the exactly k-sparse case. For each
(i, j), if the graph G does not have an edge connecting i
on the right to j on the left, then a(V,γ)

i,j = 0. Otherwise,

we set a(V,γ)
i,j = eιθ

(V,γ)
ij , where θ(V,γ)

i,j is drawn uniformly
at random from {0, π/2(|�|−1), π/(|�|−1), 3π/2(|�|−
1) . . . , π/2}. Given an signal vector x, signal noise z,
and measurement noise e, the measurement operation
produces a measurement vector y = A(x + e). Since A
can be partitioned into Γ identification and Γ verification
rows, we think of the measurement vector y as a
collection of outcomes from Γ successive measurements
such that y(I,γ) = A(I,γ)(x + z) + e(I,γ) and y(V,γ) =
A(V,γ)(x + z) + e(V,γ) are the outcomes from the γ-th
measurement and y = ((y(I,γ),y(V,γ)) : 1 ≤ γ ≤ Γ).

Reconstruction for approximately k-sparse signals
with noisy measurements: The decoding algorithm
for this case extends the decoding algorithm presented
earlier for the exactly k-sparse case by including the
ideas presented above. The total number of iterations
for our algorithm are upper bounded by 4k. The decod-
ing algorithm terminates after the T -th iteration, where
T = min{4k, {t : D(t+ 1) = φ}}.
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APPENDIX

A. Proof of Lemma 3
SHO-FA examines the set of all yi that neighbour j in
G, and checks if any of them satisfies y(I)

i = y
(V )
i = 0.

If so, SHO-FA outputs x̂j = 0. Else it checks (using
verification and identification observations as in the
standard SHO-FA decoding) if there exists a S(x)-
leaf node among the neighbours of j. If there is a
such a neighbouring leaf node, say i, then SHO-FA
outputs x̂j = |yi|. Else, the algorithm terminates without
producing any output. To see this satisfies the database
query property, consider the following two cases.
Case 1: xj = 0. In this case, x̂j = 0 is output if at
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least one neighbour of j lies outside N(S(x)). Since
N(S(x)) has at most dk elements, and there are ck
yi’s, the probability that none of the neighbours of j
lie outside N(S(x)) is at least (1 − (d/c)d). An error
may also occur if all neighbours of j lie within N(S(x))
and SHO-FA incorrectly identifies one of these as a leaf
node – by the analysis of SHO-FA, this event occurs
with probability o(1/k).
Case 2: xj 6= 0. For SHO-FA to produce the correct
output, it has to identify one of the neighbours of j as
a leaf. The probability that there exists a leaf among the
neighbours of j is at least (1− (d/c)d) by an argument
similar to the previous case. Similarly, the proabability
of erroneous identification is o(1/k).
B. Proof of Lemma 4
Let ∆θi be the difference in phase between the "noise-
less" output (A′x)i and the actual output yi = (A′(x +
z) + e)i. By a geometric argument, for fixed z and
e, the phase displacement ∆θi is upper bounded by
π|(A′z)i + ei|/|(A′x)i|. Since i is a leaf node for
S(x), |(A′x)i| ≥ |δ/k|. Therefore, Prz,e (∆θi > α) ≤
Prz,e (|(A′z)i + ei| > αδ/πk). Next, note that (A′z)i is
a Complex Gaussian with zero mean and variance at
most nσ2

z . Further, each row of A′ has at most dn/ck
non-zero entries. Therefore, (A′z)i + ei is a zero mean
complex Gaussian with variance at most (dn/ck)σ2

z+σ2
e .

