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ABSTRACT

We propose preventive learning as the first framework to guarantee Deep Neural
Network (DNN) solution feasibility for optimization problems with linear con-
straints without post-processing, upon satisfying a mild condition on constraint
calibration. Without loss of generality, we focus on problems with only inequality
constraints. We systematically calibrate the inequality constraints used in train-
ing, thereby anticipating DNN prediction errors and ensuring the obtained solu-
tions remain feasible. We characterize the calibration rate and a critical DNN size,
based on which we can directly construct a DNN with provable solution feasibil-
ity guarantee. We further propose an Adversarial-Sample Aware training algo-
rithm to improve its optimality performance. We apply the framework to develop
DeepOPF+ for solving essential DC optimal power flow problems in grid oper-
ation. Simulation results over IEEE test cases show that it outperforms existing
strong DNN baselines in ensuring 100% feasibility and attaining consistent opti-
mality loss (<0.19%) and speedup (up to x228) in both light-load and heavy-load
regimes, as compared to a state-of-the-art solver. We also apply our framework to
anon-convex problem and show its performance advantage over existing schemes.

1 INTRODUCTION

Recently, there have been increasing interests in employing neural networks, including deep neural
networks (DNN), to solve constrained optimization problems in various problem domains, espe-
cially those needed to be solved repeatedly in real-time. The idea behind these machine learning
approaches is to leverage the universal approximation capability of DNNs (Hornik et al. |[1989;
Leshno et al., [1993)) to learn the mapping between the input parameters to the solution of an op-
timization problem. Then one can directly pass the input parameters through the trained DNN to
obtain a quality solution much faster than iterative solvers. For example, researchers have developed
DNN schemes to solve essential optimal power flow problems in grid operation with sub-percentage
optimality loss and several orders of magnitude speedup as compared to conventional solvers (Pan
et al., 2020azb; Donti et al., [2021} (Chatzos et al., [2020; [Lei et al., 2020). Similarly, DNN schemes
also obtain desirable results for real-time power control and beam-forming design (Sun et al., | 2018;
Xia et al.|[2019) problems in wireless communication in a fraction of time used by existing solvers.

Despite these promising results, however, a major criticism of DNN and machine learning schemes
is that they usually cannot guarantee the solution feasibility with respect to all the inequality and
equality constraints of the optimization problem (Zhao et al.,|2020; [Pan et al.,|2020b). This is due to
the inherent neural network prediction errors. Existing works address the feasibility concern mainly
by incorporating the constraints violation (e.g., a Lagrangian relaxation to compute constraint vi-
olation with Lagrangian multipliers) into the loss function to guide THE DNN training. These
endeavors, while generating great insights to the DNN design and working to some extent in case
studies, can not guarantee the solution feasibility without resorting to expensive post-processing
procedures, e.g., feeding the DNN solution as a warm start point into an iterative solver to obtain
a feasible solution. See Sec. [2| for more discussions. To date, it remains a largely open issue of
ensuring DNN solution (output of DNN) feasibility for constrained optimization problems.

In this paper, we address this challenge for general Optimization Problems with Linear (inequality)
Constraints (OPLC) with varying problem inputs and fixed objective/constraints parameters. Since
linear equality constraints can be exploited to reduce the number of decision variables without losing
optimality (and removed), it suffices to focus on problems with inequality constraints. Our idea is
to train DNN in a preventive manner to ensure the resulting solutions remain feasible even with
prediction errors, thus avoiding the need of post-processing. We make the following contributions:
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> After formulating OPLC in Sec. 3] we propose preventive learning as the first framework to
ensure the DNN solution feasibility for OPLC without post-processing in Sec. ] We systematically
calibrate inequality constraints used in DNN training, thereby anticipating prediction errors and
ensuring the resulting DNN solutions (outputs of the DNN) remain feasible.

> We characterize the calibration rate allowed in Sec. i.e., the rate of adjusting (reducing)
constraints limits that represents the room for (prediction) errors without violating constraints, and
a sufficient DNN size for ensuring DNN solution feasibility in Sec.[4.2] We then directly construct
a DNN with provably guaranteed solution feasibility.

> Observing the feasibility-guaranteed DNN may not achieve strong optimality result, in Sec. [4.3]
we propose an adversarial training algorithm, called Adversarial-Sample Aware algorithm to further
improve its optimality without sacrificing feasibility guarantee and derive its performance guarantee.

> We apply the framework to design a DNN scheme, DeepOPF+, to solve DC optimal power
flow (DC-OPF) problems in grid operation. Simulation results over IEEE 30/118/300-bus test cases
show that it outperforms existing strong DNN baselines in ensuring 100% feasibility and attaining
consistent optimality loss (<0.19%) and speedup (up to x228) in both light-load and heavy-load
regimes, as compared to a state-of-the-art solver. We also apply our framework to a non-convex
problem and show its performance advantage over existing schemes.

2 RELATED WORK

There have been active studies in employing machine learning models, including DNNS, to solve
constrained optimizations directly (Kotary et al.l 2021b; [Pan et al.| 20195 [2020bj |[Zhou et al.| 2022
Guha et al., 2019; Zamzam & Baker, [2020; Fioretto et al., [2020; [Dobbe et al., [2019; Sanseverino
et al., 2016} [Elmachtoub & Grigasl [2022} |Huang et al.l 2021} [Huang & Chenl [2021)), obtaining
close-to-optimal solution much faster than conventional iterative solvers. However, these schemes
usually cannot guarantee solution feasibility w.r.t. constraints due to inherent prediction errors.

Some existing works tackle the feasibility concern by incorporating the constraints violation in DNN
training (Pan et al. [2020a} [Donti et al.l 2021). In (Nellikkath & Chatzivasileiadis} 2021} |2022),
physics-informed neural networks are applied to predict solutions while incorporating the KKT con-
ditions of optimizations during training. These approaches, while attaining insightful performance
in case studies, do not provide solution feasibility guarantee and may resort to expensive projec-
tion procedure (Pan et al., 2020b) or post-processing equivalent projection layers (Amos & Kolter,
2017} Agrawal et all 2019) to recover feasibility. A gradient-based violation correction is proposed
in (Donti et al.| 2021)). Though a feasible solution can be recovered for linear constraints, it can be
computationally inefficient and may not converge for general optimizations. A DNN scheme apply-
ing gauge function that maps a point in an /; -norm unit ball to the (sub)-optimal solution is proposed
in (L1 et al.,2022). However, its feasibility enforcement is achieved from a computationally expen-
sive interior-point finder program. There is also a line of work (Ferrari, 2009; |jul Abdeen et al.,[2022;
Qin et al.} 2019; [Limanond & Si| [1998) focusing on verifying whether the output of a given DNN
satisfies a set of requirements/constraints. However, these approaches are only used for evaluation
and not capable of obtaining a DNN with feasibility-guarantee and strong optimality. To our best
knowledge, this work is the first to guarantee DNN solution feasibility without post-processing.

Some techniques used in our study (for constrained problems) are related to those for verifying DNN
accuracy against input perturbations for unconstrained classification (Sheikholeslami et al., |2020).
Our work also significantly differs from (Zhao et al., 2020) in we can provably guarantee DNN
solution feasibility for OPLC and develop a new learning algorithm to improve solution optimality.

3  OPTIMIZATION PROBLEMS WITH LINEAR CONSTRAINTS (OPLC)
We focus on the standard OPLC formulated as (Faisca et al., [2007):
min f(z,0) s.t. gj(z,0)= a?w + bf@ <ej, jeE, (1)
var. z, <z <Zp, k=1,...,N. 2)
x € RN are the decision variables, & is the set of inequality constraints, and 8 € D are the OPLC
inputs. Convex polytope D = {0 € RM|Ag0 < by, Ix : , hold} is specified by matrix Ag

and vector bg such that VO € D, OPLC in - admits a unique optimum/'| The OPLC objective
f is a general convex/non-convex function. For ease of presentation, we use g;(x,0) to denote

'Our approach is also applicable to non-unique solution and unbounded x. See Appendixfor a discussion.



Published as a conference paper at ICLR 2023

Calibration Analysis | | DNN Analysis | | DNN Training |
min Objective 1 3 i3
st. Constraint-1 Inequality Sufficient DNN Adversarial- Output of
" Constraint-2 Constraint = | size for Ensuring | = | Sample Aware | ™
Calibration Rate Feasibility Algorithm DNN-OE- Desirable
* M
Optimization Problems ‘ ,—| Opt{rnallty wnhgl{t DNN Optimality
with Linear Constraints A = er— llisining[Bats Sacrificing Feasibility Enhanced
(OPLC) (0 So7 N -FG by direct
o)}:"s‘f/ construction: Provable CSolution > GPLC with Origina
ERO0A Y | Universal Feasibility — Constraints
NV Guarantee D) OPLC with Calibrated Performance

Constraints Evaluation

Figure 1: Overview of the preventive learning framework to solve OPLC. The calibration rate is
first obtained. The sufficient DNN size in ensuring universal feasibility is then determined, and
a DNN model can be constructed directly with universal feasibility guarantee in this step. With
the determined calibration rate and sufficient DNN size, a DNN model with enhanced optimality
without sacrificing feasibility is obtained using the Adversarial-Sample Aware algorithm.

afw + bf@ﬂ We assume that each g;(x, 0) < e; is active for at least one combination of @ € D
and x satisfying @ without loss of generality (otherwise g; is unnecessary and can be removed). We
note that linear equality constraints can be exploited (and removed) to reduce the number of decision
variables without losing optimality as discussed in Appendix [B} it suffices to focus on OPLC with
inequality constraints as formulated in (I)-(2).

The OPLC in (T)-(2) has wide applications in various engineering domains, e.g., DC-OPF problems
in power systems (Pan et al.} [2019) and model-predictive control problems in control systems (Be-
mporad et al., 2000). While many numerical solvers, e.g., those based on interior-point methods (Ye
& Tse, [1989), can be applied to obtain its solution, the time complexity can be significant and lim-
its their practical applications especially considering the problem input uncertainty under various
scenarios. The observation that opens the door for DNN scheme development lies in that solving
OPLC is equivalent to learning the mapping from input 8 to optimal solution x*(0) (Pan et al.,
2020a; |Bemporad & Filippi, 2006). Thus, one can leverage the universal approximation capability
of DNNs (Hornik et al.,[1989;|Leshno et al.|[1993) to learn the input-solution mapping and apply the
trained DNN to obtain the optimal solution for any 8 € D with significantly lower time complexity.
See a concrete example in (Pan et al., 2020b). While DNN schemes achieve promising speedup
and optimality performance, a fundamental challenge lies in ensuring solution feasibility, which is
nontrivial due to inherent DNN prediction errors. In the following, we propose preventive learning
as the first framework to tackle this issue and design DNN schemes for solving OPLC in (I)-(2).

