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Climate Change: the Biggest Threat to Humanity

□ Rapid climate change due to CO2 emission 
– Worldwide 1.1°C warmer than 19th century; 50% more CO2 in the air

□ If no action, temperature can increase by 3°C by 2100 
– Irreversible loss of vast plant and animal species
– Millions of people lose homes to rising of sea levels
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Annual mean temperature above 
or below average, 1850 to 2021

https://www.bbc.com/news/science-environment-24021772

Target: 1.5°C



Grid Decarbonization to Fight Climate Change

□ Power grids integrate renew-
able to fight climate change

– Grids emit 25% of global CO2
– Could reach 60% if all 

transportation electrified
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2021 2030 (target)

China 29.8% 40%

US 21% 35%

Denmark 82% 100%

https://english.www.gov.cn/news/topnews/202206/01/content_WS6296ba55c6d02e533532b91f.html; US EIA Annual Energy outlook 2022; 
IRENA technical report for Denmark; 《新时代的中国能源发展》白皮书; 《广东省培育新能源战略性新兴产业集群行动计划（2021-2025年）》

□ Renewables are volatile
– More than 80% renewables 

are wind or solar
– Wind and solar are volatile
– Net load inherits renewable 

uncertainty



Volatile Renewables Require Frequent Balancing
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Balancing volatile renewable requires us to solve optimal power flow 
problems more frequently to track the optimal operating point

□ Past: once every 12 hours
□ Present: once every 5 minutes
□ Future: once every 1 minute

Grid operation: balance 
demand and supply in real-time



Outline
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□ Optimal power flow (OPF) problems
□ Example applications
□ Future challenges

□ Machine learning for constrained optimization 
□ Machine learning for solving OPF problems: overview
□ Machine learning for DC-OPF and SC-DCOPF 

problems
□ Machine learning for standard AC-OPF problems 

□ Ensuring DNN feasibility for constrained optimization 
□ Solving AC-OPF under flexible topologies
□ Solving AC-OPF with multiple load-solution mappings
□ Concluding Remarks
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Network model
1. Network 


•  : buses/nodes

•  : lines/links/edges


2. Each line  is parameterized by 

•  : series admittance

•  : shunt admittances, generally different

G := (N, E)
N := {0} ∪ N := {0} ∪ {1,…, N}
E ⊆ N × N

( j, k) (ys
jk, ym

jk , ym
kj) ∈ ℂ3

ys
jk

ym
jk , ym

kj
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where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt admittance of the line at bus j, and ym

k j
is the shunt admittance of the line at bus k; see Figure 5.1. Recall that if ( j,k) represents a transmission
line then (ym

jk,y
m
k j) models the line capacitance, called line charging, and the currents through these shunt

elements model the current supplied to the line capacitance called the charging current. We also write
j ⇠ k instead of ( j,k) 2 E. Each line ( j,k) in the graph G may represent a combination of a transmission
line, a transformer, as well as generator and load impedances, as explained in Chapter 5.1.2. As we will
see the shunt admittances ym

jk and ym
k j are generally different.

(a) Graph representation (b) P equivalent circuit

Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.



Network model
Branch currents
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In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

Sending-end currents

Ijk = ys

jk(Vj − Vk) + ym
jk Vj, Ikj = ys

jk(Vk − Vj) + ym
kj Vk,

Their sum is total line current loss





If , then 

Ijk + Ikj = ym
jkVj + ym

kjVk ≠ 0

ym
jk = ym

kj = 0 Ijk = − Ikj



Network model
Nodal current balance (KCL)
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and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk

total shunt admittance: ym
jj := ∑k:j∼k ym

jk
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Nodal current balance (KCL)
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Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk

total shunt admittance: ym
jj := ∑k:j∼k ym

jk
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Ij = ∑
k:j∼k

Ijk = ∑
k:j∼k

ys
jk + ym

jj Vj − ∑
k:j∼k

ys
jkVk

  where  I = Y V Yjk =

−ys
jk, j ∼ k ( j ≠ k)

∑
l:j∼l

ys
jl + ym

jj , j = k

0 otherwise

In vector form:



Network model
Nodal current balance (KCL)
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  where  I = Y V Yjk =

−ys
jk, j ∼ k ( j ≠ k)

∑
l:j∼l

ys
jl + ym

jj , j = k

0 otherwise

In vector form:

 can be written down by inspection of network graph

• Off-diagonal entry:  series admittance


• Diagonal entry: series admittances  +  total shunt admittance

Y
−

∑



Network model
Nodal current balance (KCL)
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  where  I = Y V Yjk =

−ys
jk, j ∼ k ( j ≠ k)

∑
l:j∼l

ys
jl + ym

jj , j = k

0 otherwise

In vector form:

A matrix  is an admittance matrix iff it is complex symmetric

• Can be interpreted as a  circuit

Y
Π



Admittance matrix Y
Example
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where ym
j j denotes the total shunt admittance of the lines connected to bus j:

ym
j j := Â

k: j⇠k
ym

jk (5.5b)

In vector form, this is I = YV where the admittance matrix Y is given by:

Yjk =

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(5.5c)

Equation (5.5c) prescribes a way to write down the admittance matrix Y by inspection of the network
connectivity and line admittances: its off-diagonal entry is the negative of the series admittance on the
corresponding line while its diagonal entry is the sum of series and shunt admittances incident on the
corresponding bus. Clearly Y is symmetric, but not Hermitian unless Y is a real matrix.

Example 5.4. Consider the three-bus network shown in Figure 5.8. Each line ( j,k) is modeled by a P

V1
V2

I2I1

y12
s , y12

m , y21
m( )

y13
s , y13

m, y31
m( )

V3

I3

y23
s , y23

m , y32
m( )

I12

I13

I21

Figure 5.8: Three-bus network of Example 5.4.

circuit with a series admittance ys
jk and shunt admittances ym

jk and ym
k j (not necessarily equal) at two ends

of the line. The sending-end branch current from bus j to bus k is I jk and that from bus k to bus j is Ik j.
Applying Kirchhoff’s current law and Ohm’s law at bus 1 gives

I12 = ys
12(V1 �V2) + ym

12V1

I13 = ys
13(V1 �V3) + ym

13V1

) I1 = I12 + I13 = (ys
12 + ys

13 + ym
12 + ym

13)V1 � ys
12V2 � ys

13V3

Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain
2

4
I1
I2
I3

3

5 =

2

4
ys

12 + ys
13 + ym

11 �ys
12 �ys

13
�ys

12 ys
12 + ys

23 + ym
22 �ys

23
�ys

13 �ys
23 ys

13 + ys
23 + ym

33

3

5

| {z }
Y

2

4
V1
V2
V3

3

5

I1
I2
I3

=
ys

12 + ys
13 + ym

11 −ys
12 −ys

13

−ys
12 ys

12 + ys
23 + ym

22 −ys
23

−ys
13 −ys

23 ys
13 + ys

23 + ym
33

V1
V2
V3

total shunt admittance: ym
jj := ∑k:j∼k ym

jk



Linear analysis
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In absence of constant-power devices on network

• e.g. voltage sources, current sources, impedances

• Only linear analysis is needed based on I = YV

But applications often require power 


• e.g. EV charging needs 30 miles of energy (10 kWh) in 5 hours

• Leads to nonlinear analysis / optimization

sj := VjIj



Power flow models
Complex form
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Define sending-end power from ,   :
j → k Sjk := VjIH
jk

Sjk = (ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Skj = (ys
jk)

H

( |Vk |2 − VkVH
j ) + (ym

kj)
H

|Vk |2

Line loss


Sjk + Skj = (ys
jk)

H
Vj − Vk

2
+ (ym

jk)
H

|Vj |
2 + (ym

kj)
H

|Vk |2

series impedance shunt impedances



Power flow models
Complex form

Steven Low    Caltech    -  relationV s

Bus injection model  :





In terms of admittance matrix 


sj = ∑k:j∼k Sjk

sj = ∑
k:j∼k

(ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jj )

H
|Vj |

2

Y

sj =
N+1

∑
k=1

YH
jk Vj VH

k

 complex equations in  complex variables N + 1 2(N + 1) (sj, Vj, j ∈ N)



Power flow models
Polar form
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Write   and  with  :





where              

sj =: pj + iqj Vj =: |Vj | eiϕ ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk

pj = (
N

∑
k=0

gjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk cos θjk + bjk sin θjk)

qj = − (
N

∑
k=0

bjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk sin θjk − bjk cos θjk)

gjk :=

gm
jj  if  j = k

gs
jk  if  j ≠ k, ( j, k) ∈ E

0  if  j ≠ k, ( j, k) ∉ E
bjk :=

bm
jj  if  j = k

bs
jk  if  j ≠ k, ( j, k) ∈ E

0  if  j ≠ k, ( j, k) ∉ E



Power flow models
Polar form
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Write   and  with  :


           

sj =: pj + iqj Vj =: |Vj | eiϕ ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk

pj = (
N

∑
k=0

gjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk cos θjk + bjk sin θjk)

qj = − (
N

∑
k=0

bjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk sin θjk − bjk cos θjk)

 real equations in  real variables 2(N + 1) 4(N + 1) (pj, qj, |Vj | , θj, j ∈ N)



Power flow models
Cartesian form
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Write   and  :
sj =: pj + iqj Vj =: ej + ifj

pj = (∑
k

gjk) (e2
j + f2

j ) − ∑
k≠j

(gjk(ejek + fj fk) + bjk( fjek − ej fk))

qj = − (∑
k

bjk) (e2
j + f2

j ) − ∑
k≠j

(gjk( fjek − ej fk) − bjk(ejek + fj fk))

 real equations in  real variables 2(N + 1) 4(N + 1) (pj, qj, ej, fj, j ∈ N)



Power flow models
Types of buses
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Power flow equations  specify  real equations in  real variables

• Power flow (load flow) problem: given  values, determine remaining vars 

2(N + 1) 4(N + 1)
2(N + 1)

Types of buses


•  buses :   specified, determine , e.g. generator


•  buses :   specified, determine , e.g. load


• Slack bus  :   pu specified, determine 

PV (pj, |Vj |) (qj, θj)
PQ (pj, qj) Vj

0 V0 := 1∠0∘ (pj, pj)



Outline

1. Optimal power flow problems
• Power flow models

• OPF formulation

2. Example applications

3. Future challenges



OPF formulation

Optimal power flow (OPF) problems are fundamental

• Numerous power system applications can be formulated as OPF


Network model: graph 


OPF is a constrained optimization program specified by

• Optimization variables

• Power flow equations

• Cost function

• Operational constraints


G = (N, E)

Steven Low    Caltech    OPF



OPF formulation
Optimization vars

Optimization vars 

•  : real & reactive power injections


•  : voltage phasors


• Can express  in terms of  using power flow equations


(s, V) := (sj, Vj, j ∈ N)
sj

Vj

sj V

Steven Low    Caltech    OPF

We call this the bus injection model since  is the only variable (besides )s V



OPF formulation
Power flow equations
Nodal power balance:





where


• Complex form:  


• Polar form:     


sj = ∑
k:j∼k

Sjk(V), j ∈ N

Sjk(V) = (ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Pjk(V) = (gs
jk + gm

jk) |Vj |
2 − |Vj | |Vj |(gs

jk cos(θj − θk) − bs
jk sin(θj − θk))

Qjk(V) = (bs
jk + bm

jk) |Vj |
2 − |Vj | |Vk |(bs

jk cos(θj − θk) + gs
jk sin(θj − θk))

Steven Low    Caltech    OPF



OPF formulation
Cost function
Total real power loss





Total generation cost





C0(V) := ∑
j

Re (sj(V)) = ∑
j

Re ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

C0(V) := ∑
j:gens

cj Re(sj(V)) = ∑
j:gens

cj Re ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

Steven Low    Caltech    OPF

Cost functions can usually be expressed as (possibly nonlinear) functions of V



Optimal formulation
Operational constraints

Injection limits: 


Voltage limits:   


Line limits:   


or     

sj ≤ sj(V) ≤ sj

vj ≤ |Vj |
2 ≤ vj

| Ijk(V) |2 ≤ I2
jk, | Ikj(V) |2 ≤ I2

kj

|Sjk(V) | ≤ Sjk, |Skj(V) | ≤ Skj
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Let feasible set be   𝕍 := {V ∈ ℂN+1 | V satisfies injection/voltage/line limits}



Optimal formulation
OPF in bus injection model

min
V∈𝕍

C0(V)

Steven Low    Caltech    OPF

Remarks 
• Flexible formulation; e.g. 


•  or  if  has no limits


•  if  is a parameter (given inelastic demand)


• Can have multiple devices  with injections  at bus  : net injection 

s0 := − ∞ − i∞ s0 := ∞ + i∞ s0

sj = sj sj

k sjk j sj = ∑k sjk



NP hardness
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Optimal power flow
OPF is NP-hard

n Verma 2009, Bienstock & Verma 2019
n Lavaei & Low 2012
n Lehmann, Grastien & Van Hentenryck 2016 

Reduce NP-hard 
subset sum problem to: Find Θ! , #[!#], $[!#] s.t. power flow equations & constraints
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D ORZHU ERXQG RQ UHDFWLYH SRZHU� 7KHUH LV D EHDXWLIXO JHRPHWULF
LQWHUSUHWDWLRQ RI WKHVH FRQGLWLRQV DQG WKH UROH RI ERXQGV RQ UHDF�
WLYH SRZHU �H�J�� >�@� >�@�� ,QGHHG� WKHVH JHRPHWULF VWXGLHV VKRZ
WKDW WKH IHDVLEOH VHW IRU HDFK OLQH LV DQ HOOLSVH DQG DF�IHDVLELOLW\
LV SRO\QRPLDO�WLPH VROYDEOH LI WKHUH LV QR FRQVWUDLQW RQ UHDFWLYH
SRZHU� %RXQGV RQ UHDFWLYH SRZHU GLYLGH WKH HOOLSVHV DQG RXU
KDUGQHVV UHVXOW FDQ EH LQWHUSUHWHG JHRPHWULFDOO\ DV LQGLFDWLQJ
WKDW WKLV GLYLVLRQ PDNHV WKH SUREOHP 13�KDUG�
2EVHUYH WKDW WKH JHQHUDO DF�IHDVLELOLW\ SUREOHP RQ WUHHV LV

