
Regenerating Codes over a Binary Cyclic Code
Kenneth W. Shum‡, Hanxu Hou§†, Minghua Chen§, Huanle Xu§, and Hui Li†∗

‡Institute of Network Coding, the Chinese University of Hong Kong
§Department of Information Engineering, the Chinese University of Hong Kong

†Shenzhen Eng. Lab of Converged Networks Tech., Shenzhen Key Lab of Cloud Computing Tech. and App.,
Peking University Shenzhen Graduate School

Abstract— We present a design framework of regenerating
codes for distributed storage systems which employ binary
additions and bit-wise cyclic shifts as the basic operations. The
proposed coding method can be regarded as a concatenation
coding scheme with the outer code being a binary cyclic code,
and the inner code a regenerating code utilizing the binary cyclic
code as the alphabet set. The advantage of this approach is
that encoding and repair of failed node can be done with low
computational complexity. It is proved that the proposed coding
method can achieve the fundamental tradeoff curve between the
storage and repair bandwidth asymptotically when the size of
the data file is large.

I. INTRODUCTION

Regenerating codes is a class of erasure-correcting codes
introduced by Dimakis et al. in [1], with the aim of efficient
repair of storage nodes. A data file is encoded and distributed
to n storage nodes, such that the file can be decoded from any
k of them. Furthermore, upon the failure of a storage node,
we want to repair the failed node by downloading some data
from any d surviving nodes, with the amount of data sent to
the new node as little as possible. The number of data packets
sent to the new node during the repair process is an important
metric in measuring efficiency of node repair, and is coined
the repair bandwidth in [1].

We differentiate two modes of repair. The first one is called
exact repair and the second one functional repair. In exact
repair, the content of the new node is required to be the same as
in the failed node. In functional repair, the content of the new
node need not be the same as in the failed one, but the property
that any k nodes are sufficient in decoding the original file
should be maintained. It is shown in [1] that, the minimization
of repair bandwidth for functional repair is closely related
to the single-source multi-cast problem in network coding
theory. After formulating the problem using an information
flow graph, a fundamental tradeoff between the amount of
storage per node and the repair bandwidth is established. For
exact repair, some recent result on the fundamental limit on
repair bandwidth can be found in [2]. In the remaining of this
paper, we focus on functional repair.

This work was partially supported by the National Basic Research Pro-
gram of China (No.2012CB315904), NSFC61179028, by a grant from Uni-
versity Grants Committee of Hong Kong Special Administrative Region,
China (Project No. AoE/E-02/08), and by the Shenzhen Key Laboratory
of Network Coding Key Technology and Application, Shenzhen, China
(ZSDY20120619151314964).
* Corresponding author.

In [3], existence of linear network codes achieving all points
on the fundamental tradeoff curve for functional-repair regen-
erating codes is shown. The construction relies on arithmetic
of finite field, and as in application of linear network code
to single-source multi-cast problem in general, the underlying
finite field must be sufficiently large. However, multiplication
and division in finite field are costly to implement in software
or hardware. In the literature of coding for disk arrays, the
computational complexity is reduced by replacing arithmetic
finite field by simple bit-wise operations. For example, in [4],
maximal-distance separable (MDS) code with a convolutional
code as alphabet set is introduced by Piret and Krol. In [5],
Blaum and Roth proposed a construction of array codes based
on the ring of polynomials with binary coefficients modulo
1 + x + · · · + xp−1 for some prime number p. Similar
approach was considered by Xiao et al. in [6]. Motivated
by these constructions of low-complexity array codes, a class
of regenerating codes utilizing the XOR operations and bit-
wise shifts are proposed recently in [7]. The objective of this
paper is to introduce another class of regenerating codes which
enables repair by XOR and bit-wise cyclic shifts.

After reviewing some preliminaries on binary cyclic codes
in Section III, we we show that we can operate arbitrarily close
to the fundamental tradeoff curve between storage and repair
bandwidth by this family of regenerating codes in Section IV.
In Section V, we compare the computational complexity with
functional-repair regenerating codes over finite field.

