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Competitive Online Optimization with Multiple Inventories:
A Divide-and-Conquer Approach

QIULIN LIN, YANFANG MO, JUNYAN SU, and MINGHUA CHEN, City University of Hong

Kong, China

We study an online inventory trading problem where a user seeks to maximize the aggregate revenue of

trading multiple inventories over a time horizon. The trading constraints and concave revenue functions

are revealed sequentially in time, and the user needs to make irrevocable decisions. The problem has wide

applications in various engineering domains. Existing works employ the primal-dual framework to design

online algorithms with sub-optimal, albeit near-optimal, competitive ratios (CR). We exploit the problem

structure to develop a new divide-and-conquer approach to solve the online multi-inventory problem by

solving multiple calibrated single-inventory ones separately and combining their solutions. The approach

achieves the optimal CR of ln𝜃 + 1 if 𝑁 ≤ ln𝜃 + 1, where 𝑁 is the number of inventories and 𝜃 represents

the revenue function uncertainty; it attains a CR of 1/[1 − 𝑒−1/(ln𝜃+1) ] ∈ [ln𝜃 + 1, ln𝜃 + 2) otherwise. The
divide-and-conquer approach reveals novel structural insights for the problem, (partially) closes a gap in

existing studies, and generalizes to broader settings. For example, it gives an algorithm with a CR within

a constant factor to the lower bound for a generalized one-way trading problem with price elasticity with

no previous results. When developing the above results, we also extend a recent CR-Pursuit algorithmic

framework and introduce an online allocation problem with allowance augmentation, both of which can be of

independent interest.
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Design and analysis of algorithms; Online algorithms; Divide and conquer; • Applied computing →
Decision analysis.
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1 INTRODUCTION
Competitive online optimization is a fundamental tool for decision-making with uncertainty. We

have witnessed its wide applications spreading from EV charging [1–4], micro-grid operations [5, 6],

energy storage scheduling [7, 8] to data center provisioning [9, 10], network optimization [11,

12], and beyond. Theoretically, there are multiple paradigms of general interest in the online

optimization literature. Typical examples include the online covering and packing problem [13],

Corresponding author: Minghua Chen.

Authors’ address: Qiulin Lin, Qiulin.Lin@cityu.edu.hk; Yanfang Mo, Yanfang.Mo@cityu.edu.hk; Junyan Su, junyan.su@my.

cityu.edu.hk; Minghua Chen, Minghua.Chen@cityu.edu.hk, School of Data Science, City University of Hong Kong, Hong

Kong, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2022/6-ART36 $15.00

https://doi.org/10.1145/3530902

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 36. Publication date: June 2022.

https://doi.org/10.1145/3530902
https://doi.org/10.1145/3530902


36:2 Qiulin Lin, Yanfang Mo, Junyan Su, and Minghua Chen

online matching [14], online knapsack packing [15], one-way trading problem [16], and online

optimization with switching cost [17, 18].

Among these applications and paradigms, we focus on optimizing the trading or allocation of

limited resources, like inventories, cryptocurrency, budgets, or electric power, across a multi-round

decision period with dynamic per-round revenues and allocation conditions. For example, in an

online advertisement display platform (e.g., Google search), the operator allocates display slots

to multiple advertisers (cf. inventories) with contracts on the maximum number (cf. capacity) of
impressions [19]. At each round, the real-time search reveals the number of total available display

slots and interesting slots for each advertiser (cf. allocation constraint). It also reveals the payoff

of each advertiser from impressions at the display slots (cf. revenue function). The revenue of an
advertiser relies on the number of obtained impressions and the quality of each impression relating

to dynamic factors like the click rate and engagement rate [20].

The above observations motivate us to study the important paradigm – competitive online

optimization problem under multiple inventories (OOIC-M), where a decision-maker with multiple

inventories of fixed capacities seeks to maximize the per-round separable revenue function by

optimizing the inventory allocation or trading at each round. The decision maker further faces two

trading constraints at each round, the allowance constraint that limits the total trading amount of

all inventories at the round and the rate constraints that limit the trading amount of each inventory

at the round. The problem has two main challenges. First, as in online optimization under (single)

inventory constraints [21, 22], the decision-maker does not have access to future revenue functions,

while the limited capacity of each inventory coupling the online decisions regarding each inventory

across time. Second, the allocation constraints couple the decisions across the multiple inventories

at each round. The combination of allowance and rate limit constraints appears frequently and is

with known challenges in online matching and allocation problems [14, 23–25].

In the literature, the authors in [22, 26] tackle the problem using the well-established online

primal-and-dual framework [13, 27, 28]. They design a threshold function for each inventory with

regard to the allocated amount, which can be viewed as the marginal cost of the inventory. They

then greedily allocate the inventory at each round by maximizing the pseudo-revenue function

defined by the difference between the revenue function and the threshold function. In contrast,

in this paper, we propose a divide-and-conquer approach to online optimization with multiple

inventories. Our approach is novel and provides additional insights to the problem. It allows us to

separate the two challenges of the problem, 1) the online allocation for each inventory subject to

the limited inventory capacity and unknown future revenue functions, and 2) the coupled allocation

among multiple inventories due to the allowance constraint at each round. In the following, we

summarize our contributions.

First, in Sec. 4, we generalize the CR-Pursuit(𝜋 ) algorithm [21] to tackle the single inventory

case, OOIC-S, which is an important component in our divide-and-conquer approach. We show

that it achieves the optimal competitive ratio (CR) among all online algorithms for OOIC-S.
Second, in Sec. 5, we propose a divide-and-conquer approach to design online algorithms for

online optimization under multiple inventories with dynamic revenue functions and trading con-

straints. We decompose the multiple inventory problem into several calibrated single inventory

problems. We allocate the allowance among the subpoblems and combine their solutions. The ap-

proach achieves the optimal CR of ln𝜃 +1 if𝑁 ≤ ln𝜃 +1, where𝑁 is the number of inventories and 𝜃

represents the revenue function uncertainty; it attains a CR of 1/[1−𝑒−1/(ln𝜃+1) ] ∈ [ln𝜃 +1, ln𝜃 +2)
otherwise, which is within a constant one to the lower bound.

Third, in Sec. 6, we discuss generalizations of our proposed approach to broader classes of

revenue functions. We provide a sufficient condition for applying our online algorithm and derive
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Table 1. Comparison of existing studies for online optimization under inventory constraints. Note that 𝜃 is a
parameter representing revenue function uncertainty and 𝑁 is the number of inventories.

Studies

Inventory Revenue Function Result and Technique

Single Multi. Linear Concave P.E.
†

CR Tech.

[16] ✓ ✗ ✓ ✗ ✗ 𝑂 (ln𝜃 ) Th.
★

[21] ✓ ✗ ✓ ✗ ✓ 𝑂 (ln𝜃 ) CR-P
★★

[26] ✓ ✓ ✓ ✓ ✗ ≤ ln𝜃 + 2
‡

P&D
★★★

[22] ✓ ✓ ✓ ✓ ✗ ≤ ln𝜃 + 2
‡

P&D
★★★

This ✓ ✓ ✓ ✓ ✓ ln𝜃 + 1
♯
, if 𝑁 ≤ ln𝜃 + 1 Divide&

paper 1/[1 − 𝑒−1/(ln𝜃+1) ], otherwise Conquer

★
Threat-Based approach;

★★
CR-Pursuit;

★★★
The primal-and-dual framework.

†
Concave revenue functions with price elasticity (See Sec. 6).

‡
The competitive ratio is sub-optimal when 𝑁 ≤ ln𝜃 + 1, as shown in Sec. 5.5 and Table 3.

♯
Our CR is optimal if 𝑁 ≤ ln𝜃 + 1 and is in [ln𝜃 + 1, ln𝜃 + 2) otherwise (Theorem 12).

the corresponding CR it can achieve. For example, we consider revenue functions capturing the

one-way trading problem with price elasticity, where only the results on the single inventory case

are available in existing literature [21, 22]. We show that our approach obtains an online algorithm

that achieves the optimal CR up to a constant factor.

Finally, our results in Sec. 5.2.2 generalize the online allocation maximization problem in [23]

and the online allocation with free disposal problem in [19] by introducing allowance augmen-

tation in online algorithms, which is of independent interest. We show that we can improve

the CR from 𝑒/(𝑒 − 1) to 1/(1 − 𝑒−1/𝜋 )/𝜋 , when our online algorithms are endowed with 𝜋-time

augmentation in allowance and allocation rate at each round.

2 RELATEDWORK
We focus on the competitive online optimization problem with multiple inventories and dynamic

allocation constraints. Our problem covers a couple of well-studied online problems, including the

one-way trading problem [16, 29] where there is a single inventory with linear revenue functions,

the online optimization under an inventory constraint [21, 22] where there is a single inventory,

and the online fractional matching problem [23–25, 27, 30] where the revenue functions are linear

functions with uniform scopes. Our results also reproduce the optimal CR under such settings. In

these problems, multiple techniques are proposed, including Water-filling or BALANCING [24],

threat-based approach [16], and CR-Pursuit framework [21]. Our online problem is also studied

in [22], and a discrete counterpart is studied in [26]. Both studies are based on the online primal-

and-dual framework. Compared with the existing study, we propose a novel divide-and-conquer

approach. We show that our approach achieves a close-to-optimal CR, which notably matches

the lower bound when the number of inventories is relatively small. Moreover, in Sec. 6, we

apply our approach to different sets of revenue functions, which are not covered by the existing

literature [22, 26]. We summarize the related literature on online optimization under inventory

constraints in Table 1. We provide more detailed discussions in Sec. 3.3 and Sec. 5.4.

Our problem also covers a fractional version of the online ad display problem [14], which is

an online matching problem with vertex capacity and edge value. No positive result is possible

when the value is unbounded [19]. In [19], the authors consider a model of “free disposal,” i.e.,

the online decision maker can remove the past allocated edges without any cost (but can not
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Table 2. Notation Table.

Notation Meaning
𝑔𝑖,𝑡 (·) Revenue function of inventory 𝑖 at slot 𝑡

𝑣𝑖,𝑡 Allocation of inventory 𝑖 at slot 𝑡

𝐶𝑖 Capacity of inventory 𝑖

𝐴𝑡 Allowance of total allocation among all inventories at slot 𝑡

𝛿𝑖,𝑡 Maximum allocation of inventory 𝑖 at slot 𝑡

𝜃
𝜃 = 𝑝max/𝑝min, where

[𝑝min, 𝑝max] is the range of the gradient of revenue functions
𝑎𝑖,𝑡 Online allowance allocation to inventory 𝑖 at slot 𝑡

𝑣𝑖,𝑡 Online inventory allocation of inventory 𝑖 at slot 𝑡

𝜂𝑖,𝑡 Online revenue of inventory 𝑖 up to slot 𝑡

˜𝑂𝑃𝑇 𝑖,𝑡
Optimal objective of OOIC-S𝑖 given allowance allocations

and revenue functions up to slot 𝑡

𝑂𝑃𝑇𝑡 Optimal offline total revenue of OOIC-M up to slot 𝑡

Φ(𝜋) Maximum total online allocation of CR-Pursuit(𝜋 )

re-allocate the past edges). Here, we instead consider the case that the values of all edges are

bounded in a pre-known positive range and no change on the past decision is available. We are

interested in how the CR of an online algorithm behaves with regard to the uncertain range of

value. Interestingly, by our divide-and-conquer approach, we can extend the results in the “free

disposal” model to the irremovable setting. Also, we provide additional insight and results to the

problem when considering an online augmentation scenario where the online decision maker is

with a larger allowance and allocation rate at each round; see more details in Sec. 5.2.2.