13�KDUG HYHQ LI WKH SURRI RQO\ XVHV LQVWDQFHV ZKHUH WKH YROWDJH
PDJQLWXGHV DUH ¿[HG� ,Q JHQHUDO� 13�KDUGQHVV SURRIV RQO\ XVH
D VXEVHW RI LQVWDQFHV LQ WKH HQFRGLQJV DQG WKLV LV VXI¿FLHQW WR
VKRZ WKH KDUGQHVV UHVXOWV ZKLFK DUH ZRUVW�FDVH� ,Q WKLV SDU�
WLFXODU FDVH� WKH KDUGQHVV SURRI LQGLFDWHV WKDW� LI WKHUH H[LVWV
D SRO\QRPLDO�WLPH DOJRULWKP IRU GHFLGLQJ DF�IHDVLELOLW\ RI DU�
ELWUDU\ WUHH QHWZRUNV ZLWK DUELWUDU\ ERXQGV RQ YROWDJH PDJQL�
WXGHV� LQMHFWLRQV� ORDGV� DQG SKDVH DQJOHV� WKHQ LW PXVW EH WKH
FDVH WKDW 3 13� VLQFH WKH HQFRGLQJ LQVWDQFHV DUH VSHFLDO FDVHV
RI WKLV JHQHUDO SUREOHP� 1RWH DOVR WKDW� IRU VLPSOLFLW\� WKH SURRI
GRHV QRW VKRZ PHPEHUVKLS WR 13� VLQFH SRWHQWLDO VROXWLRQV PD\
LQYROYH LUUDWLRQDO QXPEHUV WKDW FDQQRW EH UHSUHVHQWHG LQ ¿QLWH
VSDFH� +HQFH D VLPSOH DUJXPHQW EDVHG RQ FKHFNLQJ IHDVLELOLW\
LQ SRO\QRPLDO WLPH FDQQRW EH XVHG WR VKRZ 13�PHPEHUVKLS LQ
WKLV FDVH�
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+HUH� ZH SUHVHQW WKH SUREOHP GHVFULSWLRQ DQG WKH DVVXPS�
WLRQV XQGHUO\LQJ WKH SURRI� 2XU DF�IHDVLELOLW\ SUREOHP UHFHLYHV
DV LQSXW ¿[HG GHPDQGV IRU UHDO � � DQG UHDFWLYH � � SRZHU� ,W
¿[HV DOO YROWDJH PDJQLWXGHV WR RQH DQG DVVXPHV WKDW OLQHV KDYH D
PD[LPXP SKDVH DQJOH GLIIHUHQFH � 7KH SURRI DOVR
DVVXPHV D VXVFHSWDQFH DQG FRQGXFWDQFH DQG LP�
SRVHV D QDWXUDO FRQGLWLRQ RQ WKH UHODWLRQVKLS EHWZHHQ � DQG
�
,Q WKH PRGHO� WKH VHW RI EXVHV LV GH¿QHG DV WKH GLVMRLQW

XQLRQ RI WKH VHW RI ORDGV DQG WKH VHW RI JHQHUDWRUV � +HQFH
HYHU\ EXV LV HLWKHU D JHQHUDWRU RU D ORDG �ZLWK SRVVLEO\ � GH�
PDQG�� LV WKH VHW RI OLQHV DQG LV WKH VHW RI GL�
UHFWHG OLQHV� )RU D OLQH � ZH XVH WKH QRWDWLRQ WR LQGLFDWLRQ
WKH OLQH VXVFHSWDQFH DQG FRQGXFWDQFH �
:LWK WKHVH DVVXPSWLRQV DQG QRWDWLRQV� WKH DF�IHDVLELOLW\

SUREOHP FRQVLVWV LQ ¿QGLQJ WKH SKDVH DQJOHV � WKH UHDO SRZHU
ÀRZV � DQG WKH UHDFWLYH SRZHU ÀRZV VDWLVI\LQJ

7KLV IRUPXODWLRQ XVHV SKDVH DQJOHV DQG D ERXQG RQ SKDVH DQJOHV
VLQFH WKLV PDNHV WKH SURRI VLPSOHU� 3KDVH DQJOHV DUH QRW W\SL�
FDOO\ XVHG LQ RSWLPL]DWLRQ RYHU WUHH QHWZRUNV� +RZHYHU WKHUH
LV QR ORVV RI JHQHUDOLW\ LQ WKLV IRUPXODWLRQ VLQFH� XQGHU WKH DV�
VXPSWLRQ WKDW WKH YROWDJH PDJQLWXGH LV RQH� LPSRVLQJ D PD[�
LPXP SKDVH DQJOH GLIIHUHQFH LV HTXLYDOHQW WR HQIRUFLQJ D OLQH
FDSDFLW\ �WKHUPDO OLPLW�� ,QGHHG� WKH PD[LPXP SKDVH DQJOH GLI�
IHUHQFH LPSOLHV D FDSDFLW\ RI

)RU D JLYHQ FDSDFLW\ DQG WDNLQJ LQWR DFFRXQW WKDW WKH SKDVH
DQJOH GLIIHUHQFH KDV WR EH ZLWKLQ � ZH FDQ GH¿QH D
PD[LPXP SKDVH DQJOH GLIIHUHQFH DV

LI
RWKHUZLVH�
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:H SURYH LQ WKLV VHFWLRQ WKDW WKH DF�IHDVLELOLW\ RI DQ DF QHW�
ZRUN ZLWK D VWDU VWUXFWXUH DQG RQH ORDG LV 13�KDUG� $ JUDSK ZLWK

QRGHV LV FDOOHG D VWDU LI LW LV D FRQQHFWHG WUHH ZLWK OHDYHV
DQG RQH QRQ�OHDYH QRGH� 7KH LQVSLUDWLRQ XQGHUO\LQJ WKH SURRI
FDPH IURP WKH ��EXV H[DPSOH LQ >��@ WKDW H[KLELWV GLVFRQQHFWHG
IHDVLELOLW\ UHJLRQV�
/HW � 7KH NH\ HOHPHQW RI WKH SURRI LV WKDW� IRU

DQ\ FKRLFH RI DQG � WKH UDWLR EHWZHHQ UHDO DQG UHDFWLYH SRZHU
LV XQLTXH ZLWK UHVSHFW WR WKH SKDVH DQJOH GLIIHUHQFH � 7KLV LV
FDSWXUHG LQ WKH IROORZLQJ OHPPD� ZKLFK DOVR XVHV WKH IROORZLQJ
QRWDWLRQV IRU FODULW\�

Lemma 1: /HW EH D OLQH ZLWK
DQG � 7KH IROORZLQJ VWDWHPHQWV

DUH WUXH�

���
���

Proof: 7R VLPSOLI\ QRWDWLRQV ZH GH¿QH �
DQG � /HW XV DVVXPH WKDW � 8VLQJ
WKH IDFW WKDW WKH WDQJHQW LV VWURQJO\ PRQRWRQLF LQFUHDVLQJ ZLWKLQ
WKH LQWHUYDO � ZH KDYH

8VLQJ WKH WULJRQRPHWULF LGHQWLW\
DQG PXOWLSO\LQJ ERWK VLGHV RI WKH ODVW

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on June 14,2021 at 13:31:06 UTC from IEEE Xplore.  Restrictions apply. 
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D ORZHU ERXQG RQ UHDFWLYH SRZHU� 7KHUH LV D EHDXWLIXO JHRPHWULF
LQWHUSUHWDWLRQ RI WKHVH FRQGLWLRQV DQG WKH UROH RI ERXQGV RQ UHDF�
WLYH SRZHU �H�J�� >�@� >�@�� ,QGHHG� WKHVH JHRPHWULF VWXGLHV VKRZ
WKDW WKH IHDVLEOH VHW IRU HDFK OLQH LV DQ HOOLSVH DQG DF�IHDVLELOLW\
LV SRO\QRPLDO�WLPH VROYDEOH LI WKHUH LV QR FRQVWUDLQW RQ UHDFWLYH
SRZHU� %RXQGV RQ UHDFWLYH SRZHU GLYLGH WKH HOOLSVHV DQG RXU
KDUGQHVV UHVXOW FDQ EH LQWHUSUHWHG JHRPHWULFDOO\ DV LQGLFDWLQJ
WKDW WKLV GLYLVLRQ PDNHV WKH SUREOHP 13�KDUG�
2EVHUYH WKDW WKH JHQHUDO DF�IHDVLELOLW\ SUREOHP RQ WUHHV LV

13�KDUG HYHQ LI WKH SURRI RQO\ XVHV LQVWDQFHV ZKHUH WKH YROWDJH
PDJQLWXGHV DUH ¿[HG� ,Q JHQHUDO� 13�KDUGQHVV SURRIV RQO\ XVH
D VXEVHW RI LQVWDQFHV LQ WKH HQFRGLQJV DQG WKLV LV VXI¿FLHQW WR
VKRZ WKH KDUGQHVV UHVXOWV ZKLFK DUH ZRUVW�FDVH� ,Q WKLV SDU�
WLFXODU FDVH� WKH KDUGQHVV SURRI LQGLFDWHV WKDW� LI WKHUH H[LVWV
D SRO\QRPLDO�WLPH DOJRULWKP IRU GHFLGLQJ DF�IHDVLELOLW\ RI DU�
ELWUDU\ WUHH QHWZRUNV ZLWK DUELWUDU\ ERXQGV RQ YROWDJH PDJQL�
WXGHV� LQMHFWLRQV� ORDGV� DQG SKDVH DQJOHV� WKHQ LW PXVW EH WKH
FDVH WKDW 3 13� VLQFH WKH HQFRGLQJ LQVWDQFHV DUH VSHFLDO FDVHV
RI WKLV JHQHUDO SUREOHP� 1RWH DOVR WKDW� IRU VLPSOLFLW\� WKH SURRI
GRHV QRW VKRZ PHPEHUVKLS WR 13� VLQFH SRWHQWLDO VROXWLRQV PD\
LQYROYH LUUDWLRQDO QXPEHUV WKDW FDQQRW EH UHSUHVHQWHG LQ ¿QLWH
VSDFH� +HQFH D VLPSOH DUJXPHQW EDVHG RQ FKHFNLQJ IHDVLELOLW\
LQ SRO\QRPLDO WLPH FDQQRW EH XVHG WR VKRZ 13�PHPEHUVKLS LQ
WKLV FDVH�
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+HUH� ZH SUHVHQW WKH SUREOHP GHVFULSWLRQ DQG WKH DVVXPS�
WLRQV XQGHUO\LQJ WKH SURRI� 2XU DF�IHDVLELOLW\ SUREOHP UHFHLYHV
DV LQSXW ¿[HG GHPDQGV IRU UHDO � � DQG UHDFWLYH � � SRZHU� ,W
¿[HV DOO YROWDJH PDJQLWXGHV WR RQH DQG DVVXPHV WKDW OLQHV KDYH D
PD[LPXP SKDVH DQJOH GLIIHUHQFH � 7KH SURRI DOVR
DVVXPHV D VXVFHSWDQFH DQG FRQGXFWDQFH DQG LP�
SRVHV D QDWXUDO FRQGLWLRQ RQ WKH UHODWLRQVKLS EHWZHHQ � DQG
�
,Q WKH PRGHO� WKH VHW RI EXVHV LV GH¿QHG DV WKH GLVMRLQW

XQLRQ RI WKH VHW RI ORDGV DQG WKH VHW RI JHQHUDWRUV � +HQFH
HYHU\ EXV LV HLWKHU D JHQHUDWRU RU D ORDG �ZLWK SRVVLEO\ � GH�
PDQG�� LV WKH VHW RI OLQHV DQG LV WKH VHW RI GL�
UHFWHG OLQHV� )RU D OLQH � ZH XVH WKH QRWDWLRQ WR LQGLFDWLRQ
WKH OLQH VXVFHSWDQFH DQG FRQGXFWDQFH �
:LWK WKHVH DVVXPSWLRQV DQG QRWDWLRQV� WKH DF�IHDVLELOLW\

SUREOHP FRQVLVWV LQ ¿QGLQJ WKH SKDVH DQJOHV � WKH UHDO SRZHU
ÀRZV � DQG WKH UHDFWLYH SRZHU ÀRZV VDWLVI\LQJ

7KLV IRUPXODWLRQ XVHV SKDVH DQJOHV DQG D ERXQG RQ SKDVH DQJOHV
VLQFH WKLV PDNHV WKH SURRI VLPSOHU� 3KDVH DQJOHV DUH QRW W\SL�
FDOO\ XVHG LQ RSWLPL]DWLRQ RYHU WUHH QHWZRUNV� +RZHYHU WKHUH
LV QR ORVV RI JHQHUDOLW\ LQ WKLV IRUPXODWLRQ VLQFH� XQGHU WKH DV�
VXPSWLRQ WKDW WKH YROWDJH PDJQLWXGH LV RQH� LPSRVLQJ D PD[�
LPXP SKDVH DQJOH GLIIHUHQFH LV HTXLYDOHQW WR HQIRUFLQJ D OLQH
FDSDFLW\ �WKHUPDO OLPLW�� ,QGHHG� WKH PD[LPXP SKDVH DQJOH GLI�
IHUHQFH LPSOLHV D FDSDFLW\ RI

)RU D JLYHQ FDSDFLW\ DQG WDNLQJ LQWR DFFRXQW WKDW WKH SKDVH
DQJOH GLIIHUHQFH KDV WR EH ZLWKLQ � ZH FDQ GH¿QH D
PD[LPXP SKDVH DQJOH GLIIHUHQFH DV

LI
RWKHUZLVH�
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:H SURYH LQ WKLV VHFWLRQ WKDW WKH DF�IHDVLELOLW\ RI DQ DF QHW�
ZRUN ZLWK D VWDU VWUXFWXUH DQG RQH ORDG LV 13�KDUG� $ JUDSK ZLWK

QRGHV LV FDOOHG D VWDU LI LW LV D FRQQHFWHG WUHH ZLWK OHDYHV
DQG RQH QRQ�OHDYH QRGH� 7KH LQVSLUDWLRQ XQGHUO\LQJ WKH SURRI
FDPH IURP WKH ��EXV H[DPSOH LQ >��@ WKDW H[KLELWV GLVFRQQHFWHG
IHDVLELOLW\ UHJLRQV�
/HW � 7KH NH\ HOHPHQW RI WKH SURRI LV WKDW� IRU

DQ\ FKRLFH RI DQG � WKH UDWLR EHWZHHQ UHDO DQG UHDFWLYH SRZHU
LV XQLTXH ZLWK UHVSHFW WR WKH SKDVH DQJOH GLIIHUHQFH � 7KLV LV
FDSWXUHG LQ WKH IROORZLQJ OHPPD� ZKLFK DOVR XVHV WKH IROORZLQJ
QRWDWLRQV IRU FODULW\�

Lemma 1: /HW EH D OLQH ZLWK
DQG � 7KH IROORZLQJ VWDWHPHQWV

DUH WUXH�
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���

Proof: 7R VLPSOLI\ QRWDWLRQV ZH GH¿QH �
DQG � /HW XV DVVXPH WKDW � 8VLQJ
WKH IDFW WKDW WKH WDQJHQW LV VWURQJO\ PRQRWRQLF LQFUHDVLQJ ZLWKLQ
WKH LQWHUYDO � ZH KDYH

8VLQJ WKH WULJRQRPHWULF LGHQWLW\
DQG PXOWLSO\LQJ ERWK VLGHV RI WKH ODVW

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on June 14,2021 at 13:31:06 UTC from IEEE Xplore.  Restrictions apply. 