4 PREVENTIVE LEARNING FOR SOLVING OPLC

We propose a preventive learning framework to develop DNN schemes for solving OPLC in (I)-(2).
We calibrate inequality constraints used in DNN training, thereby anticipating prediction errors and
ensuring the resulting DNN solutions remain feasible. See Fig. [2|for illustrations.

First, in Sec. @ we determine the maximum calibration rate for inequality constraints, so that
solutions from a preventively-trained DNN using the calibrated constraints respect the original con-
straints for all possible inputs. Here we refer the output of the DNN as the DNN solution.

Second, in Sec.[d.2] we determine a sufficient DNN size so that with preventive learning there exists
a DNN whose worst-case violation on calibrated constraints is smaller than the maximum calibration
rate, thus ensuring DNN solution feasibility, i.e., DNN’s output always satisfies (I)-(2)) for any input.
We construct a provable feasibility-guaranteed DNN model, namely DNN-FG, as shown in Fig. [I]

Third, observing DNN-FG may not achieve strong optimality performance, in Sec. we propose
an adversarial Adversarial-Sample Aware training algorithm to further improve DNN’s optimality
without sacrificing feasibility guarantee, obtaining an optimality-enhanced DNN as shown in Fig. [T}

4.1 INEQUALITY CONSTRAINT CALIBRATION RATE
We calibrate each inequality limit g;(x, 0) < e;,j € & by a calibration rate n; > Oﬂ

. e (1—mn;), ife; > 0;
g;(x,0) < ¢ { i ( ;) J

3
e;j (1+mn;), otherwise. ®)

*Multiple scalars bf& j € & are correlated via 8. Studying varying a;, bj, e; is also a promising future work.

3For g; with e; = 0, one can add an auxiliary constant &; # 0 such that g; (¢, 8) + &; < & for the design and
formulation consistency. The choice of €; can be problem dependent. For example, in our simulation, €; is
set as the maximum slack bus generation for its lower bound limit in OPF discussed in Appendix@
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However, an inappropriate calibration rate
could lead to poor performance of DNN. If Infeasible region Infeasible region
one adjusts the limits too much, some input
6 € D will become infeasible under the cali-
brated constraints and hence lead to poor gen-
eralization of the preventively-trained DNN.
To this end, we solve the following bi-level
optimization to obtain the maximum calibra-
tion rate, such that the calibrated feasibility set
of x can still support the input region, i.e., the
OPLC in (I)-(2) with a reduced feasible set
has a solution for any 6 € D.

Default
feasible region

: ~-4

)
| Calibrated !
| feasible region !

_____________

: Default OPLC ground-truth : Calibrated OPLC ground-truth

’\, \) : DNN prediction error ’\, \,‘ : DNN prediction error

Figure 2: Left: solution of DNN trained with de-
fault OPLC ground-truth can be infeasible due to

3 (6]
6eD gl%z( v @ inevitable prediction errors. Right: solution of DNN
sit. trained with calibrated OPLC ground-truth ensures

. universal feasibility even with prediction errors.

v < (e —g;(0,))/lejl, Vi€ (5)
(I)-(2) enforce the feasibility of « for input @ € D. (§) represents the maximum element-wise least
redundancy among all constraints, i.e., the maximum constraint calibration rate. Therefore, solving
(@)-(3) gives the maximum allowed calibration rate for all inequality constraints and € D.

It is challenging to solve the above bi-level problem exactly. We apply the following procedure to
obtain a lower bound of its optimal objective in polynomial time. See Appendix [C|for details.

Step 1. Reformulate the bi-level problem (@)-(3) to an equivalent single-level one by replacing
the inner problem with its KKT conditions (Boyd & Vandenberghel 2004)).

Step 2. Transform the single-level optimization problem into a MILP by replacing the bi-
linear equality constraints (comes from the complementary slackness in KKT conditions) with
equivalent mixed-integer linear inequality constraints.

Step 3. Solve the MILP using the branch-and-bound algorithm (Lawler & Wood, |1966)). Let
the obtained objective value be A > 0 from the primal constraint (I)) and constraint (3).

Remark: (i) the branch-and-bound algorithm returns A (lower bound of the maximum calibration
rate v°*) with a polynomial time complexity of O((M + 4|&| 4+ 5N)?-3) (Vaidya, |1989), where M
and N are the dimensions of the input and decision variables, and |€| is the number of constraints.
(i1) A is a lower bound to the maximum calibration rate as the algorithm may not solve the MILP
exactly (by relaxing (some of) the integer variables). Such a lower bound still guarantees that the
input region is supported. (iii) If A = 0, reducing the feasibility set may lead to no feasible solution
for some inputs. (iv) If A > 0, we can obtain a DNN with provably solution feasibility guarantee as
shown in Sec. (v) After solving -@), we set each 7); in (3)) to be A, such uniform constraints
calibration forms the outer bound of the minimum supporting calibration region. See Appendix D]
for a discussion; (vi) we observe that the branch-and-bound algorithm can actually return the exact
optimal v°* in less than 20 mins for numerical examples studied in Sec. [6}

4.2 SUFFICIENT DNN SIZE FOR ENSURING FEASIBILITY

In this subsection, we first model DNN with ReLLU activations. Then, we introduce a method to
determine the sufficient DNN size for guaranteeing solution feasibility.

4.2.1 DNN MODEL REPRESENTATION.

We employ a DNN with Vy;q hidden layers (depth) and V,, neurons in each hidden layer (width),
using multi-layer feed-forward neural network structure with ReLU activation function to approxi-
mate the input-solution mapping for OPLC, which is defined as:

ho=0,h; =0 (W;h;_1+b;),i=1,..., Nyaq,
~ N 6
h:a(WohNhﬁbo—@Jrg,:i:—o—(@—h)+@. ©

6 is the DNN input and h; is the output of the i-th layer. W; and b; are the i-th layer’s weight matrix
and bias. o(z) = max(z,0) is the ReLU activation, taking element-wise max operation over the

input vector. h enforces output feasibility w.r.t. the lower bounds in (2)) while final output & further
satisfies upper bounds. Here we present the last two clamp-equivalent actions as (6) for further DNN
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analysis. To better include the DNN equations in our designed optimization to analysis DNN’s worst
case feasibility guarantee performance, we adopt the technique in (Tjeng et al.,|2018)) to reformulate
the ReLU activations expression in @ Fori = 1,..., Nygd, let h; denotes W;h;_1 + b;. The

output of neuron with ReLLU activation is represented as: fork = 1,..., Npey and i = 1, ..., Npig,
. R ik
hi < E < hi = PR = 2, (7)
0 < hf <BPFZE 2F e {0,1}. 8)

Here we use superscript k to denote the k-th element of a vector. z are (auxiliary) binary variables
indicating the state of the corresponding neuron, i.e., 1 (resp. 0) indicates activated (resp. non-

activated). We remark that given the value of DNN weights and bias, z¥ can be determined (2% can

be either 0/1 if ¥ = 0) for each input 8. R*** /h™™* are the upper/lower bound on the neuron
outputs. See Appendix [E.T|for a discussion. With (7)-(8), the input-output relationship in DNN can
be represented with a set of mixed-integer linear inequalities. We discuss how to employ (7)-(8) to
determine the sufficient DNN size in guaranteeing universal feasibility in Sec.[d.2.2] For ease of
representation, we use (W, b) to denote DNN weights and bias in the following.

4.2.2 SUFFICIENT DNN SIZE IN GUARANTEEING UNIVERSAL FEASIBILITY.

As a methodological contribution, we propose an iterative approach to determine the sufficient DNN
size for guaranteeing universal solution feasibility in the input region. The idea is to iteratively verify
whether the worst-case prediction error of the given DNN is within the room of error (maximum
calibration rate), and doubles the DNN’s width (with fixed depth) if not. We outline the design of
the proposed approach below, under the setting where all hidden layers share the same width. Let the
depth and (initial) width of the DNN model be Npig and Ny, respectively. Here we define universal
solution feasibility as that for any input @ € D, the output of DNN always satisfies (I)-(2).

For each iteration, the proposed approach first evaluates the least maximum relative violations among
all constraints for all @ € D for the current DNN model via solving the following bi-level program:

minmax v/, st @)~ {150 < Mg, 1 SE S Now, ©

vl =max{(g;(0,%) — ¢;)/le;|}, (10)
JeEE

where @)— express the outcome of the DNN as a function of input 8. ¥ is maximum constraints
violation degree among all constraints. Thus, solving (9)-(I0) gives the least maximum DNN con-
straint violation over the input region D. We apply gradient descent to solve the above bi-level
optimization problem, see Appendix [E] for details. Let p be the obtained objective value of (9)-(10)
and (W/ bf) be the corresponding DNN parameters, with which we can directly construct a DNN
model. Recall that the determined calibration rate is A, the proposed approach then verifies whether
the constructed DNN is sufficient for guaranteeing feasibility by the following proposition.

Proposition 1 Consider the DNN with Ny;4 hidden layers each having N, neurons and parameters
(W7 bh). If p < A, then ¥ € D, the solution generated by this DNN is feasible w.r.t —.

The proof is shown in Appendix [F} Proposition [I] states that if p < A, the worst-case prediction
error of current DNN model is within the maximum calibration rate and hence the current DNN
size is sufficient for guaranteeing universal feasibility; otherwise, it doubles the width of DNN and
moves to the next iteration. Recall that the input-solution mapping for OPLC is continuous. Hence,
there exists a DNN such that universal feasibility of DNN solution is guaranteed given the DNN
size (width) is sufficiently large according to the universal approximation theorem (Hornik, |1991).
See Appendix @ for the discussionE] Details of the procedures are shown in Algorithm |1} After
the initialization of DNN model (line 3-4), the proposed approach repeatedly compare the obtained
maximum constraints violation (p) with the calibration rate (A), doubles the DNN width (line 5-7),
and return the width as IV, until p < A. Thus, we can construct a provable feasibility-guaranteed
DNN model by the proposed approach, namely DNN-FG as shown in Fig.

We remark that it is challenging to solve the bi-level problem (9)-(I0) exactly, i.e., the obtained p is
an upper bound of the optimal objective of (O)-(I0) in each iteration. Nevertheless, as discussed in
the following proposition, the upper bound is still useful for analyzing universal solution feasibility.

*One can also increase the DNN depth to achieve universal approximation for more degree of freedom in DNN
parameters. In this work, we focus on increasing the DNN width for sufficient DNN learning ability.
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Algorithm 1: Determining Sufficient DNN Size
1: Input: A; Initial width Ninit

neu

2: Output: Determined DNN width: Ny,

3: Sett = 0; Set N}, = N1 Obtain p via solving @])-

4: while p > A do

5. Set Nitl =2 x Nf; Sett =t + 1; Solve (9)-(10) and update p
6: end while

7: Set N, = Nt

8:

Return: NV*

neu

Proposition 2 Assume A > 0, Algorithm([l|is guaranteed to terminate in a finite number of iter-
ations. At each iteration t, consider the DNN with Ny, hidden layers each having N},, neurons,
we can obtain p as an upper bound to the optimal objective of (9)-(I0) with a time complexity
O((M + |E] 4+ 2NpigNL,, +4N)25). If p < A, then the DNN with depth Ny and width N}, is suf-
ficient in guaranteeing universal feasibility. Furthermore, one can construct a feasibility-guaranteed
DNN with the obtained DNN parameters (W7, bf) such that for any 6 € D, the solution generated

by this DNN is feasible w.r.t. ({I)-(2).