Another related problem is the online knapsack packing problem [15]. In the problem, items

are associated with weight and value and come online. An online decision maker with a capacity-

limited knapsack determines whether to pack the item at its arrival to maximize the total value

while guaranteeing that the total weight would not exceed the capacity. A single knapsack problem

with infinitesimal assumption is studied in [15] with the application to key-work bidding. It can

be viewed as a special case of the one-way trading problem [22], which is covered by the online

optimization problem with a single inventory [21, 22]. The fractional multiple knapsack packing

problem with unit weight is studied in [22], where the decision maker can pack any fraction of the

item instead of a 0/1 decision. Our problem is also related to the online packing problem [13, 31]

where the authors consider general packing constraints. Here, we focus on specific inventory

constraints and allocation constraints.

3 PROBLEM FORMULATION
In this section, we formulate the optimal allocation problem with multiple inventories. We discuss

the practical online scenario and the performance metric for online algorithms. We further discuss

the state-of-the-art of the online problem. We summarize the important notions in Table 2.

3.1 Problem Formulation
We consider 𝑁 inventories and a decision period with 𝑇 slots. We denote the capacity of inventory

𝑖 as 𝐶𝑖 . At each slot 𝑡 ∈ [𝑇 ], each inventory 𝑖 is associated with a revenue function 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ), which
represents the revenue of allocating or trading an amount of 𝑣𝑖,𝑡 inventory 𝑖 at slot 𝑡 . However,

at each slot 𝑡 ∈ [𝑇 ], we are restricted to allocate or trade at most 𝛿𝑖,𝑡 of inventory 𝑖 , and the total
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allocation of all inventories at each slot 𝑡 is bounded by the allowance 𝐴𝑡 . Our goal is to find an

optimal allocation scheme that maximizes the total revenue in the decision period while satisfying

the allocation restrictions.

Overall, we consider the following problem,

OOIC-M : max

∑︁
𝑖∈[𝑁 ]

∑︁
𝑡 ∈[𝑇 ]

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) (1)

s.t.

∑︁
𝑡

𝑣𝑖,𝑡 ≤ 𝐶𝑖 ,∀𝑖 ∈ [𝑁 ], (2)∑︁
𝑖

𝑣𝑖,𝑡 ≤ 𝐴𝑡 ,∀𝑡 ∈ [𝑇 ], (3)

0 ≤ 𝑣𝑖,𝑡 ≤ 𝛿𝑖,𝑡 ,∀𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑁 ], (4)

In OOIC-M, we optimize the inventory allocation {𝑣𝑖,𝑡 }𝑖∈[𝑁 ],𝑡 ∈[𝑇 ] to achieve the maximum total

revenue subjecting to the capacity constraint of each inventory (2), the allowance constraint at each

slot (3), and the rate limit constraint for each inventory at each slot (4). Without loss of generality,

we assume that 𝛿𝑖,𝑡 ≤ 𝐴𝑡 ,∀𝑖, 𝑡 . We consider the following set of revenue functions, denoted as G,

• 𝑔𝑖,𝑡 (·) is concave and differentiable with 𝑔(0) = 0;

• 𝑔′𝑖,𝑡 (𝑣𝑖,𝑡 ) ∈ [𝑝min, 𝑝max],∀𝑣𝑖,𝑡 ∈ [0, 𝛿𝑖,𝑡 ].
We consider that 𝑝max ≥ 𝑝min > 0 and denote 𝜃 = 𝑝max/𝑝min. The revenue functions capture the

case where the marginal revenue of trading more inventory is non-increasing in the allocation

amount but always between 𝑝min and 𝑝max. We also discuss applying our approach to different sets

of revenue functions with corresponding applications in Sec 6.

In the offline setting, the problem input is known in advance, and OOIC-M is a convex optimiza-

tion problem with efficient optimal algorithms. However, in practice, we face an online setting, as

we will describe next.

3.2 Online Scenario and Performance Metric
In the online setting, we consider that the pre-known problem parameters include the class of

revenue function G and corresponding range [𝑝min, 𝑝max], the number of inventories 𝑁 , and the

capacity of each inventory {𝐶𝑖 }𝑖∈[𝑁 ] . Other problem parameters are revealed sequentially. More

specifically, at each slot 𝑡 , the online decision maker without the information of the decision period

𝑇 is fed the revenue functions {𝑔𝑖,𝑣 (·)}𝑖∈[𝑁 ] , the allowance 𝐴𝑡 and the allocation limits {𝛿𝑖,𝑡 }𝑖∈[𝑁 ] .
We need to irrevocably determine the allocation at slot 𝑡 , i.e., {𝑣𝑖,𝑡 }𝑖∈[𝑁 ] . After that, if the decision
period ends, we stop and know the information of 𝑇 . Otherwise, we move to the next slot and

continue the allocation. We denote a possible input as

𝜎 =
(
𝑇, {𝑔𝑖,𝑡 (·)}𝑖∈[𝑁 ],𝑡 ∈[𝑇 ], {𝐴𝑡 }𝑡 ∈[𝑇 ], {𝛿𝑖,𝑡 }𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]

)
(5)

We use the Competitive Ratio as a performance metric for online algorithms. The CR of an algorithm

A is defined as

CR(A) = sup

𝜎 ∈Σ

𝑂𝑃𝑇 (𝜎)
𝐴𝐿𝐺 (𝜎) , (6)

where 𝜎 denotes an input,𝑂𝑃𝑇 (𝜎) and 𝐴𝐿𝐺 (𝜎) denote the offline optimal objective and the online

objective applying A under input 𝜎 , respectively. We use Σ to represent all possible input we are

interested in. Specifically,

Σ ≜ {𝜎
��𝑇 ∈ Z+, 𝑔𝑖,𝑡 (·) ∈ G, 𝐴𝑡 ≥ 0, 𝛿𝑖,𝑡 ≥ 0,∀𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ] }, (7)
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In competitive analysis, we focus on the worst-case guarantee of an online algorithm, which is

defined by the maximum performance ratio between the offline optimal and the online objective of

the algorithm. In the online setting, we are facing two main challenges, 1) the decision maker does

not know the future revenue functions, while the allocation now would affect the future decision

due to the capacity constraint [21]; and 2) the online allowance constraints and rate constraints

couple the decisions across the inventories, which are with known challenges in online matching

and allocation problems [14, 24].

3.3 State of the Art
The online problem of OOIC-M has been studied in [22] under the same revenue function set G.
Given the gradients of function in G are bounded, we can view the problem as allocating items

with infinitesimal sizes, and each item has a value between 𝑝min and 𝑝max. Then, problem OOIC-M
under revenue functions G can also be viewed as a continuous counterpart of [26]. When there

is only one inventory (𝑁 = 1), the online problem reduces to the online optimization problem

under inventory constraints [21, 22]. If we further restrict the revenue functions to be linear, it

becomes the one-way trading problem studied in [16, 29]. Besides, when 𝑝max = 𝑝min, the online

problem reduces to maximizing the total amount of allocation, which has been widely studied

in [23–25, 27, 30]. Here, we introduce a novel divide-and-conquer approach to the problem and

show that our approach can achieve a close-to-optimal CR to online OOIC-M. It also recovers the

optimal CR for the above special cases covered by the problem. We provide a detailed discussion in

Sec. 5.4. In Sec. 6, we show that our approach can be applied to different sets of revenue functions,

which have not been studied in the existing literature.

Before proceeding, we discuss the two most relevant works in the literature, namely [26] and [22].

They both apply the online primal-dual analysis and design threshold functions for the online

decision-making of OOIC-M. While the work [26] studied a discrete setting differing from the

continuous setting studied in [22] and our work, it is known in [28] that the same threshold-based

function can be directly applied to the continuous setting, attaining the same CR. In the following,

let us reproduce the algorithm for the continuous setting and the CR achieved by [26]. The CR is

better than the one proposed in [22], and thus we deem it state-of-the-art in the literature. We also

compare the CR they achieve and ours in Sec. 5; see an illustration example in Fig. 2.

Let 𝜙𝑖 (𝑤) denote the threshold function for each inventory 𝑖 , where𝑤 refers to the amount of

allocated capacity of the inventory and 𝜙𝑖 (𝑤) can be viewed as a pseudo-cost of the allocation. At

each slot, the algorithm determines the allocated amount 𝑣𝑖,𝑡 of inventory 𝑖 at slot 𝑡 by maximizing

the per-round pseudo-revenue, which is the difference between the revenue and the threshold

function, i.e.,

(P&D): max

∑︁
𝑖∈[𝑁 ]

(
𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) −

∫ 𝑤𝑖,𝑡−1+𝑣𝑖,𝑡

𝑤𝑖,𝑡−1

𝜙𝑖 (𝑤)𝑑𝑤
)

(8)

s.t.

∑︁
𝑖

𝑣𝑖,𝑡 ≤ 𝐴𝑡 , (9)

0 ≤ 𝑣𝑖,𝑡 ≤ 𝛿𝑖,𝑡 ,∀𝑖 ∈ [𝑁 ], (10)

where𝑤𝑖,𝑡−1 is the total online allocation of inventory 𝑖 from the first slot to slot 𝑡 −1. The algorithm

is proposed in [22], which can be viewed as a continuous reinterpretation of the discrete algorithm

in [26]. According to Appendix E of [26], we can apply the following threshold function given that

the gradient of 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) is uniformly bounded in the range [𝑝min, 𝑝max],
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𝜙𝑖 (𝑤) =
{
𝑝min · 𝑒𝑤/𝐶𝑖 −1

𝑒𝜒−1
, 𝑤 ∈ [0, 𝜒 ·𝐶𝑖 ];

(𝑝min)
1−𝑤/𝐶𝑖

1−𝜒 (𝑝max)
𝑤/𝐶𝑖−𝜒

1−𝜒 , 𝑤 ∈ [𝜒 ·𝐶𝑖 ,𝐶𝑖 ];
(11)

where 𝜒 =𝑊 (ln(𝜃 ) · 𝑒 ln(𝜃 )−1) − ln𝜃 + 1 (𝑊 (·) is the Lambert-W function).

Proposition 1 ([26]). With the threshold function (11), the threshold-based algorithm can achieve a
competitive ratio of

𝜒 =
1

1 − 𝑒−𝜒
. (12)

We provide the proof in Appendix A. We note that the proofs in [22] and [26] follow similar ideas

based on the online primal-dual framework but are different in presentations as one is discussing

in the continuous setting [22] and the other in the discrete setting [26]. As we are considering

the continuous setting, our proof follows the same presentation discussed in [22] and applies the

properties of the threshold function (11) discussed in [26].

4 CR-PURSUIT FOR SINGLE INVENTORY PROBLEM
In this section, we first discuss the problem with a single inventory. We extend the CR-Pursuit
in [21] to cover the rate limit constraint and provide additional insights that will facilitate our

algorithm design under the multiple inventories case.

In the single inventory case, OOIC-M is reduced to the following problem,

OOIC-S : max

∑︁
𝑡

𝑔𝑡 (𝑣𝑡 ) (13)

s.t.

∑︁
𝑡

𝑣𝑡 ≤ 𝐶 (14)

var. 0 ≤ 𝑣𝑡 ≤ 𝛿𝑡 ,∀𝑡, (15)

where𝐶 denotes the capacity of the inventory,𝑔𝑡 (𝑣𝑡 ) represents the revenue of allocating 𝑣𝑡 quantity
of inventory at slot 𝑡 , and 𝛿𝑡 is the rate limit restricting the maximum allocation at slot 𝑡 . The goal is

still to maximize the total revenue by determining the inventory allocation 𝑣𝑡 at each slot. We focus

on the online setting described in Sec. 3.2 with 𝑁 specified to be one. We note that the OOIC-S has

been studied in [22]. Also, the case under different assumptions on revenue functions and without

rate limit has been studied in [21].

