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Climate Change: the Biggest Threat to Humanity

1€ Annual mean temperature above
or below average, 1850 to 2021
0.5C
0C Target: 1.5°C

-0.5C

1850 1900 1950 2021

0 Rapid climate change due to CO2 emission
— Worldwide 1.1°C warmer than 19 century; 50% more CO2 in the air

O If no action, temperature can increase by 3°C by 2100
— lrreversible loss of vast plant and animal species
— Millions of people lose homes to rising of sea levels

Note: Average calculated from January 1951 to December 1980

Source: University of California Berkeley https://www.bbc.com/news/science-environment-24021772 3



Grid Decarbonization to Fight Climate Change

0 Power grids integrate renew- 0O Renewables are volatile

able to fight climate change — More than 80% renewables
are wind or solar
— Grids emit 25% of global CO2 — Wind and solar are volatile
— Could reach 60% if all — Net load inherits renewable
transportation electrified uncertainty

30 —Electricity + Wind =Net

2021 2030 (target)
China 29.8%  40%

uUsS 21% 35%
Denmark 82% 100%

https://english.www.gov.cn/news/topnews/202206/01/content_WS6296ba55c6d02e533532b91f.html; US EIA Annual Energy outlook 2022;
IRENA technical report for Denmark; CGHrEHAR)H EREIE A EY B, (7 RAE: B H eI R M AEREAT 1T Rl (2021-20254F) )



Volatile Renewables Require Frequent Balancing

Grid operation: balance
demand and supply in real-time

Balancing volatile renewable requires us to solve optimal power flow
problems more frequently to track the optimal operating point

0 Past: once every 12 hours
0 Present: once every 5 minutes
0 Future: once every 1 minute
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Optimal power flow (OPF) problems
Example applications
Future challenges

Machine learning for constrained optimization
Machine learning for solving OPF problems: overview

Machine learning for DC-OPF and SC-DCOPF
problems

Machine learning for standard AC-OPF problems

Ensuring DNN feasibility for constrained optimization
Solving AC-OPF under flexible topologies

Solving AC-OPF with multiple load-solution mappings
Concluding Remarks
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Optimal power flow

Introduction
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* Power flow models

* OPF formulation
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3. Future challenges



Network model

1. Network G := (N, E)
« N:={0}UN :={0}uU/{l,...,N} : buses/nodes
« E C N XN : lines/links/edges

2. Eachline (J, k) is parameterized by (y]f‘}(, Vies y,’%”‘) e C’
* Yj ' series admittance
. y]?};‘, y,’;? : shunt admittances, generally different

Q O ATy
k { *
o I-—s V. , \\i “j'

(a) Graph representation (b) IT equivalent circuit

Steven Low Caltech V-Irelation



Network model

Branch currents

I j 2 Ty
o o oD :
k q N
0 oy 1 v -
[ ] e ¥ <
Sj _ 4[ . sk
(a) Graph representation (b) IT equivalent circuit

Sending-end currents
Iy = yjs}((vj_ Vi) + )’]7: i I = )’ﬁ((vk— V) + )’;?; Vi

Their sum is total line current loss

i+ 1y = ypVi+ygVe # 0

Ity =yi; =0, then I, = — I}

Steven Low Caltech V-Irelation



Network model

Nodal current balance (KCL)

o °

(a) Graph representation

b= 2
k

J~k

Steven Low Caltech V-Irelation

(b) IT equivalent circuit



Network model

Nodal current balance (KCL)

I j 2 Ty
. G B .
D o ¥
[ ] e N
oo I
(a) Graph representation (b) IT equivalent circuit

L= b o= | X+ v - Yo

kej~k kej~k I kej~k

total shunt admittance: y;! := Zk,ijyﬁ?

Steven Low Caltech V-Irelation



Network model

Nodal current balance (KCL)

2 By = ny;c t yj?

kej~k kej~k

In vector form:

-

Jk’
2 yjl + yJJ ’
[;j~1

0

u

I = YV where ij=

A\

Steven Low Caltech V-Irelation

2 yﬁcvk

kej~k

Jj~k (J#FK)
J=k

otherwise



Network model

Nodal current balance (KCL)

Y can be written down by inspection of network graph
» Off-diagonal entry: — series admittance

« Diagonal entry: Zseries admittances + total shunt admittance

In vector form:

-

¥ j~k (# k)
I = YV where Y = <Zy]z+yﬂa J=k
[;j~1
0 otherwise

Steven Low Caltech V-Irelation



Network model

Nodal current balance (KCL)

A matrix Y is an admittance matrix iff it is complex symmetric

¢ Can be interpreted as a I1 circuit

In vector form:

-

¥ j~k (# k)
I = YV where Y = <Zy]z+yﬂa J=k
[;j~1
0 otherwise

Steven Low Caltech V-Irelation



Admittance matrix Y

Example
1 Yi2 + Y13 + 11 V2
L| = —Yia Yi2 + Y23 + 5
_13_ i =13 —¥23
total shunt admittance: y;! := Zk_ij Vi

Steven Low Caltech V-Irelation

(v2 ¥, ¥51)

Il3

(V3o V53 V21

— V13 Vi
=23 V)
Yis+ ¥+ |V

)

(V3o ¥ V2



Linear analysis

In absence of constant-power devices on network
e e.g. voltage sources, current sources, impedances

e Only linear analysis is needed basedon/ = YV

But applications often require power s; := V]]_]

* e.g. EV charging needs 30 miles of energy (10 kWh) in 5 hours
» Leads to nonlinear analysis / optimization

Steven Low Caltech V-Irelation



Power flow models

Complex form

Define sending-end power from j — k, S; 1= VJI]I,f

H 2 H H 2
se= (o) (vP=vve) + () v,

Line loss
S H 2 " H 5 . H )
S+ St = (%’k) ‘Vj—Vk‘ + (%-) [V;I™ + (ykj> Vil

series impedance shunt impedances

" 2 H L.
Yj;c> <|Vk| _Vkvj> + <)’;?] | Vil

Steven Low Caltech V-s relation



Power flow models

Complex form

Bus injection model 5; = Zk:ij S :

H H
5, = Z(%) (IVJ-IZ—VJ-Vg’) + (ng1> WAk

kij~k

In terms of admittance matrix Y
N+1

_ Hys H
S5 = Z Y Vivi
k=1

N + 1 complex equations in 2(N + 1) complex variables <Sj, VJ-,j = N)

Steven Low Caltech V-s relation



Power flow models

Polar form

Write s; =. p; -I-lq] and V,

where g; := { g;
0

Steven Low Caltech V-s relation

( m
gjj

if j=k
fj#Ek GOHEE b=
fj#k (k) &E

I\

VI 1Vil (gesin 6y, -

.
m
bjj

P _ .
=1 Vi| € Wlthyk— ]k+lb]§€, = ]k+lb]’z.

< 2
Z 8jk | £ I© -
k=0 ket

Z |V Vi <8jkCOS Oy + by sin ij)

- 2
=~ 2 b JIViI® -
k=0 ket

bjkcosejk>
if j=k

if j#k, (j,k) € E
it j#k, (j.k) € E



Power flow models

Polar form

: — . —. ip i S _ .
Write s, =: p;+iq; and V, =t | V.| e'? with Vik = ]k+ lbj;@ J’}j = 8t 0+ zbm.

N
p; = <zgjk>|vj|2 - Z|Vj||Vk|<8jk0039jk+bjk3m9jk>
k=0

ki
< 2

qgj = — ijk |V:I" = Z|Vj||vk|<8jk5m9jk— jkcosejk>
k=0 k]

2(N + 1) real equations in 4(N + 1) real variables (pj, a9, |V;|,0,, j € N)

Steven Low Caltech V-s relation



Power flow models

Cartesian form
Write s; =: p;+iq; andV, =t e+ if;:

pj = (Z 8jk> (%‘2 +f§'2> -2 (&k(‘fjek +ifo) + blfe = ejfk))
k

ki

9= - <Z bjk) (2 452) = X (8uthex = ef — e+ 510 )
k

k#j

2(N + 1) real equations in 4(N + 1) real variables (pj, g e»f» ] € ]V)

Steven Low Caltech V-s relation



Power flow models
Types of buses

Power flow equations specify 2(/N + 1) real equations in 4(N + 1) real variables
« Power flow (load flow) problem: given 2(N + 1) values, determine remaining vars

Types of buses

. PV buses: (pj, | Vi ) specified, determine (qj, (9]> e.g. generator
e PQ buses: <pj, qj> specified, determine V;, e.g. load
« Slack bus 0 : V,, := 1£0° pu specified, determine <pj,pj)

Steven Low Caltech V-s relation
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OPF formulation

Optimal power flow (OPF) problems are fundamental
* Numerous power system applications can be formulated as OPF

Network model: graph G = (N, E)

OPF is a constrained optimization program specified by
e QOptimization variables
* Power flow equations
« Cost function
» QOperational constraints

Steven Low Caltech OPF



OPF formulation

Optimization vars

Optimization vars (s, V) := (Sj, Vj, j E N)
R real & reactive power injections
. VJ : voltage phasors

» Can express S; in terms of V using power flow equations

We call this the bus injection model since s is the only variable (besides V)

Steven Low Caltech OPF



OPF formulation

Power flow equations

Nodal power balance:

5= 2, V). JEN
kij~k

where
H ) H 5
. Complex form: S;(V) = <y]?§€> (|Vj| — V]V,fl> + (yj?”) | Vi
* Polar form:
ij(V) = (gj“} + gﬁg) | V. |2 — le | V]| (gj:}C cos(Qj —-6,) — bf;c Sin(Hj — Qk)>
0(V) = (b]:;{ + bj{;g) VE - VIV (bjt?{ cos(@,— 6) + g} sin(d; - 9,9)

Steven Low Caltech OPF



OPF formulation
Cost function

Total real power loss

Cy(V) = 2Re<sj(V)> = ZRe Z (y;}(>H (|Vj|2—Vle|<_|> + <yj§1>H |Vj|2
J J

kij~k
Total generation cost

W= T R = 3 gre| 3 (k) (9P-vw) + () 1w

j:gens j:gens kij~k
Cost functions can usually be expressed as (possibly nonlinear) functions of V

Steven Low Caltech OPF



Optimal formulation
Operational constraints

Injection limits: 5, < s(V) <5
Voltage limits: v, < |VJ|2 <V
na limiter 2 72 2 72
Line limits: | [(V)|" < Iy, [L(V)]" < I

or |S (V)] < Sjk, | S, (V)| < gkj

Let feasible set be V := {V e CN*! | V satisfies injection/voltage/line Iimits}

Steven Low Caltech OPF



Optimal formulation

OPF in bus injection model

min Cy(V)
Vev

Remarks

* Flexible formulation; e.g.

© §,:= — 00 —iooorsy:= 0o+ i if 55 has no limits

. gj = Ej if S; is a parameter (given inelastic demand)
« Can have multiple devices k with injections Sjx at bus j : net injection s; = Zk Sik

Steven Low Caltech OPF



NP hardness

OPF is NP-hard
B Verma 2009, Bienstock & Verma 2019
® Lavaei & Low 2012
B Lehmann, Grastien & Van Hentenryck 2016

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 31, NO. 1, JANUARY 2016

AC-Feasibility on Tree Networks is NP-Hard

Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck

Reduce NP-hard
subset sum problem to: | Find (©;, py;j, qpij;) S-t. power flow equations & constraints

Vi € Ny, : Z D[ij) =P, V[l‘]}g e E¢ 1 Dlg) =9 (1 — COS(@Z' — @]))
[ijleEd — bsin(@i — @J)
Z i) =Qi qij) = — b (1 —cos(©; — ;)
lij]e £4 — gsin(@; — ©;)
Vie Ng : Z Prij] 20 |@l—@]|fz
[ij]e B

Steven Low Caltech OPF
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Example applications
* Optimal dispatch
* Unit commitment
* Security constrained dispatch/commitment

Future challenges



Central challenge

Balance supply & demand second-by-second
* While satisfying operational constraints, e.g. injection/voltage/line limits
* Unlike usual commodities, electricity cannot (yet) be stored in large quantity

Steven Low EE/CS/EST 135 Caltech



Traditional approach

Bulk generators generate 80% of electricity in US (2020)
* Fossil (gas, coal): 60%, nuclear: 20%

They are fully dispatchable and centrally controlled
e ISO determines in advance how much each generates when & where

They mostly determine dynamics and stability of entire network
* System frequency, voltages, prices

Steven Low EE/CS/EST 135 Caltech



Traditional approach

Challenges
e Large startup/shutdown time and cost

e Uncertainty in future demand (depends mostly on weather)
e (Contingency events such as generator/transmission outages

Elaborate electricity markets and hierarchical control
e Schedule generators and determine wholesale prices
* Day-ahead (12-36 hrs in advance): unit commitment
e Real-time (5-15 mins in advance): economic dispatch

* Ancillary services (secs - hours): frequency control, reserves

All of these decisions can be formulated as OPF problems

Steven Low EE/CS/EST 135 Caltech



Optimal power flow

OPF underlies many power system applications

Constrained optimization

min c(u,x) st fu,x)=0, g(u,x) <0

u,x

Optimization vars: control u, network state x

Cost function: c(u, x)

Constraint functions: f(u, x), g(u, x)

They depend on the application under study

Steven Low Caltech Example applications



Optimal dispatch

Solved by ISO in real-time market every 5-15 mins
* Determine injection levels of those units that are online
e Adjustment to dispatch from day-ahead market (unit commitment)

Steven Low Caltech Example applications



Optimal dispatch

Problem formulation

Model
« Network: graph G = (N, E)
Optimization vars
« Control:
« Dispatch: power injections u := (uj,j € N) (denoted by S; previously)
* Network state:
« Voltages V := (Vj,j e N)

. Line flows § := (Sjk, Skj, (j, k) € E)