Proposition [2]indicates p can be obtained in polynomial time. If p < A, it means the current DNN
size is sufficient to preserve universal solution feasibility in the input region; otherwise, it means the
current DNN size may not be sufficient for the purpose and it needs to double the DNN width.

We also remark that the obtained sufficient DNN size may not be the minimal sufficient one if the
above bi-level optimization problem is not solved exactly. Please refer to Appendix [H]for detailed
discussions. In our case study in Sec.[6] we observe that the evaluated initial DNN size can always
guarantee universal feasibility without constraints violation, and we hence conduct further simula-
tions with such determined sufficient DNN sizes.

4.3 ADVERSARIAL-SAMPLE AWARE ALGORITHM

While we can directly construct a feasibility-guaranteed DNN (without training) as shown in Propo-
sition 2] it may not achieve strong optimality performance. To this end, we propose an Adversarial-
Sample Aware (ASA) algorithm to further improve the optimality performance. The algorithm lever-
ages the ideas of adversarial learning (Chakraborty et al., 2018) and active learning (Ren et al.,
2021) techniques, which adaptively incorporates adversarial inputs, i.e., the inputs that cause in-
feasible DNN solutions, for pursuing strong optimality result while preserving universal feasibility
guarantee. We outline the algorithm in the following. Denote the initial training set as 7, contain-
ing randomly-generated input and the corresponding ground-truth obtained by solving the calibrated
OPLC (with calibration rate A). The proposed ASA algorithm first pre-trains a DNN model with the
sufficient size determined by the approach discussed in Sec. using the initial training set 7°

and the following loss function £ for each instance as the supervised learning approach:
w

w

L= Wl||oz—w*|\§+ﬁzmax@j(:e,e)—éj,o» (11)
JjeE

We leverage the penalty-based training idea in (IT)). The first term is the mean square error between

DNN prediction & and the ground-truth * provided by the solver for each input. The second term

is the inequality constraints violation w.r.t calibrated limits é;. w; and wo are positive weighting

factors to balance prediction error and penalty. Hence, training DNN by minimizing (TT) can pursue

a strong optimality performance as DNN prediction error is also minimized.

However, traditional penalty-based training by only minimizing can not guarantee universal fea-
sibility (Venzke et al.| [2020; [Pan et al.| 2020b). To address this issue, the ASA algorithm repeatedly
updates the DNN model with adversarial samples, anticipating the post-trained DNNs can eliminate
violations around such inputs. Specifically, given current DNN parameters, it finds the worst-case
input @° € D by solving the inner maximization problem of @)-. Let v be the obtained objec-
tive value. Recall that the calibration rate is A. If v < A, the algorithm terminates; otherwise, it
incorporates a subset of samples randomly sampled around 8% and solves the calibrated OPLC with
A, and starts a new round of training. Details of the ASA algorithm are shown in Appendix [ We
highlight the difference between the DNN obtained in Sec.[4.2.2]and that from ASA algorithm as fol-
lows. The former is directly constructed via solving (9)-(I0), which guarantees universal feasibility
whilst without considering optimality. In contrast, the latter is expected to enhance optimality while
preserving universal feasibility as both optimality and feasibility are considered during training. We
further provide theoretical guarantee of it in ensuring universal feasibility in the following.
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Proposition 3 Consider a DNN model with Ny, hidden layers each having N, neurons. For

each iteration 1, assume such a DNN trained with the ASA algorithm can maintain feasibility at the
constructed neighborhood DY = {60]67 - (1 —a) < 0 < 67 - (1 + a),0 € D} around 6 with some
small constant a > 0 for Vj < 1. There exists a constant C such that the algorithm is guaranteed to
ensure universal feasibility as the number of iterations is larger than C.

The proof idea is shown in Appendix [J] Proposition [3] indicates that, with the iterations is large
enough, the ASA algorithm can ensure universal feasibility by progressively improving the DNN
performance around each region around worst-case input. It provides a theoretical understanding of
the justifiability of the ASA algorithm. In practice, we can terminate the ASA algorithm whenever the
maximum solution violation is smaller than the inequality calibration rate, which implies universal
feasibility guarantee. We note that the feasibility enforcement in the empirical/heuristic algorithm
achieves strong theoretical grounding while its performance can be affected by the training method
chosen. Nevertheless, as observed in the case study in Appendix [M| the ASA algorithm terminates
in at most 52 iterations with 7% calibration rate, showing its efficiency in practical application.

5 PERFORMANCE ANALYSIS OF THE PREVENTIVE LEARNING FRAMEWORK
5.1 UNIVERSAL FEASIBILITY GUARANTEE

We provide the following proposition showing that the preventive learning framework generates two
DNN models with universal feasibility guarantees.

Proposition 4 Let A, p, and =y be the determined maximum calibration rate, the obtained objective
value of (9)-(10) to determine the sufficient DNN size, and the obtained maximum relative violation
of the trained DNN from Adversarial-Sample Aware algorithm following steps in preventive frame-
work, respectively. Assume (i) A > 0, (ii) p < A, and (iii) v < A. The DNN-FG obtained from
determining sufficient DNN size can provably guarantee universal feasibility and the DNN from ASA
algorithm further improves optimality without sacrificing feasibility guarantee Y0 € D.
Proposition [ indicates the DNN model obtained by preventive learning framework is expected to
guarantee the universal solution feasibility, which is verified by simulations in Sec. [6]

5.2 RUN-TIME COMPLEXITY

We present the complexity of the traditional method in solving the optimization problems with linear
constraints. To the best of our knowledge, OPLC in its most general form is NP-hard cannot be
solved in polynomial tie unless P=NP. To better deliver the results here, we consider the specific case
of OPLC, namely the mp-QP problem, with linear constraints and quadratic objective function. We
remark that the complexity of solving mp-QP provides a lower bower for the general OPLC problem.
Under this setting, the DNN based framework has a complexity of O (N 2) whilst the best known

iterative algorithm (Ye & Tse, |1989) requires O (N 4 1E|M ) This means that the computational
complexity of the proposed framework is lower than that of traditional algorithms. The comparison
results demonstrate the efficiency of the preventive learning framework. See Appendix [K]for details.

5.3 TRADE-OFF BETWEEN FEASIBILITY AND OPTIMALITY

We remark that to guarantee universal feasibility, the preventive learning framework shrinks the
feasible region used in preparing training data. Therefore, the DNN solution may incur a larger
optimality loss due to the (sub)-optimal training data. It indicates a trade-off between optimality
and feasibility, i.e., larger calibration rate leads to better feasibility but worse optimality. To fur-
ther enhance DNN optimality performance, one can choose a smaller calibration rate than A while
enlarging DNN size for better approximation ability and hence achieve satisfactory optimality and
guarantee universal feasibility simultaneously.

6 APPLICATION IN SOLVING DC-OPF AND NON-CONVEX OPTIMIZATION

6.1 DC-OPF PROBLEM AND DEEPOPF+

DC-OPF is a fundamental problem for modern grid operation. It aims to determine the least-cost
generator output to meet the load in a power network subject to physical and operational constraints.
With the penetration of renewables and flexible load, the system operators need to handle significant
uncertainty in load input during daily operation. They need to solve DC-OPF problem under many
scenarios more frequently and quickly in a short interval, e.g., 1000 scenarios in 5 minutes, to obtain
a stochastically optimized solution for stable and economical operations. However, iterative solvers
may fail to solve a large number of DC-OPF problems for large-scale power networks fast enough
for the purpose. Although recent DNN-based schemes obtain close-to-optimal solution much faster
than conventional methods, they do not guarantee solution feasibility. We design DeepOPF+ by em-
ploying the preventive learning framework to tackle this issue. Consider the DC-OPF formulation:
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I:I,gin(b ci (Pai) st. PE™ < P < PE* M- ® = Pg — Pp, —Pi®™ < Bine - ® < P, (12)
T ieg

P(’;“i“ € RIBI (resp. PZ'®) and Pa* ¢ RIKI are the minimum (resp. maximum) generation
limits of generatorsﬂ and branch flow limits of the set of transmission lines denoted as IC. G, B,
M, Bijjpe, and ®© € RIBI denote the set of generators, buses, bus admittance matrix, line admittance
matrix, and bus phase angles, respectively. The objective is the total generation cost and ¢; (-) is
the cost function of each generator, which is usually strictly quadratic (Park et al.l [1993; [tpc), [2018])
from generator’s heat rate curve. Constraints in enforce nodal power balance equations and the
limits on active power generation and branch flow. DC-OPF is hence a quadratic programming and
admits a unique optimal solution w.r.t. load input Pp. Analogy to OPLC -, Y icg Ci (Pai) is
the objective function f in . Pp is the problem input  and (Pg, ®) are the decision variables x.

We apply the proposed preventive-learning framework to design a DNN scheme, named Deep-
OPF+, for solving DC-OPF problems. We refer interested readers to Appendix [L|for details. De-
note A, p, and  as the obtained maximum calibration rate, the obtained objective value of (9)-

to determine sufficient DNN size, and the maximum relative violation of the trained DNN from
Adversarial-Sample Aware algorithm in DeepOPF+ design, respectively. We highlight the feasi-
bility guarantee and computational efficiency of DeepOPF+ in following proposition.

Corollary 1 Consider the DC-OPF problem and DNN model defined in ((6). Assume (i) A > 0, (ii)
p < A, and (iii) v < A, then the DeepOPF+ generates a DNN guarantees universal feasibility
for any Pp € D. Suppose the DNN width is the same order of number of bus B, then DeepOPF+
has a smaller computational complexity of O (BQ) compared with that of state-of-the-art iterative

methods O (B4), where B is the number of buses.

Corollary [I| says that DeepOPF+ can solve DC-OPF with universal feasibility guarantee at lower
computational complexity compared to conventional iterative solversE] as DNNs with width O(B)
can achieve desirable feasibility/optimality. Such an assumption is validated in existing literature
(Pan et al.,2019) and our simulation. To our best knowledge, DeepOPF+ is the first DNN scheme
to solve DC-OPF with solution feasibility guarantee without post-processing. We remark that the
DeepOPF+ design can be easily generalized to other linearized OPF models (Cain et al., [2012;
Yang et al., 2018; Bolognani & Dorfler, 2015)) .