Here, we generalize the results in [21] to consider revenue function set G and involve rate limit

constraint. The online algorithm CR-Pursuit(𝜋 ), proposed in [21], is a single-parametric online

algorithm with 𝜋 as the parameter. At slot 𝑡 , the algorithm first computes the optimal value of

OOIC-S given the input revenue functions and rate limits up to 𝑡 , which we denote as 𝑂𝑃𝑇𝑆 (𝑡). It
then determines the allocation 𝑣𝑡 at slot 𝑡 such that

𝑔𝑡 (𝑣𝑡 ) =
1

𝜋
(𝑂𝑃𝑇𝑆 (𝑡) −𝑂𝑃𝑇𝑆 (𝑡 − 1)) . (16)

Under CR-Pursuit(𝜋 ), we define the maximum total allocation of the algorithm,

Φ(𝜋) ≜ sup

𝜎 ∈Σ

∑︁
𝑡

𝑣𝑡 , (17)

where 𝑣𝑡 is determined by (16). By design, we clearly have the following properties of the CR-

Pursuit(𝜋 ) algorithm.

Lemma 2. We have 𝑣𝑡 ≤ 1

𝜋
· 𝛿𝑡 .
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Proof. As 𝑔𝑡 (𝑣𝑡 ) is increasing and concave function, and

𝑔𝑡 (𝑣𝑡 ) =
1

𝜋
(𝑂𝑃𝑇𝑆 (𝑡) −𝑂𝑃𝑇𝑆 (𝑡 − 1)) ≤ 1

𝜋
· 𝑔𝑡 (𝛿𝑡 ), (18)

we have 𝑣𝑡 ≤ 1

𝜋
· 𝛿𝑡 . □

Lemma 3 shows an upper bound on the online allocation, which guarantees the existence of 𝑣𝑡
at each slot. It will also be useful for our algorithm design and CR analysis for OOIC-M, which we

will discuss in Sec. 5.

Lemma 3. CR-Pursuit(𝜋 )is feasible and 𝜋-competitive for OOIC-S if Φ(𝜋) ≤ 𝐶 .

Proof. Considering an arbitrary input 𝜎 , we first note that it is clear that 𝑣𝑡 ≤ 𝛿𝑡 according to

Lemma 2. Then if Φ(𝜋) ≤ 𝐶 , we have
∑

𝑡 𝑣𝑡 ≤ 𝐶 , i.e., it satisfies the inventory constraint under

input 𝜎 .

Summarizing (16) over all 𝑡 , we have that the online objective

𝐴𝐿𝐺 (𝜎) =
𝑇∑︁
𝑡=1

𝑔𝑡 (𝑣𝑡 ) =
1

𝜋
𝑂𝑃𝑇𝑆 (𝑇 ) =

1

𝜋
·𝑂𝑃𝑇𝑆 (𝜎), (19)

where 𝑂𝑃𝑇𝑆 (𝜎) is the optimal offline objective. Thus the algorithm is 𝜋-competitive.

□

Lemma 3 shows that we can rely on characterizing Φ(𝜋) to optimize the choice of 𝜋 in CR-
Pursuit(𝜋 ). Further, we can interpret Φ(𝜋) as the inventory the online algorithm CR-Pursuit(𝜋 )
needs to maintain 𝜋-competitive. For example, suppose for an online algorithm, we now can utilize

Φ(1) capacity of the inventory while the capacity of the offline optimal remains 𝐶 . Then we can

run CR-Pursuit(1) and achieve that same performance as the offline optimal, i.e., 1-competitive.

We have the following results on the upper bound on Φ(𝜋).
Lemma 4. We have

Φ(𝜋) ≤ ln𝜃 + 1

𝜋
·𝐶. (20)

We summarize the proof idea of Lemma 4 here while leaving the detailed proof in Appendix B. We

first notice that a more general result in [21] can be extended to the case with rate limit constraint,

as shown in Proposition 15 in Appendix B. Although the results in [21] do not cover the revenue

functions we consider here, it covers the revenue functions in the maximizer of Φ(𝜋) as special
cases. This observation leads to Lemma 4.

According to the above discussion, we can provide the competitive analysis of CR-Pursuit(𝜋 ) for
OOIC-S. In particular, we set 𝜋 as ln𝜃 + 1.

Theorem 5. For OOIC-S, CR-Pursuit(ln𝜃 + 1) is ln𝜃 + 1-competitive. And it is optimal among all
online algorithms for the problem.

According to Lemma 3 and Lemma 4, it is clear that CR-Pursuit(ln𝜃 + 1) is feasible and (ln𝜃 + 1)-
competitive. Further, according to the results in [21, 22], we know that ln𝜃 + 1 is the lower bound

or the optimal CR to OOIC-S. Thus, CR-Pursuit(ln𝜃 + 1) is also optimal.

5 ONLINE ALGORITHMS FOR MULTIPLE INVENTORY PROBLEM
In this section, we introduce our divide-and-conquer online algorithm A&P(𝜋 ) for OOIC-M, where

𝜋 is a parameter to be specified. We first outline the algorithm structure. Following the structure,

we then propose our general online algorithm for arbitrary 𝑁 . We next show a simple and optimal

online algorithm when 𝑁 is relatively small. Finally, we summarize our algorithm and provide the

competitive analysis. An illustration of our approach and results is shown in Fig 1.
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5.1 Algorithm structure
We consider a divide-and-conquer approach for deriving online algorithms for OOIC-M. The

general idea is that we can optimize OOIC-M by first allocating the allowance at each slot to the

inventories and then separately optimizing the allocation of each inventory given the allocated

allowance. More specifically, we define the following subproblem for each 𝑖 ∈ [𝑁 ],

OOIC-S𝑖 : max

∑︁
𝑡

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) (21)

𝑠 .𝑡 .
∑︁
𝑡

𝑣𝑖,𝑡 ≤ 𝐶𝑖 (22)

0 ≤ 𝑣𝑖,𝑡 ≤ 𝑎𝑖,𝑡 ,∀𝑡, (23)

where 𝑎𝑖,𝑡 is the allocated allowance to user 𝑖 at slot 𝑡 . 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) is another algorithmic design space

that allows us to exploit the online augmentation scenario when allocating the allowance allocation

in Sec. 5.2.2. Under the offline setting, we note that such a decomposition is of no optimality loss.

For example, we can choose 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) = 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) and set the allowance allocation 𝑎𝑖,𝑡 = 𝑣∗𝑖,𝑡 for all
𝑖 and 𝑡 , where {𝑣∗𝑖,𝑡 }𝑖∈[𝑁 ],𝑡 ∈[𝑇 ] is the offline optimal solution of OOIC-M. Then, optimizing the

subproblems separately given the allowances would reproduce the offline optimal solution.

Following this structure, we can design an online algorithm that mainly consists of two steps at

each slot 𝑡 ,

(1) Step-I: Determine the allowance allocation, {𝑎𝑖,𝑡 }𝑖∈[𝑁 ] , irrevocably.
(2) Step-II: Determine the inventory allocation for each online OOIC-S𝑖 , {𝑣𝑖,𝑡 }𝑖∈[𝑁 ] , irrevocably.

We note that this divide-and-conquer approach allows us to separately tackle the two main chal-

lenges of the problem. First, the revenue functions come online while the allocation across the

decision period is coupled due to the capacity constraint for each inventory, which is mainly

handled by Step-II. Second, the online allowance constraints and the rate constraints couple the

decisions across the inventories, which we tackle in Step-I. We can directly apply {𝑣𝑖,𝑡 }𝑡 ∈[𝑇 ] as the
output of an online algorithm for each inventory 𝑖 . We can view Step-II as solving OOIC-S𝑖 in an

online manner. More specifically, at each 𝑡 , for each 𝑖 , we observe input 𝑎𝑖,𝑡 (determined at Step-I)
and 𝑔𝑖,𝑡 (·), and need to determine 𝑣𝑖,𝑡 irrevocably. In terms of feasibility, an immediate advantage is

that it satisfies the inventory constraint (2) if it is a feasible solution to OOIC-S𝑖 . However, we need
further care to ensure the satisfaction of the allowance constraint (3) and allocation rate limit (4). As

for performance guarantees, we can first analyze the performance of each step and then combine

them to show the overall competitive analysis. In the following, we will discuss how the proposed

online algorithm behaviors at both steps to ensure the feasibility and achieve a close-to-optimal CR.

5.2 The A&P𝑙 (𝜋) Algorithm for General 𝑁
In this subsection, wewill propose an online algorithm for a general number of inventories following

the divide-and-conquer structure discussed in Sec. 5.1. We denote the algorithm as A&P𝑙 (𝜋 ), where
𝜋 is a parameter to be specified. In the following, we first introduce Step-II of A&P𝑙 (𝜋 ), determining

the allocation of OOIC-S𝑖 given the allowance from Step-I. We then introduce Step-I, determining

the allowance of each inventory. We denote the allocated allowance from Step-I as 𝑎𝑖,𝑡 ,∀𝑖, 𝑡 .

5.2.1 Step-II of A&P𝑙 (𝜋 ). In this step, A&P𝑙 (𝜋 ) determines the online inventory allocation for each

OOIC-S𝑖 given the allocated allowance (denoted as {𝑎𝑖,𝑡 }𝑖∈[𝑁 ] ) from Step-I.
In Step-II of A&P𝑙 (𝜋 ), it sets

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) = 𝜋 · 𝑔𝑖,𝑡 (𝑣𝑖,𝑡/𝜋). (24)
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Fig. 1. An illustration of our divide-and-conquer approach and results.

We denote the optimal objective of OOIC-S𝑖 given its input up to slot 𝑡 as ˜𝑂𝑃𝑇 𝑖,𝑡 . We set

˜𝑂𝑃𝑇 𝑖,0 = 0. At each slot 𝑡 , it determines the allocation 𝑣𝑖,𝑡 such that it satisfies

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) =
1

𝜋

(
˜𝑂𝑃𝑇 𝑖,𝑡 − ˜𝑂𝑃𝑇 𝑖,𝑡−1

)
. (25)

While it looks similar to the CR-Pursuit(𝜋 ) algorithm discussed in Sec. 4 and [21], we note that a

major difference is that we are using the original revenue function 𝑔𝑖,𝑡 (·) to pursue a fraction of

1/𝜋 of the optimal objective achieved over the revenue function 𝑔𝑖,𝑡 (·) instead of 𝑔𝑖,𝑡 (·). In general,

𝑔𝑖,𝑡 , defined in (24), is no less than 𝑔𝑖,𝑡 (·) (take equality under the linear function case). Thus, it may

be more difficult for Step-II to achieve the same performance ratio (ln𝜃 + 1) between the optimal

objective to the online objective for each OOIC-S𝑖 as that in Sec. 4. However, we would show the

performance ratio remains achievable in Lemma 7. The design of 𝑔𝑖,𝑡 (·) is important for achieving a

better approximation ratio between the total optimal objective of the subproblems and the optimal

objective of OOIC-M, which we will discuss in Step-I, Sec. 5.2.2.
To analyze Step-II, we first propose the following proposition on the properties of the online

allocation 𝑣𝑖,𝑡 ,∀𝑖, 𝑡 .

Lemma 6. We have 𝑣𝑖,𝑡 ≤ 1

𝜋
· 𝑎𝑖,𝑡 ,∀𝑖, 𝑡 .