Steven Low Caltech Example applications



Optimal dispatch

Problem formulation

Parameters

« Uncontrollable injections ¢ := <aj,j = ]V), e.g. load forecast

Generation cost is quadratic in real power

c(u,x) = Z (aj<Re(uj))2 + b Re(uj)>

generators j

Steven Low Caltech Example applications



Optimal dispatch

Constraints

Power flow equations: S = S(V)

H H
. Complex form: S;(V) = (yﬁc) <|Vj|2—VjV]f) + (yj?") |Vj|2
* Polar form:

Puvy = (gt ) IVI? = 1,11V (gcos® = 0) — bsin(, - 6p)
0u(V) = (B +BE) IVl = 1VI1Vel (Bcos® = 0) + gisin(@,-6p)

Power balance: u; + o; = Z SJ-k(V)
kij~k

Steven Low Caltech Example applications



Optimal dispatch

Constraints

Injection limits: u. < Uj < i

Voltage limits: v. < |VJ|2 <V

Line limits: | S;(V)| < gjks | SV < gkj

Steven Low Caltech Example applications



Optimal dispatch

min c(u, Xx)

X
st. u, + 0, = Z Sik(V)
kij~k
u; < U S U
Y < |VJ|2 < Y

1SV < Sy 1SV < S

qut(a) : optimal dispatch driven by ¢

Steven Low Caltech Example applications



Optimal dispatch

Interpretation

. ISO dispatches ujppt

to unit j as generation setpoint (needs incentive compatibility)

t

* Resulting network state xOP! satisfies operational constraints

Economic dispatch in practice

* Real-time market use linear approximation, e.g., DC power flow, instead of AC (nonlinear) power
flow equations

» ISO solves linear program for dispatch and wholesale prices

* AC power flow equations are used to verify that operational constraints are satisfied if dispatched
« If not, DC OPF is modified and procedure repeated

* Even this is a highly simplified approximation of the actual market process

Steven Low Caltech Example applications
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Unit commitment
Security constrained dispatch/commitment

Future challenges



Unit commitment

Solved by ISO in day-ahead market 12-36 hrs in advance
* Determine which generators will be on (commitment) and their output levels (dispatch)
* For each hour (or half hour) over 24-hour period
 Commitment decisions are binding
* Dispatch decisions may be binding or advisory

Two-stage optimization
e Determine commitment, based on assumption that dispatch will be optimized

Steven Low Caltech Example applications



Unit commitment
Problem formulation

Model
« Network: graph G = (V, E)
e Time horizon: T := {1,2,...,T},e.g.,t =1hour, T = 24

Optimization vars
* Control:

« Commitment: on/off status k() := (Kj(t),j S ]V), k(t) € {0,1}

- Dispatch: power injections u(?) := (u(?), j € N)
* Network state:

- Voltages V(1) := (V(1),j € N)
. Line flows S(1) := (S(0), 5,0, (. k) € E)

Steven Low Caltech Example applications



Unit commitment
Problem formulation

Capacity limits: injection is bounded if it is turned on
u(Ok() < ut) < KD

Startup and shutdown incur costs regardless of injection level

( startup cost if Kj(t) — K‘j(t —-1)=1
djt(Kj(t — 1), k(1)) = < shutdown cost if K‘j(t) — Kj(t —1H)=-1
0 if Kj(t) — K‘j(t —1)=0

UC problems in practice includes other features
* Once turned on/off, bulk generator stays in same state for minimum period

Steven Low Caltech Example applications



Unit commitment

Problem formulation

Two-stage optimization

min Y ¥ d,(50-Dg0) + *®
t

ke(0,1}V+1T
where c*(k) is optimal dispatch cost over entire horizon T

c*(k) = min c(u(r), x(2); k(1))

(u,x) :

st fu(t), x(®); k(@) =0, gw@),x®);x() <0, t€T
fu,x) =0, gu,x) <0

» Each time f constraint includes injection limits

« fu,x) =0, Z(u,x) <0 caninclude ramp rate limits

Steven Low Caltech Example applications



Unit commitment

UC is more computationally challenging than optimal dispatch
* Discrete variables (nonconvexity)
* Multi-interval (larger problem size)

Steven Low Caltech Example applications



Unit commitment

UC in practice
» Binary variable and multiple intervals make UC computationally difficult for large networks
» Typically use linear model, e.g., DC power flow, and solve mixed integer linear program

Serious effort underway in R&D community to scale UC solution with AC model
* e.g., ARPA-E Grid Optimization Competition Challenge 2 (more later)

Steven Low Caltech Example applications
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Example applications

Security constrained dispatch/commitment

Future challenges



System security

System security refers to ability to withstand contingency events

A contingency event is an outage of a generator, transmission line, or transformer

Contingency events are rare, but can be catastrophic

NERC'’s (North America Electricity Reliability Council) N — 1 rule the outage of a
single piece of equipment should not result in violation of voltage or line limits

Steven Low Caltech Example applications



System security

Secure operation

* Analyze credible contingencies that may lead to voltage or line limit violations

« Account for these contingencies in optimal commitment and dispatch schedules
(security constrained UC/ED)

* Monitor system state in real time and take corrective actions when contingency
arises

Steven Low Caltech Example applications



Optimal dispatch

Recall: OPF without security constraints (base case):

min Co (uo,xo)
(49%0)
s.t. fo(uo,xo) = 0, g (uo,xo) <0

where
* U, : dispatch in base case
* X, : network state in base case
- Jo (uo, xo) : power flow equations, etc.

« £ (uO, xo) : operational constraints

Steven Low Caltech Example applications



Security constrained OPF

Preventive approach

Basic idea

* Augment optimal dispatch (OPF) with additional constraints ...

* ... so that the (new) network state under optimal dispatch 1Pt

operational constraints after contingency events

will satisfy

e Dispatch remains unchanged until next update period, even if a contingency
occurs in the middle of control interval

Steven Low Caltech Example applications



Security constrained OPF

Preventive approach

Security constrained OPF (SCOPF)

min Co (”0a xo)
(ug-X0» %ro k1)
s.t. f()(”Oax0> = 0, 80 (MO,XO) < 0 base case constraints
Nk (Mo,ka) = 0, gk (uo,fck < () constraints after cont. k

where

« X, : new state under same dispatch 1, after contingency k

. fo (uo, 560) : power flow equations for post-contingency network

. g (uo, )ZO) : (more relaxed) emergency operational constraints after contingency k

Steven Low Caltech Example applications



Security constrained OPF

Corrective approach

Basic idea

« Compute optimal dispatch not only for base case, but also for each contingency k

« System operator can dispatch a response immediately after contingency without
waiting till next dispatch period

Steven Low Caltech Example applications



Security constrained OPF

Corrective approach

Security constrained OPF (SCOPF)

min Z Wy Cy, (uk, xk)
(uk,xk, kZO)
k>0
S.t. fl‘c (uk, xk) = O, 8k (l/ik, xk) S O, k Z )
lu, —upll < pp, k2>1 ramp rate limits

where

. (uk, xk) : dispatch & state in base case k = 0 and after contingency k > 1
. (fk, gk) : power flow equations & operational constraints for k > 0

o |lu, — uyl| : ramp rate limits

Steven Low Caltech Example applications
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Computational challenges
Practical OPF

Non-convergence
* |l conditioning, bad initial point, nonconvexity

Nonconvexity of power flow equations
* Quadratic, trigonometric

Large problem size
* Large number of variables and constraints
* Relaxation based methods difficult to scale

Nonsmoothness
* Nonsmooth constraints, logical constraints, complementary constraints, mixed integer constraints

Steven Low Caltech Example applications



Computational methods

Newton-Raphson is the most widely used solution method

* Good (well understood) convergence property

Other popular methods
» Fast decoupled methods: approximate Newton-Raphson

* Interior point methods

Recent approaches
« Based on convex relaxations: semidefinite relaxations, strong SOCP, QC relaxation

* Based on machine learning and neural networks (this tutorial)

Steven Low Caltech Example applications
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Optimal power flow (OPF) problems
Example applications
Future challenges

Machine learning for constrained optimization
Machine learning for solving OPF problems: overview

Machine learning for DC-OPF and SC-DCOPF
problems

Machine learning for standard AC-OPF problems

Ensuring DNN feasibility for constrained optimization
Solving AC-OPF under flexible topologies

Solving AC-OPF with multiple load-solution mappings
Concluding Remarks




Machine learning for constrained
optimization



Constrained Optimization

mxin f(x, 2)

s.t. 9i(x,2)=0,i=1,...n
hi(x,2) <0,j=1..m

X0

z: input parameter vector
x: decision variable vector Gradient descent (green)
Newton's method (red)

0 Tremendous applications; many off-the-shelf solvers “_{\(“e

0 Given z, solvers apply iterative strategies tr -

— E.g., the gradient descent method *- e‘ga
x(t+1) =x \yaW
— E.g., the Newton-Raphson methot wuditional curvature information

Picture source: wiki
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An Input-Solution Mapping Perspective

Input Solution

"'IZZIZ:[% SOIVer 9---;-X;rx;l_k

0 A solver implicitly characterizes an
input-solution mapping for a problem

0 Example: The load-generation mapp-
ing for a DC-OPF problem over a 2-bus
instance

o]
o

—PG

1
701
_PG2
60
g 50 Reaching branch limit
G 40 .
c
o I
O30t
|
20+ .
10 l
0 . . . .
0 20 40 60 80 100
Load (Pd)
(pGlrgl) (PGZrQZ)
//./:\ | | /‘)"\. |
S p Tl PD
Bus 1 Bus 2

12



New Machine Learning Viewpoint

O Learn the input-solution

o]
o

o= mapping for a given problem
5 50 Reaching branch limit
i | ' 0 Pass inputs through the
i ! & | mapping for solutions
ol ! | — No iterative updates needed
o) P T — Trade learning complexity for
Load (P low run-time complexity
(Pes,00) (Pea,02) 0 Q: can we learn such a
1 N mapping?
&/ Sl P,
Bus 1 Bus 2

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021. 13



Continuous Mapping upon Unique Solution

min  f(x,z)

X 80 ;
—PG1
s.t. 9i(x,z2)=0,i=1...n PT | —pe,
60
h] (x» Z) < 0; J = 1’ e MM S50 Reaching branch limit
gm l
Z: input parameter vector 8 sl :
x: decision variable vector - :
10F I
Continuous Mapping Theorem. (1112 % " m po - o0
For continuous f, g, h, if the input rosd (Pl
domain D is compact and the optimal DC-OPF is a quadratic problem
solution x™ is unique forany z € D, with unique optimal solution

then the input-solution mapping z —
x" is continuous.

[1] Maximum Theorem in Chapter 6, Section 3, Claude Berge, “Topological Spaces”. Oliver and Boyd. p. 116. (1963)
[2] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A feasibility-optimized Deep Neural Network Approach for AC Optimal Power Flow
Problems,” arXiv preprint arXiv:2007.01002, 2020. 14



NN Can Approximate Continuous Mapping

Hidden layer

Input
Input layer PUh

Output layer

o(x) I

(Weight,, Bias,)

Input;

O

(Weight;, Bias;) Output

Rectified linear unit
Weighted ~ (E : - (ReLU): max(x, 0)

. Output = ReLU Input; X Weight; + Bias; . ’
Neurons 1 1 1
connection i

0 Theorem [1-3]: With non-polynomial activation functions,

feedforward networks can approximate “any” function/mapping
arbitrarily well, with sufficient neurons.

— Any function whose p-th power of the absolute value is Lebesgue
integrable

— Activation function is bounded, non-constant, and continuous
— Even by using single (hidden) layer NNs

[1] K. Hornik, “Approximationcapabilitiesofmultilayerfeedforwardnetworks,” Neural networks, vol.4, no.2, pp. 251-257,1991.
[2] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math. Control Signals Systems, 2(4):303—-314, 1989.

[3] Pinkus, Allan. "Approximation theory of the MLP model in neural networks." Acta numerica, 8 :143-195, 1999. 15



An lllustrating Example

0 Approximatingy = 0.3x° + 4.8x* — 18.8x3 + 6x2 +

23.6x — 6 by an 8-node single-layer ReLU NN

== Qriginal function
——— DNN

-5.24
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Some Recent Advances

0 Results extended to RNN, CNN, ResNet, etc.

0 Deep networks use exponentially less neurons [1-3]: A
ReLU DNN can approximate a sufficiently smooth f up to
an [, error €, with both width and depth at most log 1/¢

— To approximate a function in a wide family of twice-
differentiable functions, a DNN needs at least a width of

poly(1/€) if the depth is fixed [3]

[1] D. Yarotsky, “Error bounds for approximations with deep ReLU networks”, Neural Network, vol 94, pp. 103-114, Oct. 2017.

[2] S. Liang and R. Srikant, “Why Deep Neural Networks for Function Approximation?”, ICLR, 2017.

[3] I. Safran and O. Shamir, “Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks”, ICML, 2017,

[4] D. Zhou, “Universality of deep convolutional neural networks”, Applied and computational harmonic analysis 48 (2), 787-794, 2020.
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Our Machine Learning Viewpoint

O Learn the input-solution
Input Solution mapping for a given problem

o, Z3,Z1—> Solver > ..,x5,x]

0 Pass input through the
mapping for the solution

— Trade learning complexity for
‘ low run-time complexity

@ O Yes, we can learn the input-
2 1, KOO S0 > ., 13,1 solution mapping by NN

— Learning complexity is
amortized if the problem is
solved repeatedly, e.g., OPF

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021. 18



ML Approach: Solving CO as NN Regression

given given
‘1' ‘1' 0 Training: Given the inputs
T and solutions, learn the
Uy .. U a1 -
= mapping
[xl xn]
1‘ _Pdn
to learn
given
learned
y y l, P, 0 Applying: Given input,
[xl x"] —rl] .. directly generate the
1 L n . .
Pan. solution by the mapping

1

to generate

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, Mayg
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.