II. A MOTIVATING EXAMPLE

The following example of storage code illustrates the basic
ideas. Suppose that we want to store some information bits to
four storage nodes, such that we can recover the information
bits from any two nodes. Nodes 1 and 2 store the information
bits in uncoded format, and nodes 3 and 4 store some parity-
check bits. The information bits are divided into groups of
2(m − 1) bits, for some positive and odd integer m. Each
group of 2(m − 1) bits is called a data chunk. As the data
chunks are processed in the same manner, we focus on one
data chunk. We divide the 2(m− 1) information bits into two
equal parts, each consisting of m− 1 bits. Let the bits in the
first part be b(1, 0), b(1, 1), . . . , b(1,m−2), and the bits in the
second part be b(2, 0), b(2, 1), . . . , b(2,m − 2). For i = 1, 2,
let

b(i,m− 1) :=

m−2∑
j=0

b(i, j)

TABLE I
AN EXAMPLE OF STORAGE CODE FOR FOUR NODES.

Node 1 Node 2 Node 3 Node 4
b(1, 0) b(2, 0) b(1, 0) + b(2, 0) b(1, 0) + b(2, 1)
b(1, 1) b(2, 1) b(1, 1) + b(2, 1) b(1, 1) + b(2, 2)
b(1, 2) b(2, 2) b(1, 2) + b(2, 2) b(1, 2) + b(2, 3)
b(1, 3) b(2, 3) b(1, 3) + b(2, 3) b(1, 3) + b(2, 4)
b(1, 4) b(2, 4) b(1, 4) + b(2, 4) b(1, 4) + b(2, 0)

be the parity-check bit of b(i, 0), . . . , b(i,m− 2).
In this storage code, we stores m bits in each node. For

i = 1, 2, node i stores bits b(i, 0), b(i, 1), . . . , b(i,m− 2) and
the parity-check bit b(i,m− 1). Node 3 stores

b(3, j) := b(1, j) + b(2, j),

for j = 0, 1, . . . ,m− 1, and node 4 stores

b(4, j) := b(1, j) + b(2, j ⊕m 1),

where ⊕m stands for addition modulo m. The rate of this
storage code is (m−1)/(2m), which is slightly less than 1/2
for large m. An example for m = 4 is illustrated in Table I.

We claim that we can recover the information bits from
any two nodes. From node 1 and node 2, we can obtain the
information bits directly. Hence the claim is obviously true
for node 1 and node 2. If we want to decode the information
bits from node 1 and node 3, we can subtract b(1, j) from
b(3, j) = b(1, j) + b(2, j) to get the value of b(2, j), for j =
0, 1, 2, . . . ,m−2. Likewise, We can verify that the information
bits can be obtained from any one of the information disks and
any one of the parity-check disks. Finally, suppose that node
1 and node 2 fail and we want to decode the information bits
from node 3 and node 4. We can first compute

a(j) := b(3, j) + b(4, j) = b(2, j) + b(2, j ⊕m 1),

for j = 1, 3, 5, . . . ,m − 2. We can then recover b(2, 0) by
computing
(m−1)/2∑
`=1

a(2`−1) = b(2, 1)+b(2, 2)+· · ·+b(2,m−1) = b(2, 0).

Once the value of b(2, 0) is known, we can get b(1, 0) by
b(3, 0)+b(2, 0) = b(1, 0), and get b(2, 1) by b(4, 0)+b(1, 0) =
b(2, 1), and so on. This proves the claim.

In this encoding method, the assumption that the parameter
m to be an odd integer is essential. If m is an even integer
and if we flip all the information bits b(i, j) from 1 to 0 and
from 0 to 1, for i = 1, 2 and j = 0, 1, . . . ,m − 2, then the
content of node 3 and node 4 will not change. The mapping
from the information bits in nodes 1 and 2 to the redundancy
bits in nodes 3 and 4 is a two-to-one map in this case. So
there is no way to recover the information bits from nodes 3
and 4.