Outline

1. Optimal power flow problems

2. Example applications
• Optimal dispatch
• Unit commitment
• Security constrained dispatch/commitment

3. Future challenges



Central challenge

Balance supply & demand second-by-second

• While satisfying operational constraints, e.g. injection/voltage/line limits

• Unlike usual commodities, electricity cannot (yet) be stored in large quantity
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Traditional approach

Bulk generators generate 80% of electricity in US (2020)

• Fossil (gas, coal): 60%, nuclear: 20%


They are fully dispatchable and centrally controlled

• ISO determines in advance how much each generates when & where


They mostly determine dynamics and stability of entire network

• System frequency, voltages, prices
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Traditional approach 

Challenges

• Large startup/shutdown time and cost

• Uncertainty in future demand (depends mostly on weather)

• Contingency events such as generator/transmission outages


Elaborate electricity markets and hierarchical control

• Schedule generators and determine wholesale prices

• Day-ahead (12-36 hrs in advance): unit commitment

• Real-time (5-15 mins in advance): economic dispatch

• Ancillary services (secs - hours): frequency control, reserves
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All of these decisions can be formulated as OPF problems



Optimal power flow

OPF underlies many power system applications


Constrained optimization





• Optimization vars: control , network state 


• Cost function:  


• Constraint functions:  

• They depend on the application under study


min
u,x

c(u, x)  s.t.  f(u, x) = 0, g(u, x) ≤ 0

u x
c(u, x)

f(u, x), g(u, x)
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Optimal dispatch

Solved by ISO in real-time market every 5-15 mins

• Determine injection levels of those units that are online

• Adjustment to dispatch from day-ahead market (unit commitment)
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Optimal dispatch
Problem formulation
Model

• Network: graph 


Optimization vars

• Control: 


• Dispatch: power injections    


• Network state: 


• Voltages 


• Line flows 

G = (N, E)

u := (uj, j ∈ N) (denoted by sj previously)

V := (Vj, j ∈ N)

S := (Sjk, Skj, ( j, k) ∈ E)
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Optimal dispatch
Problem formulation
Parameters


• Uncontrollable injections , e.g. load forecast


Generation cost is quadratic in real power 





σ := (σj, j ∈ N)

c(u, x) = ∑
generators j

(aj (Re(uj))
2

+ bj Re(uj))
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Optimal dispatch
Constraints

Power flow equations: 


• Complex form:  


• Polar form:     





Power balance: 

S = S(V)

Sjk(V) = (ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Pjk(V) = (gs
jk + gm

jk) |Vj |
2 − |Vj | |Vj |(gs

jk cos(θj − θk) − bs
jk sin(θj − θk))

Qjk(V) = (bs
jk + bm

jk) |Vj |
2 − |Vj | |Vk |(bs

jk cos(θj − θk) + gs
jk sin(θj − θk))

uj + σj = ∑
k:j∼k

Sjk(V)
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Optimal dispatch
Constraints

Injection limits:   


Voltage limits:   


Line limits:   

uj ≤ uj ≤ uj

vj ≤ |Vj |
2 ≤ vj

|Sjk(V) | ≤ Sjk, |Skj(V) | ≤ Skj
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Optimal dispatch

  


 : optimal dispatch driven by 

min
u,x

c(u, x)

s.t. uj + σj = ∑
k:j∼k

Sjk(V)

uj ≤ uj ≤ uj

vj ≤ |Vj |
2 ≤ vj

|Sjk(V) | ≤ Sjk, |Skj(V) | ≤ Skj

uopt(σ) σ
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Optimal dispatch

Interpretation


• ISO dispatches  to unit  as generation setpoint (needs incentive compatibility)


• Resulting network state  satisfies operational constraints


Economic dispatch in practice

• Real-time market use linear approximation, e.g., DC power flow, instead of AC (nonlinear) power 

flow equations

• ISO solves linear program for dispatch and wholesale prices

• AC power flow equations are used to verify that operational constraints are satisfied if dispatched

• If not, DC OPF is modified and procedure repeated

• Even this is a highly simplified approximation of the actual market process

uopt
j j

xopt
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Outline

1. Optimal power flow problems

2. Example applications
• Optimal dispatch
• Unit commitment
• Security constrained dispatch/commitment

3. Future challenges



Unit commitment

Solved by ISO in day-ahead market 12-36 hrs in advance

• Determine which generators will be on (commitment) and their output levels (dispatch)

• For each hour (or half hour) over 24-hour period 

• Commitment decisions are binding

• Dispatch decisions may be binding or advisory


Two-stage optimization

• Determine commitment, based on assumption that dispatch will be optimized
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Unit commitment
Problem formulation
Model


• Network: graph 


• Time horizon: , e.g., 1 hour, 


Optimization vars

• Control: 


• Commitment: on/off status ,  


• Dispatch: power injections 


• Network state: 


• Voltages 


• Line flows 

G = (N, E)
T := {1,2,…, T} t = T = 24

κ(t) := (κj(t), j ∈ N) κj(t) ∈ {0,1}

u(t) := (uj(t), j ∈ N)

V(t) := (Vj(t), j ∈ N)

S(t) := (Sjk(t), Skj(t), ( j, k) ∈ E)
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Unit commitment
Problem formulation
Capacity limits: injection is bounded if it is turned on





Startup and shutdown incur costs regardless of injection level





UC problems in practice includes other features

• Once turned on/off, bulk generator stays in same state for minimum period

uj(t)κj(t) ≤ uj(t) ≤ uj(t)κj(t)

djt(κj(t − 1), κj(t)) =

startup cost  if  κj(t) − κj(t − 1) = 1
shutdown cost  if  κj(t) − κj(t − 1) = − 1
0  if  κj(t) − κj(t − 1) = 0
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Unit commitment
Problem formulation
Two-stage optimization





where  is optimal dispatch cost over entire horizon :





• Each time  constraint includes injection limits


•  can include ramp rate limits

min
κ∈{0,1}(N+1)T ∑

t
∑

j

djt (κj(t − 1), κj(t)) + c*(κ)

c*(κ) T

c*(κ) := min
(u,x) ∑

t

ct(u(t), x(t); κ(t))

 s.t.  ft(u(t), x(t); κ(t)) = 0, gt(u(t), x(t); κ(t)) ≤ 0, t ∈ T
f̃(u, x) = 0, g̃(u, x) ≤ 0

t
f̃(u, x) = 0, g̃(u, x) ≤ 0
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Unit commitment

UC is more computationally challenging than optimal dispatch

• Discrete variables (nonconvexity)

• Multi-interval (larger problem size)
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Unit commitment

UC in practice

• Binary variable and multiple intervals make UC computationally difficult for large networks

• Typically use linear model, e.g., DC power flow, and solve mixed integer linear program


Serious effort underway in R&D community to scale UC solution with AC model 

• e.g., ARPA-E Grid Optimization Competition Challenge 2 (more later)
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• Optimal dispatch
• Unit commitment
• Security constrained dispatch/commitment
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System security

• System security refers to ability to withstand contingency events


• A contingency event is an outage of a generator, transmission line, or transformer


• Contingency events are rare, but can be catastrophic 


• NERC’s (North America Electricity Reliability Council)  rule the outage of a 
single piece of equipment should not result in violation of voltage or line limits

N − 1
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System security

Secure operation


• Analyze credible contingencies that may lead to voltage or line limit violations

• Account for these contingencies in optimal commitment and dispatch schedules
(security constrained UC/ED)

• Monitor system state in real time and take corrective actions when contingency
arises
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Optimal dispatch

Recall: OPF without security constraints (base case):


where


•  : dispatch in base case

•  : network state in base case

• : power flow equations, etc.

• : operational constraints

min
(u0,x0)

c0 (u0, x0)
 s.t. f0 (u0, x0) = 0, g0 (u0, x0) ≤ 0

u0

x0

f0 (u0, x0)
g0 (u0, x0)
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Security constrained OPF
Preventive approach

Basic idea 

• Augment optimal dispatch (OPF) with additional constraints …


• … so that the (new) network state under optimal dispatch  will satisfy 
operational constraints after contingency events


• Dispatch remains unchanged until next update period, even if a contingency 
occurs in the middle of control interval 

uopt
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Security constrained OPF
Preventive approach
Security constrained OPF (SCOPF)





where


•  : new state under same dispatch  after contingency 


•  : power flow equations for post-contingency network


•  : (more relaxed) emergency operational constraints after contingency  

min
(u0,x0, x̃k, k≥1)

c0 (u0, x0)
 s.t. f0 (u0, x0) = 0, g0 (u0, x0) ≤ 0

f̃k (u0, x̃k) = 0, g̃k (u0, x̃k) ≤ 0

x̃k u0 k

f̃0 (u0, x̃0)
g̃0 (u0, x̃0) k

Steven Low    Caltech    Example applications

base case constraints

constraints after cont.  k



Security constrained OPF
Corrective approach

Basic idea 

• Compute optimal dispatch not only for base case, but also for each contingency 


• System operator can dispatch a response immediately after contingency without
waiting till next dispatch period

k

Steven Low    Caltech    Example applications



Security constrained OPF
Corrective approach
Security constrained OPF (SCOPF)


where


• : dispatch & state in base case  and after contingency 


• : power flow equations & operational constraints for 


•  : ramp rate limits

min
(uk,xk, k≥0) ∑

k≥0

wk ck (uk, xk)

 s.t. fk (uk, xk) = 0, gk (uk, xk) ≤ 0, k ≥ 0
∥uk − u0∥ ≤ ρk, k ≥ 1

(uk, xk) k = 0 k ≥ 1

(fk, gk) k ≥ 0

∥uk − u0∥
Steven Low    Caltech    Example applications

ramp rate limits



Outline

1. Optimal power flow problems

2. Example applications

3. Future challenges



Computational challenges
Practical OPF
Non-convergence


• Ill conditioning, bad initial point, nonconvexity

Nonconvexity of power flow equations

• Quadratic, trigonometric

Large problem size 
• Large number of variables and constraints
• Relaxation based methods difficult to scale

Nonsmoothness

• Nonsmooth constraints, logical constraints, complementary constraints, mixed integer constraints

Steven Low    Caltech    Example applications



Computational methods

Newton-Raphson is the most widely used solution method 
• Good (well understood) convergence property

Other popular methods

• Fast decoupled methods: approximate Newton-Raphson

• Interior point methods

Recent approaches

• Based on convex relaxations: semidefinite relaxations, strong SOCP, QC relaxation

• Based on machine learning and neural networks (this tutorial)

Steven Low    Caltech    Example applications



Outline

9

□ Optimal power flow (OPF) problems
□ Example applications
□ Future challenges

□ Machine learning for constrained optimization 
□ Machine learning for solving OPF problems: overview
□ Machine learning for DC-OPF and SC-DCOPF 

problems
□ Machine learning for standard AC-OPF problems 

□ Ensuring DNN feasibility for constrained optimization 
□ Solving AC-OPF under flexible topologies
□ Solving AC-OPF with multiple load-solution mappings
□ Concluding Remarks



Machine learning for constrained 
optimization



Constrained Optimization

11

□ Tremendous applications; many off-the-shelf solvers

□ Given 𝑧𝑧, solvers apply iterative strategies to pursue optimal solutions 
– E.g., the gradient descent method (with projection)

𝑥𝑥 𝑡𝑡 + 1 = 𝑥𝑥 𝑡𝑡 − 𝛼𝛼𝑡𝑡∇𝑓𝑓(𝑥𝑥 𝑡𝑡 )
– E.g., the Newton-Raphson method that utilizes additional curvature information

Picture source: wiki

Gradient descent (green) 
Newton's method (red)



An Input-Solution Mapping Perspective

12

□ A solver implicitly characterizes an 
input-solution mapping for a problem

□ Example: The load-generation mapp-
ing for a DC-OPF problem over a 2-bus 
instance

Reaching branch limitSolver… , 𝑧𝑧2, 𝑧𝑧1 … , 𝑥𝑥2∗, 𝑥𝑥1∗
Input Solution



Reaching branch limit

New Machine Learning Viewpoint

□ Learn the input-solution 
mapping for a given problem

□ Pass inputs through the 
mapping for solutions
– No iterative updates needed 
– Trade learning complexity for 

low run-time complexity

□ Q: can we learn such a 
mapping?

13
[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.



Continuous Mapping upon Unique Solution

14

Continuous Mapping Theorem. [1][2] 

For continuous 𝑓𝑓,𝑔𝑔,ℎ, if the input 
domain 𝐷𝐷 is compact and the optimal 
solution 𝑥𝑥∗ is unique for any z ∈ 𝐷𝐷, 
then the input-solution mapping 𝑧𝑧 →
𝑥𝑥∗ is continuous. 

[1] Maximum Theorem in Chapter 6, Section 3, Claude Berge, ”Topological Spaces”. Oliver and Boyd. p. 116. (1963)
[2] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A feasibility-optimized Deep Neural Network Approach for AC Optimal Power Flow 
Problems,” arXiv preprint arXiv:2007.01002, 2020. 

DC-OPF is a quadratic problem 
with unique optimal solution

Reaching branch limit



NN Can Approximate Continuous Mapping

□ Theorem [1-3]: With non-polynomial activation functions, 
feedforward networks can approximate “any” function/mapping 
arbitrarily well, with sufficient neurons.

– Any function whose p-th power of the absolute value is Lebesgue 
integrable

– Activation function is bounded, non-constant, and continuous
– Even by using single (hidden) layer NNs

15

[1] K. Hornik, “Approximationcapabilitiesofmultilayerfeedforwardnetworks,” Neural networks, vol.4, no.2, pp. 251–257,1991. 
[2] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math. Control Signals Systems, 2(4):303–314, 1989.
[3] Pinkus, Allan. "Approximation theory of the MLP model in neural networks." Acta numerica, 8 :143-195, 1999.

Input layer

Hidden layer

Output layer

Neurons
Weighted 
connection

(Weight1, Bias1)

(Weighti, Biasi) Output

Input1

Inputi

∑ → ReLU

Output = ReLU �
i

Inputi × Weighti + Biasi



An Illustrating Example

16

□ Approximating y = 0.3𝑥𝑥5 + 4.8𝑥𝑥4 − 18.8𝑥𝑥3 + 6𝑥𝑥2 +
23.6𝑥𝑥 − 6 by an 8-node single-layer ReLU NN



Some Recent Advances

□ Results extended to RNN, CNN, ResNet, etc.

□ Deep networks use exponentially less neurons [1-3]: A 
ReLU DNN can approximate a sufficiently smooth 𝑓𝑓 up to 
an 𝑙𝑙∞ error 𝜖𝜖, with both width and depth at most log 1/𝜖𝜖
– To approximate a function in a wide family of twice-

differentiable functions, a DNN needs at least a width of 
poly(1/𝜖𝜖) if the depth is fixed [3]

17

[1] D. Yarotsky, “Error bounds for approximations with deep ReLU networks”, Neural Network, vol 94, pp. 103-114, Oct. 2017.
[2] S. Liang and R. Srikant, “Why Deep Neural Networks for Function Approximation?”, ICLR, 2017.
[3] I. Safran and O. Shamir, “Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks”, ICML, 2017,
[4] D. Zhou, “Universality of deep convolutional neural networks”, Applied and computational harmonic analysis 48 (2), 787-794, 2020.



Our Machine Learning Viewpoint

□ Learn the input-solution 
mapping for a given problem

□ Pass input through the 
mapping for the solution
– Trade learning complexity for 

low run-time complexity 

□ Yes, we can learn the input-
solution mapping by NN
– Learning complexity is 

amortized if the problem is 
solved repeatedly, e.g., OPF

18

… , 𝑧𝑧2, 𝑧𝑧1 … , 𝑥𝑥2∗, 𝑥𝑥1∗

Solver… , 𝑧𝑧2, 𝑧𝑧1 … , 𝑥𝑥2∗, 𝑥𝑥1∗
Input Solution

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.