6.2 PERFORMANCE EVALUATION OVER IEEE TEST CASES

We evaluate its performance over IEEE 30-/118-/300- bus test cases (tpc, [2018)) on the input load
region of [100%, 130%] of the default load covering both the light-load ([100%, 115%]) and heavy-
load ([115%, 130%)]) regimes, respectively. We conduct simulations in CentOS 7.6 with a quad-core
(i7-3770@3.40G Hz) CPU and 16GB RAM. We compare DeepOPF+ with five baselines on the
same training/test setting: (i) Pypower: the conventional iterative OPF solver; (ii) DNN-P: A DNN
scheme adapted from (Pan et al.,2019). It learns the load-solution mapping using penalty approach
without constraints calibration and incorporates a projection post processing if the DNN solution is
infeasible; (iii) DNN-D: A penalty-based DNN scheme adapted from (Donti et al., 2021)). It includes
a correction step for infeasible solutions in training/testing; (iv) DNN-W: A hybrid method adapted
from (Dong et al., 2020a). It trains a DNN to predict the primal and dual variables as the warm-
start points to the conventional solver; (v) DNN-G: A gauge-function based DNN scheme adapted
from (Li et al) [2022). It enforces solution feasibility by first solving a linear program to find a
feasible interior point, and then constructing the mapping between DNN prediction in an /., unit
ball and the optimum. For better evaluation, we implement two DeepOPF+ schemes with different
DNN sizes and calibration rate (3%, 7%) that are all within the maximum allowable one, namely
DeepOPF+-3, and DeepOPF+-7. The detailed designs/results are presented in Appendix

We use the following performance metrics: (i) the percentage of the feasible solution obtained by
DNN, (ii) the average relative optimality difference between the objective values obtained by DNN
and Pypower, (iii) the average speedup, i.e., the average running-time ratios of Pypower to DNN-

*Pg, = P&™ = P =0,Vi ¢ G,and Pp, = 0,Vi ¢ A, where A denotes the set of load buses.

%We remark that the training of DNN is conducted offline; thus, its complexity is minor as amortized over many
DC-OPF instances, e.g., 1000 scenarios per 5 mins. Meanwhile, the extra cost to solve the new-introduced
programs in our design is also minor observing that existing solvers like Gurobi can solve the problems effi-
ciently, e.g., <20 minutes to solve th MILPs to determine calibration rate and DNN size. Thus, we consider
the run-time complexity of the DNN scheme, which is widely used in existing studies.
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Table 1: Performance comparison with SOTA DNN schemes in light-load and heavy-load regimes.

Case Scheme Average speedups Feasibility rate (%) Optimality loss (%) Worst-case violation (%)
light-Ioad | heavy-load | Tight-Ioad | heavy-load | light-load | heavy-load | light-Ioad | heavy-load

DNN-P %85 x 86 100 88.12 0.02 0.03 0 5.43

DNN-D x85 x84 100 93.36 0.02 0.03 0 I1.19
Case30 DNN-W x0.90 x0.86 100 100 0 0 0 0
DNN-G x24 %26 100 100 0.13 0.04 0 0
DeepOPF+-3 % 86 %x92 100 100 0.03 0.04 0 0
DeepOPF+-7 %86 x93 100 100 0.03 0.09 0 0

DNN-P x 137 x 125 68.84 54.92 0.17 0.21 19.5 44.8

DNN-D x 138 x 124 73.42 55.37 0.20 0.24 16.6 43.1
Casell8 DNN-W x2.08 x2.26 100 100 0 0 0 0
DNN-G %26 x16 100 100 1.29 0.39 0 0
DeepOPF+-3 x201 x226 100 100 0.18 0.19 0 0
DeepOPF+-7 %202 X228 100 100 0.37 0.41 0 0

DNN-P x115 x98 91.29 78.42 0.06 0.08 261.1 443.0

DNN-D x 115 x 102 91.99 82.92 0.07 0.07 231.6 348.1
Case300 DNN-W x 1.04 x1.08 100 100 0 0 0 0
DNN-G x2.44 %x2.65 100 100 0.32 0.06 0 0
DeepOPF+-3 x129 x136 100 100 0.03 0.03 0 0
DeepOPF+-7 x 130 x 138 100 100 0.10 0.06 0 0

Feasibility rate and Worst-case violation are the results before post-processing. Feasibility rates (resp Worst-case violation) after post-
processing are 100% (resp 0) for all DNN schemes. We hence report the results before post-processing to better show the advantage of
our design. Speedup and Optimality loss are the results after post-processing of the final obtained feasible solutions.

The correction step in DNN-D (with 102 rate) takes longer time compared with {1 -projection in DNN-P, resulting in lower speedups.
We empirically observe that DNN-G requires more training epochs for satisfactory performance. We report its best results at 500 epochs
for Case118/300 in heavy-load and the results at 400 epochs for the other cases. The training epochs for the other DNN schemes are 200.

based approach for the test instances, respectively. (iv) the worst-case violation rate, i.e., the largest
constraints violation rate of DNN solutions in the entire load domain.

6.2.1 PERFORMANCE COMPARISONS BETWEEN DEEPOPF+ AND EXISTING DNN SCHEMES.

The results are shown in Table [l with the following observations. First, DeepOPF+ improves over
DNN-P/DNN-D in that it achieves consistent speedups in both light-load and heavy-load regimes.
DNN-P/DNN-D achieves a lower speedup in the heavy-load regime than in the light-load regime as
a large percentage of its solutions are infeasible, and it needs to involve a post-processing procedure
to recover the feasible solutions. Note that though DNN-P/DNN-D may perform well on the test set
in light-load regime with a higher feasibility rate, its worst-case performance over the entire input
domain can be significant, e.g., more than 443% constraints violation for Case300 in the heavy-load
region. In contrast, DeepOPF+ guarantees solution feasibility in both light-load and heavy-load
regimes, eliminating the need for post-processing and hence achieving consistent speedups. Sec-
ond, though the warm-start/interior point based scheme DNN-W/DNN-G ensures the feasibility
of obtained solutions, they suffer low speedups/large optimality loss. As compared, DeepOPF+
achieves noticeably better speedups as avoiding the iterations in conventional solvers. Third, the op-
timality loss of DeepOPF+ is minor and comparable with these of the existing state-of-the-art DNN
schemes, indicating the effectiveness of the proposed Adversarial-Sample Aware training algorithm.
Fourth, we observe that the optimality loss of DeepOPF+ increases with a larger calibration rate,
which is consistent with the trade-off between optimality and calibration rate discussed in Sec.

We remark that DC-OPF is an approximation to the original non-convex non-linear AC-OPF in
power grid operation under several simplifications. DC-OPF is widely used for its convexity and
scalability. Expanding the work to AC-OPF is a promising future work as discussed in Appendix [B]

Moreover, we apply our framework to a non-convex problem in (Donti et al.| [2021) and show its
performance advantage over existing schemes. Detailed design/results are shown in Appendix [N]

7 CONCLUDING REMARKS

We propose preventive learning as the first framework to develop DNN schemes to solve OPLC with
solution feasibility guarantee. Given a sufficiently large DNN, we calibrate inequality constraints
used in training, thereby anticipating DNN prediction errors and ensuring the obtained solutions
remain feasible. We propose an Adversarial-Sample Aware training algorithm to improve DNN’s
optimality. We apply the framework to develop DeepOPF+ to solve and DC-OPF problems in grid
operation. Simulations show that it outperforms existing strong DNN baselines in ensuring feasibil-
ity and attaining consistent optimality loss and speedup in both light-load and heavy-load regimes.
We also apply our framework to a non-convex problem and show its performance advantage over
existing schemes. We remark that the proposed scheme can work for large-scale systems because of
the desirable scalability of DNN. Future directions include extending the framework to general non-
linear constrained optimization problems like ACOPF and evaluating its performance over systems
with several thousand buses and realistic loads as discussed in Appendix
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Supplementary Material

A ANALYTICAL FORMULATION OF D, UNIQUENESS OF THE OPLC
SOLUTION, AND UNBOUNDED VARIABLE

Set D is of problem dependent. For example, in DC-OPF problems, D represents the interested
load input domain which is set by the system operator, e.g., feasible load within [100%, 130%] of
the default load. For others applications, D represents region of possible feasible problem inputs.
Calculating the analytical representation of the feasible region of € is known as projection of a
polyhedral set to lower dimension subspace. That is, D can be analytically obtained by projecting

the following set

P ={(0,x)|Ag0 < by, and, hold}
onto the subspace of 6, which is still a convex polytope. The goal can be achieve using the
Fourier—Motzkin elimination technique. Nevertheless, in our design, we do not need to access the
full analytical formulation of D. Instead, we introduce a set of auxiliary variable X associated with
each 6. That is, the constraint 6 € D is indeed represented as {Ag0 < bg, g;(X,0) < e;,Vj € £}.

A.1 UNIQUENESS OF THE OPLC SOLUTION

We would like to further discuss the assumption of the uniqueness of the OPLC solution. First,
many OPLC are unique given their objective functions are strictly convex. Such a condition holds
for DC-OPF problems in power systems (Pan et al.| |2019) and model-predictive control problems in
control systems (Bemporad et al., [2000). As proved in (Pan et al.,2020a), if the optimal solution is
unique, the input-solution mapping is continuous while the DNN function is also continuous, which
forms the underlying reason why DNN can be applied to learning such a mapping from the Universal
Approximation Theorem of DNN for continuous functions.

We would like to further discuss the situation if the optimal solution is not unique, which is an open
problem and the challenge of the existing end-to-end DNN design.

Given a OPLC that admits multiple optimal solutions for the input, there indeed does not exist
an injective mapping between input to solution, i.e., there exist multiple input-solution mappings.
Consider the DNN training in this case, if the ground-truth training data are from different input-
solution mappings, the DNN could present unsatisfactory performance as solutions to closely related
instances may exhibit large differences and the learning task can become inherently more difficult
(Kotary et al., 202 1a;[Huang & Chenl [2021; [Pan et al.| |2023). Nevertheless, our approach is still ap-
plicable to such a scenario as the first obtained DNN-FG after determining the sufficient DNN size
can still guarantee universal feasibility. As introduced in Sec. [A.I]and Sec. 2] deriving the cali-
bration rate and determining the sufficient DNN size is only related to the OPLC constraints. These
steps only require obtaining one of the continuous feasible mappings but not optimality. Towards
the Adversarial-Sample Aware algorithm, it is straightforward to adopt the approaches in (Kotary
et al.,2021aj;Huang & Chenl [2021}; [Pan et al.|[2023)) by improving the training data quality, applying
the unsupervised learning idea, or learning the high-dimensional input+initial point to optimal solu-
tion mapping, which we leave for future work. Finally, the simulations on non-convex optimization
(can have non-unique optimum) in Appendix [N|show that the ASA algorithm can still work well,
showing the robustness of the design.