Proof. We have

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) =
1

𝜋

(
˜𝑂𝑃𝑇 𝑖,𝑡 − ˜𝑂𝑃𝑇 𝑖,𝑡−1

)
≤ 1

𝜋
· 𝜋 · 𝑔𝑖,𝑡 (𝑎𝑖,𝑡/𝜋) ≤ 𝑔𝑖,𝑡 (𝑎𝑖,𝑡/𝜋). (26)

Thus, as 𝑔𝑖,𝑡 (·) is increasing, we conclude 𝑣𝑖,𝑡 ≤ 1

𝜋
· 𝑎𝑖,𝑡 . □

While this is a simple observation on the online solution, it plays an important role in designing

the allowance allocation in Step-I, Sec. 5.2.2 and improving the overall performance of our online

algorithm A&P𝑙 (𝜋 ) for OOIC-M.

We denote the objective value of the online solution to OOIC-S𝑖 at slot 𝑡 as 𝜂𝑖,𝑡 ,

𝜂𝑖,𝑡 ≜
𝑡∑︁

𝜏=1

𝑔𝑖,𝜏 (𝑣𝑖,𝜏 ) (27)

We provide the performance analysis of Step-II in the following lemma. In particular, we choose

𝜋 as ln𝜃 + 1.
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Lemma 7. We have that for each 𝑖 ∈ [𝑁 ], Step-II of A&P𝑙 (ln𝜃 +1) always produces a feasible solution
to OOIC-S𝑖 , and for any slot 𝑡 , the online objective

𝜂𝑖,𝑡 ≥
1

ln𝜃 + 1

· ˜𝑂𝑃𝑇 𝑖,𝑡 . (28)

Proof. The performance guarantee in (28) is implied by (25) when choosing 𝜋 = ln𝜃 + 1.

We now show the feasibility. We note that, when choosing 𝜋 = ln𝜃 + 1, OOIC-S𝑖 with 𝑔𝑖,𝑡 (·)
determined by (24), and a factor of

1

ln𝜃+1
in objective value is equivalent to

R-OOIC-S𝑖 : max

∑︁
𝑡

𝑔𝑖,𝑡 (𝑧𝑖,𝑡 ) (29)

𝑠 .𝑡 .
∑︁
𝑡

𝑧𝑖,𝑡 ≤
𝐶𝑖

ln𝜃 + 1

(30)

0 ≤ 𝑧𝑖,𝑡 ≤
𝑎𝑖,𝑡

ln𝜃 + 1

,∀𝑡, (31)

where 𝑧𝑖,𝑡 ≜ 𝑣𝑖,𝑡/(ln𝜃 + 1). Then, determining the online allocation according to (25) is equivalent

to find 𝑣𝑖,𝑡 such that

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) = ˆ𝑂𝑃𝑇 𝑖,𝑡 − ˆ𝑂𝑃𝑇 𝑖,𝑡−1, (32)

where ˆ𝑂𝑃𝑇 𝑖,𝑡 is the optimal objective of R-OOIC-S𝑖 at slot 𝑡 . It is clear that 𝑣𝑖,𝑡 ≤ 𝑎𝑖,𝑡/(ln𝜃 + 1) as
ˆ𝑂𝑃𝑇 𝑖,𝑡 − ˆ𝑂𝑃𝑇 𝑖,𝑡−1 ≤ 𝑔𝑖,𝑡 (𝑎𝑖,𝑡/(ln𝜃 + 1). Thus, the rate limit constraint in OOIC-S𝑖 is satisfied.
We note that the R-OOIC-S𝑖 is a single inventory problem we discuss in Sec. 4 with inventory

capacity of 𝐶𝑖/(ln𝜃 + 1). The online decision we make according to (32) suggests that we are

running CR-Pursuit(1) over online R-OOIC-S𝑖 . According to Lemma 4, for R-OOIC-S𝑖 , we have∑︁
𝑡

𝑣𝑖,𝑡 ≤
ln𝜃 + 1

1

· 𝐶𝑖

ln𝜃 + 1

= 𝐶𝑖 , (33)

noting that the inventory capacity of R-OOIC-S𝑖 equals 𝐶𝑖/(ln𝜃 + 1). Thus, the online solution
satisfies the capacity constraint in OOIC-S𝑖 . □

5.2.2 Step-I of A&P𝑙 (𝜋 ). Step-I is to determine {𝑎𝑖,𝑡 }𝑖∈[𝑁 ] , the allowance allocation to different

inventories at each slot 𝑡 . Our goal is to determine an allocation such that we can guarantee a

larger approximation ratio (≜ 𝛼) between
∑

𝑖∈[𝑁 ] ˜𝑂𝑃𝑇 𝑖,𝑡 and𝑂𝑃𝑇𝑡 at any slot 𝑡 , i.e.,
∑

𝑖∈[𝑁 ] 𝑂𝑃𝑇𝑖,𝑡 ≥
𝛼 ·𝑂𝑃𝑇𝑡 . Recall that ˜𝑂𝑃𝑇 𝑖,𝑡 is the optimal objective of OOIC-S𝑖 up to slot 𝑡 . And,𝑂𝑃𝑇𝑡 is the optimal

objective of OOIC-M up to slot 𝑡 .

As discussed in Sec. 5.1, we need further consideration to guarantee the satisfaction of the

allowance constraint (3) and allocation rate limit (4). We characterize a sufficient condition on the

allowance allocation such that the online solution {𝑣𝑖,𝑡 }𝑖∈[𝑁 ] determined at Step-II (as discussed in

Sec. 5.2.1) satisfies constraints (3) and (4).

Lemma 8. If the allowance allocation at each slot 𝑡 satisfies∑︁
𝑖∈[𝑁 ]

𝑎𝑖,𝑡 ≤ 𝜋 · 𝐴𝑡 , 0 ≤ 𝑎𝑖,𝑡 ≤ 𝜋 · 𝛿𝑖,𝑡 , (34)

then the online solution {𝑣𝑖,𝑡 }𝑖∈[𝑁 ] determined by (25) at Step-II satisfies the allowance constraint (3)
and rate limit constraints (4).

The idea is that according to Lemma 6, 𝑣𝑖,𝑡 ≤ 𝑎𝑖,𝑡/𝜋 . Together with (34), it implies that we have∑
𝑖∈[𝑁 ] 𝑣𝑖,𝑡 ≤ ∑

𝑖 𝑎𝑖,𝑡/𝜋 ≤ 𝐴𝑡 and 𝑣𝑖,𝑡 ≤ 𝛿𝑖,𝑡 . Lemma 8 means that at each slot 𝑡 , we can actually

allocate 𝜋-time total allowance to the subproblems while guaranteeing the online solution satisfies
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constraints (3) and (4). We would show that it can help us significantly improve the approximation

ratio 𝛼 compared with allocating the allowance respecting constraints (3) and (4) directly.

In the online literature, the Step-I problem shares a similar setting as the free disposal model

discussed in the online ads allocation problem in [19].We defer the detailed discussion toAppendix C.

We consider a generalized setting that, with Lemma 8, the online decision maker can allocate 𝜋-time

more allowance with a 𝜋-time relaxer rate limit constraint at each slot than the offline optimal.

We call it the allowance augmentation scenario. We note that this is different from other works in

online literature, e.g., [23, 25, 32], where the authors consider the capacity augmentation scenario,

i.e., how one can improve the performance guarantee (in particular, CR) of online algorithms when

the online decision maker is equipped with more inventory capacity compared with the offline

optimal. Here, to best of our knowledge, we are the first one to consider the allowance augmentation

scenario. We provide our results in Theorem 9 and discuss how they generalize the existing studies

afterward.

At Step-I of A&P𝑙 (𝜋 ), we determine the allowance allocation by solving the following problem at

each 𝑡 . We call the problemAAt-A(𝜋 ), standing for Allowance Allocation at slot 𝑡 with Augmentation.

AAt-A(𝜋 ) : max

∑︁
𝑖

(
𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) −

∫ 𝑎𝑖,𝑡

0

Ψ𝑖,𝑡 (𝑎) 𝑑𝑎
)

(35)

s.t.

∑︁
𝑖

𝑎𝑖,𝑡 ≤ 𝜋 · 𝐴𝑡 (36)

0 ≤ 𝑎𝑖,𝑡 ≤ 𝜋 · 𝛿𝑖,𝑡 ,∀𝑖 ∈ [𝑁 ] (37)

In AAt-A(𝜋 ), {𝑎𝑖,𝑡 }𝑖∈[𝑁 ] is the allowance allocation at slot 𝑡 . 𝑔𝑖,𝑡 (·) is defined as in (24). Ψ𝑖,𝑡 (𝑎) is
defined as follows.

Ψ𝑖,𝑡 (𝑎) = 𝑓𝑖 (𝐶𝑖 ) ·𝐺𝑖,𝑡 (𝐶𝑖 , 𝑎) −
1

𝜋 ·𝐶𝑖

∫ 𝐶𝑖

0

𝐺𝑖,𝑡 (𝑥, 𝑎) · 𝑓𝑖 (𝑥) 𝑑𝑥. (38)

where 𝑓𝑖 (𝑥) and 𝐺𝑖 (𝑥, 𝑎) are defined as,

𝑓𝑖 (𝑥) =
1

𝜋 ·𝐶𝑖

1

𝑒
1

𝜋 − 1

· 𝑒𝑥/(𝜋 ·𝐶𝑖 ) , (39)

𝐺𝑖,𝑡 (𝑥, 𝑎) = max

∑︁
𝜏 ∈[𝑡 ]

𝑔𝑖,𝜏 (𝑣𝑖,𝜏 ) (40)

s.t.

∑︁
𝜏 ∈[𝑡 ]

𝑣𝑖,𝜏 ≤ 𝑥 (41)

0 ≤ 𝑣𝑖,𝑡 ≤ 𝑎 (42)

0 ≤ 𝑣𝑖,𝜏 ≤ 𝑎𝑖,𝜏 ,∀𝜏 ∈ [𝑡 − 1] . (43)

We can show that AAt-A(𝜋 ) is a convex optimization problem with simple linear packing con-

straints by checking that Ψ𝑖,𝑡 (𝑎) is non-decreasing in 𝑎 (shown in Proposition 16 in Appendix D).

We can solve it using projected gradient descent where at each step, an evaluation of Ψ𝑖,𝑡 (𝑎) is
required. Although we do not have a close form of 𝐺𝑖,𝑡 (·), we can evaluate Ψ𝑖,𝑡 (𝑎) efficiently using

numerical integration methods.

Here, we discuss some understandings of the design of algorithm AAt-A(𝜋 ). First, 𝐺𝑖,𝑡 (𝑥, 𝑎)
defined in (40), is the optimal revenue of subproblem 𝑖 with capacity 𝑥 if it is allocated 𝑎 allowance

at slot 𝑡 and given the past allowance allocation to subproblem 𝑖 . It provides detailed information

about the optimal inventory allocation of subproblem 𝑖 , e.g., 𝜕𝐺𝑖,𝑡 (·)/𝜕𝑥 represents the marginal
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revenue at allocating the 𝑥 capacity of inventory 𝑖 . Second, the threshold Ψ𝑖,𝑡 (𝑎) when we allocate

𝑎 allowance to inventory 𝑖 depends on the detailed optimal revenue 𝐺𝑖,𝑡 (𝑥, 𝑎). This is because the
allowance allocation would affect the optimal inventory allocation of the subproblem and thus

the detailed optimal revenue. By comparison, the one in the primal-and-dual approach [22, 26],

i.e., (8) in Sec. 3.3, only depends on the allocated amount as it directly allocates the inventory,

and the newly allocated inventory would not impact the past allocation. Third, inspired by the

exponential weighting algorithm in [19], we set the threshold as the exponential weighting average

of the per-unit revenue of 𝐺𝑖,𝑡 (𝑥, 𝑎), where 𝑓𝑖 (𝑥) is a carefully-designed weighting function. When

𝜋 = 1 and restricting the revenue functions to be linear, AAt-A(𝜋 ) can be viewed as a continuous

(or fractional) counterpart of the exponential weighting approach in [19].