ML for Constrained Optimization in Power
System Operation

0 Application in OPF
— Facilitate conventional solvers, e.g., [1]
— Directly generate solutions (upcoming slides)

0 Other Applications
— Frequency control, e.g., [3,4,5]
— Network reconfiguration, e.g., [6]
— Economic dispatch, e.g., [7]

[1] Y. Ng, S. Misra, L. A. Roald and S. Backhaus, “Statistical Learning for DC Optimal Power Flow”, in Proc. IEEE PSCC, Dublin, Ireland, Jun. 11 - 15, 2018.
[2] X. Pan, T. Zhao, and M. Chen, “Deepopf: Deep neural network for DC optimal power flow,” in Proc. IEEE SmartGridComm, Beijing, China. 2019.

[3] W. Cui and B. Zhang, "Lyapunov-Regularized Reinforcement Learning for Power System Transient Stability," in IEEE Control Systems Letters, vol. 6, pp.
974-979, 2022.

[4] W. Cui, Y. Jiang, and B. Zhang, “Reinforcement learning for optimal primary frequency control: A Lyapunov approach,” arxiv, 2021.

[5] T. Zhao, J. Wang, X. Lu, and Y. Du, “Neural Lyapunov control for power system transient stability: A deep learning-based approach,” IEEE Trans. Power
Syst., vol. 37, no. 2, pp. 955-966, Mar. 2022.

[6] Y. Gao, J. Shi, W. Wang and N. Yu, "Dynamic Distribution Network Reconfiguration Using Reinforcement Learning," in Proc. IEEE SmartGridComm,
Beijing, China. 2019.

[7] F. Hasan and A. Kargarian, "Topology-aware Learning Assisted Branch and Ramp Constraints Screening for Dynamic Economic Dispatch", accepted for
publication in IEEE Transactions on Power Systems (early access), 2022.



Machine Learning for Solving OPF
Problems: Overview



OPF for Setting System Operating Points

nin 10
u
st gty -0 —

h(x,y,u)=>0 Physical, operational, and security

constraints (e.g., line limits)

0 Recall: The Optimal Power Flow (OPF) Problem is to
determine the outputs of generators to

— Satisfy the load in real-time (reliability)
— Minimize the overall generation cost (efficiency)

[1] J. Carpentier, “Contribution to the economic dispatch problem,” Bulletin de la Societe Francoise des Electriciens, vol. 3, no. 8, 1962.
[2] Cain M B, O’neill R P, Castillo A. History of optimal power flow and formulations. Federal Energy Regulatory Commission, 2012, 1: 1-36.
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Observation

0 AC-OPF problem is non-convex and NP-hard, difficult to
solve in real-time

— Practical OPF can involve more than 1M variables

0 To accommodate renewable, market operators need to solve
OPFs every 5 minutes

— Previously, every half day or every 2 hours
— In the future, every one minute

0 Operators often terminate iterative methods early, or resort
to solve (linearized) DC-OPF, both giving sub-optimal results

0 How to solve OPF problem in real-time?

[1] Bienstock D, Verma A. Strong NP-hardness of AC power flows feasibility. Operations Research Letters, 2019.

[2] Reddy S S, Bijwe P R. Day-ahead and real time optimal power flow considering renewable energy resources. International Journal of Electrical
Power & Energy Systems, 2016, 82: 400-408. 23



Approaches

[

[

[

[

[

General Newton-like iterative algorithms

Linearization to solve OPF approximately

. . . . Only applicable
Convexification to solve OPF optimality

Machine learning to solve OPF problems directly
— Sub-percentage optimality loss (better than linearized OPF)
— 1,5000x speedup for AC-OPF over a 2000-bus network

— Approaches evaluated over actual RTE networks with
9,241 buses, also realistic load profiles with 40% variation

Machine learning to facilitate existing iterative solvers
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Historical Roadmap

SGC’21 Inequality
TPWRS'21 TPWRS’21  feasibility,
ICLR’21 arXiv’23  multi-value
arxivi20 ICMLWS'21  TPWRS'23  mapping
ICML W13 SC-DCOPF, Umversal and beyond
“(Deopopr) NN-ACOPF | RLforrea |
-time OPF Solver T time
arXiv’'18 i Learn to
NN warm optimize NN Iarge-scale ICLR’23
start ,NNmap- ApAr20  TPWRs'20 UNsupervised OPF ICML'23
ping;  sGC’20 TPWRS'21  €arNing; TPWRS’ e-Energy’23
NN active equ.al-l'Fy ICLR’21 NN 23 Neur.IPS’21
. feasibility arxiv’20 physics- arXiv'20
constraint ’ informed
MLSP’19 JIEEE-S)'22

O Our works in bold font
0 https://energy.hosting.acm.org/wiki/index.php/ML_OPF_wiki
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Wiki and Overview Webpage

O

O

O

O

A wiki page hosted by ACM SIGEnergy
— https://energy.hosting.acm.org/wiki/index.php/ML OPF wiki

A wiki page hosted by Climate Change Al (on more general topics)
— https://wiki.climatechange.ai/wiki/Welcome to the Climate Change

Al Wiki

An overview webpage by Letif Mones
— https://invenia.github.io/blog/2021/10/11/opf-nn/

Dataset or data generators for training NN for OPF problems
— https://github.com/NREL/OPFLearn.jl
— https://github.com/invenia/OPFSampler.jl/
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Machine Learning for Solving
DC-OPF and SC-DCOPF Problems

- X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", IEEE
SmartGridComm, 2019. (arXiv:1905.04479, May 11th, 2019)

- X. Pan, T. Zhao, M. Chen and S. Zhang, "DeepOPF: A Deep Neural Network Approach for Security-
Constrained DC Optimal Power Flow", in IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 1725 -
1735, May. 2021.

- A. Velloso, P. V. Hentenryck, “Combining Deep Learning and Optimization for Preventive Security-
Constrained DC Optimal Power Flow”, IEEE Transactions on Power Systems, July, 2021.

- L. Zhang, D. Tabas, B. Zhang, “An Efficient Learning-Based Solver for Two-Stage DC Optimal Power Flow
with Feasibility Guarantees” arXiv:2304.01409, 2023



DC-OPF: Linearized OPF Problems

min Zié]\f ()\1,,2]933 + )\ivlpgi + )\i,O Quad ratic generatlon cost
st. BO =ps —pp, Linearized power balance equation

bij (0; — ;) < S, V(1,5) € &,
Pr(gin g Do g Pn&ax

var. pPci, QZ,V”L S N

Branch flow and power generation
limits

0 A quadratic problem in active power generation p, and voltage
angel 6

O Easy to solve by iterative solvers. Why NN approach then?
— Approaches generalizable to AC-OPF or other nonlinear problems
— Security-constrained DC-OPF still challenging to solve



(N-1) Security-Constrained DC-OPF

0 US operators require OPF solutions to be (N-1) secure

— Preventive SCOPF: OPF generation still supports the load
upon any single line failure (could be transient)

Bus1 b Bus 2 Bus 1 Bus 2
@ s < @ @—) Contingency #1 e—@
bla 23 b13 23
Pc1.61 pg, ’ Pys PG2, 02 Pc1,01 P, b Py, PGz, 02
Pp3, 03 Bus 3 Pp3. 03 Bus 3
Bus 1 P lfusz Buﬁl Bus 2
12 b 12 by
e ) o —®
13 % 23
Pc1,01  p, Cony, ™ Pe2, 02 P10 (\C\ﬁ* b Py Pe2, 02
nCy#Q C’O(\’(.\(\
Pp3, 03 Bus 3 Pp3,03 Bus 3
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(N-1) Security-Constrained DC-OPF

@ Bujl

Pe1.b1 P
Pp3
- B Il ?USZI\/ O Bus1 T ZN
2 O O :
Pe1.b1 p Cony, P62, %2 P61, 0 e N Py P
V#2 (,0‘\(\
. 2 5,05 BUS3 3, 0y BUS 3
min Zie N <>\i,2pgi + AiiDgi + )\i,0> " e
s.t. B°O° = Pc — Pp, |Vc - C)l c=20,1,2,3:

standard case: #0
bs; <9§ — 9;) <S5, V(i,j) € Elc e C, | contingency: #1,#2,#3

PI(I;I'IH SpG S I(l';l'aX,
var. pai, Vi € N, 65, Vi e M,ceC. |
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Complexity of SC-DCOPF (Quadratic Prob.)

o Solving (N-1) SC-DCOPF problems: O(N'#) time complexity
— N is the number of buses

— O(N*) time complexity for DC-OPF

— For a 300-bus network, Gurobi solves an (N-1) SC-DCOPF problem
in 5 seconds

e On a quad-core (i7@3.40G Hz) workstation with 16GB RAM
— For a 600-bus network, it would take 6.5 hours!

0 We focus on SC-DCOPF as it is basically a large-scale DC-OPF

[1] Y. Ye and E. Tse, “An extension of karmarkar’s projective algorithm for convex quadratic programming,” Mathematical Programming, vol. 44,
no. 1, pp. 157-179, May 1989.

[2] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, Maé
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021. 1



Piecewise Affine Mapping for SC-DCOPF

o]
o

~
o

Theorem [1]: The input-solution _ —:J
mapping of a strictly convex —
quadratic problem is piecewise
affine.

— pp € RV to (pg, 6°) € RV

(2]
o
T

[
o

Reaching branch limit

Generation
w I
o o

N
o
T

-
o
T

o

0 20 40 60 80 100
Load (Pd)

: 2
min Zié/\/ ()\Z-,ng,- + Ni1Dgi + )\z',())
(Pﬂlrgl) (PGZrQZ)

s.t. B9° =pg —pp, Veel,
bgj (026 B (9;) < Sij V(Zu?) € 5, C € C, & | | i I

ij ~ B,
Pgln S Pg S 1_‘)2&)(7 Bus 1 Bus 2
var. pg;, Vi € N0, Vie N ceC. A 2-bus 2-generator example

[1] N. P. Fa"isca, V. Dua, and E. N. Pistikopoulos, “Multiparametric linear and quadratic programming,” pp. 3—23, 2007.
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ldea and Challenge

0 ldea: learn the load-solution mapping by DNN;
use it to obtain solution from input instantly

0 Challenge:
— We would use DNN, but how many neurons?
— How to train the DNN?
— Meeting equality and inequality constraints

— Standard projection back to the feasible set can be
computationally expensive

33



Approaches for DC-OPF/SC-DCOPF

0 How many neurons to have in the DNN? [1]
O Training design [1,2,3]: approximation error + constraint violation

0 Meeting equality and inequality constraints

— A Predict-and-reconstruct (PR2) approach to guarantee equality
constraints [1] (also independently in [4])

— Promoting inequality feasibilities by using penalty/KKT loss function [1,2]
— Post-processing to recover feasible solutions [1,2]
— A preventive-learning approach to guarantee inequality feasibility [3]

0 Approaches extended to AC-OPF problems (later)

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.

[2] A. Velloso, P. V. Hentenryck, “Combining Deep Learning and Optimization for Preventive Security-Constrained DC Optimal Power Flow”, IEEE
Transactions on Power Systems, July, 2021.

[3] T. Zhao, X. Pan, M. Chen, and S. H. Low, “Ensuring DNN Solution Feasibility for Optimization Problems with Convex Constraints and Its
Application to DC Optimal Power Flow Problems”, arXiv preprint arXiv:2112.08091, 2021.

[4] N. Guha, Z. Wang, A. Majumdar, “Machine Learning for AC Optimal Power Flow”, ICML Climate Change workshop, June 14, 2019. 34



Equality Constraint: Opportunity, not Issue

Bus load

Pp

=)

Prediction by DNN

Hidden layer

Generation

Pc

=)

Reconstruction by
Solving Power
Flow Equations

Generation
and angle

D (6, 6)

0 Predict-and-Reconstruct (PR2) [1]: predict p; and reconstruct
0 = B 1(p; — pp) by solving power flow equations

— Ensure power-flow balance equality constraints
— Reduce the number of variables to predict (and thus DNN size)
— Applicable to AC-OPF and constrained optimization problems

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.
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DeepOPF for SC-DCOPF: Training

Poi = a;(PE™ — PG™) + PE™

: Training
: phase Optimal Linear
Pre- solution transformatio |

processing
N

Inverse
transformation

Phase angle
Prediction

0 Ensure box constraints for pg [1]: pg; = a;(PE* — PM™) + PI™
[0,1]
O Incorporate other inequality constraint violations into the loss function:
— Wy - l0SSpreq + Wy - L0SSpep [1]
— Replace w, with dual variables, in a different SC-DCOPF formulation [2]

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in May 2021.

[2] A. Velloso, P. V. Hentenryck, “Combining Deep Learning and Optimization for Preventive Security-Constrained DC Optimal Power Flow”, IEEE
Transactions on Power Systems, July, 2021. 36



DeepOPF for SC-DCOPF: Testing

- Recover feasible solution by [4
projection (in case of infeasibility)

Inverse P Post-
transformation processing

Phase angle Predicted
- processing Prediction solution
Inference phase

NNH
1

min HpG — p2
S.t. BCHC = pG — pD7 VC c C)
The [;-projection problem is bi; (92- — 9j) < S5, V(i,j) € E,c e,

essentially an LP; complexity lower P < p, < PR,
than solving the original QP var. pei,Vi e NOSVie N,ceC.

Output the DNN solution if feasible
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Justification of DNN Solving OPF Problems

0 Theorem [4]: Let f™ be the piecewise-affine load-generation mapping
of an (N-1) SC-DCOPF problem with a Lipschitz constant a. Then the
., error of a DNN with n hidden layers and m neurons per layer

— Decreases to 0 as m tends to infinity
— Is lowed bounded by a - d/[4(2m)"]; d is the input region diameter

0 Similar results for AC-OPF problems in [5]

0 Corollary: NN width and depth to achieve an [, error of € satisfies

2m)" = a - d/(4¢€)
— Tighter than existing lower bounds (which are for general functions)

[1] D. Yarotsky, “Error bounds for approximations with deep ReLU networks”, Neural Network, vol 94, pp. 103-114, Oct. 2017.