We remark that in practical implementation we need not
store the the last bit b(i,m − 1). As the last bit in each disk
can be obtained by summing the first m − 1 bits, we can
compute the last bit b(i,m− 1) if necessary.

III. CODES OVER A FINITE PRINCIPAL IDEAL RING

The example in the previous section can be more compactly
described if we represent the bits as the coefficients of a
polynomial. For i = 1, 2, 3, 4, let

si(z) :=

m−1∑
j=0

b(i, j)zj ,

where z is an indeterminate. Node i stores the coefficients of
si(z). Let

R := F2[z]/(z
m + 1).

and C be the subring of R consisting of polynomials with
coefficients summing to zero. The polynomials si(z) are
regarded as elements in C. The bits stored in node 3 and
4 are, respectively, the coefficients of s1(z) + s2(z) and
zs1(z)+s2(z). The code shown in Table I can thus be regarded
as a code of length 4 over the ring C with generator matrix[

1 0 1 z
0 1 1 1

]
.

The ring C is a binary cyclic code, namely, the simple
parity-check code. The regenerating codes constructed in this
paper are indeed codes over a finite principal ideal ring [8].
Nevertheless, we only need the case when the finite principal
ideal ring is a binary cyclic code. In the following, we review
some basic theory of binary cyclic codes, in particular, the
transform-domain analysis or the Mattson-Solomon polyno-
mial. We refer the readers to standard texts on coding theory,
such as [9], for more details.

Let m be a positive odd integer, and f0(z)f1(z) · · · fL(z) be
the prime factorization of polynomial xm + 1 over F2. Since
x+1 is a factor of xm+1, after some re-labeling, we assume
without loss of generality that f0(z) = z+1. A binary cyclic
code C of length m is a subset of R which is closed under
addition and multiplication by z. The polynomials in C are
called the codewords. It is well known that a cyclic code is
characterized by a generator polynomial, i.e., we can find a
polynomial g(z) ∈ R such that C = {a(z)g(z) : a(z) ∈ R}.
As a vector space, the dimension of C over F2 is equal to
m− deg g.

There is an alternate description of cyclic codes in terms of
extension field. Let q be a power of 2 such that the finite field
Fq contains a primitive m-th root of unity. Let γ be a fixed
m-th root of unity in Fq . For ` = 0, 1, 2, . . . , L, we define j`
to be an integer between 1 and m− 1 such that f`(γj`) = 0,
and F` be the the smallest subfield in Fq which contains γj` .
The field F` is the subfield of Fq with degree deg f`(z) over
F2. In particular, we have j0 = 0 and F0 = F2.

For a given generator polynomial g(z), let

N := {` ∈ {0, 1, . . . , L} : g(γj`) 6= 0}

be the set of non-nulls. The function

θ(c(z)) := (c(γj`))`∈N

is a bijection from C to the cartesian product
∏
`∈N F`. Given

an |N |-tuple (δ`)`∈N in
∏
`∈N F`, the inverse of function θ

can be computed by

(δ`)`∈N 7→
(∑
`∈N

tr`(δ`γ
−ij`)

)m−1
i=0

,

where tr is the trace function from F` to F2,

tr`(x) := x+ x2 + x2
2

+ · · ·+ x2
deg f`−1

.

We define addition and multiplication on the cartesian product∏
`∈N F` by component-wise addition and component-wise

multiplication, respectively. Then, the map θ preserves addi-
tion and multiplication, and is thus a ring-isomorphism.

Consider the parity-check code of length m = 31 as an
example. The polynomial z31+1 can be factorized as a product
of z + 1 and six irreducible polynomials of degree 5. The
codewords of the parity-check code C of length 31 are the
polynomials in R which have 1 as a root. Let γ be a primitive
31-st root of unity in F32. We have an isomorphism θ : C →
(F32)

6 given by

θ(c(z)) := (c(γ), c(γ3), c(γ5), c(γ7), c(γ11), c(γ15)).