Finally, to complete the proof, we apply standard anal-
ysis for computing the expectation of the absolute value
and bounds on tail probabilities of Gaussian random
variables.
C. Probability of error
An error occurs only if one of the following take place:
1) G is not an S(x)-expander: This occurs with proba-
bility o(1/k).
2) Noise in ỹi(t)(t) leads to an incorrect decoding of
θ̂

(I,γ)
t or θ̂(V,γ)

t for some γ and t: The phase noise in
ỹi(t)(t) consists of the effect of due to noise vectors z
and e, and the contribution due to the noise propagated
while computing each ỹi(t)(τ) from ỹi(t)(τ−1) for τ ≤ t.
The contribution due to the first term is bounded by
Lemma 4. Thus for a target error probability ε′, we
choose α = (1/2) log 1/2ε′, giving a contribution to

the phase noise of at most log (1/2ε′)
2

√
2πk2(dnσ2

z/ck+σ2
e)

δ2 .
To bound the contribution due to the second term, note
that at each iteration t, any error in reconstruction of
x̂j(t) potentially adds to reconstruction error in all future
iterations t′ for which there is a path from j(t) to j(t′).
Since the restriction of G to S(x) and its neighbours is a
sparse graph, it follows from [41] that, with probability
1 − o(1/k), it consists only of disjoint components of
size O(log k) (see [32] for such an analysis). Thus, the

magnitude error in reconstruction of x̂j(t) due to noisy
reconstructions in previous iterations is

O
(

(log k)2log (1/ε′)
√

(nσ2
z/k + σ2

e)
)
. (1)

Thus, the order of the phase displacement
in each y

(I,γ)
i and y

(V,γ)
i is at most

(log k)2 log (1/ε′)

√
k2(nσ2

z/k+σ2
e)

δ2 . Therefore, as long

as (log k)2 log (1/ε′)

√
k2(nσ2

z/k+σ2
e)

δ2 = o
(
n−1/Γ

)
,

the probability of any single phase being incorrectly
detected is upper bounded by ε′. Since we there are a
total of 8Γk possible phase measurements, we choose
ε′ = O(1/Γk2) to achieve a target error probability
O(1/k).
3) The verification step passes for each measurement
in the t-th measurement, even though i(t) is not a leaf
node for Scδ(x). The probability of this even is again
O(1/k) by our choice of ε′.
4) D(T ) 6= φ, i.e., the algorithm terminates without
recovering all xj’s. By Lemma 2, the probability that
i(t) is a leaf node for Sδ(x − x̂(t)) is at least 1/2.
The probability that a leaf node i(t) does not pass
the verification tests is O(1/k). Thus, in expectation,
the number of iterations required by the algorithm
is 2k/(1 − O(1/k)). By concentration arguments, it
follows that the probability that the algorithm does not
terminate in 4k iterations is o(1/k) as k grows without
bound.
D. Estimation error
Next, we bound the error in estimating x̂. We
first find an upper bound on ||x̂ − xScδ ||1 that
holds with a high probability. Applying the bound
in (1), for each t = 1, 2, . . . , T , |xj(t) − x̂j(t)| =

O
(

(log k)2log (1/ε′)
√

(nσ2
z/k + σ2

e)
)

with probabil-
ity 1 − o(1/k). Therefore, ||x̂ − xScδ ||1 is of order
k(log k)2log (1/ε′)

(√
nσ2

z/k + σe

)
+δ. Next, note that

||z||1 =
∑n

j=1 |zj | and ||e||1 =
∑m

i=1 |ei|. Since each zj
is a Gaussian random variable with variance σ2

z , The ex-
pected value of |zj | is σz

√
2/π. By concentrating ||z||1

and ||e||1 around their respective means, and applying
the bound in (III), we conclude that, with a high proba-
bility, ||x̂−x||1 is of order

√
k
n(log k)2 log (1/ε′)‖|z||1+

(log k)2 log (1/ε′)||e||1 + 2δ.
E. Proof of Theorem 2
Finally, to complete the proof of Theorem 2, we let δ =
min{O(nσz), o(1)}. By the argument in the previous
subsection, with a high probability, δ = O(||z||). Finally,
recall the assumption that k = O(n1−∆). Applying these
to the bound obtained in the previous subsection, we get
||x̂− x||1 ≤ C

(
||z||1 + (log k)2||e||1

)
.
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