[2] S. Liang and R. Srikant, “Why Deep Neural Networks for Function Approximation?”, ICLR, 2017.

[3] 1. Safran and O. Shamir, “Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks”, ICML, 2017,

[4] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”,

IEEE Transactions on Power Systems, 2021.

[5] X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow
Problems", arXiv preprint arXiv:2007.01002, 2020. 38



Run-Time Complexity of DeepOPF: O (N7-)

0 The time complexity for solving (N-1) SC-DCOPF is O(N1?)

0 Proposition [3]. The time complexity to obtain a solution for (N-1)
SC-DCOPF by DeepOPF is
O(nm? + N°> + N7®)
— — —
DNN  reconstructing  post-
perdition  the phase angles  processing
and checking
feasibility

0 In DeepOPF:n = 3,m = O(N)

[1] Y. Ye and E. Tse, “An extension of karmarkar’s projective algorithm for convex quadratic programming,” Mathematical Programming, vol. 44,
no. 1, pp. 157-179, May 1989

[2] Vaidya P. Speeding-up linear programming using fast matrix multiplication, 30th Annual Symposium on Foundations of Computer Science.
1989: 332-337.

[3] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”, IEEE
Transactions on Power Systems, 2021. 39



Performance under Typical Load

Ave. cost Opt Run. time
IEEE Test  Feasibility (S/hr) pt. (millisecond)
loss Speedup
Case rate (%) 0
DeepOPF Ref. (%) DeepOPF  Ref.
IEEE- 100 225.7 225.7 0.72 17
case30
|[EEE-
100 9022.9 9021.6 0.76 102
case57
|[EEE-
100 29197.9 29149.0 2.48 698
casell8
|[EEE-
100 156601.8 156542.5 81.4 5766
case300

O i5-8500@3.00G Hz CPU; 8GB RAM; 50K training data, 5K testing data; baseline:
Gurobi; 3-layers NN; 256/128/64 neurons; up to 95K variables in formulations

[1] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”,
IEEE Transactions on Power Systems, May, 2021. 40



Performance with Frequent [;-Projection

0O Lightly-congested: [50%,150%] variation; 85% instances 1+ line binding
0O Heavily-congested: [150%, 160%] variation; all instances 20% line

binding
Lightly-congested Heavily-congested
Scheme Variants Feasibility rate | Optimality gap Feasibility rate | Optimality gap
(%) (%) Speedup (%) (%) Speedup
with
¢1 -projection 100 <0.2 56 100 <02 % 16.4
DNN without
¢1-projection 157 <0.2 315 0 <0.2 _
with
KNN | ¢;-projection 100 <0.6 0.7 100 <0.3 x1.5
-50K without
¢1-projection 0 <0.9 - 0 <03 -

Test case: IEEE Casel18

41



Optimality vs. Speedup (IEEE Casel118)

: " 356
10000 training data
20000 training data| ]
30000 training data 351}t
| o
3
D
o 346
=
w
341+
0 336 : ! :
DeepOPF-V1 DeepOPF-V2 DeepOPF-V3 DeepOPF-V1 DeepOPF-V2 DeepOPF-V3
Variant Variant
(a) (b)

O One can trade optimality loss with speedup pertormance
by tuning the neural network sizes

— DeepOPF-V1/V2/V3: DeepOPF with different NN size
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Summary

0 DeepOPF: the first DNN scheme to solve OPF directly
— Theoretical justification for NN to learn load-solution mapping
— Run-time complexity O(N7->) for solving SC-DCOPF problems

0 DeepOPF generates feasible solutions for SC-DCOPF with
<0.1% optimality loss, with up to 300x speedup than Gurobi

0 Approaches for ensuring/promoting solution feasibility
— Predict-and-reconstruct (PR2) to guarantee equality constraints
— Penalty approach promote feasibility w.r.t. inequality constraints

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in May 2021. 43



Machine Learning for Solving
AC-OPF Problems

- X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network
Approach for AC Optimal Power Flow Problems", arXiv 2020. IEEE Systems Journal 2023

- G. Neel, Z. Wang and A. Majumdar, "Machine Learning for AC Optimal Power Flow", In Proceedings of
the 36th International Conference on Machine Learning Workshop, Long Beach, CA, USA, 2019.

- D. Owerko, F. Gama, A. Ribeiro, Optimal Power Flow Using Graph Neural Networks, ICASSP, 2020

- W. Huang, X. Pan, M. Chen, and S. H. Low, "DeepOPF-V: Solving AC-OPF Problems Efficiently", IEEE
Transactions on Power Systems, vol. 37, no. 1, pp. 800 - 803, Jan. 2022.

- X. Lei, Z. Yang, J. Yu, J. Zhao, Q. Gao and H. Yu, "Data-Driven Optimal Power Flow: A Physics-Informed
Machine Learning Approach", in IEEE Transactions on Power Systems, Jan. 2021.

- F. Fioretto, T. Mak, and P. V. Hentenryck, "Predicting AC Optimal Power Flows: Combining Deep
Learning and Lagrangian Dual Methods", AAAI, 2020.

- A. Zamzam and K. Baker, "Learning Optimal Solutions for Extremely Fast AC Optimal Power Flow",
IEEE SmartGridComm, 2020.

- P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints",
ICLR, 2021.

- W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF
Problems without Ground Truth", In Proceedings of the 38th International Conference on Machine
Learning Workshop, virtual conference, Jul. 23, 2021.

- M. Chatzos, T. W. K. Mak and P. Vanhentenryck, "Spatial Network Decomposition for Fast and Scalable
AC-OPF Learning," in IEEE Trans. on Power Systems, 2022

- E. Liang, M. Chen and S. H. Low, "Low Complexity Homeomorphic Projection to Ensure Neural-
Network Solution Feasibility for Optimization over (Non-) Convex Set”, ICML, 2023



Standard AC-OPF Formulation

0 Minimizing generation cost to serve the load, with an accurate AC model

S.t. sz’ — sz' = Z M%(gijcosﬁij S b@-jsinﬁ‘ij); Vi € N;

ji(i.5) €€ AC power flow
Qui — Qai= Y _ ViVi(gijsinb;; — b;cosy;), Vie N, equations
j:(ig)€€
P < Py < PR, Vie N,
i : i 5 Generation and
g < Qg < QE, Vie N,

voltage limit

V;min S I/z S V;max? Vi € Nga )
constraints

O < 0;; < 07, V(i f) € E,
p max & s s
0< PE?JVQfJ = (Sij ) , V(i,5) €€,
P@‘j = Gij (‘/;2 — V;V;, COS 9”) — bUV@V;. sin 9;‘]'; V(’Lj) € g,
Qij = bij (_Vf + ViV cos 9@5) — 9i;ViVjsin0;;, V(i,j) € &,
var. P, Q.. Vie NV, 0, VieN.

Branch flow
limit constraints

J. Carpentier, “Contribution to the economic dispatch problem,” Bulletin de la Societe Francoise des Electriciens, vol. 3, no. 8, pp. 431-447, 1965



Load-Solution Mapping of AC-OPF

0 Theorem [4]: Assumed the load
domain is compact and the optimal
AC-OPF solution is unique for any
given load in the domain, the load-
solution mapping is continuous.

. . . J: PG QG
— AC-OPF has a unique solution in | ~ .
“typical” load regions, or radial V.| | Non-
network under certain conditions linear
[1], or with monotonic power flow
. P, Q6. 01, V4 Py, Qp, 65, |V
equations [2,3] (P, @6, 61, 11 1) (P, Qp. 65, 1V31)
T y=r+ix | |
Bus 1 Bus 2

[1] S. H. Low, “Convex relaxation of optimal power flow—Parts |: Formulations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp.
15-27, Mar. 2014.

[2] Park, S., Zhang, R.Y., Lavaei, J. and Baldick, R., “ Uniqueness of power flow solutions using monotonicity and network topology,” IEEE
Transactions on Control of Network Systems, 8(1), pp.319-330, 2020

[3] Dvijotham, K., Low, S. and Chertkov, M., “Solving the power flow equations: A monotone operator approach,” arXiv preprint arXiv:1506.08472,
2015

[4] X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow
Problems", arXiv preprint arXiv:2007.01002, 2020. 46



Multiple AC-OPF Load-Solution Mappings

0 AC-OPF problem is non-convex and can admit multiple
optimal or near-optimal solutions

0 Supervised learning with randomly sampled load-solution
pairs may fail to learn a legitimate mapping [1]

-—Targr.‘lt Mappling—l
—Target Mapping-2 -
DNN's Mapping

1.09 -
—~ 1.07 ¢
=

8,
= 105+
=~
-
1.03
(P(;, QGJGIr |V1| ) (PD: QDJGZJ |V2| )

ﬂr_l_jxw 1.01 ¢

) -286 -285.5 -285 -284.5 -284 -283.5 -283 -282.5 -282 -281.5
Bus 1 Bus 2 Q,, (MVar)

[1] X. Pan, W. Huang, M. Chen, and S. Low, “DeepOPF-AL: Augmented Learning for Solving AC-OPF Problems with Multiple Load-Solution
Mappings”, arXiv preprint, June 2022. https://arxiv.org/abs/2206.03365 47



(New) Challenge

0 We would use DNN, but how many neurons?

0 Meeting equality and inequality constraints

— Predict-and-Reconstruct (PR2) approach still works,
but requires solving nonlinear PF equations

— Computing the penalty gradients is non-trivial
— Projection is non-trivial (Part Ill)

0 Preparing AC-OPF training data is time-consuming

0 How to deal with the learnability of multiple load-
solution mappings? (Part Ill)
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Approaches for AC-OPF

0 How many neurons to have in the DNN? [1]
O Training design [1-6]: supervised and unsupervised training

0 Meeting equality and inequality constraints

— Standard and low-complexity PR2 approaches to guarantee equality
constraints [1-5] (also called equality completion in [6])

— Computing penalty gradient by implicit function theorem and zero-order
methods [1,6]

— Inequality feasibility guarantee in Part Il

[1] X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow
Problems", arXiv preprint arXiv:2007.01002, 2020.

[2] G. Neel, Z. Wang and A. Majumdar, "Machine Learning for AC Optimal Power Flow", In Proceedings of the 36th International Conference on
Machine Learning Workshop, Long Beach, CA, USA, Jun. 10 - 15, 2019.

[3] W. Huang, X. Pan, M. Chen, and S. H. Low, "DeepOPF-V: Solving AC-OPF Problems Efficiently", IEEE Transactions on Power Systems, vol. 37,
no. 1, pp. 800 - 803, Jan. 2022.

[4] F. Fioretto, T. Mak, and P. V. Hentenryck, "Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods", AAAI,
2020.

[5] A. Zamzam and K. Baker, "Learning Optimal Solutions for Extremely Fast AC Optimal Power Flow", SmartGridComm, 2020.

[6] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", ICLR, 2021. 49



Predict and Reconstruct

Prediction by DNN
Bus load Input Hidden layer output |  Generation Generation

Pc and voltage
Pp j‘>
dp

q: | Reconstruction by

> Solving nonlinear :> (I;G'B‘SG'

AC-PF Equations

0 Ensure box constraints for pg, qg, €.8., P = a;(PH*™* — Pg}i") +
Pl a € [0,1]; same technique as in DC-OPF and SC-DCOPF

O Incorporate inequality constraint violations into the loss function:

— Wy * loSSpreq + Wy » L0SSy,ep

[1] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”,
IEEE Transactions on Power Systems, 2021. 50



Obtaining Penalty Gradient for DNN
Training

O Loss function: e ACHF | l(& ,
Y Solver “

— Wy * loSSpreq + W, -
loss on x € RY: load input, y € R™: independent variables,
p z € R™: dependent variables, [: penalty function

0 Computing Penalty
Gradient by the chain

0Ly, 2)] [0, 2)]
rule: 3yn or
— The mapping between y Viy) = ¢ +|
and z does not admit an dl(y, z) al(y,z)
explicit form | Ay, | | 0z, |

[1] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A feasibility-optimized Deep Neural Network Approach for AC Optimal Power Flow
Problems,” arXiv preprint arXiv:2007.01002, 2020.
[2] P. L. Donti, D. Rolnick and J. Z. Kolter, “DC3: a learning method for optimization with hard constraints”, in Proc. ICLR, 2021. 51



Computing Penalty Gradient Directly

0 The AC-PF equations

implicitly encode the

Y—Z mapping

— Penalty gradient can

be

computed by exploring

implicit function

theorem!!!
'021 021 T _ahl
6?/1 aym 6.21
9z, Bz, oh,,
[0y, 0Ym ] [0z,

[1] P. L. Donti, D. Rolnick and J. Z. Kolter, “DC3: a learning method for optimization with hard constraints”, in Proc. ICLR, 2021.

oh N\ !
0z,
oh,

0z, |

[0hy
6%11
dh,
|0y,

"oh,

ay,
oh,

9y1

Denote AC-PF equations by:

h;(y,z) =0,i=1,..n

<k
oh,1 [0h,
aym 521
on,| |on,
0V 0z,

dhyT
aym
dh,
OYm |

Ohy]

0z,

dh,,

0z, |

(02,

0y,

9z,

|0y,

071

0YVm

9z,




Estimating Penalty Gradient

0 The penalty function is a

composite function of y: [nputs Penalty
y+ué [(y + ud)

0 Two-point gradient YKo Hy = #0)

estimation [1] 5: smooth parameter, m: the input

. . dimensions,u € R™: a uniformly-
— Estimate grad|ent by sampled vector from the unit ball
perturbating y and
computing the penalty twice (y + u8)—1(y — ud)
Vi(y) = 25 m:

— Better empirical
performance than the
implicit function theorem-
based method

[1] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A feasibility-optimized Deep Neural Network Approach for AC Optimal Power Flow
Problems,” arXiv preprint arXiv:2007.01002, 2020. 53