We fix a binary cyclic code C of length m, and treat it as
the alphabet set. A polynomial in C will be called a symbol
or a data packet. Each symbol can carry m − deg g bits
of information. We define a code over C of length ν and
dimension κ by a κ × ν matrix G over R. The encoding
is performed by multiplying a row vector w of length κ
containing κ source symbols, and the generator matrix G. An
entry in wG is called a coded packet or a coded symbol. A
coded packet is thus an R-linear combination of the κ source
symbols, with elements from R as the coefficients.

A collection of κ coded packets is called an information
set, or said to be decodable if we can recover the κ source
symbols in w. Let I = {i1, i2, . . . , iκ} be the index set of κ
coded symbols and G[I] be the submatrix of G obtained by
retaining the columns indexed by I. The coded symbols with
indices in I form an information set if and only the submatrix
G is invertiable, i.e., there is a matrix G̃ over R such that
GG̃ is the κ× κ identity matrix.

The next theorem gives an equivalence condition for de-
codability, and is a direct consequence of a result about codes
over finite principal ideal ring in general [8, Thm. 6.3]. For
each ` = 0, 1, 2, . . . , L, let θ` : R → F` be defined as

θ`(a(z)) := a(γj`),

where a(z) can assume any value in R (recall that γj` is a
root of the polynomial f`(z)). In terms of these notations, we
can write

θ(c(z)) = (θ`(c(z)))`∈N

for all c(z) ∈ C. For a vector v whose components are
polynomials in R, we define θ`(v) by applying θ` component-
wise.

Theorem 1. Let i1, i2, . . . , iκ be κ column indices of a
generator matrix G, and let vi1 , . . . ,viκ be the columns
of G indexed by i1, . . . , iκ. The coded symbols indexed by
i1, . . . , iκ are decodable if and only if the vectors θ`(vi1),
θ`(vi2), . . . , θ`(viκ) are linearly independent over F` for each
` ∈ N .

IV. OPTIMAL FUNCTIONAL-REPAIR REGENERATING
CODES OVER BINARY PARITY-CHECK CODE

In the rest of this paper, we consider the case that the binary
cycle code be the simple parity-check code of length m and
dimension m−1, with m equal to a prime number. The results
can be readily generalized to general binary cyclic codes.

In the encoding process, the data file is first divided into
many pieces, with each piece containing B(m−1) bits, where
B is an integer to be determined later. As each piece of data
will be encoded and decoded in the same manner, for the ease
of presentation, we assume that a data file contains B(m− 1)
bits. Each group of m−1 bits is encoded to a codeword of the
binary cyclic code C. We let s1(z), s2(z), . . . , sB(z) ∈ C be
the resulting codewords. We call these B packets the source
data packets.

We store α coded packets in each node. Each coded packets
is an R-linear combination of the B source data pckets. The
coefficients of the linear combination form the global encoding
vector of the corresponding coded packet. We want to generate
the coded packets such that in each collection of k storage
nodes, we can find B decodable packets among the kα coded
packets. We call this property the (n, k) recovery property.
(This is weaker than the maximal-distance separable (MDS)
property because the binary cyclic code may have rate strictly
less than 1.)

There is a time index which is initialized to 0, and is
advanced by 1 after a node repair. Suppose that the current
time index is t and node f fails. The new node which replaces
the failed one is generated by contacting d surviving nodes.
The storage nodes which participate in the repair process are
also called the helpers. At time t, let Ht denote the index set of
the d helper nodes. Each of the helper node transmits β packets
to the new node, and each of these packets is obtained by
adding some cyclic-shifted version of the α encoded packets
in the memory. Suppose that node i, for some i ∈ Ht, is a
helper. The global encoding vector of the b-th packet sent to
the new node, for b = 1, 2, . . . , β, is of the form