Also, to explore the allowance augmentation scenario under the concave revenue function

case, we apply the following two novel ideas. First, we redesign the weighting function 𝑓𝑖,𝑡 (·),
where we tune the weight according to the allowance augmentation level 𝜋 . Second, due to the

diminishing return effect of concave functions, the allowance augmentation may not provide

substantial additional revenue to the online decision maker. To handle this problem, we design

the revenue function 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) = 𝜋 · 𝑔𝑖,𝑡 (𝑣𝑖,𝑡/𝜋) to ensure that increasing the allowance allocation

for inventory 𝑖 can substantially increase the revenue when compared with 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) in the offline

optimal. By comparison, in the linear function case, by allocating more allowance to inventory

𝑖 , the revenue of the inventory could increase at a constant rate. In such a case, it is sufficient to

adopt 𝑔𝑖,𝑡 (·) directly, and indeed we have 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) ≡ 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) following our design.

We can show the approximation guarantee of AAt-A(𝜋 ) in the following theorem.

Theorem 9. Given the allowance allocation 𝑎𝑖,𝑡 by solving AAt-A(𝜋 ), we have∑︁
𝑖∈[𝑁 ]

˜𝑂𝑃𝑇 𝑖,𝑡 ≥ 𝛼 (𝜋) ·𝑂𝑃𝑇𝑡 , (44)

where 𝛼 (𝜋) = 𝜋 · (1 − 𝑒−1/𝜋 ). Furthermore, 𝛼 (𝜋) equals 𝑒−1

𝑒
when 𝜋 = 1 and 1 when 𝜋 → ∞.

The proof of Theorem 9 is provided in Appendix D. Our proof follows the online primal-and-dual

analysis in [13, 19]. We use the dual problem of OOIC-M as a baseline for comparison. By carefully

designing or updating the dual variable at each slot, we show that our increment in the total optimal

objective of all subproblems OOIC-S𝑖 is at least a fraction of 𝛼 (𝜋) of the increment on the objective

of dual OOIC-M at each slot 𝑡 . This directly leads to Theorem 9.

Remarks. The results we show in Theorem 9 are with broader application scenarios and

of independent interest. When all the revenue function is linear with a constant slope, i.e., all

inventories have a uniform unit price, the Step-I problem reduces to maximizing the total amount

of allocation, which is studied in [23, 24]. Our result (Theorem 9) implies that when there is no

allowance augmentation (i.e., 𝜋 = 1), it reproduces the competitive ratio
𝑒

𝑒−1
as shown in [23, 24].

Also, when restricting to the linear function case and fixing 𝜋 = 1, the Step-I problem can be viewed

as a continuous counterpart of the online ad allocation problem with free disposal studied in [19];

see more details in Appendix C. In such case, we recover the competitive ratio
𝑒

𝑒−1
.

In both cases, our results, allowing 𝜋 ≥ 1, generalize to the online allowance augmentation case,

where we can allocate 𝜋-time more amount of allowance (and subject to the 𝜋-time relaxer rate

limit constraints) than the offline does. And, we show an improved CR of 1/(1 − 𝑒−1/𝜋 )/𝜋 with

𝜋-time augmentation, which tends to one when 𝜋 → ∞, as discussed in Theorem 9.

We also note that Theorem 9 holds for arbitrary increasing and differential concave functions

starting from the origin, not restricted to the revenue functions we consider in set G. This would be

useful for generalizing our approaches to a broader application area with different sets of revenue

functions beyond G, which we will discuss in Sec. 6.
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5.2.3 Competitive analysis of A&P𝑙 (𝜋 ). We first summarize A&P𝑙 (𝜋 ). At each slot 𝑡 , (Step-I) it solves
AAt-A(𝜋 ) to obtain the allowance allocation 𝑎𝑖,𝑡 ,∀𝑖 ∈ [𝑁 ], and (Step-II) determines 𝑣𝑖,𝑡 according

to (25), for all 𝑖 ∈ [𝑁 ].
We then show its performance guarantee off OOIC-M in the following theorem. In particular,

we choose 𝜋 as ln𝜃 + 1.

Theorem 10. The A&P𝑙 (ln𝜃 + 1) algorithm is 1/(1 − 𝑒−1/(ln𝜃+1) )-competitive for OOIC-M.

Proof. We first show the feasibility of A&P𝑙 (ln𝜃 +1). By solving AAt-A(ln𝜃 +1), {𝑎𝑖,𝑡 }𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]
satisfies condition (34) with 𝜋 = ln𝜃 + 1 in Lemma 8. According to Lemma 8, the online solution

satisfies the allowance constraint and rate limit constraint of OOIC-M. Besides, according to

Lemma 7, the online solution is always feasible to OOIC-S𝑖 , i.e., it satisfies the capacity constraint

of OOIC-M. We conclude the online solution ofA&P𝑙 (ln𝜃 + 1) is feasible.
As for the CR, combining Theorem 9 we obtain in Step-I of A&P𝑙 (ln𝜃 + 1) and Lemma 7 in

Step-II, we have that the online objective of A&P𝑙 (ln𝜃 + 1),∑︁
𝑖∈[𝑁 ]

𝜂𝑖,𝑡 ≥
1

ln𝜃 + 1

·
∑︁

𝑖∈[𝑁 ]

˜𝑂𝑃𝑇 𝑖,𝑡 ≥
1

ln𝜃 + 1

𝛼 (ln𝜃 + 1) ·𝑂𝑃𝑇𝑡 = (1 − 𝑒−1/(ln𝜃+1) ) ·𝑂𝑃𝑇𝑡 ,∀𝑡 . (45)

Thus, at the final slot 𝑇 , we also have

∑
𝑖∈[𝑁 ] 𝜂𝑖,𝑇 ≥ (1 − 𝑒−1/(ln𝜃+1) ) ·𝑂𝑃𝑇𝑇 , and we conclude that

A&P𝑙 (ln𝜃 + 1) is (1/(1 − 𝑒−1/(ln𝜃+1) ))-competitive.

□

We note that ln𝜃 + 1 ≤ 1/(1 − 𝑒−1/(ln𝜃+1) ) ≤ ln𝜃 + 2. Thus, compared with the result under the

single-inventory case shown in Theorem 5, Theorem 10 implies that we can achieve a CR with at

most an additive constant (one) for the case with an arbitrary number of inventories. Also, the CR

we achieve for OOIC-M under an arbitrary number of inventories is asymptotically equivalent to

the one under the single-inventory case when 𝜃 → ∞.

5.3 A Simple Algorithm for Small 𝑁
From the design of our divide-and-conquer approach, we note that our online algorithm can allocate

𝜋-time more allowance to the subproblems according to Lemma 8. It reveals that when the number

of the inventory is small (e.g., less than 𝜋 ), the allowance constraint could become redundant in

our design. Leveraging the above insight, we show a simple and optimal online algorithm for

OOIC-M when 𝑁 is relatively small compared with 𝜃 . More specifically, we consider the case that

𝑁 ≤ ln𝜃 + 1. We denote our online algorithm as A&P𝑠 (𝜋 ) with 𝜋 as a parameter to be specified.

A&P𝑠 (𝜋 ) consists of two steps, where the first step is to allocate the allowance, and the second step

is to pursue a 𝜋 performance ratio for each subproblem. In the first step, A&P𝑠 (𝜋 ) determines the

allowance allocation as

𝑎𝑖,𝑡 = 𝛿𝑖,𝑡 . (46)

In the second step, for each OOIC-S𝑖 , it chooses 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) as 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ). We note that in such case

OOIC-S𝑖 reduces to the single inventory problem we discuss in Sec. 4. The A&P𝑠 (𝜋 ) determines

the online solution running CR-Pursuit(𝜋 ). That is, it chooses 𝑣𝑖,𝑡 such that

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) =
1

𝜋
(𝑂𝑃𝑇𝑖,𝑡 −𝑂𝑃𝑇𝑖,𝑡−1), (47)

where 𝑂𝑃𝑇𝑖,𝑡 is the optimal objective of OOIC-S𝑖 given {𝑎𝑖,𝜏 }𝜏 ∈[𝑡 ] and {𝑔𝑖,𝑡 (·)}𝜏 ∈[𝑡 ] at slot 𝑡 .

Theorem 11. The A&P𝑠 (ln𝜃 + 1) is (ln𝜃 + 1)-competitive when 𝑁 ≤ ln𝜃 + 1.
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Proof. We first check the feasibility of A&P(ln𝜃 + 1). The rate limit constraints and inventory

constraints are directly guaranteed by the second step of A&P(ln𝜃 + 1), where we run the CR-
Pursuit(ln𝜃 + 1) (as shown in Theorem 5). We then check the allowance constraints. For any 𝑡 , we

have ∑︁
𝑖

𝑣𝑖,𝑡 ≤
∑︁
𝑖

1

ln𝜃 + 1

· 𝑎𝑖,𝑡 =
∑︁
𝑖

1

ln𝜃 + 1

· 𝛿𝑖,𝑡 ≤
1

ln𝜃 + 1

𝑁 · 𝐴𝑡 ≤ 𝐴𝑡 . (48)

Recall that we have 𝑣𝑖,𝑡 ≤ 𝑎𝑖,𝑡/(ln𝜃 + 1) according to Lemma 2, and without loss of generality, we

consider 𝛿𝑖,𝑡 ≤ 𝐴𝑡 , as discussed in Sec. 3.

We then show the performance analysis of the algorithm. It is clear that at each slot 𝑡 , we have∑︁
𝑖

𝑂𝑃𝑇𝑖,𝑡 ≥ 𝑂𝑃𝑇𝑡 ,∀𝑡 . (49)

where 𝑂𝑃𝑇𝑡 is the optimal objective of OOIC-M at slot 𝑡 . This is because
∑

𝑖 𝑂𝑃𝑇𝑖,𝑡 equals the

optimal objective of OOIC-M at slot 𝑡 without the allowance constraint. Then, we have the online

objective ∑︁
𝑖,𝑡

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) =
1

ln𝜃 + 1

∑︁
𝑖

𝑂𝑃𝑇𝑖,𝑇 ≥ 1

ln𝜃 + 1

𝑂𝑃𝑇𝑇 . (50)

Thus, A&P(ln𝜃 + 1) is (ln𝜃 + 1)-competitive. □

Theorem 11 shows that when the total number of inventories is relatively small compared with

the uncertainty range of the revenue functions (i.e., 𝜃 ), we can reduce the multiple inventory

problem to the single inventory case with the same performance guarantee.

5.4 Summary of Our Proposed Online Algorithm

Algorithm 1: A&P(𝜋 ) Algorithm

1: At slot 𝑡 , {𝑔𝑖,𝑡 (·)}𝑖∈[𝑁 ] , 𝐴𝑡 , and {𝛿𝑖,𝑡 }𝑖∈[𝑁 ] are revealed,
2: if 𝑁 ≤ 𝜋 then
3: Run A&P𝑠 (𝜋 ), i.e., determine 𝑎𝑖,𝑡 = 𝛿𝑖,𝑡 as in (46)

and determine 𝑣𝑖,𝑡 according to (47), for all 𝑖 ∈ [𝑁 ],
4: return {𝑣𝑖,𝑡 }𝑖∈[𝑁 ] .
5: else
6: Run A&P𝑙 (𝜋 ):
7: Step-I: solve AAt-A(𝜋 ) to obtain the allowance allocation 𝑎𝑖,𝑡 ,∀𝑖 ∈ [𝑁 ],
8: Step-II: determine 𝑣𝑖,𝑡 according to (25), for all 𝑖 ∈ [𝑁 ],
9: return {𝑣𝑖,𝑡 }𝑖∈[𝑁 ] .
10: end if

In this section, we summarize our online algorithm, denoted as A&P(𝜋 ), and provide its perfor-

mance analysis. An illustration of our approach and results is provided in Fig. 1. We also compare

our results with existing ones in Fig 2.