ML Approach: Solving CO as NN Regression

□ Training: Given the inputs 
and solutions, learn the 
mapping 

□ Applying: Given input, 
directly generate the 
solution by the mapping

19

𝑢𝑢1 … 𝑢𝑢𝑛𝑛
𝑥𝑥1 … 𝑥𝑥𝑛𝑛 = Ϝ

𝑃𝑃𝑑𝑑𝑑
…
𝑃𝑃𝑑𝑑𝑛𝑛

𝑢𝑢1 … 𝑢𝑢𝑛𝑛
𝑥𝑥1 … 𝑥𝑥𝑛𝑛 = Ϝ

𝑃𝑃𝑑𝑑𝑑
…
𝑃𝑃𝑑𝑑𝑛𝑛

givengiven

to learn

to generate

given
learned

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.



ML for Constrained Optimization in Power 
System Operation

□ Application in OPF
– Facilitate conventional solvers, e.g., [1]
– Directly generate solutions (upcoming slides)

□ Other Applications
– Frequency control, e.g., [3,4,5]
– Network reconfiguration, e.g., [6]
– Economic dispatch, e.g., [7]

20

[1] Y. Ng, S. Misra, L. A. Roald and S. Backhaus, “Statistical Learning for DC Optimal Power Flow”, in Proc. IEEE PSCC, Dublin, Ireland, Jun. 11 - 15, 2018.
[2] X. Pan, T. Zhao, and M. Chen, “Deepopf: Deep neural network for DC optimal power flow,” in Proc. IEEE SmartGridComm, Beijing, China. 2019.
[3] W. Cui and B. Zhang, "Lyapunov-Regularized Reinforcement Learning for Power System Transient Stability," in IEEE Control Systems Letters, vol. 6, pp. 
974-979, 2022.
[4] W. Cui, Y. Jiang, and B. Zhang, “Reinforcement learning for optimal primary frequency control: A Lyapunov approach,” arxiv, 2021.
[5] T. Zhao, J. Wang, X. Lu, and Y. Du, “Neural Lyapunov control for power system transient stability: A deep learning-based approach,” IEEE Trans. Power 
Syst., vol. 37, no. 2, pp. 955–966, Mar. 2022.
[6] Y. Gao, J. Shi, W. Wang and N. Yu, "Dynamic Distribution Network Reconfiguration Using Reinforcement Learning," in Proc. IEEE SmartGridComm, 
Beijing, China. 2019.
[7] F. Hasan and A. Kargarian, "Topology-aware Learning Assisted Branch and Ramp Constraints Screening for Dynamic Economic Dispatch", accepted for 
publication in IEEE Transactions on Power Systems (early access), 2022.



Machine Learning for Solving OPF 
Problems: Overview



OPF for Setting System Operating Points

□ Recall: The Optimal Power Flow (OPF) Problem is to 
determine the outputs of generators to 
– Satisfy the load in real-time (reliability)
– Minimize the overall generation cost (efficiency)

22

min ( )

s.t. ( , , ) 0
( , , ) 0

u
f u

g x y u
h x y u

=
≥

Total generation cost

Power balance constraints 

Physical, operational, and security 
constraints (e.g., line limits)

[1] J. Carpentier, “Contribution to the economic dispatch problem,” Bulletin de la Societe Francoise des Electriciens, vol. 3, no. 8, 1962. 
[2] Cain M B, O’neill R P, Castillo A. History of optimal power flow and formulations. Federal Energy Regulatory Commission, 2012, 1: 1-36.



Observation

□ AC-OPF problem is non-convex and NP-hard, difficult to 
solve in real-time
– Practical OPF can involve more than 1M variables

□ To accommodate renewable, market operators need to solve 
OPFs every 5 minutes
– Previously, every half day or every 2 hours
– In the future, every one minute

□ Operators often terminate iterative methods early, or resort 
to solve (linearized) DC-OPF, both giving sub-optimal results

□ How to solve OPF problem in real-time?

23

[1] Bienstock D, Verma A. Strong NP-hardness of AC power flows feasibility. Operations Research Letters, 2019.
[2] Reddy S S, Bijwe P R. Day-ahead and real time optimal power flow considering renewable energy resources. International Journal of Electrical 

Power & Energy Systems, 2016, 82: 400-408.



Approaches

□ General Newton-like iterative algorithms

□ Linearization to solve OPF approximately

□ Convexification to solve OPF optimality

□ Machine learning to solve OPF problems directly
– Sub-percentage optimality loss (better than linearized OPF)
– 1,5000x speedup for AC-OPF over a 2000-bus network
– Approaches evaluated over actual RTE networks with 

9,241 buses, also realistic load profiles with 40% variation

□ Machine learning to facilitate existing iterative solvers

24

Not scalable

Only applicable 
to special case

Inaccurate



Historical Roadmap
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Wiki and Overview Webpage

□ A wiki page hosted by ACM SIGEnergy
– https://energy.hosting.acm.org/wiki/index.php/ML_OPF_wiki

□ A wiki page hosted by Climate Change AI (on more general topics)
– https://wiki.climatechange.ai/wiki/Welcome_to_the_Climate_Change

_AI_Wiki

□ An overview webpage by Letif Mones
– https://invenia.github.io/blog/2021/10/11/opf-nn/

□ Dataset or data generators for training NN for OPF problems
– https://github.com/NREL/OPFLearn.jl
– https://github.com/invenia/OPFSampler.jl/

26

https://energy.hosting.acm.org/wiki/index.php/ML_OPF_wiki
https://wiki.climatechange.ai/wiki/Welcome_to_the_Climate_Change_AI_Wiki
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Machine Learning for Solving 
DC-OPF and SC-DCOPF Problems

- X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", IEEE 
SmartGridComm, 2019. (arXiv:1905.04479, May 11th, 2019) 
- X. Pan, T. Zhao, M. Chen and S. Zhang, "DeepOPF: A Deep Neural Network Approach for Security-
Constrained DC Optimal Power Flow", in IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 1725 -
1735, May. 2021.
- A. Velloso, P. V. Hentenryck, “Combining Deep Learning and Optimization for Preventive Security-
Constrained DC Optimal Power Flow”, IEEE Transactions on Power Systems, July, 2021.
- L. Zhang, D. Tabas, B. Zhang, “An Efficient Learning-Based Solver for Two-Stage DC Optimal Power Flow 
with Feasibility Guarantees” arXiv:2304.01409, 2023



DC-OPF: Linearized OPF Problems

□ A quadratic problem in active power generation 𝒑𝒑𝑔𝑔 and voltage 
angel 𝜽𝜽

□ Easy to solve by iterative solvers. Why NN approach then?
– Approaches generalizable to AC-OPF or other nonlinear problems
– Security-constrained DC-OPF still challenging to solve

28

Quadratic generation cost

Linearized power balance equation

Branch flow and power generation 
limits



(N-1) Security-Constrained DC-OPF

□ US operators require OPF solutions to be (N-1) secure
– Preventive SCOPF: OPF generation still supports the load 

upon any single line failure (could be transient)

29



(N-1) Security-Constrained DC-OPF

30

𝑐𝑐 = 0,1,2,3: 
standard case: #0
contingency: #1,#2,#3



Complexity of SC-DCOPF (Quadratic Prob.)

□ Solving (N-1) SC-DCOPF problems: 𝑂𝑂 𝑁𝑁12 time complexity 
– 𝑁𝑁 is the number of buses
– 𝑂𝑂(𝑁𝑁4) time complexity for DC-OPF

– For a 300-bus network, Gurobi solves an (N-1) SC-DCOPF problem 
in 5 seconds

• On a quad-core (i7@3.40G Hz) workstation with 16GB RAM
– For a 600-bus network, it would take 6.5 hours!

□ We focus on SC-DCOPF as it is basically a large-scale DC-OPF

31

[1] Y. Ye and E. Tse, “An extension of karmarkar’s projective algorithm for convex quadratic programming,” Mathematical Programming, vol. 44, 
no. 1, pp. 157–179, May 1989.
[2] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.



Piecewise Affine Mapping for SC-DCOPF

32[1] N. P. Fa´ısca, V. Dua, and E. N. Pistikopoulos, “Multiparametric linear and quadratic programming,” pp. 3–23, 2007.

Theorem [1]: The input-solution 
mapping of a strictly convex 
quadratic problem is piecewise 
affine.

– 𝐩𝐩D ∈ 𝑅𝑅𝑁𝑁 to 𝒑𝒑𝐺𝐺 ,𝜽𝜽𝑐𝑐 ∈ 𝑅𝑅𝑁𝑁3

A 2-bus 2-generator example

Reaching branch limit



Idea and Challenge

□ Idea: learn the load-solution mapping by DNN; 
use it to obtain solution from input instantly

□ Challenge: 
– We would use DNN, but how many neurons?
– How to train the DNN?
– Meeting equality and inequality constraints

– Standard projection back to the feasible set can be 
computationally expensive

33



Approaches for DC-OPF/SC-DCOPF

□ How many neurons to have in the DNN? [1]

□ Training design [1,2,3]: approximation error + constraint violation

□ Meeting equality and inequality constraints 
– A Predict-and-reconstruct (PR2) approach to guarantee equality 

constraints [1] (also independently in [4])
– Promoting inequality feasibilities by using penalty/KKT loss function [1,2]
– Post-processing to recover feasible solutions [1,2]
– A preventive-learning approach to guarantee inequality feasibility [3]

□ Approaches extended to AC-OPF problems (later)

34

[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.
[2] A. Velloso, P. V. Hentenryck, “Combining Deep Learning and Optimization for Preventive Security-Constrained DC Optimal Power Flow”, IEEE 
Transactions on Power Systems, July, 2021.
[3] T. Zhao, X. Pan, M. Chen, and S. H. Low, “Ensuring DNN Solution Feasibility for Optimization Problems with Convex Constraints and Its 
Application to DC Optimal Power Flow Problems”, arXiv preprint arXiv:2112.08091, 2021.
[4] N. Guha, Z. Wang, A. Majumdar, “Machine Learning for AC Optimal Power Flow”, ICML Climate Change workshop, June 14, 2019.



Equality Constraint: Opportunity, not Issue

□ Predict-and-Reconstruct (PR2) [1]: predict 𝒑𝒑𝐺𝐺 and reconstruct
𝜽𝜽 = 𝑩𝑩−1 𝒑𝒑𝐺𝐺 − 𝒑𝒑𝐷𝐷 by solving power flow equations
– Ensure power-flow balance equality constraints
– Reduce the number of variables to predict (and thus DNN size)
– Applicable to AC-OPF and constrained optimization problems

35
[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.

Reconstruction by
Solving Power 
Flow Equations

Prediction by DNN
Bus load

𝒑𝒑𝐷𝐷

𝒑𝒑𝐺𝐺
Generation

(𝒑𝒑𝐺𝐺 ,𝜽𝜽)

Generation 
and angle



DeepOPF for SC-DCOPF: Training

□ Ensure box constraints for 𝒑𝒑𝐺𝐺 [1]: 𝑝𝑝𝐺𝐺𝐺𝐺 = 𝛼𝛼𝑖𝑖 𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚,𝛼𝛼 ∈
[0,1]

□ Incorporate other inequality constraint violations into the loss function:
– 𝑤𝑤1 � 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑤𝑤2 � 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝 [1]
– Replace 𝑤𝑤2 with dual variables, in a different SC-DCOPF formulation  [2]
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[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in May 2021.
[2] A. Velloso, P. V. Hentenryck, “Combining Deep Learning and Optimization for Preventive Security-Constrained DC Optimal Power Flow”, IEEE 
Transactions on Power Systems, July, 2021.



DeepOPF for SC-DCOPF: Testing

□ Output the DNN solution if feasible

□ The 𝑙𝑙1-projection problem is 
essentially an LP; complexity lower 
than solving the original QP

37

Recover feasible solution by 𝑙𝑙1
projection (in case of infeasibility)



Justification of DNN Solving OPF Problems

□ Theorem [4]: Let 𝑓𝑓∗ be the piecewise-affine load-generation mapping 
of an (N-1) SC-DCOPF problem with a Lipschitz constant 𝑎𝑎. Then the 
𝑙𝑙∞ error of a DNN with 𝑛𝑛 hidden layers and 𝑚𝑚 neurons per layer  
– Decreases to 0 as 𝑚𝑚 tends to infinity 
– Is lowed bounded by 𝑎𝑎 ⋅ 𝑑𝑑/[4 2𝑚𝑚 𝑛𝑛]; 𝑑𝑑 is the input region diameter

□ Similar results for AC-OPF problems in [5]

□ Corollary: NN width and depth to achieve an 𝑙𝑙∞ error of 𝜖𝜖 satisfies
2𝑚𝑚 𝑛𝑛 ≥ 𝑎𝑎 ⋅ 𝑑𝑑/(4𝜖𝜖)

– Tighter than existing lower bounds (which are for general functions)
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[1] D. Yarotsky, “Error bounds for approximations with deep ReLU networks”, Neural Network, vol 94, pp. 103-114, Oct. 2017.
[2] S. Liang and R. Srikant, “Why Deep Neural Networks for Function Approximation?”, ICLR, 2017.
[3] I. Safran and O. Shamir, “Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks”, ICML, 2017,
[4] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”, 
IEEE Transactions on Power Systems, 2021.
[5] X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow 
Problems", arXiv preprint arXiv:2007.01002, 2020.



Run-Time Complexity of DeepOPF: 𝑂𝑂(𝑁𝑁7.5)

□ The time complexity for solving (N-1) SC-DCOPF is 𝑂𝑂(𝑁𝑁12)

□ Proposition [3]. The time complexity to obtain a solution for (N-1) 
SC-DCOPF by DeepOPF is

𝑂𝑂(𝑛𝑛𝑚𝑚2 + 𝑁𝑁5 + 𝑁𝑁7.5)

□ In DeepOPF: 𝑛𝑛 = 3,𝑚𝑚 = 𝑂𝑂(𝑁𝑁)
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[1] Y. Ye and E. Tse, “An extension of karmarkar’s projective algorithm for convex quadratic programming,” Mathematical Programming, vol. 44,
no. 1, pp. 157–179, May 1989
[2] Vaidya P. Speeding-up linear programming using fast matrix multiplication, 30th Annual Symposium on Foundations of Computer Science. 
1989: 332-337.
[3] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”, IEEE 
Transactions on Power Systems, 2021.

post-
processing

reconstructing 
the phase angles

and checking 
feasibility

DNN
perdition



Performance under Typical Load
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IEEE Test 
Case

Feasibility 
rate (%)

Ave. cost
($/hr) Opt.

loss 
(%)

Run. time
(millisecond)

Speedup
DeepOPF Ref. DeepOPF Ref.

IEEE-
case30 100 225.7 225.7 <0.1 0.72 17 x24

IEEE-
case57 100 9022.9 9021.6 <0.1 0.76 102 x133

IEEE-
case118 100 29197.9 29149.0 <0.1 2.48 698 x281

IEEE-
case300 100 156601.8 156542.5 <0.1 81.4 5766 x318

[1] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”, 
IEEE Transactions on Power Systems, May, 2021.