α∑
j=1

zσ
t
ij(b)vtij ,

where vtij is the global encoding vector of the j-th packet in
the i-th node at time t, and σtij(b) is an integer between 0 and
m − 1. Upon receiving the dβ packets from the helpers, the
new node computes and stores α packets. For a = 1, 2, . . . , α,
the α-th packet stored in the new node is obtained by first
cyclically shift the c-th received packet by τ tc(a) bits and then
adding the resulting packets. The local encoding coefficients
are powers of z, and the computations required during the

repair process are just cyclic shifts and binary additions. The
global encoding vectors of the new packets are also computed
and stored. We want to show that by choosing the values
of σtij(b)’s and τ tc(a)’s appropriately, we can maintain the
property that there are B decodable packets in any set of k
nodes.

We can prove this by modifying the argument in [3] on the
existence of regenerating codes over finite field, and invok-
ing the DeMillo-Lipton-Schwartz-Zippel lemma (see e.g. [10,
p. 224]).

Lemma 2 (DeMillo-Lipton-Schwartz-Zippel). Let F be a finite
field and S be a subset of elements in F. Let f be a non-zero
multivariate polynomial in F[X1, X2, . . . , XN] of degree e.
Then the polynomial f has at most e|S|N−1 roots in SN .

In [3], the existence of regenerating codes over a finite
field is proved by showing that we can choose the local
encoding coefficient such that a collection of determinants are
all evaluated to be non-zero. In the case of regenerating codes
over a binary parity-check code, we want to restrict the local
encoding coefficients to be powers of z, and the collection
of determinants are evaluated to be non-zero in several finite
fields. With these modification, the requirement on the packet
length, m, will be stated in the next theorem.

Given the values of system parameters n, k, d, α and β, we
let the size of a piece of data, B, be

B :=

k∑
i=i

min{(d− i+ 1)β, α}. (1)

A storage code with these system parameters attains the
fundamental tradeoff between the amount of storage per node
and the repair bandwidth. For i = 1, 2, . . . , k, let si be the
i-th term in the above summation,

si := min{(d− i+ 1)β, α},

and for i = k+1, k+2, . . . , n let si = 0. Define H as the set
of vectors of length n, whose components are non-negative in-
tegers, which are majorized by the vector s = (s1, s2, . . . , sn).
In other words, if we sort the components of a vector h ∈ Zn+
in non-increasing order as h[1] ≥ h[2] ≥ · · · ≥ h[n], then h is
in H if and only if

µ∑
i=1

h[i]

{
≤
∑µ
i=1 si for m = 1, 2, . . . , n− 1,

= B for µ = n.

We refer the readers to [11] for more details on majorization
theory.

Theorem 3. Let n, k, d, α and β be fixed system parameters
of a distributed storage system. Let m be an odd prime, and
ordm(2) be the multiplicative order of 2 mod m. If m is larger
than

m− 1

ordm(2)
·B ·max

{(nα
B

)
, 2|H|

}
, (2)

where B is defined in (1), then there exists a functional-
repair regenerating code over the binary parity-check code

of length m, which achieves the capacity of a distributed
storage system with system parameters n, k, d, α and β, using
only shift and add operations in the encoding and repairing
process.

Sketch of proof: The proof is basically the same as in [3].
The encoding coefficients in v0

ij’s when we initialize the stor-
age system are restricted to be powers of z. The local encoding
coefficients in each repair process are also powers of z. The
local encoding coefficients in each repair process are chosen
such that a collection of sets of k packets are decodable. For
each set of k packets in this collection, we need to guarantee
that the decodability by invoking Theorem 1 in the previous
section. We note that xm+1 has 1+(m−1)/ordm(2) factors,
one of which is x + 1 and the rests are factors of degree
ordm(2). In the application of Lemma 2, we take the set S to
be the powers of z.