Simulation Settings

O Test cases: |IEEE
30-/118-/300-bus
and a synthetic
2000-bus mesh
power network [1]

#Bus | #P-V Bus | #P-Q bus | #Branch | Tdden | #Neurons
layers per layer
30 5 24 41 2 64/32
118 53 63 231 2 256/128
300 68 231 411 2 512/256
2000 177 1822 3693 2 2048/1024

0 Workstation: CentOS 7.6 with
quad-core (i7-3770@3.40G Hz) CPU and 16GB RAM

0 Datasets: (i) synthetic dataset with +10% variation; (ii) California
demand curve with up to 40% variation; 10,000 training samples

and 2,500 for testing

0 Schemes: DeepOPF(-AC), Pypower, DNN-warm start [2], DNN-E [3]

[1] Powergrid Lib 2000-bus synthetic test case,” 2022, https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/

[2] W. Dong, Z. Xie, G. Kestor, and D. Li, “Smart-PGSim: Using Neural Network to Accelerate AC-OPF Power Grid Simulation,” in Proc. SC20,

St. Louis, MO, USA, 2020

[3] A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow, IEEE SmartGridComm, 2020.


https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/

Simulations for Realistic Load w. 40% Variation

Feasibility rate (%)

Average cost difference (%)

Average speedup

Test case before feasibility-recovery™
DNN-E | DNN-W | DeepOPF | DNN-E | DNN-W | DeepOPF | DNN-E | DNN-W | DeepOPF
IEEE Case30 36 100 100 < 1 0 i | ¥T.3 x1.0 W13
IEEE Casel 18 80 100 oL < 0.1 0 2 Ol x11 1.1 x12
IEEE Case300 49 100 100 < (2 0 “ 02 x16 1.7 a3
IEEE Case2000 60 100 100 = 2 0 =02 x44 x0.9 X 70

0 Speedups are higher for DNN-E and DeepOPF than DNN-W

0 DeepOPF for AC-OPF achieves a speedup lower than for DC-OPF
due to solving nonlinear AC-PF vs linear DC-PF in PR2

— |EEE Case300: x33 for AC-OPF and x135 for DC-OPF (x318 for SC-DCOPF)
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Simulations for Synthetic Load: +10% Variation

0 Speedup higher than realistic loads with 40% variation

Feasibility rate (%) A ¢ diff %) A d
verage cost difference verage speedu
Test case before feasibility-recovery™ 8 ° 8° 5P P
DNN-E | DNN-W | DeepOPF | DNN-E | DNN-W | DeepOPF

IEEE Case30 42 100 100 <0.1 0 <0.1

IEEE Casel 18 22 100 100 <0.1 0 <0.1

IEEE Case300 21 100 99 <0.1 0 <0.1

[EEE Case2000 29 100 99 <0.1 0 <0.1
§400 1.07
é [ Reference solution by Pypower ‘;‘ [ Reference solution by Pypower
=50 mm DecpOPF £.1.06 BN DeepOPF
= —
= 300 )
= =
5250 £ 1.05
S =
& 200 ot
5150 £ 1.04
Z 100 S
< £1.03
€ 50 C
Z 0 1.02 _ JEm:

Generator index P-V bus index

Comparison of DeepOPF and Pypower solutions for IEEE Case118 test case
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Observation

0 DeepOPF speedups AC-OPF solving time by ~100x with
<0.2% optimality loss, over a 2000-bus system

— PR2 with a penalty approach can guarantee equality
constraints and promote inequality constraint feasibility

O Limitation #1: The speedup is lower than DC-OPF
— The PR2 design requires solving nonlinear AC-PF

O Limitation #2: Preparing training data for AC-OPF is
time-consuming

O Limitation #3: training complexity is high for large-scale
AC-OPF problems
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Further Improving Speedup

0 Approach #1: avoid PR2; predict the generation
and voltage solutions directly e.g., [2]
— Signficant speedup
— Solutions do not respect equality constraints

— Projection to recover feasibility is computationally
expensive

0 Approach #2: alterative PR2 design for better
speedup [1]

[1] W. Huang, X. Pan, M. Chen, and S. H. Low, “DeepOPF-V: Solving AC-OPF Problems Efficiently”, IEEE Transactions on Power Systems, Jan. 2022.
[2] F. Fioretto, T. Mak and P. V. Hentenryck, "Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods", AAAI,
2020. 58



Predict and Reconstruct (PR2) Revisit

Bus load

p
0"

Prediction by DNN

=

Generation
P:
d; Reconstruction by

Solving AC Power
Flow Equations

Generation
and voltage

\:> (Izj(f:eq)'c:

0 Solving nonlinear AC power flow equations is time-consuming

0 To improve speedup, we predict a different set of
independent variables for efficient reconstruction

[1] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”,

IEEE Transactions on Power Systems, early access, 2020.
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DeepOPF-V: Low Complexity PR2 Design

Prediction by DNN
BUS IOad Input Hidden layer

p
0"

Generation
and voltage

Only simple
addition & I j\> (P, 96
v, 0)

multiplication

Generation reconstruction

1| B.-B)+(0,-0,)
=V.* cony(Y* V)

[1] W. Huang, X. Pan, M. Chen, and S. H. Low, “DeepOPF-V: Solving AC-OPF Problems Efficiently”, IEEE Transactions on Power Systems, Jan. 20280



The New PR2 Design is Effective

0 Speedup improves from 100+ in DeepOPF to 15,000+ in
DeepOPF-V, for the 2000-bus test case

SIMULATION RESULTS IN THE 300-BUS AND 2000-BUS SYSTEMS

IEEE 300-bus system

2000-bus systg

Metric Before PP After PP Before PP fter PF
Nopt (%) 0.11 0.11 0.15 0.14
Ny (%) 100.0 100.0 100.0 100.0
np, (%)/nQQ (%) 99.9/99.3 100.0/99.8  100.0/100.0 §100.0/100.0
A Py (p.u.) 0.0020 0.0020 0
AQQ (p.u.) 0.3350 0.3350 0
ns, (%) 100.0 100.0 99.71
Ag, (p.u.) 0 0 0.0247
ne, (%) 100.0 100.0 100.0
np,(%)ng (%) 99.6/99.5 99.6/99 4 99.83/99.53
tmips/tdnn (ms)  3213.3/1.77  3213.3/2.1  39107.8/2.7
Nsp X 1890 X 1530 X 16543
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Simulation with Realistic Load Profiles

0 42% variation in a realistic load profile with bus correlation
0 DNN structure: 3 hidden layers, each with 768 neurons

SIMULATION RESULTS IN THE MODIFIED IEEE 300-BUS SYSTEM WITH
REAL-TIME LOAD DATA

Metric Before PP — After PP
FQV FGV
Nopt (%0)IMv (%) -0.01/100.0 -0.01/100.0 -0.01/100.0
np, (%)/Ap (p.u.) 99.6/0.0007 100.0/0 100.0/0
NQ, (%)/AQ (p u.)  99.8/0.0019 100.0/0 100.0/0

Py (%)/"7@ d(%) 99. 90/99 90 99. 95/99 94 99.95/99. 94
Nsp X 1887 X 1562 X 647
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Observation

0 DeepOPF can speedup AC-OPF solving time by two
orders of magnitudes with <0.2% optimality loss

— PR2 with a penalty approach can guarantee equality
constraints and promote inequality constraint feasibility

O Limitation #1: The speedup is lower than DC-OPF
— The PR2 design requires solving nonlinear AC-PF

O Limitation #2: Preparing training data for AC-OPF is
time-consuming

O Limitation #3: training complexity is high for large-scale
AC-OPF problems
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Unsupervised Learning for AC-OPF

0 Solving 10,000 AC-OPF instances on a 2742-bus
system takes 3+ days [3]

— Workstation, dual Intel 2.10GHz CPUs and 128GB RAM

0 Approach: unsupervised training [1, 2]
— No training data ground truth (OPF solutions) needed

— Use the OPF objective and constraint violation to
guide the DNN training

[1] W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth", In
Proceedings of the 38th International Conference on Machine Learning Workshop, virtual conference, Jul. 23, 2021.

[2] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", ICLR, 2021.

[3] S. Babaeinejadsarookolaee, et al., “The power grid library for benchmarking ac optimal power flow algorithms”, arXiv preprint
arXiv:1908.02788, 2019.
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DeepOPF-NGT: DeepOPF-V with No Ground
Truth

0 Use objective and constraints violation to guide DNN training

L=koLo(x,0)+kcLc(x,0) +kqLq(x, @)

o ' load
OPF objective c_onst_r aint )
violation mismatch
DNN ¥
T—— LT 7]
i e e '
Loads ] voliages i "21  Power
{0 | generation
(Pd-"Qd) | =& 1 and satisfied
i D loads
x i £y
Ty
1l

Mapping: y = F(x, ¢)

[1] W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth", In
Proceedings of the 38th International Conference on Machine Learning Workshop, virtual conference, Jul. 23, 2021. 65



Adaptive Learning Rate Adjustment

0 We use the following adaptive learning rate in DeepOPF-NGT
— At iteration t of the training, coefficient k5 and k¢ are updated as

koLo(x, @) —

kt = min{ —— k
4 { Ld(xl (P) d}

koLo(x, @) —

ki = min{ —— k
X e B

Ed and EC : upper bounds for penalty coefficients k; and k.

0 Benefit: balance the impact of different terms in the loss
functions to avoid one dominates the other two

0 Training time is roughly the same as supervised training

[1] W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth", In
Proceedings of the 38th International Conference on Machine Learning Workshop, virtual conference, Jul. 23, 2021. 66



Unsupervised Learning Works

0 |EEE Casel18 test case; training/testing samples: 600/40,000
0O Training time: 3 hrs for DeepOPF-V, 1 hr for DeepOPF-NGT, 10 min for EACOPF

Metric DeepOPF-NGT DeepOPF-V DeepOPF-AC EACOPF
Nopt (%) <0.1 <0.4 <0.3 <6.0
v (%) - - 99.81 96.57
np, (%) 100.00 100.00 100.00 99.20
Moy, (%) 100.00 99.98 100.00 100.00
ns,(%) 99.28 100.00 100.00 99.46
ng,(%) 100.00 100.00 100.00 100.00
np, (%) 99.93 99.91 - -
Mg (%) 99.80 99.70 - -
Ns, xle3 xle3 xle2 xle2

[1] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A feasibility-optimized Deep Neural Network Approach for AC Optimal Power Flow
Problems,” arXiv preprint arXiv:2007.01002, 2020.
[2] A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow, IEEE SmartGridComm, 2020.
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Ground Truth Data Help

0 A small amount of ground truth data can be exploited in
training to further improve the performance

Metric DeepOPF-NGT DeepOPF-SSL

Niaber 0 50 100 150 200

Epoch 10000 3000
Nopt (%) 0.33 -1.69 -0.44 -0.37 -0.33
Np, (%) 99.75 98.03 99.49 96.37 99.22
Mo, (%) 99.90 99.25 99.78 99.12 99.99
ns,(%) 99.92 99.89 99.97 99.80 100.00

Ng,(%) 100.00 100.00 100.00 100.00 100.00

np, (%) 99.79 97.61 99.10 98.58 99.24
Ng, (%) 99.44 97.17 98.13 98.01 99.06
ns, 1048 934 947 977 1047
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Observation

0 DeepOPF can speedup AC-OPF solving time by two
orders of magnitudes with <0.2% optimality loss

— PR2 with a penalty approach can guarantee equality
constraints and promote inequality constraint feasibility

O Limitation #1: The speedup is lower than DC-OPF
— The PR2 design requires solving nonlinear AC-PF

O Limitation #2: Preparing training data for AC-OPF is
time-consuming

O Limitation #3: training complexity is high for large-scale
AC-OPF problems
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High Training Complexity for Large AC-OPF

0 Training DNN to solve large-scale AC-OPF
problems incurs high complexity [1]

— Large DNN output dimension: 28,180 for a 9241-bus
system

— Long training time: 7 hours for AC-OPF problems over a
3500-bus system

0 Complexity may increase exponentially in the grid
Size

[1] M. Chatzos, T. W. K. Mak and P. Vanhentenryck, "Spatial Network Decomposition for Fast and Scalable AC-OPF Learning," in IEEE Trans. on
Power Systems, 2022, 70



Grid Decomposition

0 Decompose a power grid into disjoint regions [1]
— Regions are connected via coupling branches

— The coupling branch flows are sufficient statistics to
separate regions

0 Keep the training complexity linear in the grid size

[1] M. Chatzos, T. W. K. Mak and P. Vanhentenryck, "Spatial Network Decomposition for Fast and Scalable AC-OPF Learning," in IEEE Trans. on
Power Systems, 2022



Two-stage Learning for AC-OPF

0 Use a two-stage approach to solve large-scale AC-OPF problems
— Stage 1: predict load to coupled voltage and angle
— Stage 2: predict (load, coupled flow) to OPF solutions in each region

S3
LHRA
SEAY

[ | I —% B 7
I
i i |:>l
I XX
I I
Stage 1: load-region coupled voltage qz I / | gn.
-1a- I A

and angle difference

Stage 2: (load, region coupled flow)-OPF solution72



Evaluation over an RTE 9241-bus Network

Speedup Optimality gap Feasibility rate
x10 0.03% > 98.5%

0 9,241 buses, 16,049 branches, 4,895 load and 1,445
generator buses

Load profile: +7.75% variation
Training/test dataset: 8K/2K samples
Training time: 30/60 minutes for 15t/2"d stage

O O O 0O

Baseline: IPOPT solver

[1] CJosz, S. Fliscounakis, J. Maeght, P. Panciatici, “AC power flow data in MATPOWER and QCQP format: iTesla, RTE snapshots, and
PEGASE”, arXiv preprint arXiv:1603.01533.
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Summary of Using NN for AC-OPF

0 Predict-and-reconstruct (PR2) works for AC-OPF [1, 3-5]
— 15,000x over a 2000-bus network [5]

0 May also predict AC-OPF solutions directly [2]

0 Unsupervised learning to solve AC-OPF problems without
the need of preparing AC-OPF solutions for training [4, 6]

0 Grid decomposition to speedup DNN training for large
problems [7]

[1] X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow
Problems", arXiv preprint arXiv:2007.01002, 2020.