□ i5-8500@3.00G Hz CPU; 8GB RAM; 50K training data, 5K testing data; baseline: 
Gurobi; 3-layers NN; 256/128/64 neurons; up to 95K variables in formulations



Performance with Frequent 𝑙𝑙1-Projection

□ Lightly-congested: [50%,150%] variation; 85% instances 1+ line binding
□ Heavily-congested: [150%, 160%] variation; all instances 20% line 

binding

41

Test case: IEEE Case118



Optimality vs. Speedup (IEEE Case118)

□ One can trade optimality loss with speedup performance 
by tuning the neural network sizes
– DeepOPF-V1/V2/V3: DeepOPF with different NN size

42



Summary

□ DeepOPF: the first DNN scheme to solve OPF directly
– Theoretical justification for NN to learn load-solution mapping
– Run-time complexity 𝑂𝑂(𝑁𝑁7.5) for solving SC-DCOPF problems

□ DeepOPF generates feasible solutions for SC-DCOPF with 
<0.1% optimality loss, with up to 300x speedup than Gurobi

□ Approaches for ensuring/promoting solution feasibility
– Predict-and-reconstruct (PR2) to guarantee equality constraints
– Penalty approach promote feasibility w.r.t. inequality constraints

43
[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 
11th, 2019) The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in May 2021.



Machine Learning for Solving 
AC-OPF Problems

- X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network 
Approach for AC Optimal Power Flow Problems", arXiv 2020. IEEE Systems Journal 2023
- G. Neel, Z. Wang and A. Majumdar, "Machine Learning for AC Optimal Power Flow", In Proceedings of 
the 36th International Conference on Machine Learning Workshop, Long Beach, CA, USA, 2019.
- D. Owerko, F. Gama, A. Ribeiro, Optimal Power Flow Using Graph Neural Networks, ICASSP, 2020
- W. Huang, X. Pan, M. Chen, and S. H. Low, "DeepOPF-V: Solving AC-OPF Problems Efficiently", IEEE 
Transactions on Power Systems, vol. 37, no. 1, pp. 800 - 803, Jan. 2022. 
- X. Lei, Z. Yang, J. Yu, J. Zhao, Q. Gao and H. Yu, "Data-Driven Optimal Power Flow: A Physics-Informed 
Machine Learning Approach", in IEEE Transactions on Power Systems, Jan. 2021.
- F. Fioretto, T. Mak, and P. V. Hentenryck, "Predicting AC Optimal Power Flows: Combining Deep 
Learning and Lagrangian Dual Methods", AAAI, 2020.
- A. Zamzam and K. Baker, "Learning Optimal Solutions for Extremely Fast AC Optimal Power Flow", 
IEEE SmartGridComm, 2020.
- P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", 
ICLR, 2021. 
- W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF 
Problems without Ground Truth", In Proceedings of the 38th International Conference on Machine 
Learning Workshop, virtual conference, Jul. 23, 2021.
- M. Chatzos, T. W. K. Mak and P. Vanhentenryck, "Spatial Network Decomposition for Fast and Scalable 
AC-OPF Learning," in IEEE Trans. on Power Systems, 2022
- E. Liang, M. Chen and S. H. Low, "Low Complexity Homeomorphic Projection to Ensure Neural-
Network Solution Feasibility for Optimization over (Non-) Convex Set“, ICML, 2023



Standard AC-OPF Formulation

45J. Carpentier, “Contribution to the economic dispatch problem,” Bulletin de la Societe Francoise des Electriciens, vol. 3, no. 8, pp. 431–447, 1962.

generation cost

AC power flow 
equations

Generation and 
voltage limit 
constraints

Branch flow 
limit constraints

□ Minimizing generation cost to serve the load, with an accurate AC model



Load-Solution Mapping of AC-OPF
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[1] S. H. Low, “Convex relaxation of optimal power flow—Parts I: Formulations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 
15–27, Mar. 2014.
[2] Park, S., Zhang, R.Y., Lavaei, J. and Baldick, R., ‘’ Uniqueness of power flow solutions using monotonicity and network topology,’’ IEEE 
Transactions on Control of Network Systems, 8(1), pp.319-330, 2020
[3] Dvijotham, K., Low, S. and Chertkov, M., ‘’Solving the power flow equations: A monotone operator approach,’’ arXiv preprint arXiv:1506.08472, 
2015
[4] X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow 
Problems", arXiv preprint arXiv:2007.01002, 2020.

□ Theorem [4]: Assumed the load 
domain is compact and the optimal 
AC-OPF solution is unique for any 
given load in the domain, the load-
solution mapping is continuous. 

– AC-OPF has a unique solution in 
“typical” load regions, or radial 
network under certain conditions 
[1], or with monotonic power flow 
equations [2,3]



Multiple AC-OPF Load-Solution Mappings

□ AC-OPF problem is non-convex and can admit multiple
optimal or near-optimal solutions

□ Supervised learning with randomly sampled load-solution 
pairs may fail to learn a legitimate mapping [1]

47
[1] X. Pan, W. Huang, M. Chen, and S. Low, “DeepOPF-AL: Augmented Learning for Solving AC-OPF Problems with Multiple Load-Solution 
Mappings”, arXiv preprint, June 2022. https://arxiv.org/abs/2206.03365



(New) Challenge

□ We would use DNN, but how many neurons?

□ Meeting equality and inequality constraints
– Predict-and-Reconstruct (PR2) approach still works, 

but requires solving nonlinear PF equations
– Computing the penalty gradients is non-trivial
– Projection is non-trivial (Part III)

□ Preparing AC-OPF training data is time-consuming

□ How to deal with the learnability of multiple load-
solution mappings? (Part III)
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Approaches for AC-OPF

□ How many neurons to have in the DNN? [1]

□ Training design [1-6]: supervised and unsupervised training

□ Meeting equality and inequality constraints 
– Standard and low-complexity PR2 approaches to guarantee equality 

constraints [1-5] (also called equality completion in [6])
– Computing penalty gradient by implicit function theorem and zero-order 

methods [1,6] 
– Inequality feasibility guarantee in Part III
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[1] X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow 
Problems", arXiv preprint arXiv:2007.01002, 2020.
[2] G. Neel, Z. Wang and A. Majumdar, "Machine Learning for AC Optimal Power Flow", In Proceedings of the 36th International Conference on 
Machine Learning Workshop, Long Beach, CA, USA, Jun. 10 - 15, 2019.
[3] W. Huang, X. Pan, M. Chen, and S. H. Low, "DeepOPF-V: Solving AC-OPF Problems Efficiently", IEEE Transactions on Power Systems, vol. 37, 
no. 1, pp. 800 - 803, Jan. 2022. 
[4] F. Fioretto, T. Mak, and P. V. Hentenryck, "Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods", AAAI, 
2020.
[5] A. Zamzam and K. Baker, "Learning Optimal Solutions for Extremely Fast AC Optimal Power Flow", SmartGridComm, 2020.
[6] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", ICLR, 2021. 



Predict and Reconstruct

50
[1] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”, 
IEEE Transactions on Power Systems, 2021.

Reconstruction by
Solving nonlinear
AC-PF Equations

Prediction by DNN
Bus load

𝒑𝒑𝐷𝐷
𝒒𝒒𝐷𝐷

𝒑𝒑𝐺𝐺
𝒒𝒒𝐺𝐺

Generation

(𝒑𝒑𝐺𝐺 ,𝒒𝒒𝐺𝐺 ,
𝒗𝒗,𝜽𝜽)

Generation 
and voltage

□ Ensure box constraints for 𝒑𝒑𝐺𝐺 ,𝒒𝒒𝐺𝐺, e.g., 𝑝𝑝𝐺𝐺𝐺𝐺 = 𝛼𝛼𝑖𝑖 𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝑖𝑖𝑖𝑖 +
𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚,𝛼𝛼 ∈ 0,1 ; same technique as in DC-OPF and SC-DCOPF

□ Incorporate inequality constraint violations into the loss function:
– 𝑤𝑤1 � 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑤𝑤2 � 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝



□ Loss function:
– 𝑤𝑤1 � 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑤𝑤2 �
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝

□ Computing Penalty 
Gradient by the chain 
rule:
– The mapping between 𝑦𝑦

and 𝑧𝑧 does not admit an 
explicit form 

Obtaining Penalty Gradient for DNN
Training

51

∇𝑙𝑙 𝑦𝑦 =

𝜕𝜕𝑙𝑙(𝑦𝑦, 𝑧𝑧)
𝜕𝜕𝑦𝑦1
⋮

𝜕𝜕𝑙𝑙(𝑦𝑦, 𝑧𝑧)
𝜕𝜕𝑦𝑦𝑚𝑚

𝑇𝑇

+

𝜕𝜕𝑙𝑙(𝑦𝑦, 𝑧𝑧)
𝜕𝜕𝑧𝑧1
⋮

𝜕𝜕𝑙𝑙(𝑦𝑦, 𝑧𝑧)
𝜕𝜕𝑧𝑧𝑛𝑛

𝑇𝑇

�

𝜕𝜕𝑧𝑧1
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕𝑧𝑧1
𝜕𝜕𝑦𝑦𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕𝑧𝑧𝑛𝑛
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕𝑧𝑧𝑛𝑛
𝜕𝜕𝑦𝑦𝑚𝑚

AC-PF 
SolverDNN𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑙𝑙(𝑦𝑦, 𝑧𝑧)

𝑥𝑥 ∈ 𝑅𝑅d: load input, 𝑦𝑦 ∈ 𝑅𝑅𝑚𝑚: independent variables, 
𝑧𝑧 ∈ 𝑅𝑅𝑛𝑛: dependent variables, 𝑙𝑙: penalty function

[1] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A feasibility-optimized Deep Neural Network Approach for AC Optimal Power Flow 
Problems,” arXiv preprint arXiv:2007.01002, 2020. 
[2] P. L. Donti, D. Rolnick and J. Z. Kolter, “DC3: a learning method for optimization with hard constraints”, in Proc. ICLR, 2021.



Computing Penalty Gradient Directly
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𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕ℎ𝑛𝑛
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕ℎ𝑛𝑛
𝜕𝜕𝑦𝑦𝑚𝑚

+

𝜕𝜕ℎ1
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕ℎ1
𝜕𝜕𝑧𝑧𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕ℎ𝑛𝑛
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕ℎ𝑛𝑛
𝜕𝜕𝑧𝑧𝑛𝑛

𝜕𝜕𝑧𝑧1
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕𝑧𝑧1
𝜕𝜕𝑦𝑦𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕𝑧𝑧𝑛𝑛
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕𝑧𝑧𝑛𝑛
𝜕𝜕𝑦𝑦𝑚𝑚

= 0

Denote AC−PF equations by:
ℎ𝑖𝑖 𝑦𝑦, 𝑧𝑧 = 0, 𝑖𝑖 = 1, …𝑛𝑛

𝜕𝜕𝑧𝑧1
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕𝑧𝑧1
𝜕𝜕𝑦𝑦𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕𝑧𝑧𝑛𝑛
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕𝑧𝑧𝑛𝑛
𝜕𝜕𝑦𝑦𝑚𝑚

= −

𝜕𝜕ℎ1
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕ℎ1
𝜕𝜕𝑧𝑧𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕ℎ𝑛𝑛
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕ℎ𝑛𝑛
𝜕𝜕𝑧𝑧𝑛𝑛

−1 𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕ℎ𝑛𝑛
𝜕𝜕𝑦𝑦1

⋯
𝜕𝜕ℎ𝑛𝑛
𝜕𝜕𝑦𝑦𝑚𝑚

□ The AC-PF equations 
implicitly encode the 
𝑦𝑦–𝑧𝑧 mapping
– Penalty gradient can be 

computed by exploring 
implicit function 
theorem[1]

[1] P. L. Donti, D. Rolnick and J. Z. Kolter, “DC3: a learning method for optimization with hard constraints”, in Proc. ICLR, 2021.



Estimating Penalty Gradient

53

□ The penalty function is a 
composite function of 𝑦𝑦:

□ Two-point gradient 
estimation [1]
– Estimate gradient by 

perturbating 𝑦𝑦 and 
computing the penalty twice

– Better empirical 
performance than the 
implicit function theorem-
based method

∇𝑙𝑙 𝑦𝑦 ≈
𝑙𝑙 𝑦𝑦 + 𝜇𝜇𝛿𝛿 −𝑙𝑙 𝑦𝑦 − 𝜇𝜇𝛿𝛿

2𝛿𝛿 𝑚𝑚 ⋅ 𝜇𝜇

Inputs
𝑦𝑦 + 𝜇𝜇𝛿𝛿
𝑦𝑦 − 𝜇𝜇𝛿𝛿

Penalty
𝑙𝑙(𝑦𝑦 + 𝜇𝜇𝛿𝛿)
𝑙𝑙(𝑦𝑦 − 𝜇𝜇𝛿𝛿)

𝛿𝛿: smooth parameter, 𝑚𝑚: the input 
dimensions,𝜇𝜇 ∈ 𝑅𝑅𝑚𝑚: a uniformly-
sampled vector from the unit ball

[1] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A feasibility-optimized Deep Neural Network Approach for AC Optimal Power Flow 
Problems,” arXiv preprint arXiv:2007.01002, 2020. 



Simulation Settings

□ Test cases: IEEE 
30-/118-/300-bus 
and a synthetic 
2000-bus mesh 
power network [1]

□ Workstation: CentOS 7.6 with 
quad-core (i7-3770@3.40G Hz) CPU and 16GB RAM

□ Datasets: (i) synthetic dataset with ±10% variation; (ii) California 
demand curve with up to 40% variation; 10,000 training samples 
and 2,500 for testing

□ Schemes: DeepOPF(-AC), Pypower, DNN-warm start [2], DNN-E [3]
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[1] Powergrid Lib 2000-bus synthetic test case,” 2022, https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/
[2] W. Dong, Z. Xie, G. Kestor, and D. Li, “Smart-PGSim: Using Neural Network to Accelerate AC-OPF Power Grid Simulation,” in Proc. SC20,
St. Louis, MO, USA, 2020
[3] A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow, IEEE SmartGridComm, 2020.

https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/


□ Speedups are higher for DNN-E and DeepOPF than DNN-W

□ DeepOPF for AC-OPF achieves a speedup lower than for DC-OPF 
due to solving nonlinear AC-PF vs linear DC-PF in PR2
– IEEE Case300: x33 for AC-OPF and x135 for DC-OPF (x318 for SC-DCOPF)

Simulations for Realistic Load w. 40% Variation
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□ Speedup higher than realistic loads with 40% variation

Simulations for Synthetic Load: ±10% Variation
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Comparison of DeepOPF and Pypower solutions for IEEE Case118 test case



Observation

□ DeepOPF speedups AC-OPF solving time by ~100x with 
<0.2% optimality loss, over a 2000-bus system
– PR2 with a penalty approach can guarantee equality 

constraints and promote inequality constraint feasibility

□ Limitation #1: The speedup is lower than DC-OPF
– The PR2 design requires solving nonlinear AC-PF

□ Limitation #2: Preparing training data for AC-OPF is 
time-consuming

□ Limitation #3: training complexity is high for large-scale 
AC-OPF problems
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Further Improving Speedup

□ Approach #1: avoid PR2; predict the generation 
and voltage solutions directly e.g., [2]
– Signficant speedup
– Solutions do not respect equality constraints
– Projection to recover feasibility is computationally 

expensive

□ Approach #2: alterative PR2 design for better 
speedup [1]
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[1] W. Huang, X. Pan, M. Chen, and S. H. Low, “DeepOPF-V: Solving AC-OPF Problems Efficiently”, IEEE Transactions on Power Systems, Jan. 2022.
[2] F. Fioretto, T. Mak and P. V. Hentenryck, "Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods", AAAI, 
2020.