A.2 UNBOUNDED DECISION VARIABLES

There are two approaches to handle the unbounded variables: 1) setting z; or Z; to be some arbitrar-
ily small/large numbers. 2) only includes the bounded constraints into (4)-(5) and (6), e.g., for the
variables 1) without lower bound, the DNN output is &; = —0 (&; — (Wohn,, + bo):) + &i; 2)
without upper bound &; = h;; 3) without both upper and lower bound, &; = (Wohn,, + bo)i-

B HANDLING EQUALITY AND NON-LINEAR CONSTRAINTS

We remark that for general OPLC and other constrained optimizations, we can always removing
the equality constraints explicitly/implicitly. Given N + p variables and p (linear) equality con-
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straints, we can remove these equalities and representing p variables by the remaining N variables
using the equality constraints, e.g., applying the coefficient matrix inversion as discussed in Ap-
pendix |Lj without losing optimality. We thus focus on OPLC with inequality constraints only. The
similar predict-and-reconstruct idea is proposed in (Pan et al.|[2019; Donti et al.,|2021). In addition,
we note that the proposed preventive leaning framework is also applicable to non-linear inequality
constraints, e.g., AC-OPF problems with several thousand buses, but with additional computational
challenges in solving the related programs corresponding to the required steps. We leave the appli-
cation to optimization with non-linear constraints and non-convex objective with large DNN size for
future study.

In this work, we consider the variation of the RHS of the linear inequality constraints. It is also inter-
esting to study the varying a;, b;, e;. We believe our approach is still applicable to such a case while
may have additional computational challenges as the problem turn to be non-linearly constrained.
Nevertheless, it is also great interest to study problems whose parameters are not varying. For ex-
ample, in DC-OPF, a;, b;, e; are determined by power network topology, which will not change
significantly over a long time scale, e.g., months to years. Hence, it is reasonable and practical to
study OPLC with varying inputs only.

C MIXED-INTEGER REFORMULATION OF BI-LEVEL LINEAR PROGRAMS

Consider the following the linear constrained bi-level min-max problem:

r%in max clfx (13)
st. Ax < b+ F60, (14)
0 c D, (15)

where A € RP*N b e RP, F € RP*M,

The above linear constrained bi-level program can be reformulated by replacing the inner maxi-
mization problem by its sufficient and necessary KKT conditions (Boyd & Vandenberghel [2004).
We present the reformulated program in the following:

T

min ¢’ x (16)
0.,y

s.t. Ax < b+ F0, 17

ATy =¢, (18)

y; >0,i=1,...,p, (19)

yi(aFz —b;, — fF0)=0,i=1,...,p, (20)

0cD. 21

Here a; and f; denote the i-th row of matrix A and F respectively. We remark that the non-linear
Complementary Slackness condition in (20) can be reformulated to be mixed-integer linear using the
Fortuny-Amat McCarl linearization (Fortuny-Amat & McCarl, [1981)):

Yy < (1—r;)C, a?m —b; — flTB > —r;C. (22)

Here the non-linear complementary slackness conditions are reformulated with the binary variable
r; and the large non-binding constant C' for each i = 1, ..., p. Therefore, problem (I6)-(ZI) can be
reformulated to be the mixed-integer linear program (MILP).

We remark that if »¥* = 0, implying that the system is too binding, e.g., for DC-OPF problem,
some line/generator must always be at its capacity upper bound. Such a restrictive condition seldom
happen in practice for the power system safety operation. Under such a scenario, one can consider a
smaller input region D such that the input is not so extreme and there could always exist an interior
for the input region.

D MINIMUM SUPPORTING CALIBRATION REGION

We remark that the obtained uniform calibration rate on each constraints forms the outer bound of
the minimum supporting calibration region defined as follows:
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Definition 1 The minimum supporting calibration region is defined as the set of calibration rate
{n;}jee and for each 0 € D, there exist an x such that (2)) and (3) hold. Meanwhile, there exist a
0 € D and there does not exist an x such that (2) and (3) hold under {n; + 6;};ce for any 6; > 0
and at least one 0; > 0.

The minimum supporting calibration region describes the set of maximum calibration rate such that
1) the input parameter region is maintained, and 2) any further calibration on the constraints will
lead some input to be infeasible. We remark that such minimum supporting calibration region is not
unique. See the following example and the approach to obtain (one of) such minimum supporting
calibration region.

We first provide a toy example to demonstrate the non-uniqueness of the minimum supporting cali-
bration region defined in Def. [I] Consider the following modified network flow problem:

min  z? + 23 + x% (23)
s.t. 0< 21 <90, (24)
0 < zy <90, (25)
3 < 70, (26)
z1 + 22 < 90, 27
To + x3 < 90, (28)
T+ To+ 23 =1. 29)

Here [ is the input load within [0, 100] and x1, 2, and x5 can be seen as the network flow on the
edges. Similar to the analysis in Sec. the constraints (26)-(28) can be calibrated by at most
37.5% uniformly. However, such a calibration region is not the minimum one while forms the outer
bound of it. Denote the calibration rate on (26)-(28) as (z, y, 2), it is easy to see that any combination
such that 7x 4+ 9y = 6 and z = 8/9 — y is the minimum supporting one.

We further provide the follow procedures to determine (one of) the minimum supporting region.

* Step 1. Solve (@)-(5) to obtain the uniform maximum calibration rate A. Let k = 1.
* Step 2. For constraint gi, solve

min max M (30)
6cD =« |€j|
st (2)

where é, = e X (1¢,>0(1 — A) + L¢, <0(1 + A)). Denote the optimal value of -
as dy, which represent the maximum additional individual calibration rate of constraint g
considering all other constraints’ calibrations.

* Update é;, tobe e, X (1¢,>0(1 — A —6) + Le,<0(1 + A + d5)) and proceed to the next
iteration k + 1. Go to Step 2.

We remark that after each update of éj, the next g, is studied on a tighter region described by
{é;,5 = 1,...,k}. After solving the programs for each g, one can easily see that the calibration
region {A + §;} ;¢ is the minimum supporting calibration region.

In this work, we consider the uniform calibration rate A for further analysis. We remark that the
uniform calibration method may introduce the asymmetry on the calibration rate as large limit would
have large calibration rate. An alternative approach is to set the individual calibration rate 7); for each
constraint while maintain the supported input region as discussed above. However, the choice of
such individual calibration rates is not unique due to the non-uniqueness of the minimum supporting
calibration region. We leave the analysis of such individual constraints calibration for future study.

E DETAILS OF APPLYING Danskin’s Theorem TO THE BI-LEVEL PROBLEM TO
DETERMINE THE SUFFICIENT DNN SIZE

We provide the details of applying Danskin’s Theorem to solve the bi-level mined-integer non-linear

problem (9)-(10).
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To solve such bi-level optimization problem, we optimize the upper-level variables (W, b) by gra-
dient descent. This would simply involve repeatedly computing the gradient w.r.t. (W, b) for the
object function, and taking a step in this negative direction. That is, we want to repeat the update

W= W — o Vy(maxv! (W, b, 0)), (32)

b=b—-a«a- Vb(mgx v/ (W,b,0)). (33)

Here maxg v/ (W, b, 8) denotes the maximum violation among the calibrated inequality constraints
within the entire inputs domain D, given the specific value of DNN parameters (W, b). Note that
the inner function itself contains a maximization problem. We apply the Danskin’s Theorem to
compute the gradient of the inner term. It states that the gradient of the inner function involving
the maximization term is simply given by the gradient of the function evaluated at this maximum.
In other words, to compute the (sub)gradient of a function containing a max(-) term, we need to
simply: 1) find the maximum, and 2) compute the normal gradient evaluated at this point (Dong
et al.,[2020b; Danskin, |2012). Hence, the relevant gradient is given by

Vw(mgmxyf(W, b,0)) = Vwv/ (W,b,0%), (34)
Vi (max v/ (W,b,0)) = V! (W, b, 0%), (35)

where
0" = arg max v/ (W,b,0). (36)

Here the optimal 8* depends on the choice of DNN parameters (W, b). Therefore, at each iterative
update of (W, b), we need to solve the inner maximization problem once. Note that the optimal 8*
may not be unique. However, the gradient of ¥ (W b, 8*) w.r.t. (W, b) can still be obtained given
a specific 8*, which is (one of the) gradient that optimizes the deep neural network. We remark
that such approach is indeed widely adopted in existing literature (Dong et al.| |2020b; Danskin,
2012). In addition, though the involved program is a mixed-integer linear problem, we observe
that the solver can indeed provide its optimum efficiently, e.g., <20 mins for Case300 in DC-OPF
problem in simulation. Nevertheless, we remark that finding a (sub-optimal) feasible solution for
the inner maximization problem can be easily obtained by a heuristic trial of some particular 8,
e.g., the worst-case input at the previous round as the initial point and the associate integer values
in the DNN constraints (7)-(8), which are fixed given the specification of DNN parameters. Such a
solution can still be utilized for the further steps to calculate the sub-gradient of the DNN. One can
see the analogy between it and DNN training with stochastic gradient decent method.

In addition, note that to obtain the upper bound p, we do not need to access any feasible point of
the inner maximization problem. The upper bound is provided by the relaxation in the branch-and-
bound algorithm, e.g., relax (some) integer variables to continuous. This can be efficiently obtained
by the solvers, e.g., APOPT or Gurobi. Such an upper bound is applied to verify whether universal
feasibility guarantee is obtained and whether the DNN size is sufficient.

max,k/hmin,k
i i

E.1 DETERMINING THE VALUES OF h

B4R IR are constants and fixed during solving the (inner) MILP in optimization @)-
(TI0) (Tjeng et al., 2018). These numbers represent the maximum/minimum bounds on the values of
the neuron outputs, which should be large/small enough numbers to let the DNN constraints not be
binding in the reformulation (7)-(8). In our design, we follow the technique in (Venzke et al., 2020)
to obtain such (tighter) upper/lower bounds for each updated (W, b). In particular, we minimize
and maximize the output of each neuron subject to the linear relaxation of the binary variables (to
be continuous within 0 and 1) in the DNN constraints with parameters (W, b) in - and en-
tire input region D. Such upper/lower bounds can be efficiently obtained by solving the LPs after
relaxation, which guarantees that the neuron output will not exceed the corresponding values. We
note that for different DNN parameters (W, b), "% /h™"F could take different values that can
always be efficiently obtained from the LPs after linear relaxation.
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F PROOF OF PROPOSITION ]

Proof: Consider the DNN with Nyq hidden layers each having Np., neurons and parameters
(W7 b/) and p < A. Since p is an upper bound on the optimal value of the bi-level problem

©)-(10), we have
(95(0,2) —¢é;)/le;| < p, VO € D,Vj € E. (37)
Therefore, we have forany @ € Dand j € £

9;(0,2) —e;(1—A)<p-e;, ife; >0;
N . (38)
g;(0,z) —ej(1+A) < —p-ej, otherwise,
which is equivalent to
6(0,8) s+ (p—A) -5, ife; > 0;
. . (39)
g;(0,2) <e; + (A —p)-e;, otherwise.
Since p < A, we have
gj(a,a%)gej,VGED,VjEE. 40)

This completes the proof of Proposition|I]

G UNIVERSAL APPROXIMATION CAPABILITY OF DNN

We highlight the Universal Approximation of DNNs for approximate the input-solution for the
OPLC in the following proposition.