[2] F. Fioretto, T. Mak and P. V. Hentenryck, "Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods", AAAI,
2020.

[3] A. Zamzam and K. Baker, "Learning Optimal Solutions for Extremely Fast AC Optimal Power Flow", SmartGridComm, 2020.

[4] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints"”, ICLR, 2021.

[5] W. Huang, X. Pan, M. Chen and S. H. Low, "DeepOPF-V: Solving AC-OPF Problems Efficiently", IEEE Transactions on Power Systems, vol. 37, no.
1, pp. 800 - 803, Jan. 2022.

[6] W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth", In
Proceedings of the 38th International Conference on Machine Learning Workshop, virtual conference, Jul. 23, 2021.

[7] M. Chatzos, T. W. K. Mak and P. Vanhentenryck, "Spatial Network Decomposition for Fast and Scalable AC-OPF Learning," in IEEE Trans. on
Power Svstems, 2022
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Optimal power flow (OPF) problems
Example applications
Recent advances and future challenges

Machine learning for constrained optimization
Machine learning for solving OPF problems: overview

Machine learning for DC-OPF and SC-DCOPF
problems

Machine learning for standard AC-OPF problems

Ensuring DNN feasibility for constrained optimization
Graph neural network approach

Solving AC-OPF with multiple load-solution mappings
Concluding Remarks
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NN solution feasibility

muin f(u)

s.t. g(x,y,u)=0 Equality constraints

0.0 >0 «—




Problem, Landscape, Contributions

Solution Bounded Low
Ltz Dl el Existing Study Feasibility ~Optimality =~ Run-Time
Guarantee Loss Complexity
Penalty approach X X v
A Projection approach v v X
Sampling approach v v X
Preventive learning v X v
Gauge mapping v X v
Homeomorphic Projection v v v

¢ :Ground-truth
%I : Prediction error

0 Our homeomorphic projection [1] recovers solution feasibility with
— Feasibility guarantee
— Bounded optimality loss
— Low run-time complexity

for optimization over ball-homeomorphic set (covering all compact
convex sets and any non-convex sets satisfying certain conditions)

[1] E. Liang, M. Chen, and S. H. Low, “Low Complexity Homeomorphic Projection to Ensure Neural-Network Solution Feasibility for Optimization
over (Non-)Convex Set”, ICML, 2023. 77



Motivation and Homeomorphism

0 Projection for feasibility 75

N> &

— Over a general set: hard R [tk £ %4 .
— Over a ball: easy

(&)-Projection over sets “topologically equivalent” to
% a ball should be easy too.

0 Homeomorphic mapping: one-to-one
mapping between two sets

that is continuous
0@

[1] Geschke, S. (2012). Convex open subsets of Rn are homeomorphic to n-dimensional open balls. Hausdorff Center for Mathematics,
Endenicher Allee, 62, 53115.
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BallFHomeomorphism Sets

0 All compact convex sets [1]

0 All compact and differentiable
(6 or higher)-dimension
manifolds with simply-connected surface [2]

0 All compact differentiable 5-dimension manifolds
with boundary diffeomorphic to a 4-dimension
sphere [2]

o All simply-connected sets in R?

[1] Geschke, S. (2012). Convex open subsets of Rn are homeomorphic to n-dimensional open balls. Hausdorff Center for Mathematics,
Endenicher Allee, 62, 53115.
[2] Smale, S. (1962). On the structure of manifolds. American Journal of Mathematics, 84(3), 387-399
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Our Homeomorphic Projection

Framework

K,
Ko,

: v. A
Constrained . :
optimizaton | T A

: z =195 (%)
mlnn f(w’g) xEKgl s e > ZEB
z€R X =g, (2)
s.t. x € Ky
constraint set unit ball

Setting: recover feasibility w.r.t. a ball-homeomorphic set
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Our Homeomorphic Projection Framework

input output
Tg = F(§)—Linfeasble Homeomorphic projection Zo € Ko
NN predictor
fecO

w9(~) : Minimum-Distortion Homeomorphic mapping .
. Zg

Constrained o Xg o ° Xg
Optimization bisection /(9\/

. -1 Y B
min f(z, 6) Y () KZI0R
seR™ Ko B ' ICo
s.t. ¢ € Ky

Setting: recover feasibility w.r.t. a ball-homeomorphic set

1. Learn a minimum distortion homeomorphic (MDH)
mapping between the constraint set and a unit ball

2. Perform bisection over the ball so the mapped solution is
feasible respect to the ball-homeomorphic constraint set
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MDH Mapping

Ko

B 4—"2@—»
Izl <1 x|l <6

Small-distortion HM D(1)g) = 1
— 1,05: X =0z

Large-distortion HM D(¢5) =~ 2.5
— ¥g: x = OR(||z|])z

Multiple homeomorphic mappings
between two sets

We prefer the one with minimum
distortion D(Y) = k,/ky = 1

= ky = sup{|[¥(z1) =P (2)|/l|z1 — 22|}

Z1,Z2

~ k= inf (I0(z) —¥@ll/ |z - 1)

B :¢(B):X1 - Ky

Small distortion

B 41?(5):)(2 . ICQ

Large distortion

0 Different set-pairs have different
minimum distortions

0 Small distortion leads to minor
projection-induced optimality loss
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INN Can Approximate MDH Mapping

—
0 Finding MDH mapping is hard - ——T—1]
— Infinite dimensional optimization . s B e
— No closed-form in general | [
Uy —PO—>+-—>@
0 INN: invertible NN for learning coupling layer: forward
one-to-one mapping
— Example: multiple coupling layers u Je
[13], each is an affine mapping
U <— \'J
0 INN is a universal approximator
for differentiable homeo- = _
morphic mappmg [13_15] " coupling layer: inverse

[1] Lyu, J., Chen, Z., Feng, C., Cun, W., Zhu, S., Geng, Y., ... & Chen, Y. (2022). Universality of parametric Coupling Flows over parametric
diffeomorphisms. arXiv preprint arXiv:2202.02906.

[2] Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M., & Sugiyama, M. (2020). Coupling-based invertible neural networks are universal
diffeomorphism approximators. Advances in Neural Information Processing Systems, 33, 3362-3373.

[3] Ishikawa, I., Teshima, T., Tojo, K., Oono, K., Ikeda, M., & Sugiyama, M. (2022). Universal approximation property of invertible neural

networks. arXiv preprint arXiv:2204.07415. 83



Unsupervised INN Training

Finding MDH mapping: min logD(y, ', &)  s.t. Ko = ¢p(B)

Yo EH™

INN loss function  L(®g) = V(®4(B)) — M P(®4(B)) — A\:D(®;1, Xy)

based on Volume Penalty for Distortion
equivalent formulation maximization Py (B) C Ky minimization
and approximation
Ko Ko
Training ill '
aining illustration o s s

Training requirement: the trained INN must be valid, i.e., mapping
the ball center to a feasible point, i.e., @y (0) € Ky
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2. Bisection with Valid INN

() %
~ P ~ '/ x
Zg Xg "
. X
Xy
P d
Py (0)
A Py(-) A ICo
Zg > Xg

0 Given a valid INN and an infeasible solution

— Step 1: map it to H-space
- Tl 7=
20 — (I)Q (ZIZ@)
— Step 2: bisection for a
a” = Sup,epo,1]1Po (- Z) € Ko}
— Step 3: map it back
ig — (I)g (Oé>I< . 59)
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Feasibility, Optimality, & Run-Time Complexity

0 Theorem 1: Given a valid m-layer INN and an
infeasible n-dim solution, the k-step bisection will
return a solution with:

— Feasibility guarantee
— An optimality loss bounded by €, + €pis + €hom
— A run-time complexity of 0 (kmn?)

O €pre: NN Prediction error
O €pis = 0(27%) : bisection-induced optimal loss

O €hom < D(Pg)(2€inn + €pre): homeomorphism-induced
optimality loss

0 Trading run-time complexity with optimality by tuning m
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Suff. Condition for Universally Valid INN

0 Theorem 2: Consider the r.-covering dataset D = {60;,i =
1,..,M} € 0 = [0,1]%, suppose the trained INN is valid over
this training set. If (Cy + C;)7. < C,, then the INN will be
valid for any input parameter, i.e., V0 € 0, D,(0) € Kj.

0 A trained INN is universally-
valid over the entire input region if

— It is valid over the “dense” training set Core /- B00(0)

— The worst-case relative center-to- ig”"co
boundary movement is less than the o(0)
conservative center-to-boundary distance

ICpo ICo

0 Tune 1, to satisfy the condition (may need more samples)
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Numerical Experiments

0 Train an MDH mapping in a 2-dim toy example
— Evaluate the unsupervised training approach
— Visualize the approximated constraint sets

0 Recover feasibility for convex and non-convex
optimization problems

— Evaluate the feasibility, optimality, and run-time
complexity of homeomorphic projection
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INN Indeed Learns MDH Mappings

0 Learning the MDH mapping between a unit ball and a quadratic
constraint set (with different parameter 9)

Ko={recR?|2'Qu+q z+b<0, 0=1[Q,q,0]}}

Log-volume Constraint violation Log-distortion
1.4
2.0 1.2
If 1.0
| 1.5
0.8
1.0 0.6
0.5 04
0.2
0.0 0.0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iteration Iteration Iteration
Log-volume Constraint violation Log-distortion
10 1.0
W 0.8 08
0.6 0.6
0.4 0.4
0.2 0.2
0.01

0.0 -
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Iteration

Iteration

Iteration

1

0

=1

1

0

=X

B: 2-norm ball Kg, = ®(B|61) Kg, = ®(B|6>) Kg, = ®(B|6s)
2 ' 2 /
® o - A
= ] =Z =2
-1 0 ik -2 0 2 -2 0 2 -2 0
B: w-norm ball Ko, = CD(B|91) Ko, = (D(Blez) Ko, = ¢(B|63)
5 -
. 0 ' 0 | ‘ | o
-2 =2 -2
-1 0 1 -2 0 2 =2 0 2 =2 0
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Recovering Feasibility for QCQP, SDP, & AC-OPF

0 100% feasibility, minor optimality loss, substantial speedup

Feasibility Optimality Speedup
feas. rate  ineq. vio. eq. vio. | sol. err.  infeas. sol. err. | obj. err.  infeas. obj. err. Total Post.
% 1-norm 1-norm %o %o %o %o X X
| Convex QCQP: n = 200, d = 100, neq = 100, nNineq = 100
NN 54.49 0.163 0 8.16 8.23 3.05 2.96 795657.1
NN+WS 100 0 0 4.41 0 1.7 0 2.1 1
NN+Proj 100 0 0 8.15 8.23 3.07 3 2.1 1
NN-+D-Proj 4 ) () 3 3 0 08 (0.8 4 O
NN+H-Proj 0 0 . . . 3.58 1618.5 738.8
| SDP: n = 15 x 15, d = 100, neq = 100, Nipeqg = 1
NN 21440.2 -
NN+WS 1.5 0.4

1.5

73.24
100

0.006
0



Summary

0 Homeomorphic projection recovers solution feasibility with
— Feasibility guarantee
— Bounded optimality loss
— Low run-time complexity

for optimization over ball-homeomorphic set (covering all
compact convex sets and any non-convex sets satisfying certain
conditions)

0 Message: ball-homeomorphism suggests a line between “easy”
and “hard” projections

0 Open questions

— How to characterize INN’s universal approximation capability
— Achieving better/difference performance on optimality and complexity?

91



One DNN for Multiple AC-OPF
Problems with Flexible Topology

- M. Zhou, M. Chen, and S. H. Low, “DeepOPF-FT: One Deep Neural Network for
Multiple AC-OPF Problems with Flexible Topology”, IEEE Transactions on Power
Systems, vol. 38, issue 1, pp. 964 - 967, January 2023.

- Chen Y, Lakshminarayana S, Maple C, et al. “A meta-learning approach to the optimal
power flow problem under topology reconfigurations”. IEEE Open Access Journal of
Power and Energy, 2022, 9: 109-120.

- M Gao, J Yu, Z Yang, J Zhao, “A Physics-Guided Graph Convolution Neural Network for
Optimal Power Flow”, IEEE Transactions on Power Systems, 2023.

- S. Liu, C. Wu, and H. Zhu, “Topology-Aware Graph Neural Networks for Learning
Feasible and Adaptive AC-OPF Solutions”, IEEE Transactions on Power Systems, 2023.



Motivation

0 Stand-alone methods
— Key idea: learning a mapping from load to AC-OPF optimal solutions [1] —[5]

— Limitation: Hard to generalize to power systems with flexible network
topology or line admittance

0 Flexible topology and admittance in power systems
— N-k contingency
— Topology reconfiguration
— Line admittance variation with temperature

0 A learning-based AC-OPF solver for power systems with flexible topology and
admittance is needed.

[1] X. Pan, T. Zhao, and M. Chen, “DeepOPF: Deep Neural Network for DC Optimal Power Flow”, in Proceedings of the
10th IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (IEEE
SmartGridComm 2019), Beijing, China, October 21 - 24, 2019.

[2] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC
Optimal Power Flow”, IEEE Transactions on Power Systems, vol. 36, issue 3, pp. 1725 - 1735, May 2021.

[3] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC
Optimal Power Flow Problems”, arXiv preprint arXiv:2007.01002, 2020.

[4] A. S. Zamzam and K. Baker, “Learning optimal solutions for extremely fast ac optimal power flow,” in Proc. IEEE
SmartGridComm, 2020.

[5] Fioretto F, Mak T W K, Van Hentenryck P. Predicting ac optimal power flows: Combining deep learning and lagrangian
dual methods[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(01): 630-637.