Predict and Reconstruct (PR2) Revisit

59
[1] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow”, 
IEEE Transactions on Power Systems, early access, 2020.

□ Solving nonlinear AC power flow equations is time-consuming

□ To improve speedup, we predict a different set of
independent variables for efficient reconstruction



DeepOPF-V: Low Complexity PR2 Design
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Reconstruction by
Solving AC Power 

Flow Equations

Prediction by DNN
Bus load

𝒑𝒑𝐷𝐷
𝒒𝒒𝐷𝐷

𝒗𝒗,𝜽𝜽
Voltage

(𝒑𝒑𝐺𝐺 ,𝒒𝒒𝐺𝐺 ,
𝒗𝒗,𝜽𝜽)

Generation 
and voltage

[1] W. Huang, X. Pan, M. Chen, and S. H. Low, “DeepOPF-V: Solving AC-OPF Problems Efficiently”, IEEE Transactions on Power Systems, Jan. 2022.

Only simple 
addition & 

multiplication



The New PR2 Design is Effective
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□ Speedup improves from 100+ in DeepOPF to 15,000+ in 
DeepOPF-V, for the 2000-bus test case



Simulation with Realistic Load Profiles

62

□ 42% variation in a realistic load profile with bus correlation 
□ DNN structure: 3 hidden layers, each with 768 neurons



Observation

□ DeepOPF can speedup AC-OPF solving time by two 
orders of magnitudes with <0.2% optimality loss
– PR2 with a penalty approach can guarantee equality 

constraints and promote inequality constraint feasibility

□ Limitation #1: The speedup is lower than DC-OPF
– The PR2 design requires solving nonlinear AC-PF

□ Limitation #2: Preparing training data for AC-OPF is 
time-consuming

□ Limitation #3: training complexity is high for large-scale 
AC-OPF problems

63



Unsupervised Learning for AC-OPF

□ Solving 10,000 AC-OPF instances on a 2742-bus 
system takes 3+ days [3]
– Workstation, dual Intel 2.10GHz CPUs and 128GB RAM

□ Approach: unsupervised training [1, 2]
– No training data ground truth (OPF solutions) needed
– Use the OPF objective and constraint violation to 

guide the DNN training
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[1] W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth", In 
Proceedings of the 38th International Conference on Machine Learning Workshop, virtual conference, Jul. 23, 2021.
[2] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", ICLR, 2021.
[3] S. Babaeinejadsarookolaee, et al., “The power grid library for benchmarking ac optimal power flow algorithms”, arXiv preprint 
arXiv:1908.02788, 2019.



DeepOPF-NGT: DeepOPF-V with No Ground 
Truth

□ Use objective and constraints violation to guide DNN training

65
[1] W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth", In 
Proceedings of the 38th International Conference on Machine Learning Workshop, virtual conference, Jul. 23, 2021.

OPF objective constraint
violation

load
mismatch



Adaptive Learning Rate Adjustment

□ We use the following adaptive learning rate in DeepOPF-NGT
– At iteration 𝑡𝑡 of the training, coefficient 𝑘𝑘𝑑𝑑𝑡𝑡 and 𝑘𝑘𝑐𝑐𝑡𝑡 are updated as 

𝑘𝑘𝑑𝑑𝑡𝑡 = min{
𝑘𝑘𝑜𝑜ℒ𝑜𝑜(𝑥𝑥, φ)
ℒ𝑑𝑑(𝑥𝑥,φ)

, 𝑘𝑘𝑑𝑑}

𝑘𝑘𝑐𝑐𝑡𝑡 = min{
𝑘𝑘𝑜𝑜ℒ𝑜𝑜(𝑥𝑥, φ)
ℒ𝑐𝑐(𝑥𝑥,φ)

, 𝑘𝑘𝑐𝑐}

𝑘𝑘𝑑𝑑 and  𝑘𝑘𝑐𝑐 : upper bounds for penalty coefficients 𝑘𝑘𝑑𝑑 and 𝑘𝑘𝑐𝑐.

□ Benefit: balance the impact of different terms in the loss 
functions to avoid one dominates the other two

□ Training time is roughly the same as supervised training
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[1] W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth", In 
Proceedings of the 38th International Conference on Machine Learning Workshop, virtual conference, Jul. 23, 2021.



Unsupervised Learning Works

□ IEEE Case118 test case; training/testing samples: 600/40,000
□ Training time: 3 hrs for DeepOPF-V, 1 hr for DeepOPF-NGT, 10 min for EACOPF

67

Metric DeepOPF-NGT DeepOPF-V DeepOPF-AC EACOPF

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜(%) <0.1 <0.4 <0.3 <6.0

𝜂𝜂𝑉𝑉(%) - - 99.81 96.57

𝜂𝜂𝑃𝑃𝑔𝑔(%) 100.00 100.00 100.00 99.20

𝜂𝜂𝑄𝑄𝑔𝑔(%) 100.00 99.98 100.00 100.00

𝜂𝜂𝑆𝑆𝑙𝑙(%) 99.28 100.00 100.00 99.46

𝜂𝜂𝜃𝜃𝑙𝑙(%) 100.00 100.00 100.00 100.00

𝜂𝜂𝑃𝑃𝑑𝑑(%) 99.93 99.91 - -

𝜂𝜂𝑄𝑄𝑑𝑑(%) 99.80 99.70 - -

𝜂𝜂𝑆𝑆𝑝𝑝 x1e3 x1e3 x1e2 x1e2

[1] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A feasibility-optimized Deep Neural Network Approach for AC Optimal Power Flow 
Problems,” arXiv preprint arXiv:2007.01002, 2020. 
[2] A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow, IEEE SmartGridComm, 2020.



Ground Truth Data Help

□ A small amount of ground truth data can be exploited in 
training to further improve the performance 
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Metric DeepOPF-NGT DeepOPF-SSL

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 50 100 150 200 250

Epoch 10000 3000 3000

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜(%) 0.33 -0.65 -1.69 -0.44 -0.37 -0.33 -0.02

𝜂𝜂𝑃𝑃𝑔𝑔(%) 99.75 99.39 98.03 99.49 96.37 99.22 99.99

𝜂𝜂𝑄𝑄𝑔𝑔(%) 99.90 99.96 99.25 99.78 99.12 99.99 99.96

𝜂𝜂𝑆𝑆𝑙𝑙(%) 99.92 99.76 99.89 99.97 99.80 100.00 100.00

𝜂𝜂𝜃𝜃𝑙𝑙(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

𝜂𝜂𝑃𝑃𝑑𝑑(%) 99.79 98.73 97.61 99.10 98.58 99.24 99.51

𝜂𝜂𝑄𝑄𝑑𝑑(%) 99.44 99.99 97.17 98.13 98.01 99.06 99.38

𝜂𝜂𝑆𝑆𝑝𝑝 1048 1042 934 947 977 1047 1058



Observation

□ DeepOPF can speedup AC-OPF solving time by two 
orders of magnitudes with <0.2% optimality loss
– PR2 with a penalty approach can guarantee equality 

constraints and promote inequality constraint feasibility

□ Limitation #1: The speedup is lower than DC-OPF
– The PR2 design requires solving nonlinear AC-PF

□ Limitation #2: Preparing training data for AC-OPF is 
time-consuming

□ Limitation #3: training complexity is high for large-scale 
AC-OPF problems
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High Training Complexity for Large AC-OPF

□ Training DNN to solve large-scale AC-OPF 
problems incurs high complexity [1]
– Large DNN output dimension: 28,180 for a 9241-bus 

system
– Long training time: 7 hours for AC-OPF problems over a 

3500-bus system

□ Complexity may increase exponentially in the grid 
size

70
[1] M. Chatzos, T. W. K. Mak and P. Vanhentenryck, "Spatial Network Decomposition for Fast and Scalable AC-OPF Learning," in IEEE Trans. on 
Power Systems, 2022,



Grid Decomposition

□ Decompose a power grid into disjoint regions [1]
– Regions are connected via coupling branches
– The coupling branch flows are sufficient statistics to 

separate regions
□ Keep the training complexity linear in the grid size
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[1] M. Chatzos, T. W. K. Mak and P. Vanhentenryck, "Spatial Network Decomposition for Fast and Scalable AC-OPF Learning," in IEEE Trans. on 
Power Systems, 2022



Two-stage Learning for AC-OPF

□ Use a two-stage approach to solve large-scale AC-OPF problems
– Stage 1: predict load to coupled voltage and angle
– Stage 2: predict (load, coupled flow) to OPF solutions in each region
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Stage 2: (load, region coupled flow)-OPF solution

…𝑷𝑷𝒅𝒅
𝑸𝑸𝒅𝒅

∆𝜽𝜽𝟏𝟏
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∆𝜽𝜽𝒏𝒏
𝒗𝒗𝒏𝒏
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𝒑𝒑𝒇𝒇𝟏𝟏
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𝒒𝒒𝒅𝒅𝟏𝟏

𝒑𝒑𝒇𝒇𝒏𝒏
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𝒑𝒑𝒅𝒅𝒏𝒏

𝒒𝒒𝒅𝒅𝒏𝒏
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𝒑𝒑𝒈𝒈𝟏𝟏

𝒒𝒒𝒈𝒈𝟏𝟏

𝒗𝒗𝟏𝟏
𝜽𝜽𝟏𝟏

𝒑𝒑𝒈𝒈𝒏𝒏

𝒒𝒒𝒈𝒈𝒏𝒏

𝒗𝒗𝒏𝒏
𝜽𝜽𝒏𝒏Stage 1: load-region coupled voltage 

and angle difference



Evaluation over an RTE 9241-bus Network

□ 9,241 buses, 16,049 branches, 4,895 load and 1,445 
generator buses

□ Load profile: ±7.75% variation
□ Training/test dataset: 8K/2K samples
□ Training time: 30/60 minutes for 1st/2nd stage
□ Baseline: IPOPT solver
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Speedup Optimality gap Feasibility rate
x10 0.03% > 98.5%

[1] C.Josz, S. Fliscounakis, J. Maeght, P. Panciatici, “AC power flow data in MATPOWER and QCQP format: iTesla, RTE snapshots, and 
PEGASE”, arXiv preprint arXiv:1603.01533.



Summary of Using NN for AC-OPF

□ Predict-and-reconstruct (PR2) works for AC-OPF [1, 3-5]
– 15,000x over a 2000-bus network [5]

□ May also predict AC-OPF solutions directly [2]

□ Unsupervised learning to solve AC-OPF problems without 
the need of preparing AC-OPF solutions for training [4, 6]

□ Grid decomposition to speedup DNN training for large 
problems [7]
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[1] X. Pan, M. Chen, T. Zhao and S. H. Low, "DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow 
Problems", arXiv preprint arXiv:2007.01002, 2020.
[2] F. Fioretto, T. Mak and P. V. Hentenryck, "Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods", AAAI, 
2020.
[3] A. Zamzam and K. Baker, "Learning Optimal Solutions for Extremely Fast AC Optimal Power Flow", SmartGridComm, 2020.
[4] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", ICLR, 2021.
[5] W. Huang, X. Pan, M. Chen and S. H. Low, "DeepOPF-V: Solving AC-OPF Problems Efficiently", IEEE Transactions on Power Systems, vol. 37, no. 
1, pp. 800 - 803, Jan. 2022. 
[6] W. Huang and M. Chen, "DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth", In 
Proceedings of the 38th International Conference on Machine Learning Workshop, virtual conference, Jul. 23, 2021.
[7] M. Chatzos, T. W. K. Mak and P. Vanhentenryck, "Spatial Network Decomposition for Fast and Scalable AC-OPF Learning," in IEEE Trans. on 
Power Systems, 2022



Outline
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□ Optimal power flow (OPF) problems
□ Example applications
□ Recent advances and future challenges

□ Machine learning for constrained optimization 
□ Machine learning for solving OPF problems: overview
□ Machine learning for DC-OPF and SC-DCOPF 

problems
□ Machine learning for standard AC-OPF problems 

□ Ensuring DNN feasibility for constrained optimization 
□ Graph neural network approach
□ Solving AC-OPF with multiple load-solution mappings
□ Concluding Remarks



NN solution feasibility

min ( )

s.t. ( , , ) 0
( , , ) 0

u
f u

g x y u
h x y u

=
≥

Equality constraints

Inequality constraints



Problem, Landscape, Contributions
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: Ground-truth
: Prediction error

□ Our homeomorphic projection [1] recovers solution feasibility with 
– Feasibility guarantee
– Bounded optimality loss
– Low run-time complexity

for optimization over ball-homeomorphic set (covering all compact 
convex sets and any non-convex sets satisfying certain conditions)

[1] E. Liang, M. Chen, and S. H. Low, “Low Complexity Homeomorphic Projection to Ensure Neural-Network Solution Feasibility for Optimization 
over (Non-)Convex Set”, ICML, 2023.



Motivation and Homeomorphism

□ Projection for feasibility
– Over a general set: hard
– Over a ball: easy

□ Projection over sets “topologically equivalent” to 
a ball should be easy too.

□ Homeomorphic mapping: one-to-one 
mapping between two sets 
that is continuous

•
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𝑧𝑧 = 𝜓𝜓𝜃𝜃−1(𝑥𝑥)

𝑥𝑥 = 𝜓𝜓𝜃𝜃(𝑧𝑧)

[1] Geschke, S. (2012). Convex open subsets of Rn are homeomorphic to n-dimensional open balls. Hausdorff Center for Mathematics, 
Endenicher Allee, 62, 53115.