The pseudocode of A&P(𝜋 ) is provided in Algorithm 1. Depending on the value of 𝑁 and 𝜃 , we

run either A&P𝑠 (𝜋 ) or A&P𝑙 (𝜋 ). The CR of our online algorithm is shown in the following theorem.

Theorem 12. Our online algorithm A&P(ln𝜃 + 1) achieves the following CR,

CR1 (𝐴&𝑃 (ln𝜃 + 1)) =
{

ln𝜃 + 1, 𝑁 ≤ ln𝜃 + 1

1/(1 − 𝑒−1/(ln𝜃+1) ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(51)
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Theorem 12 simply combines the results we show in Theorem 11 and Theorem 10. The CR we

obtain is tight and optimal when 𝑁 is smaller than ln𝜃 + 1. This also recovers the results for the

single inventory case discussed in Sec. 4 and [22]. It is within an additive constant of one to the

lower bound when 𝑁 is larger than ln𝜃 + 1. When 𝜃 = 1, our problem reduces to maximizing

total allocation, and our result recovers the optimal CR 𝑒/(𝑒 − 1) achieved in [23, 24]. In [26], the

authors show a CR that is within [ln𝜃 + 1, 1/(1 − 𝑒−1/(ln𝜃+1) )], independent of 𝑁 , and consistently

lower than the one achieved in [22]. They also show that the CR they achieve is tight when 𝑁

tends to infinity. While our achieved CR at large 𝑁 is worse than [26], the gap between them is no

greater than an additive constant of one. In addition, we achieve a better (and optimal) CR when 𝑁

is small. We provide an illustration of the CRs achieved by [22, 26] and ours in Fig. 2.
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Fig. 2. The competitive ratios as a function of 𝜃 achieved by OR’20 [26], POMACS’21 [22], and this paper,
under the setting of 𝑁 = 3.

5.5 Numerical Comparison with State-of-the-art

Online Revenue Online-to-Offline Ratio CR (or CR bound)

POMACS’21 [22] 7.020 3.191 3.670

OR’20 [26] 7.223 3.102 3.213

This paper 7.463 3.002 3.015

Table 3. The online-to-offline performance ratios of a particular input achieved by OR’20 [26], PO-
MACS’21 [22], and this paper, under the setting of 𝑁 = 3, 𝜃 = 7.5, and 𝑇 = 200. For this input, the
performance ratios achieved by OR’20 [26] and POMACS’21 [22] are already higher than the optimal CR
ln𝜃 + 1 ≈ 3.015. This implies that their achieved competitive ratios are sub-optimal in general.

As discussed in Sec. 5.4, the performance guarantee of our algorithm consists of two parts

depending on the relative value of the number of inventories, 𝑁 , and the parameter representing

the level of revenue function uncertainty, 𝜃 . Here, we provide understandings of the performance

of the state-of-the-art and our proposed algorithm in the above two cases. In our evaluation, we

consider a scenario that the online decision maker has 𝑁 = 3 inventories, each with a capacity

𝐶𝑖 = 1,∀𝑖 . We fix the minimum marginal revenue of the revenue function as 𝑝min = 1.
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We first consider the case where ln𝜃 +1 ≥ 𝑁 . Specifically, we choose 𝑝max = 7.5, and thus 𝜃 = 7.5

with ln𝜃 + 1 ≈ 3.015. We fix the allowance allocation and rate limits to be one at each slot. We set

the revenue functions among a period of 𝑇 = 200 slots as linear functions with slopes increasing

uniformly from 𝑝min to 𝑝max. The results are illustrated in Table. 3. We observe that, for this input,

the performance ratios achieved by OR’20 [26] and POMACS’21 [22] are already higher than the

optimal CR ln𝜃 + 1 ≈ 3.015. This implies that their achieved competitive ratios are sub-optimal

when the input uncertainty of the revenue functions is large.

We then discuss the case when 𝜃 is relatively small where we set 𝑝max = 5, and thus 𝜃 = 5 with

ln𝜃 + 1 ≈ 2.609. We set the revenue functions among a period of 𝑇 = 150 slots as linear functions,

the slopes of which are shown in Fig. 3a. The rate limits are randomly generated from [0, 1], and
the allowances are randomly generated from [0, 3] for each slot (c.f. Fig. 3b). We compare our

algorithm with OR’20 [26] and illustrate the revenue per slot and the accumulated revenue of the

two algorithms in Fig. 3c. We observe that our algorithm is more conservative at the beginning,

waiting for larger prices later. In contrast, OR’20 [26] uses the inventories more aggressively. The

aggressive behavior of OR’20 leads to less remaining capacity at the end when high prices come.

Meanwhile, the conservative decisions of our method at the beginning reward us with more capacity

for higher prices and make our algorithm outperform state-of-the-art for this case. We understand

that this is because the CR-Pursuit framework we apply in each subproblem maintains the online-

to-offline ratio directly, while the primal-and-dual framework maintains the ratio between the

online value to a dual one. As the dual value is an upper bound on the optimal offline optimal, the

primal-and-dual framework tends to allocate the inventory more aggressively.

According to [21], due to the conservative nature of the CR-Pursuit algorithm, i.e., it stops

allocating inventory as long as it achieves a fraction of 1/𝜋 revenue of the offline optimal, it may

leave some inventory unutilized and fail to further increase the total revenue under non-worst case

input. Here we also have a similar observation. In our second experiment, when the scopes of the

linear functions are large at the beginning (instead of increasing slowly as in Fig. 3a), our algorithm

tends to perform worse than the state-of-the-art ones. This motivates us to consider going beyond

the worst-case analysis and providing improved average performance by utilizing the unallocated

amount without sacrificing the worst-case guarantee, which we leave as future work.

6 EXTENSION TO GENERAL CONCAVE REVENUE FUNCTION
In addition to the set of revenue functions G we discussed above, our divide-and-conquer approach

can be applied under a broader range of functions with corresponding applications. For example,

we widely observe the logarithmic functions (e.g., log(𝑣 + 1)) in wireless communication [33, 34],

which is not covered by the revenue function set G when considering sufficiently large capacity.

Also, the revenue functions in the application of one-way trading with price elasticity [21]. In

general, let us consider a given set of concave revenue functions with zero value at the origin;

say
˜G. We define Φ�̃� (1) as the maximum online total allocation of running CR-Pursuit(1) under

revenue functions
˜G in the single inventory case (as defined in (17) with 𝜋 = 1). It represents the

maximum capacity we require to maintain the same performance of the offline optimal at all times.

We have the following results for the OOIC-M under the set of revenue functions
˜G.

Proposition 13. Suppose we can find �̃� such that for OOIC-S, we have

Φ�̃� (1) ≤ �̃� ·𝐶. (52)
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Fig. 3. Numerical comparison between this paper and OR’20 [26] for 𝜃 = 5, 𝑁 = 3, 𝑇 = 150 with different
price sequences and rate limits.

We can run the A&P(�̃� ) for OOIC-M under ˜G. The competitive ratio of A&P(�̃� ) is given by,

CR�̃� (A&P(�̃� )) =
{
�̃�, 𝑁 ≤ �̃�,

1/(1 − 𝑒−1/�̃� ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(53)

The proof follows the same idea as discussed in Sec. 5 and is omitted here. When �̃� < 𝑁 ,

we simply recover Lemma 7 with the condition (52). Together with Theorem 9, we show the

results in (53) when �̃� ≥ 𝑁 . As for the case �̃� < 𝑁 , we can recover Theorem 11 by noting that

Φ ˜G (�̃�) ≤
1

�̃�
Φ ˜G (1) ≤ 𝐶 (due to the concavity of the revenue functions), i.e., CR-Pursuit(�̃� ) is feasible

and �̃�-competitive for OOIC-S.
For example, we can consider the one-way trading with price elasticity problem with multiple

inventories, where the single-inventory case is proposed in [21]. More specifically, we consider the

following type of revenue function, which we denote as
ˆG.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 36. Publication date: June 2022.



Competitive Online Optimization with Multiple Inventories: A Divide-and-Conquer Approach 36:19

• 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) =
(
𝑝𝑖,𝑡 − 𝑞𝑖,𝑡 (𝑣𝑖,𝑡 )

)
· 𝑣𝑖,𝑡 , 𝑣𝑖,𝑡 ∈ [0, 𝛿𝑖,𝑡 ], where 𝑞𝑖,𝑡 (·) is a convex increasing function

with 𝑞𝑖,𝑡 (0) = 0 and 𝑝𝑖,𝑡 ∈ [𝑝min, 𝑝max]. 1

The revenue functions in
ˆG consider that the price of selling (allocating) the inventory decreases

as the supply (allocation) increases, which follows the basic law of supply and demand in microeco-

nomics. In particular, the price elasticity is captured by a convex increasing function 𝑞𝑖,𝑡 (·), meaning

that more supply would further decrease the price. The marginal revenue of the revenue function

in
ˆG is bounded between 𝑝min and 𝑝max only at the origin and could even be zero otherwise. It

implies that problem OOIC-M under
ˆG is not covered by [22]. Also, it can not be directly mapped

to the discrete counterpart in [26], as we know when items in [26] could take values between 0 and

𝑝max, there is no finite competitive ratio for the problem. According to Lemma 15 in [21] (while

it does not consider rate limit constraint, we can check that the proof simply follows with limit

constraint), we have

Φ�̂� (1) ≤ 2 · (ln𝜃 + 1) ·𝐶. (54)

For OOIC-M under revenue function set,
ˆG, we have

Proposition 14. A&P(2 · (ln𝜃 + 1)) achieves the following competitive ratio for OOIC-M under
revenue function set ˆG,

CR ˆG (𝐴&𝑃 (2 · (ln𝜃 + 1))) =
{

2 · (ln𝜃 + 1), 𝑁 ≤ 2 · (ln𝜃 + 1),
1/(1 − 𝑒−1/(2· (ln𝜃+1) ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(55)

The CR we achieve is upper bounded by 2 ln𝜃 + 3, which is up to a constant factor multiplying

the lower bound ln𝜃 + 1. This provides the first CR of the OOIC-M under revenue function set
ˆG

with application to the one-way trading with price elasticity under the multiple-inventory scenario.

It is interesting to see whether we can fine a tiger bound on Φ ˆG (1) and achieve a better competitive

ratio. In addition, while the determination of Φ�̃� (1) could be problem-specific, how we can show a

general way for it would be another interesting future direction.

7 CONCLUDING REMARKS
In this work, we study the competitive online trading problem with multiple inventories, OOIC-M.

The online decision maker allocates or trades the capacity-limited inventories to maximize the

overall revenue, while the revenue functions and the allocation constraints at each slot come in

an online manner. Our key result is a divide-and-conquer approach that reduces the multiple-

inventory problem to solving multiple calibrated single-inventory problems. We optimize the

allowance allocation among the subpoblems and combine their solutions. In particular, we show

that the competitive ratio our approach achieves is optimal when 𝑁 is small and is within an

additive constant to the lower bound when 𝑁 is larger, when considering gradient bounded revenue

functions. We also provide a general condition for applying our approach to broader applications

with different interesting sets of revenue functions. In particular, for revenue functions that appear

in one-way trading with price elasticity, our approach obtains an optimal CR for the problem that

is up to a constant factor to the lower bound. As a by-product, we also provide the first allowance

augmentation results for the online fractional matching problem and the online fraction allocation

problem with free disposal. As a future direction, we are interested in how our divide-and-conquer

approach can be used to solve other online optimization problems with multi-entity and how to

apply it in more application scenarios.