93



Training one DNN per power network

O One alternative approach for solving AC-OPF problems with
flexible topology is training one DNN per power network

— Limitation: the computation burden is extremely high

Power flow
Equation P,

v
Topology 1 -0
2 Power flow
Equation [Py
1 = [V] — | Q g
6 1%
L 0
Topology n

Figure 1: Schematic of training one DNN per power network 94



DNN re-training

0 Another alternative approach for solving AC-OPF
problems with flexible topology is re-training the DNN
when encountering a new topology

— Limitation: high computation burden and operation delay

Offline Phase Online Phase

Real-time
topology

Offline Training ?;‘eli:elz'::_i':‘i:'gg

Figure 2: Schematic of DNN re-training [1]

[1] Chen Y, Lakshminarayana S, Maple C, et al. A meta-learning approach to the optimal power flow problem
under topology reconfigurations[J]. IEEE Open Access Journal of Power and Energy, 2022, 9: 109-120. 95



GNN Approach

uone3aIasy pooyaoqusian

O Basic idea:

— Each node on the NN captures a set of features of the corresponding node on
the grid

— Each iteration passes messages according to the actual connectivity
— After K iterations output the OPF solutions
0O Pros: explore the topology structure; can be robust to topology change

0 Cons: no strong performance guarantee (yet)

This slide is adapted from those by M Gao, J Yu, Z Yang, J Zhao, “A Physics-Guided Graph Convolution Neural Network for Optimal Power Flow”,
IEEE Transactions on Power Systems, 2023. 96



Embedding Training Design

0 Main idea of embedded training

— Embed the discrete network representation into the
continuous admittance space

— Use DNN to learn the mapping from (load, admittance) to
bus voltages of an AC-OPF solution.

& . g ... 9

~ (v, 6)| Reconstruction p:; PT;

A by power flow = |47 - Gy
~X equations By o B
6, 6,
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Simulation result: N-k contingency

0 We test DeepOPF-FT and discrete training over the IEEE
57-bus test system in the N-4/5/6 contingency (each
accounts for 1/3 of the data) with flexible topology.

DIS-V1 DIS-V2 DIS-V1 DIS-V2

Metric  DeepOPE-FT 54 000) (50,0000 (150,000) (150,000)

Nopt (%) 0.14 -4.29 -1.31 -4.79 1.07
nv/ ne (%) - - - - -
Npg (%) 95.0 94.3 93.3 97.0 96.1
Nog (%) 96.0 92.4 95.6 96.3 94.0
N1 (%) >99.9 >99.9  >99.9  >99.9 >99.9
Npa (%) 97.2 92.7 95.2 95.8 95.8
Noa (%) 94.3 87.5 91.2 93.0 91.6

Nsp x129 x130 x132 x130 x130
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Simulation result: arbitrary topology

0 We test DeepOPF-FT and DeepOPEF-V for single topology
over the |IEEE 9-bus test system over arbitrary topology.

Metric

Nopt (%)
nv/ Ne (%)
Npg (%)
Nog (%)
Nst (%)
Npa (%)
Noa (%)

Nsp

DeepOPF-FT

(FT, -) (FT, FA)
0.84 0.92
>99.9 >99.9
>99.9 100
>99.9 >99.9
97.4 97.3
95.3 95.0
x124 x122

DeepOPF-V for single topology

/(FT,-)  (FT, FA)\
94.60 95.23
53.6 53.6
97.8 97.8
96.6 96.3
74.8 74.6
57.0 56.8

\x88 x86/

('r ')
-0.95

100

>99.9
100
97.0

91.8
x133
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Generalization

0 The idea of DeepOPF-FT can be generalized to more
flexible optimal power flow settings by including the
corresponding parameters as DNN inputs:

— Flexible line capacity
— Flexible generation coefficients

— Flexible generator capacity
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Machine Learning for AC-OPF
Problems with Multiple Solutions

- X. Pan, W. Huang, M. Chen and S. H. Low, "DeepOPF-AL: Augmented Learning for Solving AC-OPF
Problems with Multiple Load-Solution Mappings", arXiv preprint arXiv:2206.03365, 2022.

- J. Kotary, F. Fioretto, and P. Van Hentenryck, “Learning hard optimization problems: A data
generation perspective,” NeurlPS 2021.



Issue of Learning Multi-Valued Mapping

0 AC-OPF problems may admit a (Ps, Qg 01, IV2 ) (P>, Qp» 62, V2 1)

multi-valued load-solution T y=r+ix T 1

mapping [1]

Bus 1 Bus 2

A toy 2-bus example.

0 A well-trained DNN with

(standard) supervised learning 2.,
. . >
fails to learn a target mapping 2 106
-é 1.04
0 Data-generation or unsupervised 3 .. |
. S —DNN-Learned Load-Solution Mapping
learning approaches [2,3] hasno 3 | _ —Multi-Valued Load-Solution Mapping
. -286 -285.5 -285 -284.5 -284 -283.5 -283 -282.5
guarantee of learning one Load Input Qg (MVar)
mapping Correctly DNN’s mapping vs. target mapping.

[1] W. A. Bukhsh, A. Grothey, K. I. McKinnon, and P. A. Trodden, “Local solutions of the optimal power flow problem,” IEEE Trans. Power Syst., vol. 28, no. 4, 2013.
[2] J. Kotary, F. Fioretto, and P. Van Hentenryck, “Learning hard optimization problems: A data generation perspective,” NeurlPS 2021.
[3] W. Huang and M. Chen, “DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth,” ICML Workshop, 2021. 102



Our Approach: Augmented Learning

L)

p
=
o
&

%
o
&

1.02

Voltage Magnitude V2 (
5
=

1 : , :
-286 -285.5 -285 -284.5 -284 -283.5 -283 -282.5 -282
Load Input QD (MVar)

‘ Embedding

=

e

il T .

)

s

=

‘£ 1.05-

o

©

b= 1.

% -286 M Target Augmentec_lr_iylapping"‘] 1
g -284 1.05

282 1
Load input QD (Mwar)
Initial point V0 (p.u.)

0 Augment the load with the
initial point in training data
generation

0 The augmented mapping is
unique and can be learned
by DNN

Voltage Magnitude V,, (p.u.)

14

1.05 -

-286

_284,_,,,

282 1

Load Input Q, (MVar)

BEDNN-Learned Mapping_l,. "

T 105

Initial Point V (p.u.)
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DeepOPF-AL: A Simple Design

0 Follow prediction-and-reconstruction in DeepOPF-V [1]

— Learn the unigue augmented mapping from (load, initial
point) to optimal solution

Load Prediction by
|:PD1 PDN:| Input Hidden layer Output VOItageS Scalar
Qb1 - Qon on Buses Addition &

nit it
.P G1 ves P GN

nat nit

G1 oo GN

Vit L v

|:>[V1 VN]E> Multiplication
U

{Pm PGN} Buses
Qo1 - Qov |nj9Cti0nS

Initial Points

[1] W. Huang, X. Pan, M. Chen, and S. H. Low, “Deepopf-V: Solving AC-OPF problems efficiently,” IEEE Trans. Power Syst., 2021 104



Simulation for Learning 2-valued Mapping

0 Compare DeepOPF-AL with DeepOPF-V over IEEE
Case39 with realistic load profile (40% variation)

— Each load corresponds to two solutions

Case39-V2 with Avg. Cost Diff. = 30%

Metric Balanced Dataset Unbalanced Dataset
DeepOPF-AL | DeepOPF-V | DeepOPF-AL | DeepOPF-V
Nopt (%) 0.48 ~8.56 0.66 -5.98
Npe(%)/noe(%) | 97.5/94.6 99.3/91.7 97.4/98.4 99.8/96.7
ns,(%) 100 100 100 100
npp(%)/nop (%) | 0.19/6.47 0.61/27.6 0.09/0.49 0.32/12.9
tmips (ms) 2808 2808 2676 2676
t g (MS) 1.4 1.3 1.3 1.2
Mspa %2006 %2160 %2058 X2230
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Summary

Standard supervised learning fails to solve AC-OPF with
multi-valued load-solution mapping

DeepOPF-AL generates quality solutions by learning a
unique augmented mapping for AC-OPF with multi-
valued mapping

Augmented learning applicable to general constrained
problems with multi-valued mapping

Future work: Reduce complexity for augmented learning
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Hybrid and Other Approaches



Predicting Active Constraints for
Solving OPF Problems

-Y. Ng, S. Misra, L. A. Roald, and S. Backhaus, “Statistical learning for DC optimal power flow”, in PSCC.
Dublin, Ireland, 2018

- D. Deka and S. Misra, “Learning for DC-OPF: Classifying active sets using neural nets”, in Proc. IEEE Milan
PowerTech. 2019

- A. Robson, M. Jamei, C. Ududec, and L. Mones, “Learning an optimally reduced formulation of OPF
through meta-optimization,” arXiv:1911.06784, 2019.

-S. Misra, L. Roald and Y. Ng, ”Learning for constrained optimization: Identifying optimal active constraint
sets”, INFORMS Journal on Computing, 34(1), 463-480, 2022.

- Y. Chen and B. Zhang, “Learning to solve network flow problems via neural decoding,” arXiv:2002.04091,
2020.

- L. Zhang, Y. Chen, and B. Zhang, “A convex neural network solver for DCOPF with generalization
guarantees,” IEEE TCNS, 2021.



ldea and Existing Works

O ldea: Predict active constraints upon the given load
— Reduce problem size
— May directly solve (active-constrained) equations for solutions

0 Existing works:
— Classify active/inactive constraints by learning techniques [1-4]
— Predict dual variables and then derive the active constraints[5-6]

— Pros: optimal and feasible solutions if all active constraints found
— Cons: no guarantee; limited speedup; do not work well for AC-OPF

[1] Y. Ng, S. Misra, L. A. Roald, and S. Backhaus, “Statistical learning for DC optimal power flow”, in PSCC. Dublin, Ireland, 2018.

[2] D. Deka and S. Misra, “Learning for DC-OPF: Classifying active sets using neural nets”, in Proc. IEEE Milan PowerTech, 2019.

[3] A. Robson, M. Jamei, C. Ududec, and L. Mones, “Learning an optimally reduced formulation of OPF through meta-optimization,”
arXiv:1911.06784, 2019.

[4] S. Misra, L. Roald and Y. Ng, ”Learning for constrained optimization: Identifying optimal active constraint sets”, INFORMS Journal on
Computing, 34(1), 463-480, 2022.

[5] Y. Chen and B. Zhang, “Learning to solve network flow problems via neural decoding,” arXiv:2002.04091, 2020.

[6] L. Zhang, Y. Chen, and B. Zhang, “A convex neural network solver for DCOPF with generalization guarantees,” IEEE TCNS, 2021. 109



Performance on IEEE 14-/39-bus Networks

0 Load profile and training/test dataset :
— |EEE 14-bus case: +30/50% variation, 40K/10K samples for training/test
— |EEE 118-bus case: +9% variation, 48K/12K samples for training/test

0 Baseline: CVXOPT solver

Cases Speedup Optimality Gap Feasibility Rate
(%) (%)
IEEE 14-bus x10 0 93.1
|IEEE 118-bus x10 0 89.0

[1] Y. Chen and B. Zhang, “Learning to solve network flow problems via neural decoding,” arXiv preprint arXiv:2002.04091, 2020.
[2] L. Zhang, Y. Chen, and B. Zhang, “A convex neural network solver for dcopf with generalization guarantees,” IEEE TCNS, 2021. 110



Learning-Boosted Iterative Schemes
for OPF Problems
(along the line of learn-to-optimize)

- Baker K. A learning-boosted quasi-newton method for ac optimal power flow. arXiv preprint
arXiv:2007.06074, 2020.

- D. Biagioni, P. Graf, X. Zhang, A. Zamzam, K. Baker, and J. King. Learning-accelerated ADMM for distributed
DC optimal power flow. IEEE Control Systems Letters, 2020



Learning-Boosted Quasi-Newton

0 Newton’s method: update x according to KKT vector d() and the
Jacobian matrix of the KKT conditions J():

xk+1 — xk _ C(k ]‘1(xk)d(xk)

0 Quasi-Newton method: approximate the Jacobian matrix or its inverse
for low complexity

xktl = yk _ gk H—l(xk)d(xk)

0 Learning-boosted method:
— Key idea: replace Newton’s update step with DNN [1], for AC-OPF

I
ok L ! ] i
Qk I I g

g : I I Q§+1
Vk : : I:> Vk+1
6" Y, T e

[1] Baker K. A learning-boosted quasi-newton method for ac optimal power flow. arXiv preprint arXiv:2007.06074, 2020. 112



Performance of Learning-Boosted Scheme

0 Compare against the MATPower solver, over IEEE 30-/300-
bus, PG-lib 500-bus, and 1,354-bus system

Metric 30-bus 300-bus 500-bus
MAE,,, (p.u.) 0.004 0.009 0.099
MAE,; (MW) 0.64 1.47 0.62
MAE, s (%) 0.29 0.65 0.66

Speed up -x0.66 x36.6 x18.3

Mean

constraint 0.05 0.43 0.32

violation (p.u.)