Ball-Homeomorphism Sets

□ All compact convex sets [1] 

□ All compact and differentiable 
(6 or higher)-dimension 
manifolds with simply-connected surface [2]

□ All compact differentiable 5-dimension manifolds 
with boundary diffeomorphic to a 4-dimension 
sphere [2]

□ All simply-connected sets in 𝑅𝑅2
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[1] Geschke, S. (2012). Convex open subsets of Rn are homeomorphic to n-dimensional open balls. Hausdorff Center for Mathematics, 
Endenicher Allee, 62, 53115.
[2] Smale, S. (1962). On the structure of manifolds. American Journal of Mathematics, 84(3), 387-399



Our Homeomorphic Projection Framework

Setting: recover feasibility w.r.t. a ball-homeomorphic set
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Our Homeomorphic Projection Framework

Setting: recover feasibility w.r.t. a ball-homeomorphic set

1. Learn a minimum distortion homeomorphic (MDH) 
mapping between the constraint set and a unit ball

2. Perform bisection over the ball so the mapped solution is 
feasible respect to the ball-homeomorphic constraint set
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MDH Mapping

□ Multiple homeomorphic mappings 
between two sets

□ We prefer the one with minimum 
distortion D 𝜓𝜓 = 𝑘𝑘2/𝑘𝑘1 ≥ 1

– 𝑘𝑘2 = sup
𝑧𝑧1,𝑧𝑧2

{| 𝜓𝜓 𝑧𝑧1 − 𝜓𝜓 𝑧𝑧2 |/||𝑧𝑧1 − 𝑧𝑧2||}

– 𝑘𝑘1 = inf
𝑧𝑧1,𝑧𝑧2

{| 𝜓𝜓 𝑧𝑧1 − 𝜓𝜓 𝑧𝑧2 |/||𝑧𝑧1 − 𝑧𝑧2||}

□ Different set-pairs have different 
minimum distortions

□ Small distortion leads to minor 
projection-induced optimality loss
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𝜓𝜓𝜃𝜃

Small-distortion HM D 𝜓𝜓𝜃𝜃1 = 1
– 𝜓𝜓𝜃𝜃1 : 𝑥𝑥 = 𝜃𝜃𝜃𝜃

Large-distortion HM D 𝜓𝜓𝜃𝜃2 ≈ 2.5
– 𝜓𝜓𝜃𝜃2: 𝑥𝑥 = 𝜃𝜃R(||𝑧𝑧||)𝑧𝑧

Small distortion

Large distortion



INN Can Approximate MDH Mapping

□ Finding MDH mapping is hard
– Infinite dimensional optimization
– No closed-form in general

□ INN: invertible NN for learning 
one-to-one mapping
– Example: multiple coupling layers 

[13], each is an affine mapping

□ INN is a universal approximator
for differentiable homeo-
morphic mapping [13-15]
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[1] Lyu, J., Chen, Z., Feng, C., Cun, W., Zhu, S., Geng, Y., ... & Chen, Y. (2022). Universality of parametric Coupling Flows over parametric 
diffeomorphisms. arXiv preprint arXiv:2202.02906.
[2] Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M., & Sugiyama, M. (2020). Coupling-based invertible neural networks are universal 
diffeomorphism approximators. Advances in Neural Information Processing Systems, 33, 3362-3373.
[3] Ishikawa, I., Teshima, T., Tojo, K., Oono, K., Ikeda, M., & Sugiyama, M. (2022). Universal approximation property of invertible neural 
networks. arXiv preprint arXiv:2204.07415.



□ Finding MDH mapping:

□ INN loss function 
based on
equivalent formulation
and approximation

□ Training illustration

□ Training requirement: the trained INN must be valid, i.e., mapping 
the ball center to a feasible point, i.e., Φ𝜃𝜃 (0) ∈ 𝐾𝐾𝜃𝜃

Unsupervised INN Training
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Volume 
maximization

Distortion
minimization

Penalty for



2. Bisection with Valid INN
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□ Given a valid INN and an infeasible solution

– Step 1:  map it to H-space

– Step 2:  bisection for 𝛼𝛼

– Step 3:  map it back

𝑧̃𝑧𝜃𝜃

𝑧̂𝑧1

�𝑥𝑥𝜃𝜃
�𝑥𝑥𝜃𝜃

�𝑥𝑥𝜃𝜃𝑧̃𝑧𝜃𝜃

𝑧̂𝑧𝜃𝜃 �𝑥𝑥𝜃𝜃

𝑧̂𝑧𝜃𝜃

0

�𝑥𝑥1



Feasibility, Optimality, & Run-Time Complexity

86

□ Theorem 1: Given a valid 𝑚𝑚-layer INN and an 
infeasible 𝑛𝑛-dim solution, the 𝑘𝑘-step bisection will 
return a solution with:
– Feasibility guarantee
– An optimality loss bounded by 𝜖𝜖pre + 𝜖𝜖bis + 𝜖𝜖hom
– A run-time complexity of 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘2)

□ 𝜖𝜖pre: NN Prediction error
□ 𝜖𝜖bis = 𝑂𝑂(2−𝑘𝑘) : bisection-induced optimal loss
□ 𝜖𝜖hom ≤ D(Φθ)(2𝜖𝜖inn + 𝜖𝜖pre): homeomorphism-induced 

optimality loss

□ Trading run-time complexity with optimality by tuning 𝑚𝑚



Suff. Condition for Universally Valid INN

□ Theorem 2: Consider the 𝑟𝑟𝑐𝑐-covering dataset 𝐷𝐷 = {
}

𝜃𝜃𝑖𝑖 , 𝑖𝑖 =
1, … ,𝑀𝑀 ⊆ Θ = 0,1 𝑑𝑑, suppose the trained INN is valid over 
this training set. If (𝐶𝐶0 + 𝐶𝐶1)𝑟𝑟𝑐𝑐 ≤ 𝐶𝐶2, then the INN will be 
valid for any input parameter,  i.e., ∀𝜃𝜃 ∈ Θ,Φ𝜃𝜃 0 ∈ 𝐾𝐾𝜃𝜃. 

□ A trained INN is universally-
valid over the entire input region if
– It is valid over the “dense” training set
– The worst-case relative center-to-

boundary movement is less than the 
conservative center-to-boundary distance

□ Tune 𝑟𝑟𝑐𝑐 to satisfy the condition (may need more samples)
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Numerical Experiments

□ Train an MDH mapping in a 2-dim toy example
– Evaluate the unsupervised training approach
– Visualize the approximated constraint sets

□ Recover feasibility for convex and non-convex 
optimization problems
– Evaluate the feasibility, optimality, and run-time 

complexity of homeomorphic projection

88



INN Indeed Learns MDH Mappings

89

□ Learning the MDH mapping between a unit ball and a quadratic 
constraint set (with different parameter 𝜃𝜃)



Recovering Feasibility for QCQP, SDP, & AC-OPF

90

□ 100% feasibility, minor optimality loss, substantial speedup 



Summary

□ Homeomorphic projection recovers solution feasibility with 
– Feasibility guarantee
– Bounded optimality loss
– Low run-time complexity

for optimization over ball-homeomorphic set (covering all 
compact convex sets and any non-convex sets satisfying certain 
conditions)

□ Message: ball-homeomorphism suggests a line between “easy” 
and “hard” projections

□ Open questions
– How to characterize INN’s universal approximation capability
– Achieving better/difference performance on optimality and complexity?
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One DNN for Multiple AC-OPF 
Problems with Flexible Topology

- M. Zhou, M. Chen, and S. H. Low, “DeepOPF-FT: One Deep Neural Network for 
Multiple AC-OPF Problems with Flexible Topology”, IEEE Transactions on Power 
Systems, vol. 38, issue 1, pp. 964 - 967, January 2023.
- Chen Y, Lakshminarayana S, Maple C, et al. “A meta-learning approach to the optimal 
power flow problem under topology reconfigurations”. IEEE Open Access Journal of 
Power and Energy, 2022, 9: 109-120.
- M Gao, J Yu, Z Yang, J Zhao, “A Physics-Guided Graph Convolution Neural Network for 
Optimal Power Flow”, IEEE Transactions on Power Systems, 2023.
- S. Liu, C. Wu, and H. Zhu, “Topology-Aware Graph Neural Networks for Learning 
Feasible and Adaptive AC-OPF Solutions”, IEEE Transactions on Power Systems, 2023.



Motivation
□ Stand-alone methods

– Key idea: learning a mapping from load to AC-OPF optimal solutions [1] –[5]
– Limitation:  Hard to generalize to power systems with flexible network 

topology or line admittance
□ Flexible topology and admittance in power systems

– N-k contingency
– Topology reconfiguration
– Line admittance variation with temperature

□ A learning-based AC-OPF solver for power systems with flexible topology and 
admittance is needed.
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[1] X. Pan, T. Zhao, and M. Chen, “DeepOPF: Deep Neural Network for DC Optimal Power Flow”, in Proceedings of the 
10th IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (IEEE 
SmartGridComm 2019), Beijing, China, October 21 - 24, 2019. 
[2] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A Deep Neural Network Approach for Security-Constrained DC 
Optimal Power Flow”, IEEE Transactions on Power Systems, vol. 36, issue 3, pp. 1725 - 1735, May 2021. 
[3] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC 
Optimal Power Flow Problems”, arXiv preprint arXiv:2007.01002, 2020. 
[4] A. S. Zamzam and K. Baker, “Learning optimal solutions for extremely fast ac optimal power flow,” in Proc. IEEE 
SmartGridComm, 2020.
[5] Fioretto F, Mak T W K, Van Hentenryck P. Predicting ac optimal power flows: Combining deep learning and lagrangian
dual methods[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(01): 630-637.



Training one DNN per power network
□ One alternative approach for solving AC-OPF problems with 

flexible topology is training one DNN per power network
– Limitation: the computation burden is extremely high

94Figure 1: Schematic of  training one DNN per power network



DNN re-training
□ Another alternative approach for solving AC-OPF 

problems with flexible topology is re-training the DNN 
when encountering a new topology
– Limitation: high computation burden and operation delay
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Figure 2: Schematic of  DNN re-training [1]
[1] Chen Y, Lakshminarayana S, Maple C, et al. A meta-learning approach to the optimal power flow problem 
under topology reconfigurations[J]. IEEE Open Access Journal of Power and Energy, 2022, 9: 109-120.



GNN Approach

□ Basic idea: 
– Each node on the NN captures a set of features of the corresponding node on 

the grid
– Each iteration passes messages according to the actual connectivity 
– After K iterations output the OPF solutions

□ Pros: explore the topology structure; can be robust to topology change
□ Cons: no strong performance guarantee (yet)
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This slide is adapted from those by M Gao, J Yu, Z Yang, J Zhao, “A Physics-Guided Graph Convolution Neural Network for Optimal Power Flow”, 
IEEE Transactions on Power Systems, 2023.



Embedding Training Design

□ Main idea of embedded training
– Embed the discrete network representation into the 

continuous admittance space
– Use DNN to learn the mapping from (load, admittance) to 

bus voltages of an AC-OPF solution. 
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Simulation result: N-k contingency
□ We test DeepOPF-FT and discrete training over the IEEE 

57-bus test system in the N-4/5/6 contingency (each 
accounts for 1/3 of the data) with flexible topology.
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Metric DeepOPF-FT DIS-V1
(50,000)

DIS-V2
(50,000)

DIS-V1
(150,000)

DIS-V2
(150,000)

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 (%) 0.14 -4.29 -1.31 -4.79 1.07
𝜂𝜂𝑉𝑉/ 𝜂𝜂𝜃𝜃 (%) - - - - -
𝜂𝜂𝑃𝑃𝑃𝑃 (%) 95.0 94.3 93.3 97.0 96.1
𝜂𝜂𝑄𝑄𝑄𝑄 (%) 96.0 92.4 95.6 96.3 94.0
𝜂𝜂𝑆𝑆𝑆𝑆 (%) >99.9 >99.9 >99.9 >99.9 >99.9
𝜂𝜂𝑃𝑃𝑃𝑃 (%) 97.2 92.7 95.2 95.8 95.8
𝜂𝜂𝑄𝑄𝑄𝑄 (%) 94.3 87.5 91.2 93.0 91.6
𝜂𝜂𝑠𝑠𝑠𝑠 x129 x130 x132 x130 x130



Simulation result: arbitrary topology
□ We test DeepOPF-FT and DeepOPF-V for single topology 

over the IEEE 9-bus test system over arbitrary topology.
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Metric DeepOPF-FT DeepOPF-V for single topology

(FT, -) (FT, FA) (FT, -) (FT, FA) (-, -)

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 (%) 0.84 0.92 94.60 95.23 -0.95
𝜂𝜂𝑉𝑉/ 𝜂𝜂𝜃𝜃 (%) - - - - -
𝜂𝜂𝑃𝑃𝑃𝑃 (%) >99.9 >99.9 53.6 53.6 100
𝜂𝜂𝑄𝑄𝑄𝑄 (%) >99.9 100 97.8 97.8 >99.9
𝜂𝜂𝑆𝑆𝑆𝑆 (%) >99.9 >99.9 96.6 96.3 100
𝜂𝜂𝑃𝑃𝑃𝑃 (%) 97.4 97.3 74.8 74.6 97.0
𝜂𝜂𝑄𝑄𝑄𝑄 (%) 95.3 95.0 57.0 56.8 91.8
𝜂𝜂𝑠𝑠𝑠𝑠 x124 x122 x88 x86 x133



Generalization

□ The idea of DeepOPF-FT can be generalized to more 
flexible optimal power flow settings by including the 
corresponding parameters as DNN inputs:

– Flexible line capacity

– Flexible generation coefficients

– Flexible generator capacity
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Machine Learning for AC-OPF 
Problems with Multiple Solutions

- X. Pan, W. Huang, M. Chen and S. H. Low, "DeepOPF-AL: Augmented Learning for Solving AC-OPF 
Problems with Multiple Load-Solution Mappings", arXiv preprint arXiv:2206.03365, 2022. 
- J. Kotary, F. Fioretto, and P. Van Hentenryck, “Learning hard optimization problems: A data 
generation perspective,” NeurIPS 2021.



Issue of Learning Multi-Valued Mapping

□ AC-OPF problems may admit a 
multi-valued load-solution 
mapping [1]

□ A well-trained DNN with 
(standard) supervised learning 
fails to learn a target mapping

□ Data-generation or unsupervised 
learning approaches [2,3] has no 
guarantee of learning one 
mapping correctly
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[1] W. A. Bukhsh, A. Grothey, K. I. McKinnon, and P. A. Trodden, “Local solutions of the optimal power flow problem,” IEEE Trans. Power Syst., vol. 28, no. 4, 2013.
[2] J. Kotary, F. Fioretto, and P. Van Hentenryck, “Learning hard optimization problems: A data generation perspective,” NeurIPS 2021.
[3] W. Huang and M. Chen, “DeepOPF-NGT: A Fast Unsupervised Learning Approach for Solving AC-OPF Problems without Ground Truth,” ICML Workshop, 2021.

A toy 2-bus example.

DNN’s mapping vs. target mapping.