Proposition 5 (Hornik,|1991) Assume the target function to learn is continuous, there always exists
a DNN whose output function can approach the target function arbitrarily well, i.e.,

h(0) — (8

wmas [[1(8) ~ h(O)] < <,

hold for any e arbitrarily small (distance from h to h can be infinitely small). Here h(8) and h(6)
represent the target mapping to be approximated and the DNN function respectively.

Furthermore, given the fixed depth Ny;y of the DNN, the learning ability of the DNN is increasing
monotonically w.r.t. the width of the DNN. That is, consider two DNN width N\ and N2 such that

neu neu
NL,> N2, we have
i max [1(8) — h(B)]| < oo, max [1(8) — h(6)]],

where CNus and CNwen denote the class of all functions generated by a Ny;q depth neural network
with width N\, and N2, respectively.

neu neu

Proposition [5] provides as the strong observation and theoretical basis for designing the iterative
approach to determine the sufficient DNN size in guaranteeing universal feasibility.

H MINIMAL SUFFICIENT DNN SI1ZE

We remark that the obtained sufficient DNN size by doubling the DNN width may be substantial,
introducing additional training time to train the DNN model and higher computational time when
applied to solve OPLC. One can also determine the corresponding minimum sufficient DNN size by
a simple and efficient binary search between

* the obtained sufficient DNN size N/, and the pre-obtained DNN size N, /2 (before
doubling the DNN width) which fails to achieve universal feasibility, if the initial

tested DNN can not guarantee universal feasibility;
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¢ the initial tested DNN size and some small DNN, e.g., zero width DNN, if the initial
tested DNN size is sufficient in guaranteeing universal feasibility.

Such a minimum sufficient DNN size denotes the minimum width required for a given DNN struc-

ture with depth Npi4 to achieve universal feasibility within the entire input domain. We use NV, to
denote the determined minimum sufficient DNN size and propose the following proposition.

Proposition 6 Consider the DNN with Ny;; hidden layers each having ]\Afm, neurons, any DNN
with depth Ny, and a smaller width than N,,, can not guarantee universal feasibility for all input

0 € D. Meanwhile, any DNN with depth Ny;q and at least Ny, width can always achieve universal
feasibility.

I DESCRIPTION OF ADVERSARIAL-SAMPLE AWARE ALGORITHM

We outline the Adversarial-Sample Aware algorithm in Algorithm 2] As seen, the Adversarial
Sample-Aware algorithm pre-trains the DNN model (line 3) and starts the iteration (line 5). Each
iteration verifies whether the worst-case prediction error is within the room (maximum calibration
rate) (lines 6 - 13). If the maximum constraints violation of the adversarial input exceeds the de-
termined calibrated rate, the Adversarial-Sample Aware algorithm incorporates a set of adversarial
samples into the existing training set and updates the DNN parameters (line 14 - 19), expecting the
constraints violation of the adversaries are eliminated.

We expect that after a few training epochs, the post-trained DNN can restore feasibility at the iden-
tified adversarial sample 6* and the points around it in S?. This is inspired by the observation that
after adding the previously identified training pairs S? into the training set, the DNN training loss is
dominated by the approximation errors and the penalties at the samples in St. Though the training
loss may not be optimized to 0, e.g., still has violations w.r.t. the calibrated constraints limits, the
DNN solution is expected to satisfy the original inequality constraints after such preventive training
procedure. Therefore, the post-trained DNN is capable of preserving feasibility and good accuracy
at these input regions. Simulation results in Sec. [6.2.1] show the effectiveness of the propose al-
gorithm. We provide the following proposition to state the guarantee of the algorithm in ensuring
universal feasibility.

J PROOF OF PROPOSITION [3]

Proof idea: Here we consider the post-trained DNN with Ny hidden layers each having N},
neurons. Given current iteration ¢, for Vj < 4, suppose it can always maintain feasibility at the cor-
respondingly constructed neighborhoods around the identified worst-case input, i.e., Di, by training
on 7%*! that combines 7° and all the auxiliary subset S’ around the identified adversarial input
67,Vj < i. Therefore, when the number of iterations is large enough, the union of the feasible
regions D¢ = D! UD? U ... D' can cover the entire input domain D. That is, the post-trained

DNN can ensure feasibility for each small region Di within the input domain D, and hence universal
feasibility is guaranteed. Such observation is similar to the topic of minimum covering ball problem
of the compact set in real analysis.

Such a condition generally requires the DNN to preserve feasibility within some small regions by
especially including the input-solution information during training, which may not be hard to sat-
isfy. This can be understood from the observation that the worst-case violation in the smaller inner
domain can be reduced significantly by training on the broader outer input domain (Venzke et al.,
2020; Nellikkath & Chatzivasileiadis|, [2022) as the adversarial inputs are always element-wise at
the boundary of the entire input domain D, which echoes our simulation findings in Sec.[6} There-
fore, the post-trained DNN is expected to perform good feasibility guarantee in all small regions
Di Vj < i after the preventive training procedure on 7*1, the training set on the entire domain
D. We remark that after gradually including these subsets S? into the existing training set, the loss
function is determined by the joint loss among all samples in these regions. After the training pro-
cess, the post-obtained DNN is hence expected to maintain feasibility at the points in the training
set and the regions around them.
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Algorithm 2: Adversarial-Sample Aware Algorithm

1: Input: A, Initial training set T, Training epochs 7', Number of iterations I
2: Output: DNN model with parameters (W*, b*)

3: Pre-train the DNN model on 7 using loss function for T" epochs

4: Save DNN parameters as (W0, b?)

5: fori =0to I do

6:  Find the maximum violation of (W?, b?) by solving:

9t = argrglag vl st — ,1 <4 < Niig, 1 < k < Nyew, .
€

7. Sety = v/ (67
8: ify < A then

9: Set W* = W' b* = b?; Break
10:  else
11: Construct S? by randomly sampling around 6?
12: Set T+ = T*U S and (W}, b)) = (W', b?)
13:  endif
14: fort=0toT do
15: Train the DNN on T+ using loss function and update DNN parameters to
(W§+17 b§+1) .
16: Feed each 8 € S* in the DNN model to obtain predicted solution &
17: if Each & is feasible w.r.t. (I)- (Z) then
18: Break
19: end if
20:  end for
21: Set (W b)) = (Wi, bi )
22: end for

K RUN-TIME COMPLEXITY OF THE FRAMEWORK

The computational complexity of the framework consists of the complexity of using DNN to predict
the solutions, which is O (Nhideeu) (Pan et al., 2020b). Recall that N4 denote the number of
hidden layers in DNN (depth), and Ny, denotes the number of neurons at each layer (width). In
practice, we set Nyiq to be 3 and observe that the DNN with width N, of O (N) can achieve
satisfactory optimality performance with universal feasibility guarantee. Therefore, the complexity

of using DNN to predict the N variables is O (N?).

Note that the number of decision variables to be optimized is N. After taking O (|€| M) operations
to calculate the value of b;‘rﬁ for each j € £, the computational complexity of interior-point methods

for solving such programs is O (N 4 ), measured by the number of elementary operations assuming
that it takes a fixed time to execute each operation (Ye & Tsel [1989). Therefore, the traditional
method for solve the OPLC has a computational complexity of O (N* + |E|M )

We remark that the computational complexity of the proposed framework is lower than that of tra-
ditional algorithms.

L. IMPLEMENTATIONS OF DEEPOPF+

Recall that the DC-OPF formulation is given as

Anin, 2 ci (Pai) (41)
s.t. PEM < Pg < P&, (42)
M. ® = Pg — Pp, (43)
= Bire™ < Biine - @ < P (44)
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We first reduce the number of decision variables (without losing optimality) by adopting the predict-
and-reconstruct framework (Pan et al., 2019). Specifically, it leverages that the admittance matrix
(after removing the entries corresponding to the slack bus) M is of full rank B — 1, where B = |B|
and is the size of the set of buses. Thus, given each Pp, once the non-slack generations { Pg; }icg\n,
(no denotes the slack bus index) are determined, the slack generation and the bus phase angles of all
buses can be uniquely reconstructed:

PF*=>"Ppi— Y Pa, (45)
i€B 1€G\ng
$=M~! (ﬁc - ﬁD) : (46)

where ng and Pg}“k denote the slack bus index and slack bus generation respectively. P and

Py, are the (B — 1)-dimensional generation and load vectors for all buses except the slack bus.
Consequently, the line flow capacity constraints in (4] can be reformulated as
~ P < ByooM ! (P - Pp) < P )

ine

where By is the line admittance matrix after removing the column of slack bus Therefore, the
reformulated DC-OPF problem takes the form of

min Z ci (Pgi) + cng ZPDi - Z Pai (48)
Pc i€G\no i€B i€G\no
s.t. (47),
PEIn < Pg; < PR Vi € G\no, 49)
PsrlgéESZPDi_ Z PGiSPsﬁcalz(' (50)
ieB 1€G\ng

Therefore, we can solve DC-OPF by employing DNNss to depict the mapping between Pp and Pg.

L.1 REMOVING NON-CRITICAL INEQUALITY CONSTRAINTS
L.1.1 REMOVING NON-CRITICAL BRANCH LIMITS.

We propose the following program for each branch ¢ to remove the non-critical branch limits given
the entire load and generation space:

max v;—1 (1))
Pg,Pp
st (49),
Pp €D, (52)
v=[X (150 - 13D) . (53)

Here we assume the load domain D = {Pp|A4Pp < bg, E|13G : — hold}) is restricted
to a convex polytope described by matrix A4 and vector by and the corresponding constraints.
enforces the feasibility of non-slack generations. (53) represents the normalized power flow level

at each branch, where X is obtained from by dividing each row of matrix Blinel\~/[’1 with the
value of corresponding line capacity and v € RI¢!.

We remark that problem (5T)-(53)) can be reformulated as two linear programmings to perform the
inference of the absolute sign of power flows in (53):

max / min (54)
Pg,Pp Pg,Pp

st (@9, (2.
=X (PG _ 15D). (55)

"The matrix BineM ™" is well-known as “Power Transfer Distribution Factors” (PTDF) matrix (Chatzi-
vasileladis, [2018)).
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If the optimal value of the above maximization (respectively minimization) problem is smaller or
equal (respectively greater or equal) than 1 (respectively -1), then the optimal value of (54)-(53) is
non-positive for some branch 7. Therefore, such non-critical inequality constraint does not affect the
feasible solution space such that it is always respected given any input load Pp and can be removed
from the DC-OPF problem. By solving (54)-(55), we can derive the set £ of critical branch capacity
constraints whose optimal objectives are positive

L.1.2 REMOVING NON-CRITICAL SLACK BUS GENERATION LIMITS.