[1] Baker K. A learning-boosted quasi-newton method for ac optimal power flow. arXiv preprint arXiv:2007.06074, 2020. 113



Learning-Accelerated ADMM for
Distributed DC-OPF

0 Partition the OPF problem into subproblems with shared
boundary variables and apply consensus ADMM

| | i |
| i : :
| i : :
| i : I :
| i : :
: i ! i
1 1

i i 6szu1 H;Litli i
i i , :
| i : :
1 1 I 1
i i ! :
! i Shared 1 !
1 I . I 1
: 1 variables | :
! : i !
: ___________________ : o o o o o o o o e e e J

Partition 1 Partition 2

[1] D. Biagioni, P. Graf, X. Zhang, A. Zamzam, K. Baker, and J. King. Learning-accelerated ADMM for distributed DC optimal power flow. IEEE
Control Systems Letters, 2020 114



Learning-Accelerated ADMM

O Recurrent neural networks (RNN)-based ADMM [1]

— Inputs: shared variable 8%, and dual variables A* of
previous K steps (sequentially)

— QOutputs: the optimal (05, 1)

Ogy, A

T

FCNN

o)) ) - )
/11’ Hslu /12’ Hs,zu /13’ gs3u AK, ggi

Figure: Schematic learning-accelerated ADMM method [1]

[1] D. Biagioni, P. Graf, X. Zhang, A. Zamzam, K. Baker, and J. King. Learning-accelerated ADMM for distributed DC optimal power flow. IEEE
Control Systems Letters, 2020 115



Learning-Accelerated ADMM

0 The performance of LA-ADMM is tested on the IEEE 14-/118- bus
and RTE 2848-bus system

600
mmm 14-bus LA-ADMM
i— - M
_ 400 | 14-bus ADM
=
g
200 A
0 Ll T
150
mmm 118-bus LA-ADMM
100 | - 118-bus ADMM
€
=
8 50 |
0 T T
100 + mmm 2848-bus LA-ADMM
75 | mam 2848-bus ADMM
€
g %0
25 1
0 T T T

Figure: Histograms of 1og10 relative error in the objective cost of

Log rel err

standard ADMM and LA-ADMM after 4 iterations.

Dual residual

103
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Dual residual

1072

109 §

10—1 4

1072 4

= 14-bus LA-ADMM
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T T T

107 5

1077 +

10"? P

—— 118-bus LA-ADMM
= 118-bus ADMM

T T T T T T

109 4

10'1 4

—— 2848-bus LA-ADMM
—— 2848-bus ADMM

T T

0 20 40 60 80 100

ADMM iteration

Figure: Residual error as function of ADMM iteration
averaged over all test cases.

[1] D. Biagioni, P. Graf, X. Zhang, A. Zamzam, K. Baker, and J. King. Learning-accelerated ADMM for distributed DC optimal power flow. IEEE

Control Systems Letters, 2020
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A Physics-Guided Graph Convolution
Neural Network for Optimal Power
Flow

Slides based on those provided by Maosheng Gao, Juan Yu,
Zhifang Yang, and Junbo Zhao
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... Requires Solving OPF Frequently

min f(u) Total generation cost
u
s.t. g(z,u)=0 Non-convex power balance constraints

h(a;,u) =0 Non-convex Physical and operational

constraints (e.g., branch limits)

O The uncertainty of renewable energy forces solving OPF frequently

0 Data-driven methods using neural networks can yield 20-100 times
faster than conventional optimization-based methods

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 11th, 2019)
The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021. 118



Varying Operating Conditions of AC-OPF

74
Contingency
¥e

o

o
N o
e o o i
O -
e
0 Contingencies of generator, transformer, etc.
O Topology feature is complex
_ . _ _ _ _ Discreteness
0 All operation conditions satisfy the identical physical
model
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Our Approach: Physics-Guided Graph
Convolution Neural Networks

O Physics-embedded graph

| ) ( ) convolution is derived by
minC:;;(axPG;‘+b3PGx+ci) ‘ B gy decompOSing the AC
PG,— PD,=V, Z V; (2(Gy)cos,;+ z(By)sing.;) Derive i
P 'EZ”S”V] (G )sinf— 2(By)oosby) (1.5 €85) » Model-informed Feature Construction powe r ﬂ ow € q uations
— based on Gaussian-Seidel

PG, <PG,< PG,

- (i€ 8e) o .

QG <QG,<QG} Iteration
VSV, = V.GeSy)

PL,= PL;=V,V,(2(Gy)cos 8, + 2(B;)sinf,) — V3G,
— (ke Sk)
- PL,<PL,< PL,

O Model-informed feature
construction is proposed
Embedding Graph Convolution Network by a ggregatin g n elgh bor

%m = = node features
N ZEs =

Derive ’

Graph Convolution Network

<~

Training

Correlative Learning Loss Function . .
function is proposed to
<= : :
( ) ] consider the physical
OPF solution .
correlations among the
outputs
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Physics-embedded Graph Convolution

layer |

Neighborhood
aggregation

Trainable

convolution

layer { +1

O Replacing the graph
convolution kernel with a
physics-embedded
aggregation function

(PG, -PD,=¢ > (2(G), e -2(B), f,)+

jeN(i)

)
oy (Z(G)ij f, +z(B) ej)
)-
)

jeN(i)

]
QG,-QD, = f > (z(G)ij e, —2(B), f,

jeN (i)

e > (z(G), f,+z(B), e,

jeN(i)

Aggregating the power
@ flow feature

( (G),e,-2(B), f,).6, = PG, —PD, - (e’ + £*)z(G),
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Model-informed Feature Construction
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lterative aggregating of the node feature based on physics-
embedded convolution and feature constraints
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Physics-Guided Graph Convolution Neural
Networks for OPF

Feature Extraction Block Predicti(jnn Block
7__‘,)\\57 . . AN
O
O
O
Flatten . 0
Input feature — :
Q@ :
(TN o)
Layerl Layer 2 g Layer 3 Layer 4 OPF solution

(Graph convolution) (Graph convolution) (Full connected ) (Full connected )

0 The complete architecture of 0 It could be the basic structure of
physics-guided GCNN for the OPF neural networks for other
problem combining the feature applications, such as the real-time
extraction block with several OPF calculation using reinforcement
graph convolution layers and learning techniques

prediction block with several fully
connected layers
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Simulation under Fixed Topology

0 Compare different GCNNs over |[EEE Case57 with 10% load variation

— Physics-embedded GCNN has better convergence in training and lower mean
absolute error in testing

—

¢ ¢ Physics-embedded graph convolution kernel<® Model-guided feature construction < Correlative learning loss function ¢
Mie Original GCNN [1]¢ X < X < X ¢
M2« GCNN [2]¢ X < X X ¢
M3« . ) (@F: X € X €
M- Phys&cgﬁlded O O« "
€
M5« (OF Oe Oe
el VXX il E 0.01 4
M2 0.00 A
012 0,01
w —— M3 = sy . 3 P
2 0104 — M4 T | i R i
g 001
= 0.081 g
é 0.00 : - =
= 0.06 0.01
= 004 : 5 P
0.02 " 8 |
000 - T T T - T T T T 000 II] 250 500 %0 1000 12";[! lﬁlﬂﬂ 1.\’";[] Z{JIDD
0 250 500 750 1000 1250 1500 1750 2000 Sample index
Learning iterations
Fig. 1. The loss curve of the four neural networks. Fig. 2. The mean absolute error of testing samples.

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017, pp. 1-14.
[2] D. Owerko, F. Gama and A. Ribeiro, “Optimal power flow using graph neural networks,” ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 5930-5934. 124



Simulation under Varying Topologies

0 Compare different data-driven OPF methods over different IEEE systems

with 10% load variation and five topologies

— Physics-embedded GCNN has enhanced topology feature extraction ability
under varying topologies in power systems

Moé6¢«
M7«
M8«
M9«

CNN [1]¢
CNN [2]¢
DNN [3]¢

DNN ¢«

The diagonal elements of admittance matric is regarded as topology input feature.«
The |Vy;,.|and Yy, 1s regarded as topology input feature.

The voltage difference of each bus are used as the topology feature.<

The diagonal elements of B are used as the topology feature.«

Table 1. The testing accuracy of different methods under
varying topologies

Systems ¢ M5« M6+« M7« M8« M9«
o Pro 97.76%< 86.06%¢ 86.15%¢ 93.09%¢ 88.28%¢
UST peo 98.05%¢ 84.39%< 86.31%¢ 92.72%¢  89.82%:
o Pro 99.99%< 84.43%¢ 71.02%¢ 82.24%< 77.57%¢
PUST pe 9976%¢ 9336%¢ 82.51%¢ 96.37%¢ 94.35%¢
. Proc 93.49%< §320%¢ 70.05%¢< 82.47%¢ 83.65%:
HE-bUST o 08.47%¢ 028004 85.45%¢ 93.18%¢ 93.05%:
o0 Prec)  92.72% 69.83%¢ 77.46% 60.09% 71.72%¢
P pl 94.05% 70.850%¢ 78.26%< 70.26%< 72.63%:

[1] Y. Du, F. Li, J. Li, and T. Zheng, “Achieving
100x acceleration for n-1 contingency screening
with uncertain scenarios using deep convolutional
neural network,” IEEE Trans. Power Syst., vol. 34,
no. 4, pp. 3303-3305, 2019.

[2] Y. Zhou, W. -J. Lee, R. Diao and D. Shi, “Deep
reinforcement learning based real-time AC optimal
power flow considering uncertainties,” J. Mod.
Power Syst. Clean Energy, vol. 10, no. 5, pp. 1098-
1109, Sep. 2022.

[3] F. Hasan, A. Kargarian and J. Mohammadi,
“Hybrid learning aided inactive constraints filtering
algorithm to enhance ac OPF solution time,” IEEE
Trans. Ind. Appl., vol. 57, no. 2, pp. 1325-1334,
March-April 2021.
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Simulation for Potential Applications

0 Apply the physics-embedded GCNN in PPO reinforcement learning for
real-time OPF problems with the constraint violation penalty as the
reward function [1]

— Physics-embedded GCNN has better convergence compared with CNN and
DNN

-1
=z:4
-2

Rescaled Rewards
Rescaled rewards

—— PPO RL with the proposed GCNN
—— PPO RL with CNN
—— PPO RL with DNN

= PP RL with the proposed GONN
= PPD AL with CHN

PPO RL voth DNN -10
o 0 25600 50&0 ?SUIG'-'\) 100000 I.2'5IDEIIJ 150000 175000 tl) 25600 50600 7560? lOObOO lZSIOOO lSdOOD 175600
Timesteps Timesteps
Fig. 1. The reward curves of different neural Fig. 2. The reward curves of different neural
networks when training with the PPO RL algorithm. networks when considering the ramp rate.

[1] Y. Zhou, W. -J. Lee, R. Diao and D. Shi, “Deep reinforcement learning based real-time AC optimal power flow considering
uncertainties,” J. Mod. Power Syst. Clean Energy, vol. 10, no. 5, pp. 1098-1109, September 2022.
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Summary

0 Physics-embedded design can enhance the topologies
feature extraction ability of GCNN

0 The physics-embedded GCNN has potential
application in other varying topologies problems in
power systems

0 Future work: address complicated OPF problems, such
as the multiple-period co-optimization
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Concluding Remarks



OPF is Critical for Power System Operation

0 OPF is to minimize the cost of serving load subject to
physical and operational constraints

— KCL and KVL physical constraints
— Voltage, generation, and branch flow limits
— Other operational constraints

0 OPF underpins various important power system
applications

— Demand response

— Economic dispatch

— Unit commitment

— Electricity market clearing

— Security and reliability assessment
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Solving OPF Efficiently is Important

0 AC-OPF problem is non-convex and NP-hard, hard to solve
in real-time

— Practical OPF can involve more than 1M variables

0 Penetration of renewable requires solving OPF frequently
— Early termination of algorithms gives suboptimal solution
— 5% saving amounts to 36 billion USD/year globally

0 General Newton-like iterative algorithms Slow

O Linearization to solve OPF approximately INEEEUREE

. . . . Only applicable
0 Convexification to solve OPF optimality to special case
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Directly Solving OPF by NN Works

0 <0.2% optimality loss in AC-OPF

load Solution simulations over IEEE cases, real-
_s| OPF [ world topology, and loads

wrzgzy | SONVET | s — With theoretical justification

— 15,000x speedup over a 2000-bus
network
' 0 Generalizable approaches for ML
o solving constrained problems
oA\ — Predict-and-Reconstruct to ensure
= Ree 70 > equality feasibility
v ZpyZ1 Wl e, X, X

— Preventive learning to ensure
inequality constraints

— Augmented learning to learn a
legitimate mapping (when multiple
mappings exists)
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Open Issues

0 Tighter NN size bounds for learning multi-
dimension mapping

0 Ensuring NN solution feasibility for inequality
constraints beyond ball-homeomorphism

0 Learning latent variables to reduce NN size and
improve learning efficiency

0 Other OPF formulations: real-time OPF, stochastic
OPF, security-constrained AC-OPF
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The Path Ahead is Still Unfolding

SGC’21 TPWRS'21 Inequality
TPWR'S'21 ArXiv'23 feTslbllllty, ;
arXiv’'20 o2 TPWRS'23 m:JnaI;;)ainuge
: ICML WS’21 TPWRS'23
ICML WS 19 SC-DCOPF, Umversal and beyond
a{;:gv(;zgf:):ig NN-ACOPE RI? for real
-time OPF Solver T time
arXiv'18 i T Learn to GNN
NN warm optimize NN N icLr23
start ,NN map- ApAP20  TpWRs'20 UNSupervised Iarge'scale ICML23
ping;  sGc'20  TPwRs'21  '€@ning TPWRS'  OPF eEnergy’23
' , NN ’
NN active equ.al-l'Fy ICLR’21 - 23 Neur‘IPS 21
: feasibility 3¢xiv’20 physics- arXiv’20
constraint :
JTPWRS’22 informed
MLSP’19

/IEEE-S)’'22

O Our works in bold font
0 https://energy.hosting.acm.org/wiki/index.php/ML OPF wiki
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https://energy.hosting.acm.org/wiki/index.php/ML_OPF_wiki

Wiki and Overview Webpage

O

O

O

O

A wiki page hosted by ACM SIGEnergy
— https://energy.hosting.acm.org/wiki/index.php/ML OPF wiki

A wiki page hosted by Climate Change Al (on more general topics)
— https://wiki.climatechange.ai/wiki/Welcome to the Climate Change

Al Wiki

An overview webpage by Letif Mones
— https://invenia.github.io/blog/2021/10/11/opf-nn/

Dataset or data generators for training NN for OPF problems
— https://github.com/NREL/OPFLearn.jl
— https://github.com/invenia/OPFSampler.jl/
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