1
There exist an 𝑣 (may be infinity) such the function 𝑔𝑖,𝑡 ( ·) is increasing in [0, 𝑣 ] and decreasing in [𝑣,∞]. We only need

to consider the case that 𝛿𝑖,𝑡 ≤ 𝑣 as no reasonable algorithm would allocate more than 𝑣 at 𝑔𝑖,𝑡 ( ·) . Thus, we consider that
𝑔𝑖,𝑡 ( ·) is increasing in [0, 𝛿𝑖,𝑡 ].
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APPENDIX
A PROOF OF PROPOSITION 1
Our proof follows the well-established online primal-and-dual approach [13, 22, 26, 28], etc.

We note that according to Appendix E of [26]. The threshold function is increasing and satisfies

the following conditions.

𝐶𝑖𝜙
′
𝑖 (𝑤) − 𝜙𝑖 (𝑤) ≤ 𝑝min (𝜒 − 1), 𝑤 ∈ (0, 𝜒 ·𝐶𝑖 ); (56)

𝐶𝑖𝜙
′
𝑖 (𝑤) − 𝜒 · 𝜙𝑖 (𝑤) ≤ 0, 𝑤 ∈ (𝜒 ·𝐶𝑖 ,𝐶𝑖 ). (57)

Accordingly, it simply implies that

𝐶𝑖𝜙𝑖 (𝑤) −
∫ 𝑤

0

𝜙𝑖 (𝑤)𝑑𝑤 ≤ 𝑝min (𝜒 − 1) ·𝑤, 𝑤 ∈ (0, 𝜒 ·𝐶𝑖 ); (58)

𝐶𝑖𝜙𝑖 (𝑤) −
∫ 𝑤

0

𝜙𝑖 (𝑤) ≤ (𝜒 − 1) ·
(
𝑝𝑚𝑖𝑛 · 𝜒 ·𝐶𝑖 +

∫ 𝑤

𝜒 ·𝐶𝑖

𝜙𝑖 (𝑤)𝑑𝑤
)
, 𝑤 ∈ (𝜒 ·𝐶𝑖 ,𝐶𝑖 ). (59)

In the primal-and-dual framework, it applies the dual problem as a baseline for the offline optimal.

The dual problem of OOIC-M at slot 𝑇 ,

Dual-OOIC-M : min

∑︁
𝑖,𝑡 ∈[𝑇 ]

ℎ𝑖,𝑡 (𝛼𝑖 + 𝛽𝑡 ) +
∑︁
𝑖

𝐶𝑖𝛼𝑖 +
∑︁
𝑡

𝐴𝑡𝛽𝑡 (60)

s.t. 𝛼𝑖 ≥ 0, 𝛽𝑡 ≥ 0,∀𝑡, 𝑖, (61)
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where

ℎ𝑖,𝑡 (𝜆) = max

0≤𝑣≤𝛿𝑖,𝑡
𝑔𝑖,𝑡 (𝑣) − 𝜆 · 𝑣 . (62)

We denote the online solution of the algorithm as 𝑣𝑖,𝑡 , which is the optimal solution to the

problem (P&D) in (8). Recall that𝑤𝑖,𝑡 is the online total allocation of the algorithm from slot 1 to

slot 𝑡 , i.e.,

𝑤𝑖,𝑡 =

𝑡∑︁
𝜏=1

𝑣𝑖,𝜏 . (63)

At each slot 𝑡 , we denote the optimal dual solution of the problem (P&D) in (8) associated with

constraint (9) as
ˆ𝛽𝑡 . Note that according to KKT conditional, we have

ˆ𝛽𝑡 · (
∑︁

𝑖∈[𝑁 ]
𝑣𝑖,𝑡 −𝐴𝑡 ) = 0. (64)

We consider the following dual solution,

𝛼𝑖 = 𝜙𝑖 (𝑤𝑖,𝑇 ),∀𝑖; 𝛽𝑡 = ˆ𝛽𝑡 ,∀𝑡 ∈ [𝑇 ] . (65)

We note that the dual variable satisfies the dual constraint (61). Then, we have

𝑂𝑃𝑇𝑇 ≤
∑︁

𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]
ℎ𝑖,𝑡 (𝛼𝑖 + 𝛽𝑡 ) +

∑︁
𝑖∈[𝑁 ]

𝐶𝑖𝛼𝑖 +
∑︁
𝑡 ∈[𝑇 ]

𝐴𝑡𝛽𝑡 (66)

=
∑︁

𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]
ℎ𝑖,𝑡 (𝜙𝑖 (𝑤𝑖,𝑇 ) + ˆ𝛽𝑡 ) +

∑︁
𝑖∈[𝑁 ]

𝐶𝑖𝜙𝑖 (𝑤𝑖,𝑇 ) +
∑︁
𝑡 ∈[𝑇 ]

𝐴𝑡
ˆ𝛽𝑡 (67)

(𝑎)
≤

∑︁
𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]

ℎ𝑖,𝑡 (𝜙𝑖 (𝑤𝑖,𝑡 ) + ˆ𝛽𝑡 ) +
∑︁

𝑖∈[𝑁 ]
𝐶𝑖𝜙𝑖 (𝑤𝑖,𝑇 ) +

∑︁
𝑡 ∈[𝑇 ]

𝐴𝑡
ˆ𝛽𝑡 (68)

(𝑏)
≤

∑︁
𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]

[
𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) − (𝜙𝑖 (𝑤𝑖,𝑡 ) + ˆ𝛽𝑡 )𝑣𝑖,𝑡

]
+

∑︁
𝑖∈[𝑁 ]

𝐶𝑖𝜙𝑖 (𝑤𝑖,𝑇 ) +
∑︁
𝑡 ∈[𝑇 ]

𝐴𝑡
ˆ𝛽𝑡 (69)

(𝑐)
=

∑︁
𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]

[
𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) − 𝜙𝑖 (𝑤𝑖,𝑡 )𝑣𝑖,𝑡

]
+

∑︁
𝑖∈[𝑁 ]

𝐶𝑖𝜙𝑖 (𝑤𝑖,𝑇 ) (70)

(𝑑)
≤

∑︁
𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) +
∑︁

𝑖∈[𝑁 ]

[
𝐶𝑖𝜙𝑖 (𝑤𝑖,𝑇 ) −

∫ 𝑤𝑖,𝑇

0

𝜙𝑖 (𝑤)𝑑𝑤
]

(71)

(𝑒)
≤ 𝜒 ·

∑︁
𝑖∈[𝑁 ],𝑡 ∈[𝑇 ]

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ), (72)

where (a) is due to the non-decreasing of 𝜙𝑖 (·) and ℎ𝑖,𝑡 (·) defined in (62); (b) is due to 𝑣𝑖,𝑡 is the

optimal solution to (62) when 𝜆 = 𝜙𝑖 (𝑤𝑖,𝑡 ) + ˆ𝛽𝑡 by checking that the KKT conditions of the problem

(P&D) in (8); (c) is according to (64); (d) is according to 𝜙𝑖 (𝑤𝑖,𝑡 )𝑣𝑖,𝑡 ≥
∫ 𝑤𝑖,𝑡

𝑤𝑖,𝑡−𝑣𝑖,𝑡
𝜙𝑖 (𝑤)𝑑𝑤 ; (e) is by the

fact that

𝐶𝑖𝜙𝑖 (𝑤𝑖,𝑇 ) −
∫ 𝑤𝑖,𝑇

0

𝜙𝑖 (𝑤)𝑑𝑤 ≤ (𝜒 − 1)
∑︁
𝑡 ∈[𝑇 ]

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ). (73)

We show (73) in the following. When𝑤𝑖,𝑇 ≤ 𝜒 ·𝐶𝑖 , it directly follows (58) and

∑
𝑡 ∈[𝑇 ] 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) ≥

𝑝𝑚𝑖𝑛 ·𝑤𝑖,𝑇 . When𝑤𝑖,𝑇 ≥ 𝜒 ·𝐶𝑖 , it follows (59) and that∑︁
𝑡 ∈[𝑇 ]

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) ≥ 𝑝min · 𝜒 ·𝐶𝑖 +
∫ 𝑤𝑖,𝑇

𝜒 ·𝐶𝑖

𝜙𝑖 (𝑤)𝑑𝑤 (74)
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by the fact that if 𝑣𝑖,𝑡 > 0,

𝑔′𝑖,𝑡 (𝑣) ≥ 𝑚𝑎𝑥{𝑝min, 𝜙𝑖 (𝑤𝑖,𝑡−1 + 𝑣)},∀𝑣 ≤ 𝑣𝑖,𝑡 . (75)

(75) is due to that 𝑔′𝑖,𝑡 (𝑣𝑖,𝑡 ) ≥ 𝑚𝑎𝑥{𝑝min, 𝜙𝑖 (𝑤𝑖,𝑡 )}, which follows the concavity of 𝑔𝑖,𝑡 (·), non-
decreasing property of 𝜙𝑖 (·), and 𝑔′𝑖,𝑡 (𝑣𝑖,𝑡 ) ≥ 𝜙𝑖 (𝑤𝑖,𝑡 ), if 𝑣𝑖,𝑡 > 0 by the KKT condition of (P&D)
in (8).

B PROOF OF LEMMA 4
We first consider a new class of revenue function,

• 𝑔𝑡 (𝑣𝑡 ) is concave, increasing and differentiable with 𝑔𝑡 (0) = 0;

• 𝑔′ (0)
𝑔𝑡 (𝛿𝑡 )/𝛿𝑡 ≤ 𝜉 ;

• 𝑔′𝑡 (0) ∈ [𝑝min, 𝑝max].
where 𝜉 is a given parameter. We denote this class of revenue function as Class𝜉 . We can generalize

the results (Theorem 8) in [21] by taking the rate limit constraint into consideration and obtain the

following proposition

Proposition 15. For Class𝜉 revenue function, we have

Φ𝜉 (𝜋) ≤ 𝜉 · (ln𝜃 + 1) · 𝐶
𝜋
. (76)

We omit the detailed proof here as it is by simply checking the proof in [21] step-by-step when

considering revenue function 𝑔𝑡 (𝑣𝑡 ) defined over 𝑣𝑡 ∈ [0, 𝛿𝑡 ] instead of 𝑣𝑡 ∈ [0,𝐶].
We now turn to the proof of Lemma 4.

Proof of Lemma 4. We prove the lemma by showing that for any 𝜖 > 0, Φ1 (𝜋) ≤ (1 + 𝜖) (ln𝜃 +
1) ·𝐶/𝜋 .