We provide the formulation to identify the critical slack generation limits given the entire load and
generation space and the possible violation degree w.r.t. the upper and lower bounds here.

max Vg (56)
Pg,Pp

s.t. ,77

Pslack _ pmax
G~ slack

u slack
Vslack = o (57)
Psrlrzicalz( - Psrlrelléﬁ
and
l
nax Vslack (58)
Pg,Pp
st ([@5), (@), (2,
Prlm{(l _ élack
slac
Vglack = in’ (59)
PRa — Plack

respectively. Here and (59) denote the (normalized) exceeding of slack bus generation exceed-
ing its upper bound and lower bound, respectively. Therefore, if the optimal values of these proposed
optimization problem is non-positive, such slack generation limit is non-critical and does not affect
the load-solution feasible region.

We remark that problems (56)-(57)), and (58)-(59) are indeed linear programs and can be efficiently
solved by the state-of-the-art solvers such as CPLEX or Gurobi. We find that all three test cases
could have both critical upper bound and lower bound limits, i.e., both (56)-(57) and (58)-(®9) have
positive optimal values.

L.2 MAXIMUM CONSTRAINTS CALIBRATION RATE

To determine the maximum constraints calibration rate while preserving the input region, we solve
the following bi-level optimization program:

min max v° (60)
Pp Pc
st. ([@2), @) - @E), E2),
1 ..
|PFz‘j|=|f(¢i—¢j)|7 V(i,j) €€, (61)
ij
Psqfack = ( srlr;?l? - élaCk)/( srlgg]? - srlrz;éﬂ)’ (62)
Pk = (PE* = Piact) / (PR& — Piet)» (63)
Ppmax _ PF‘Z
ve< mix Jl,V(i,j) €E, (64)
PTij
Ve S slfackv (65)
ve < Psllack7 (66)

where PF;; denotes the power flow on branch (i,7) € €. P%. and P}, represent the relative
upper and lower bounds redundancy on slack bus, respectively. Constraint (52)) describes the convex

8For the critical branch constraints not in &, it is possible to encounter such load input and generation solution
profiles using the DNN scheme with the upper/lower bounds truncate ReLU functions in (G) at output layer
under the worst-case scenarios with which the power flow on branch 7 exceeds its transmission limit.
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polytope of Pp. Constraints (42)) and [@3)-(@6) denote the feasibility of the corresponding Pg. Con-
straints (64)-(66) enforce v© as the maximum calibration rate. We employ the KKT-based approach
in Sec. to solve the above bi-level problem and obtain the calibration rate for DeepOPF+.

L.3 DNN Loss FuncTioN IN DC-OPF PROBLEM

When adopting the Adversarial-Sample Aware algorithm, we design the loss function £ consisting
of two parts to guide the training process.

Similar to (Pan et al.,[2019), we first represent the feasible active power generation Pg; that satisfies

(42) as:

Pgi = PE™ 4+ a; - (PE™ — PE™), a; €[0,1],i € G. (67)

Therefore, instead of predicting { Pg; }icg\n,» We use DNNs to generate the corresponding scaling
factors and reconstruct the { Pg; }ieg\n, and remaining variables in implementation. The first term
of the loss function is the sum of mean square error between the generated scaling factors ¢&; and the
reference ones «a; of the optimal solutions:

1 .
EPG = 71 Z (ai - O[i)2. (68)
’ieg\no

The second part consists of penalty terms (denoted as £,,,) as the summation of the violations for
line flow limits and slack bus generation:

line 1 5 5 2
=g ;max ((x (PG - PD))k - 1,0)

slack max
[slack _ 1 max (P G — P 0) + (69)
pen max min ’
|€| Pslack - Pslack
min slack
i max Pslack — PG 0
|g| pmax _ Pmin )
slack slack

Here matrix X is obtained from by dividing each row of matrix Blinelf/l’l with the value of

corresponding line capacity. The first and second terms of c;}g;k denote (normalized) the violations

of upper bound and lower bound on slack generation, respectively. We remark that after the con-
straints calibration, the penalty loss is with respect to the adjusted limits. Note here the non-slack
generations are always feasible as we predict the (0, 1) scaling factors in . The total loss is a
weighted sum of the two:

L=w 'LPG + wo 'ﬂpen, (70)

where w; and wsq are positive weighting factors representing the balance between prediction error
and penalty. We apply the widely-used stochastic gradient descent (SGD) with momentum (Qian)
1999) method to update DNN’s parameters (W, b) at each iteration.

L.4 RUN-TIME COMPLEXITY OF DEEPOPF+

According to Appendix [K] the computational complexity of DeepOPF+ to predict the non-slack
generations {Pgi}icg\n, i O (BQ). Reconstructing the phase angles ® can be achieved by ,

which requires O (B?) operations. Overall, the computational complexity of DeepOPF+ is
@) (B2). For the traditional solver, the computational complexity of interior-point methods for solv-

ing DC-OPF is O (B4), measured by the number of elementary operations. We remark that the
computational complexity of DeepOPF+ is lower than that of traditional algorithms.

M DETAILS OF DEEPOPF+ DESIGN

We present the detailed result of each step in DeepOPF+ design in this appendix.
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Table 2: Maximum calibration rates for IEEE Case30/118/300.

Case30

Casell8

Case300

Maximum
calibration rate

7.0%

16.7%

21.6%

Table 3: Parameters for test cases.

Number of | Number of | Number of | Number of
Case
buses generators | load buses branches
Case30 30 6 20 41
Casel18 118 19 99 186
Case300 300 69 199 411

* The number of load buses is calculated based on the default

load on each bus. A bus is considered a load bus if its default
active power consumption is non-zero.

Table 4: Parameters settings of DeepOPF+ for IEEE Case30/118/300

. Calibration | Neurons per
Test case Variants .
rate hidden layer
Case30 DeepOPF+-3 3.0% 60/30/15
DeepOPF+-7 7.0% 32/16/8
Casel18 DeepOPF+-3 3.0% 200/100/50
DeepOPF+-7 7.0% 128/64/32
DeepOPF+-3 3.0% 360/180/90
Case300 IR epOPF+7 | 70% | 256/128/64

Table 5: Preprocessing time to setup DeepOPF+ for IEEE Case30/118/300 in heavy-load regime

. Determine Determine . .
Test case Variants Calibration rate DNN size ASA algorithm | Total time
Case30 DeepOPF+-3 0.2 seconds 0.15 hours 0.83 hour 0.98 hour
DeepOPF+-7 0.2 seconds 0.15 hours 0.73 hour 0.88 hour
Casell8 DeepOPF+-3 | 20.9 seconds 5.47 hours 7.94 hour 13.42 hour
DeepOPF+-7 | 20.9 seconds 5.47 hours 5.31 hour 10.79 hour
Case300 DeepOPF+-3 | 1185.7 seconds | 178.46 hours 25.72 hour 204.51 hour
DeepOPF+-7 | 1185.7 seconds | 178.46 hours 10.52 hour 189.31 hour

Table 6: Preprocessing time to setup DeepOPF+ for IEEE Case30/118/300 in light-load regime

. Determine Determine . .
Test case Variants Calibration rate DNN size ASA algorithm Total time
Case30 DeepOPF+-3 0.2 seconds 0.15 hours 0.81 hour 0.96 hour
DeepOPF+-7 0.2 seconds 0.15 hours 0.72 hour 0.87 hour
Casel 18 DeepOPF+-3 | 20.9 seconds 5.47 hours 6.99 hours 12.47 hours
DeepOPF+-7 | 20.9 seconds 5.47 hours 4.79 hours 10.27 hours
Case300 DeepOPF+-3 | 1185.7 seconds | 178.46 hours 52.46 hours 231.25 hours
DeepOPF+-7 | 1185.7 seconds | 178.46 hours 15.82 hours 194.61 hours

First, for determining the maximum calibration rate, the obtained result in shown in Table @, rep-
resenting the room for DNN prediction error. We note that the off-the-shell solver returns exact
solutions for the problem in (@)-(5).
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Table 7: Average cost and runtime of SOTA DNN schemes in heavy-load regime.

Average Average running
Case Scheme cost ($/hr) time (ms)
DNN scheme Ref. DNN scheme | Ref.
DNN-P 732.5 0.58
DNN-D 732.4 0.63
DNN-W 732.2 53.02
Case30 DNN-G 7325 732.2 178 45.6
DeepOPF+-3 732.4 0.50
DeepOPF+-7 732.9 0.49
DNN-P 121074.7 2.13
DNN-D 1211121 15.60
DNN-W 120822.1 55.33
Casel18 DNN-G 1212996 120822.1 775 124.9
DeepOPF+-3 121051.3 0.56
DeepOPF+-7 121313.9 0.55
DNN-P 926660.6 3.33
DNN-D 926590.1 57.92
DNN-W 925955.0 77.48
Case300 DNN-G 9265123 925955.0 31’55 83.5
DeepOPF+-3 926198.4 0.61
DeepOPF+-7 926500.4 0.60

Table 8: Average cost and runtime of SOTA DNN schemes in light-load regime.

Average Average running
Case Scheme cost ($/hr) time (ms)
DNN scheme Ref. DNN scheme | Ref.
DNN-P 619.8 0.50
DNN-D 619.8 0.50
DNN-W 619.7 46.93
Case30 | DNN-G 620.4 619.7 1.75 424
DeepOPF+-3 619.9 0.50
DeepOPF+-7 619.8 0.49
DNN-P 101843.2 1.71
DNN-D 101873.6 5.02
DNN-W 101673.0 55.55
Casel 18 DNN-G 102983 3 101673.0 437 1154
DeepOPF+-3 101852.3 0.58
DeepOPF+-7 102049.3 0.57
DNN-P 778342.4 1.71
DNN-D 778404.3 25.93
DNN-W 777878.4 75.77
Case300 DNN-G 780368 9 777878.4 330 78.7
DeepOPF+-3 778070.6 0.60
DeepOPF+-7 778675.2 0.60

Second, for determining the sufficient DNN size, we show the change of the difference between
maximum relative constraints violation and calibration rate during iterative solving process via the
Danskin’s Theorem in Fig. 3] From Fig. [3] we observe that for all three test cases, the proposed
approach succeeds in reaching a relative constraints violation no larger than the corresponding cal-
ibration rate A, i.e., p < A, indicating that the verified DNNs, i.e., 32/16/8 neurons, 128/64/32
neurons and 256/128/64 neurons, for IEEE 30-/118/300-bus test cases respective, have enough size
to guarantee feasibility within the given load input domain of [100%, 130%] of the default load. Note
that we can directly construct DNNS to ensure universal feasibility for the three IEEE test cases. We
further evaluate the performance of the DNN model obtained following the steps in Sec. f.2.2 with-
out using the Adversarial-Sample Aware algorithm. While ensuring universal feasibility, it suffers
from an undesirable optimality loss, up to 2.31% and more than 130% prediction error.
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Figure 3: Maximum relative constraints violation compared with calibration rate (vf = A) at each
iteration for IEEE Case30, Casel18, and Case300 test case.
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Figure 4: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for IEEE
Casel18 and IEEE Case300 in light-load regime with 7% calibration rate.
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Figure 5: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for IEEE
Casel18 and IEEE Case300 in heavy-load regime with 7% calibration rate.
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Figure 6: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for IEEE
Case30/118/300 in light-load regime with 3% calibration rate.