We may choose the parameter m to be a prime number
larger than n− 3, such that the multiplicative order of 2 mod
m is equal to m − 1. In this case, the polynomial xm + 1
is factorized as a product of two irreducible polynomials,
namely, x + 1 and xm−1 + xm−2 + · · · + 1. The value of
ordm(2) in this case is equal to m − 1. Under the Artin’s
conjecture on primitive roots, there are infinitely many such
prime number m [12].

V. COMPARISON OF COMPUTATIONAL COMPLEXITY

In this section we estimate the computational complexity of
encoding, repairing and decoding, in terms of the number of
XOR’s. Due to the limitation of space, we only consider the
case when each piece of data contains B = kα packets, i.e.,
each set of k nodes contains just enough information to decode
the original data file. The equation in (1) holds with B = kα
when (d− i+ 1)β ≥ α for all i = 1, 2, . . . , k. The minimum
value of β is thus β = α/(d− k+1) = B/(k(d− k+1)). In
the remaining of this section, the parameters B, α and β are
set to B = k(d− k + 1), α = d− k + 1 and β = 1.

Without loss of generality we assume that the data file
contains κB(m−1) = κkα(m−1) bits, where m is an integer
satisfying the condition in Theorem 3, and κ is a positive
integer. The computation of the local encoding coefficients is
neglected, as it is negligible when κ is very large. For the ease
of comparison, we will normalize the complexity by the file
size.

Encode. To each piece of data, we first append a parity-
check bits after each m − 1 bits to obtain B codewords in
C. The calculation of the B parity-check bits in one piece
of data requires O(Bm) XOR operations. A coded packet is
obtained by cyclically shifting and adding the B codewords,
and the computational complexity is O(Bm) bit operations.
Hence the total number of XOR’s in encoding is O(κnαBm).
The normalized computational complexity of encoding is
O(κnαBm/(κB(m− 1)) = O(nα) = O(n(d− k + 1)).

Repair. Each of the helping node generates κβ coded
packets by shifting and adding the κα packets in its memory.
The total number of XOR in generating one packet to be sent

TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITY

Normalized Normalized repair Normalized encoding Normalized repair Normalized decoding
redundancy bandwidth complexity complexity complexity

RC over binary cyclic code m
m−1

· n/k m
m−1

· d/(k(d+ 1− k)) O(n(d− k + 1)) O(d/k) O(m)

RC over finite field n/k d/(k(d+ 1− k)) O(n(d− k + 1)m1) O(dm1/k) O(m1)

to the new node is O(αm). The total number of bit operations
from the transmitting side is O(κdβαm).

The new node generates κα coded packets. Each of them
is obtained by combining the dβ received packets. The re-
quired number of XOR’s is O(καdβm). The normalized
computational complexity of the repair of a failed node is
O(καdβm/(κB(m− 1)) = O(d/k).

Decode. A data collector recovers the data file by linearly
combining kα coded packets. The coefficients in the linear
combination are polynomial in A and are obtained by solving
some system of linear equations. We ignore the computational
complexity in calculating these coefficients as it is negligible
asymptotically when κ is large. The complexity is directly
proportional to the number of terms in the coefficients, and
in the worst case, there are m terms in each of them. The
number of XOR’s in recovering one source packet is there-
fore O(kαm2). The normalized computational complexity of
decoding the data file is O(κkαm2/(κkα(m− 1))) = O(m).

We compare with the functional-repair regenerating codes
over finite field in [3]. The size of the finite field is 2m1 , where
m1 is an integer larger than

log2

(
B ·max

{(nα
B

)
, 2|H|

})
. (3)

We implement the finite field of size 2m1 as the quotient
ring F2[x]/(g(x)) for some irreducible polynomial g(x) of
degree m1, and use a polynomial basis to represent a finite
field element. Addition is bit-wise XOR and multiplication
takes O(m2

1) bit operations. (See e.g. [13, Chp. 11].) A coded
packet when we start the storage system is obtained by taking
an F2m1 -linear combination of the packets. The computation
of such a linear combination is dominated by the B multi-
plications, and the computational complexity is O(Bm2