Our Approach: Augmented Learning

□ Augment the load with the 
initial point in training data 
generation

□ The augmented mapping is 
unique and can be learned 
by DNN
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Embedding



DeepOPF-AL: A Simple Design
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□ Follow prediction-and-reconstruction in DeepOPF-V [1]
– Learn the unique augmented mapping from (load, initial 

point) to optimal solution

[1]  W. Huang, X. Pan, M. Chen, and S. H. Low, “Deepopf-V: Solving AC-OPF problems efficiently,” IEEE Trans. Power Syst., 2021

Prediction by
DNN

Load

Initial Points

Voltages 
on Buses

Scalar 
Addition & 

Multiplication

Buses 
Injections



Simulation for Learning 2-valued Mapping

□ Compare DeepOPF-AL with DeepOPF-V over IEEE 
Case39 with realistic load profile (40% variation)
– Each load corresponds to two solutions
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Summary

□ Standard supervised learning fails to solve AC-OPF with 
multi-valued load-solution mapping

□ DeepOPF-AL generates quality solutions by learning a 
unique augmented mapping for AC-OPF with multi-
valued mapping

□ Augmented learning applicable to general constrained 
problems with multi-valued mapping

□ Future work: Reduce complexity for augmented learning
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Hybrid and Other Approaches



Predicting Active Constraints for 
Solving OPF Problems

- Y. Ng, S. Misra, L. A. Roald, and S. Backhaus, “Statistical learning for DC optimal power flow”, in PSCC. 
Dublin, Ireland, 2018 
- D. Deka and S. Misra, “Learning for DC-OPF: Classifying active sets using neural nets”, in Proc. IEEE Milan 
PowerTech. 2019
- A. Robson, M. Jamei, C. Ududec, and L. Mones, “Learning an optimally reduced formulation of OPF 
through meta-optimization,” arXiv:1911.06784, 2019.
- S. Misra, L. Roald and Y. Ng, ”Learning for constrained optimization: Identifying optimal active constraint 
sets”, INFORMS Journal on Computing, 34(1), 463-480, 2022.
- Y. Chen and B. Zhang, “Learning to solve network flow problems via neural decoding,” arXiv:2002.04091, 
2020.
- L. Zhang, Y. Chen, and B. Zhang, “A convex neural network solver for DCOPF with generalization 
guarantees,” IEEE TCNS, 2021.



Idea and Existing Works

□ Idea: Predict active constraints upon the given load
– Reduce problem size
– May directly solve (active-constrained) equations for solutions

□ Existing works: 
– Classify active/inactive constraints by learning techniques [1-4]
– Predict dual variables and then derive the active constraints[5-6]
– Pros: optimal and feasible solutions if all active constraints found
– Cons: no guarantee; limited speedup; do not work well for AC-OPF
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[1] Y. Ng, S. Misra, L. A. Roald, and S. Backhaus, “Statistical learning for DC optimal power flow”, in PSCC. Dublin, Ireland, 2018.
[2] D. Deka and S. Misra, “Learning for DC-OPF: Classifying active sets using neural nets”, in Proc. IEEE Milan PowerTech, 2019.
[3] A. Robson, M. Jamei, C. Ududec, and L. Mones, “Learning an optimally reduced formulation of OPF through meta-optimization,” 
arXiv:1911.06784, 2019.
[4] S. Misra, L. Roald and Y. Ng, ”Learning for constrained optimization: Identifying optimal active constraint sets”, INFORMS Journal on
Computing, 34(1), 463-480, 2022.
[5] Y. Chen and B. Zhang, “Learning to solve network flow problems via neural decoding,” arXiv:2002.04091, 2020.
[6] L. Zhang, Y. Chen, and B. Zhang, “A convex neural network solver for DCOPF with generalization guarantees,” IEEE TCNS, 2021.



Performance on IEEE 14-/39-bus Networks

□ Load profile and training/test dataset : 
– IEEE 14-bus case: ±30/50% variation, 40K/10K samples for training/test
– IEEE 118-bus case: ±9% variation, 48K/12K samples for training/test

□ Baseline: CVXOPT solver
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Cases Speedup Optimality Gap 
(%)

Feasibility Rate
(%)

IEEE 14-bus x10 0 93.1
IEEE 118-bus x10 0 89.0

[1] Y. Chen and B. Zhang, “Learning to solve network flow problems via neural decoding,” arXiv preprint arXiv:2002.04091, 2020.
[2] L. Zhang, Y. Chen, and B. Zhang, “A convex neural network solver for dcopf with generalization guarantees,” IEEE TCNS, 2021.



Learning-Boosted Iterative Schemes 
for OPF Problems

(along the line of learn-to-optimize)

- Baker K. A learning-boosted quasi-newton method for ac optimal power flow. arXiv preprint 
arXiv:2007.06074, 2020.
- D. Biagioni, P. Graf, X. Zhang, A. Zamzam, K. Baker, and J. King. Learning-accelerated ADMM for distributed 
DC optimal power flow. IEEE Control Systems Letters, 2020



Learning-Boosted Quasi-Newton
□ Newton’s method: update 𝑥𝑥 according to KKT vector 𝑑𝑑() and the 

Jacobian matrix of the KKT conditions 𝐽𝐽():

□ Quasi-Newton method: approximate the Jacobian matrix or its inverse 
for low complexity

□ Learning-boosted method:
– Key idea: replace Newton’s update step with DNN [1], for AC-OPF

112[1] Baker K. A learning-boosted quasi-newton method for ac optimal power flow. arXiv preprint arXiv:2007.06074, 2020.

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘 𝐽𝐽−1 𝑥𝑥𝑘𝑘 𝑑𝑑(𝑥𝑥𝑘𝑘)

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘 𝐻𝐻−1 𝑥𝑥𝑘𝑘 𝑑𝑑(𝑥𝑥𝑘𝑘)



Performance of Learning-Boosted Scheme

□ Compare against the MATPower solver, over IEEE 30-/300-
bus, PG-lib 500-bus, and 1,354-bus system
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Metric 30-bus 300-bus 500-bus 1354-bus

𝑀𝑀𝑀𝑀𝐸𝐸𝑣𝑣𝑣𝑣 (p.u.) 0.004 0.009 0.099 0.019

𝑀𝑀𝑀𝑀𝐸𝐸𝑝𝑝𝑝𝑝 (MW) 0.64 1.47 0.62 7.55

𝑀𝑀𝑀𝑀𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (%) 0.29 0.65 0.66 1.16

Speed up -x0.66 x36.6 x18.3 x22.5

Mean 
constraint 

violation (p.u.)
0.05 0.43 0.32 9.95

[1] Baker K. A learning-boosted quasi-newton method for ac optimal power flow. arXiv preprint arXiv:2007.06074, 2020.



Learning-Accelerated ADMM for 
Distributed DC-OPF

□ Partition the OPF problem into subproblems with shared 
boundary variables and apply consensus ADMM
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Partition 1 Partition 2

𝜃𝜃𝑠𝑠𝑠𝑠
2,1 𝜃𝜃𝑠𝑠𝑠𝑠

4,1

Shared 
variables

[1] D. Biagioni, P. Graf, X. Zhang, A. Zamzam, K. Baker, and J. King. Learning-accelerated ADMM for distributed DC optimal power flow. IEEE 
Control Systems Letters, 2020



Learning-Accelerated ADMM

□ Recurrent neural networks (RNN)-based ADMM [1]
– Inputs: shared variable 𝜃𝜃𝑠𝑠𝑠𝑠𝑘𝑘 and dual variables 𝜆𝜆𝑘𝑘 of 

previous 𝐾𝐾 steps (sequentially)
– Outputs: the optimal (𝜃𝜃𝑠𝑠𝑠𝑠∗ , 𝜆𝜆∗) 
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Figure: Schematic learning-accelerated ADMM method [1]

𝜆𝜆1, 𝜃𝜃𝑠𝑠𝑠𝑠1 𝜆𝜆2, 𝜃𝜃𝑠𝑠𝑠𝑠2 𝜆𝜆3, 𝜃𝜃𝑠𝑠𝑠𝑠3

…

… 𝜆𝜆𝐾𝐾, 𝜃𝜃𝑠𝑠𝑠𝑠𝐾𝐾

FCNN

𝜃𝜃𝑠𝑠𝑠𝑠∗ , 𝜆𝜆∗

RNN RNN RNN RNN

[1] D. Biagioni, P. Graf, X. Zhang, A. Zamzam, K. Baker, and J. King. Learning-accelerated ADMM for distributed DC optimal power flow. IEEE 
Control Systems Letters, 2020



Learning-Accelerated ADMM

□ The performance of LA-ADMM is tested on the IEEE 14-/118- bus 
and RTE 2848-bus system
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Figure: Histograms of log10 relative error in the objective cost of 
standard ADMM and LA-ADMM after 4 iterations.

Figure: Residual error as function of ADMM iteration 
averaged over all test cases.

[1] D. Biagioni, P. Graf, X. Zhang, A. Zamzam, K. Baker, and J. King. Learning-accelerated ADMM for distributed DC optimal power flow. IEEE 
Control Systems Letters, 2020



A Physics-Guided Graph Convolution 
Neural Network for Optimal Power 

Flow

Slides based on those provided by Maosheng Gao, Juan Yu, 
Zhifang Yang, and Junbo Zhao



… Requires Solving OPF Frequently

□ The uncertainty of renewable energy forces solving OPF frequently

□ Data-driven methods using neural networks can yield 20-100 times 
faster than conventional optimization-based methods

118
[1] X. Pan, T. Zhao and M. Chen, "DeepOPF: Deep Neural Network for DC Optimal Power Flow", SmartGridComm, 2019. (arXiv:1905.04479, May 11th, 2019) 
The Journal version for SC-DCOPF appears in IEEE Transactions on Power Systems in 2021.

Total generation cost

Non-convex power balance constraints 

Non-convex Physical and operational 
constraints (e.g., branch limits)



Varying Operating Conditions of AC-OPF

□ Contingencies of generator, transformer, etc.

□ Topology feature is complex

□ All operation conditions satisfy the identical physical 
model
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Nonlinearity

Discreteness

Contingency 



Our Approach: Physics-Guided Graph 
Convolution Neural Networks 

□ Physics-embedded graph 
convolution is derived by 
decomposing the AC 
power flow equations 
based on Gaussian-Seidel 
iteration 

□ Model-informed feature 
construction is proposed 
by aggregating neighbor 
node features 

□ A new constrained loss 
function is proposed to 
consider the physical 
correlations among the 
outputs
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Physics-embedded Graph Convolution 
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Model-informed Feature Construction 
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特征构建流程图

□ Iterative aggregating of the node feature based on physics-
embedded convolution and feature constraints 



Physics-Guided Graph Convolution Neural 
Networks for OPF
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□ The complete architecture of 
physics-guided GCNN for the OPF 
problem combining the feature 
extraction block with several 
graph convolution layers and 
prediction block with several fully 
connected layers

□ It could be the basic structure of 
neural networks for other 
applications, such as the real-time 
OPF calculation using reinforcement 
learning techniques



Simulation under Fixed Topology
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[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017, pp. 1–14.
[2] D. Owerko, F. Gama and A. Ribeiro, “Optimal power flow using graph neural networks,” ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 5930-5934.

Fig. 2. The mean absolute error of testing samples.Fig. 1. The loss curve of the four neural networks.

□ Compare different GCNNs over IEEE Case57 with 10% load variation
– Physics-embedded GCNN has better convergence in training and lower mean 

absolute error in testing



Simulation under Varying Topologies
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[1] Y. Du, F. Li, J. Li, and T. Zheng, “Achieving
100x acceleration for n-1 contingency screening
with uncertain scenarios using deep convolutional
neural network,” IEEE Trans. Power Syst., vol. 34,
no. 4, pp. 3303–3305, 2019.
[2] Y. Zhou, W. -J. Lee, R. Diao and D. Shi, “Deep
reinforcement learning based real-time AC optimal
power flow considering uncertainties,” J. Mod.
Power Syst. Clean Energy, vol. 10, no. 5, pp. 1098-
1109, Sep. 2022.
[3] F. Hasan, A. Kargarian and J. Mohammadi,
“Hybrid learning aided inactive constraints filtering
algorithm to enhance ac OPF solution time,” IEEE
Trans. Ind. Appl., vol. 57, no. 2, pp. 1325-1334,
March-April 2021.

□ Compare different data-driven OPF methods over different IEEE systems 
with 10% load variation and five topologies
– Physics-embedded GCNN has enhanced topology feature extraction ability 

under varying topologies in power systems

Table Ⅰ. The testing accuracy of different methods under 
varying topologies 



Simulation for Potential Applications 
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Fig. 1. The reward curves of different neural
networks when training with the PPO RL algorithm.

Fig. 2. The reward curves of different neural
networks when considering the ramp rate.

□ Apply the physics-embedded GCNN in PPO reinforcement learning for 
real-time OPF problems with the constraint violation penalty as the 
reward function [1] 
– Physics-embedded GCNN has better convergence compared with CNN and 

DNN

[1] Y. Zhou, W. -J. Lee, R. Diao and D. Shi, “Deep reinforcement learning based real-time AC optimal power flow considering 
uncertainties,” J. Mod. Power Syst. Clean Energy, vol. 10, no. 5, pp. 1098-1109, September 2022. 



Summary

□ Physics-embedded design can enhance the topologies 
feature extraction ability of GCNN

□ The physics-embedded GCNN has potential 
application in other varying topologies problems in 
power systems

□ Future work: address complicated OPF problems, such 
as the multiple-period co-optimization
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Concluding Remarks



OPF is Critical for Power System Operation

□ OPF is to minimize the cost of serving load subject to 
physical and operational constraints
– KCL and KVL physical constraints
– Voltage, generation, and branch flow limits
– Other operational constraints 

□ OPF underpins various important power system 
applications
– Demand response
– Economic dispatch
– Unit commitment 
– Electricity market clearing
– Security and reliability assessment 
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Solving OPF Efficiently is Important

□ AC-OPF problem is non-convex and NP-hard, hard to solve 
in real-time
– Practical OPF can involve more than 1M variables

□ Penetration of renewable requires solving OPF frequently
– Early termination of algorithms gives suboptimal solution
– 5% saving amounts to 36 billion USD/year globally

□ General Newton-like iterative algorithms

□ Linearization to solve OPF approximately

□ Convexification to solve OPF optimality
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Slow

Inaccurate

Only applicable 
to special case



Directly Solving OPF by NN Works

□ <0.2% optimality loss in AC-OPF 
simulations over IEEE cases, real-
world topology, and loads
– With theoretical justification
– 15,000x speedup over a 2000-bus 

network

□ Generalizable approaches for ML 
solving constrained problems
– Predict-and-Reconstruct to ensure 

equality feasibility
– Preventive learning to ensure 

inequality constraints
– Augmented learning to learn a 

legitimate mapping (when multiple 
mappings exists)
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… , 𝑧𝑧2, 𝑧𝑧1 … , 𝑥𝑥2∗, 𝑥𝑥1∗

OPF
Solver… , 𝑧𝑧2, 𝑧𝑧1 … , 𝑥𝑥2∗, 𝑥𝑥1∗

load Solution



Open Issues

□ Tighter NN size bounds for learning multi-
dimension mapping

□ Ensuring NN solution feasibility for inequality 
constraints beyond ball-homeomorphism

□ Learning latent variables to reduce NN size and 
improve learning efficiency

□ Other OPF formulations: real-time OPF, stochastic 
OPF, security-constrained AC-OPF
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The Path Ahead is Still Unfolding
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Wiki and Overview Webpage

□ A wiki page hosted by ACM SIGEnergy
– https://energy.hosting.acm.org/wiki/index.php/ML_OPF_wiki

□ A wiki page hosted by Climate Change AI (on more general topics)
– https://wiki.climatechange.ai/wiki/Welcome_to_the_Climate_Change

_AI_Wiki

□ An overview webpage by Letif Mones
– https://invenia.github.io/blog/2021/10/11/opf-nn/

□ Dataset or data generators for training NN for OPF problems
– https://github.com/NREL/OPFLearn.jl
– https://github.com/invenia/OPFSampler.jl/
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