Third, the DNN models trained with the Adversarial-Sample Aware algorithm achieve lower opti-
mality loss (up to 0.19%) while preserving universal feasibility. The observation justifies the effec-
tiveness of Adversarial-Sample Aware algorithm. We further present the relative violation (vf — A)
on IEEE 30-/118/300-bus test cases at each iteration in both light-load and heavy-load regimes for
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Figure 7: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for IEEE
Case30/118/300 in heavy-load regime with 3% calibration rate.

illustration in Fig. ] and Fig. [5| with a 7% calibration rate. The above observations show that the
Adversarial-Sample Aware can efficiently achieve universal feasibility guarantee within both light-
load and heavy-load regimes for IEEE 118-/300-bus test cases with at most 52 iterations. We remark
that for Case30, the initial worst-case violation of the trained DNN with 7% calibration rate is less
than zero (-9.28% and -2.93% in light-load and heavy-load regimes respectively) and hence without
the need for adversarial training. The results under the 3% calibration rate are presented in Fig. [6]
and Fig.[/| for which we observe that the ASA would take a longer number of iterations to achieve
the universal feasibility guarantee due to the smaller room for prediction errors, e.g., at most 152 it-
erations. For Case30 under light-load regime with 3% calibration rate, its initial worst-case violation
is less than zero (-7.53%) and hence without the need of ASA iterations.

Furthermore, we present the parameters of three IEEE test cases and the settings of two DeepOPF+
schemes in Table[3]and Table[d]respectively. The detailed runtime and cost and the time to configure
the framework are listed in Table[6} Table([8]for each test case. Note that though a single DC-OPF may
be efficient solved by the existing solver, due to increasing uncertainty from renewable generation
and flexible load, grid operators now need to solve DC-OPF problems under many scenarios in a
short interval, e.g., 1000 scenarios in 1 minutes, to obtain a stochastically optimized solution, e.g.,
~?2 minutes for the iterative solvers to solve a large number of DC-OPF problems for Casel18,
resulting the fail of real-time operation. In contrast, the developed DNN scheme can return the
solution with x228 speedups, i.e., less than 0.6 seconds in total. In addition, though our method
takes additional training efforts, 1) it is conducted offline, once the DNN is configured, it can be
continuously applied to many test instances such that the complexity is amortized, e.g., < 0.5 ms
for DC-OPF problems if the system operator needs to solve DC-OPF per 5 minutes over 1000
scenarios over a year; 2) as illustrated, the obtained DNN outperforms the existing approaching
in avoiding any post-processing and resulting in a lower real-time runtime complexity, showing its
advantage; 3) our theoretical analysis shows that the design can always provide the corresponding
useful upper/lower bounds in each step of the framework in polynomial time, which can still be
utilized for constraints calibration and DNN performance analysis; 4) the process can be further
accelerated by applying advanced computation parallel techniques. Finally, we remark that if an
impractically large DNN size is required, it would introduce an additional computational challenge,
which can require more configuration efforts of the approach and it can be a potential limitation.
It is also an interesting direction for solving the constrained program w.r.t. the DNN parameters
and determining the sufficient DNN size more efficiently. We would like to leave how to set up the
DNNs more efficiently and accelerate the corresponding steps as future work, which is non-trivial
and still an open problem in DNN scheme design.

N NON-CONVEX OPTIMIZATION EXAMPLE

We further consider solving a non-convex linearly constrained program with a non-convex objec-
tive function and linear constraints adapted from (Donti et al., [2021). We examine this task for
illustration:

1
m7i{1 §yTQy +plsin(y),st. Ay =x,—h <Gy < h, (71)
YyeER™
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for constants problem parameter @ € R™*",p € R", A € R"*" G € RMna*" h € R"na. Here
2z € R"™a is the problem input and y € R™ denotes the decision variable. njneq and neq are the
number of inequality and equality constraints. Here we focus on the non-degenerate case such that
Neq < n. Therefore, the DNN task aims to learn the mapping between x to the optimal y. Similar
to (Donti et al [2021), @ is set to be a diagonal matrix whose diagonal entries are drawn i.i.d.
from the uniform distribution on [0, 1]. The entries of A, G are drawn i.i.d. from the unit normal
distribution. The problem input region of x is set to be [—1, 1] for each dimension. To ensure the
problem feasibility, we set h; = > [(GA™);;], where AT is the Moore-Penrose pseudoinverse of

A. The feasibility of the problem can be seen that the point y = A*x is feasible. However, such
a point can be generally non-optimal with large optimality loss. In our simulation, we set n = 50,
Neq = 25, and nipeq = 25. Therefore, the considered optimization has 50 variables, 25 equality
constraints, and 100 inequality constraints.

We follow the procedures in the preventive learning framework to generate the DNN with universal
feasibility guarantee and achieve strong optimality performance.

N.1 REFORMATTING THE PROBLEM WITH ONLY INEQUALITY CONSTRAINTS

We reformulate the non-convex optimization with only n — n.q independent variables of y,. Note
that the equality constraints can be reformulated as

[A1, As] { Z; } -z (72)

Here A, € R™ X" g € R"™a and Ay € R™a*("~"«) o € R™ "« Therefore, given x and 15,
the corresponding ¥ can be uniquely recovered, i.e., y; = Al_l(x — Asys). Based on the above
reformulation, the inequality constraints are given as

[G1,Go] { z; } <h, —[Gi,G3] [ } <h (73)

Y1
Y2
and hence

GlAfl.’ﬂ + (G2 — GlAflAQ)QQ S h, GlAflf + (G2 — GlAflAQ)yZ Z —h (74)

The objective can be equivalent modified by replacing the terms w.r.t. y; to be yo from y; =
AT 1 (x — Agys). This completes the pre-reformulation of the above non-convex optimization.

N.2 DETERMINE THE MAXIMUM ALLOWABLE CALIBRATION RATE

We first examine that all inequality constraints are critical, i.e., exist a y such that the constraint is
binding. We then further determine the maximum calibration rate. From the description in Sec. 4.1}
the program to determine the maximum calibration rate is given as

min max v°¢ (75)
z€[—1,1] y,v°

s.t.
ve < (h;y — (GlAflw + (G2 — GlAI1A2)y2)i)/hiv t =1, ..., Nineq, (76)
Ve < (hi + (G1AT 'z + (G2 — G1AT A2)y)i) /hiy i =1, ooy Nineq. (77)

Note that given z, the inner problem is an LP and can be equivalently expressed by its sufficient
and necessary KKT conditions. Following the MILP steps in Sec. 4.1 we solve the above program
to determine the maximum allowable calibration rate, we observe that the Gurobi solver with the
branch-and-bound provides its optimal solution with zero optimality gap within 42ms. The corre-
sponding optimal v** = 100%, implying we can set h = 0 such that problem is still feasible for
each problem input x € [—1,1].

N.3 DETERMINE THE SUFFICIENT DNN SIZE TO GUARANTEE UNIVERSAL FEASIBILITY
In our simulation, we consider a DNN with 3 hidden layers and each layer has 50 neurons. Following

the steps in Sec.[4.2] we observe that such a DNN size is sufficient to guarantee universal feasibility.
The corresponding program is given as
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Figure 8: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for the non-
convex optimization example with 5% and 10% calibration rate.

min max vf (78)
W,ba;e[—Ll]
st. (@) — @1 <i< Npg, 1 <k < Npea,
—1 -1 .
f_ (GlAl T+ (Gg — G1A1 Ag)yg)i/hi 79
Y e { (LA + (Gy — GrAT Ay)ga)i /e |0 T

Here ¢, is the prediction of the DNN. We observe that the tested DNN size is sufficient to guarantee
universal feasibility by achieve an upper bound of the relative violation of p— v/ as —9.3% within ~
6 minutes. It implies that the tested DNN size is sufficient to guarantee universal feasibility. Recall
that the obtained DNN-FG achieves unsatisfactory optimality performance (71.38% optimality loss)
as it only focuses on feasibility.

N.4 APPLICATION OF ADVERSARIAL-SAMPLE AWARE TRAINING ALGORITHM

We hence implement the proposed ASA training algorithm to further improve the optimality per-
formance of the DNN with 5% and 10% calibration rates respectively. The time to obtain the cor-
responding (Pre-DNN-5, Pre-DNN-10) with 5% and 10% calibration rate are < 52 minutes and
< 44 minutes respectively.

We compare our approach against the classical non-convex optimization solver IPOPT and the other
DNN schemes DNN-P, DNN-D,DNN-W, and DNN-G. The number of training data is 15,000, and
the number of test data is 3,000. The DNN size is set as 3 hidden layers and each layer has 50
neurons. The results are listed in Table 0] and the worst-case violation at each iteration in the ASA
training algorithm are given in Fig.|8| Here the optimality Loss metric is calculated as the average of
(DNN objective—Optimal objective)/|Optimal objective|. The negativity of Scheme and Ref simply
means that the obtained DNN objective and Optimal objective of optimization is negative.

Table 9: Simulation results of different DNN schemes for the non-convex optimization example.

Scheme Average objective Average running time (ms) | Feasibility | Worst-case
Scheme | Ref. | Loss (%) | Scheme | Ref. | Speedup | rate (%) | violation (%)
DNN-P -5.44 0.40 1.36 85.7 39.8 68.3
DNN-D -5.44 0.42 0.79 117.0 39.8 41.5
DNN-W -5.47 547 0 86.6 86.6 1.02 100 0
DNN-G 53.69 ’ 1076.0 1.00 ' 87.0 100 0
Pre-DNN-5 -5.45 0.34 0.60 144.9 100 0
Pre-DNN-10 | -5.43 0.67 0.60 145.3 100 0

* Feasibility rate and Worst-case violation are the results before post-processing. Feasibility rates (resp Worst-case violation) after post-processing
are 100% (resp 0) for all DNN schemes. We hence report the results before post-processing to better show the advantage of our design. Speedup
and Optimality loss are the results after post-processing of the final obtained feasible solutions.

" The correction step in DNN-D (with 10~ rate) is faster compared with {1 -projection in DNN-P, resulting in higher speedups.

We remark that our obtained DNN schemes (Pre-DNN-5, Pre-DNN-10) with 5% and 10% cali-
bration rates outperform the existing DNN scheme in ensuring universal feasibility and maintaining
minor optimality loss. The speedups of our scheme are also significantly larger than the other meth-
ods as post-processing steps to recover solution feasibility are avoided.
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