1) for
each coded packet. The normalized encoding complexity is
O(κnαBm2

1/(κBm1)) = O(nαm1) = O(n(d− k + 1)m1).
The comparison of computational complexity is summarized

in Table II. The first row is the performance metric of the
proposed regenerating codes (RC) over binary parity-check
codes, and the second row is regenerating codes using a finite
field as alphabet. The normalized redundancy is defined as
the total number of bits in the storage system divided by the
number of bits in the data file. As we are comparing at the
minimum-storage regenerating point, the storage efficiency is
nα/B = n/k for RC over finite field. The coding scheme
proposed in this paper has an additional 1 bit per m bits, and
this leads to a slight increase of normalized redundancy by a
factor of m/(m−1). Similarly, there is a factor of m/(m−1)
in the normalized repair bandwidth of RC over parity-check

code. The storage efficiency and normalized repair bandwidth
of the two coding schemes are approximately the same when
m is large.

The regenerating code over binary parity-check code has
small complexity in encoding and repair. The encoding and
repair computational complexity normalized by the file size
does not depend on the packet size m. On the contrary, the
encoding and repair complexity of regenerating codes over
finite field depend on the field size, and is proportional to
the number of bits carried in a finite field element, m1. The
packet size m in regenerating code over parity-check code,
however, affects the decoding complexity. The lower bound
of m in Theorem 3 is however much larger than the lower
bound of m1 in (3).

VI. CONCLUSION

We propose a framework of designing regenerating codes
which employ XOR and bit-wise cyclic shifts. The advantage
is that encoding and the repair of a failed node can be carried
out by simple cyclic shift operations and binary additions.
For functional repair, all operating points on the fundamental
tradeoff curve between storage and repair bandwidth can be
achieved asymptotically when the file size is large.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage system,” in Proc. IEEE INFO-
COM, Anchorage, Alaska, May 2007, pp. 2000–2008.

[2] C. Tian, “Rate region of the (4, 3, 3) exact-repair regenerating codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Istanbul, July 2013, pp. 1426–1430.

[3] Y. Wu, “Existence and construction of capacity-achieving network codes
for distributed storage,” IEEE J. Selected Areas in Communications,
vol. 28, no. 2, pp. 277–288, February 2010.

[4] P. Piret and T. Krol, “MDS convolutional codes,” IEEE Trans. Informa-
tion Theory, vol. 29, no. 2, pp. 224–232, March 1983.

[5] M. Blaum and R. M. Roth, “New array codes for multiple phased burst
correction,” IEEE Trans. Information Theory, vol. 39, no. 1, pp. 66–77,
January 1993.

[6] M. Xiao, T. Aulin, and M. Médard, “Systematic binary deterministic
rateless codes,” in Proc. IEEE Int. Symp. Inf. Theory, Toronto, July
2008, pp. 2066–2070.

[7] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC regenerating code:
Binary addition and shift for exact repair,” in Proc. IEEE Int. Symp. Inf.
Theory, Istanbul, July 2013, pp. 1621–1625.

[8] S. T. Dougherty, J.-L. Kim, and H. Kulosman, “MDS codes over finite
principal ideal rings,” Des. Codes Cryptogr., vol. 50, pp. 77–92, 2009.

[9] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes. Elsevier science publishers, 1977.

[10] S. Jukna, Extremal combinatorics - with applications in computer
science, 2nd ed. Berlin: Springer-Verlag, 2011.

[11] A. W. Marshall and I. Olkin, “Theory of majorization and its applica-
tions,” Academic, New York, 1979.

[12] M. R. Murty, “Artin’s conjecture for primitive roots,” Math. Intelli-
gencer, vol. 10, no. 4, pp. 59–67, 1988.

[13] H. Cohen and G. Frey, Eds., Handbook of elliptic and hyperelliptic curve
cryptography. Chapman & Hall/CRC, 2006.