For any function 𝑔𝑡 (𝑣𝑡 ), 𝑣𝑡 ∈ [0, 𝛿𝑡 ], we can construct a sequence of functions as follows. We

begin by finding the maximum 𝑣 (1) ≤ 𝛿𝑡 such that 𝑔′𝑡 (𝑣 (1) ) ≥ 𝑔′𝑡 (0)/(1 + 𝜖). We define 𝑔
(1)
𝑡 (𝑣) =

𝑔𝑡 (𝑣), 𝑣 ∈ [0, 𝑣 (1) ]. We then find the maximum 𝑣 (2) ≤ 𝛿𝑡 such that 𝑔′𝑡 (𝑣 (2) ) ≥ 𝑔′𝑡 (𝑣 (1) )/(1 + 𝜖).
We define 𝑔

(2)
𝑡 (𝑣) = 𝑔𝑡 (𝑣 (1) + 𝑣) − 𝑔𝑡 (𝑣 (1) ), 𝑣 ∈ [0, 𝑣 (2) − 𝑣 (1) ]. We continue the steps until we

arrive at 𝛿𝑡 . Suppose in total there are 𝑘𝑡 functions we construct, and they are {𝑔 (𝑖) (𝑣)}𝑖∈𝑘𝑡 , where
𝑔 (𝑖) (𝑣) = 𝑔𝑡 (𝑣 (𝑖−1) + 𝑣) − 𝑔𝑡 (𝑣 (𝑖−1) ), 𝑣 ∈ [0, 𝑣 (𝑖) − 𝑣 (𝑖−1) ]. Also, 𝑣 (𝑘) = 𝛿𝑡 . We can easily check that

{𝑔 (𝑖) (𝑣)}𝑖∈𝑘𝑡 belongs to Class𝜉=1+𝜖 .
For any 𝜎 ∈ Σ, suppose there is a revenue function 𝑔𝑡 (𝑣𝑡 ) not belonging to Class𝜉=1+𝜖 , we can

construct {𝑔 (𝑖) (𝑣)}𝑖∈𝑘𝑡 following the above procedure and replace 𝑔𝑡 (𝑣𝑡 ) in 𝜎 . We denote the new

input as �̃� . We can show that the replacement will not decrease the total allocation of CR-Pursuit(𝜋 ),
We note that the output of CR-Pursuit(𝜋 ) does not change at 𝜏 ≠ 𝑡 as the venue function and

increment of the optimal objective remains the same at those slots. Thus it is sufficient to show that

𝑣𝑡 ≤
𝑘𝑡∑︁
𝑖=1

𝑣
(𝑖)
𝑡 , (77)

where 𝑣𝑡 is the output of CR-Pursuit(𝜋 ) under𝜎 at slot 𝑡 and 𝑣
(𝑖)
𝑡 is the output of CR-Pursuit(𝜋 ) under

�̃� at function 𝑔
(𝑖)
𝑡 (·), for 𝑖 ∈ [𝑘𝑡 ]. Following the CR-Pursuit(𝜋 ) algorithm, we have

𝑔𝑡 (𝑣𝑡 ) =
1

𝜋
(𝑂𝑃𝑇 (𝑡) −𝑂𝑃𝑇 (𝑡 − 1)) =

𝑘𝑡∑︁
𝑖=1

𝑔
(𝑖)
𝑡 (𝑣 (𝑖)𝑡 ). (78)
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According to our construction and concavity of 𝑔𝑡 (·), we have

𝑘𝑡∑︁
𝑖=1

𝑔
(𝑖)
𝑡 (𝑣 (𝑖)𝑡 ) =

𝑘𝑡∑︁
𝑖=1

[
𝑔𝑡 (𝑣 (𝑖−1) + 𝑣

(𝑖)
𝑡 ) − 𝑔𝑡 (𝑣 (𝑖−1) )

]
(79)

(𝑎)
≤

𝑘𝑡∑︁
𝑖=1

[
𝑔𝑡 (

𝑖−1∑︁
𝑗=1

𝑣
( 𝑗)
𝑡 + 𝑣

(𝑖)
𝑡 ) − 𝑔𝑡 (

𝑖−1∑︁
𝑗=1

𝑣
( 𝑗)
𝑡 )

]
(80)

= 𝑔𝑡 (
𝑘𝑡∑︁
𝑖=1

𝑣
(𝑖)
𝑡 ), (81)

where (a) is due to the concavity of 𝑔𝑡 (·) and the fact that

∑𝑖−1

𝑗=1
𝑣
( 𝑗)
𝑡 ≤ ∑𝑖−1

𝑗=1
(𝑣 ( 𝑗) − 𝑣 ( 𝑗−1) ) ≤

𝑣 (𝑖−1) ,∀𝑖 ∈ [𝑡𝑘 ]. Thus, we have 𝑔𝑡 (𝑣𝑡 ) ≤ 𝑔𝑡 (
∑𝑘𝑡

𝑖=1
𝑣
(𝑖)
𝑡 ) and conclude (77).

This directly implies that we can replace all functions by a sequence of Class𝜉=1+𝜖 functions
without decreasing the total allocation of CR-Pursuit(𝜋 ). Thus, Φ(𝜋) ≤ Φ𝜉=1+𝜖 (𝜋) ≤ (1+𝜖) · (ln𝜃 +
1) ·𝐶/𝜋,∀𝜖 > 0. And, we conclude Φ(𝜋) ≤ (ln𝜃 + 1) ·𝐶/𝜋

□

C RELATION BETWEEN STEP-I AND THE FREE DISPOSAL MODEL
In the following, we first introduce the free disposal discussed in [19]. We then discuss how the

Step-I problem relates to the free disposal model discussed in the online advertisement allocation

problem [19].

In [19], the authors study the problem that the online decisionmaker allocates the ads impressions

to a fixed group of advertisers. Each advertiser has a contract for a given number of impressions;

say 𝑐𝑖 for advertiser 𝑖 . At each time, an impression appears, together with a set of weighted edges

between the impression and the advertisers. Only when the advertiser is interested in the impression,

there is an edge between them, and the weight of an edge represents the value of such impression

to the advertiser. The goal is to maximize the total weight of the allocation. The authors consider a

free disposal model that it allows the online decision maker to allocate more impressions than the

number in the contract (i.e., 𝑐𝑖 ) to advertisers. But the value of the allocation for any advertiser

𝑖 achieves only consists of the most valuable 𝑐𝑖 impressions allocated to advertiser 𝑖 . An online

algorithm aims to find an allocation that achieves a close total value to the offline optimal.

When restricting to linear revenue functions and fixing 𝜋 = 1, the Step-I problem can be viewed as

a continuous (fractional) counterpart of the above online ad allocation problem with free disposal.

First, two problems are both optimal allocation problems among a fixed group of inventories

(cf. advertisers) subjecting to capacity constraints (cf. number of impressions in the contract),

allowance constraints (cf. one impression per time), and rate limit constraints (cf. existence of

an edge between an impression and an advertiser). Second, the online decision maker shares the

same design goal under both problems. The goal is to find an online allowance allocation such that

the sum of the optimal objectives of the subproblems (given the allocated allowance), defined in

OOIC-S𝑖 , i.e., ˜𝑂𝑃𝑇 𝑖,𝑡 ,∀𝑖 ∈ [𝑁 ], is close to the offline optimal of OOIC-M. In the linear function

case, 𝑔𝑖,𝑡 (·) ≡ 𝑔𝑖,𝑡 (·). Thus, the optimal objective of the subproblem 𝑖 equals the optimal revenue

of the inventory 𝑖 (given the allocated allowance), for all 𝑖 , which corresponds to the value of an

advertiser in [19]. That is, while the total allowance we allocate to inventory 𝑖 may exceed its

capacity 𝐶𝑖 , but the total revenue of inventory 𝑖 , ˜𝑂𝑃𝑇 𝑖,𝑡 , is the total value of the most valuable 𝐶𝑖

amount among all the allocated allowance to inventory 𝑖 . Third, with 𝜋 = 1, the online decision

maker in Step-I can allocate the same amount of allowance (and subject to the same rate limit
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constraints) as the offline optimal does, which is the same as the setting of the online problem with

free disposal studied in [19].

Here, we generalize the problems to the allowance augmentation scenario that compared with

the offline optimal, the online decision maker can allocate 𝜋-time more allowance (and subject to a

𝜋-time relaxer rate limit constraint) at each slot, as we state in Lemma 8.

In terms of analysis results, we recover the competitive ratio
𝑒

𝑒−1
when there is no allowance

augmentation, i.e., 𝜋 = 1. Further allowing 𝜋 ≥ 1, Our results generalize to the online allowance

augmentation case, and we show an improved CR of 1/(1 − 𝑒−1/𝜋 )/𝜋 with 𝜋-time augmentation,

which tends to one when 𝜋 → ∞, as discussed in Theorem 9.

D PROOF OF THEOREM 9
We first show a useful proposition.

Proposition 16. Ψ𝑖,𝑡 (𝑎) is non-decreasing in 𝑎.

Proof. By integration by parts,∫ 𝑐𝑖

0

𝑓𝑖 (𝑥)
𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)

𝜕𝑥
𝑑𝑥 =

∫ 𝑐𝑖

0

𝑓𝑖 (𝑥)𝑑𝐺𝑖,𝑡 (𝑥, 𝑎) (82)

= 𝑓𝑖 (𝑥) ·𝐺𝑖,𝑡 (𝑥, 𝑎)
��𝐶𝑖

0
− 1

𝜋 ·𝐶𝑖

∫ 𝐶𝑖

0

𝑓𝑖 (𝑥)𝐺𝑖,𝑡 (𝑥, 𝑎) 𝑑𝑥 (83)

=𝑓𝑖 (𝐶𝑖 )𝐺𝑖,𝑡 (𝐶𝑖 , 𝑎) −
1

𝜋 ·𝐶𝑖

∫ 𝐶𝑖

0

𝑓𝑖 (𝑥)𝐺𝑖,𝑡 (𝑥, 𝑎) 𝑑𝑥 (84)

=Ψ𝑖,𝑡 (𝑎). (85)

And according to the sensitivity analysis of the optimization problem defining𝐺𝑖,𝑡 (𝑥, 𝑎), we have

𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)
𝜕𝑥

= 𝜂∗ . (86)

where 𝜂∗ is the optimal dual variable associated with constraint (41). We can check that 𝜂∗ is
non-decreasing in 𝑎 by the KKT condition, and thus Ψ𝑖,𝑡 (𝑎) is non-decreasing in 𝑎. □

Proof of Theorem 9. We adapt the primal-and-dual framework [13, 19] to prove the theorem.

We begin with the revenue increment of our algorithm AAt(𝜋 )-A at slot 𝑡 , denoted as Δ𝑃 . According
to (40),

Δ𝑃 ≜
∑︁
𝑖

(
˜𝑂𝑃𝑇 𝑖,𝑡 − ˜𝑂𝑃𝑇 𝑖,𝑡−1

)
=

∑︁
𝑖

(
𝐺𝑖,𝑡 (𝐶𝑖 , 𝑎𝑖,𝑡 ) −𝐺𝑖,𝑡 (𝐶𝑖 , 0)

)
. (87)

We note that the optimal solution of AAt(𝜋 )-A satisfies the KKT condition,

𝑔′𝑖,𝑡 (𝑎𝑖,𝑡 ) − Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) − ˜𝛽𝑡 − 𝛾𝑖,𝑡 + �̃�𝑖,𝑡 = 0,∀𝑖 (88)

˜𝛽𝑡

(∑︁
𝑖

𝑎𝑖,𝑡 − 𝜋 · 𝐴𝑡

)
= 0, (89)

�̃�𝑖,𝑡 · 𝑎𝑖,𝑡 = 0,∀𝑖, (90)

𝛾𝑖,𝑡
(
𝑎𝑖,𝑡 − 𝜋 · 𝛿𝑖,𝑡

)
= 0,∀𝑖, (91)

where
˜𝛽𝑡 ≥ 0 and �̃�𝑖𝑡 ≥ 0, 𝛾𝑖𝑡 ≥ 0,∀𝑖 are dual variables corresponding to constraints (36) and (37).
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We first write down the dual problem of OOIC-M at slot 𝑡 ,

Dual-OOIC-M : min

∑︁
𝑖,𝜏 ∈[𝑡 ]

ℎ𝑖,𝜏 (𝛼𝑖 + 𝛽𝜏 ) +
∑︁
𝑖

𝐶𝑖𝛼𝑖 +
∑︁
𝜏

𝐴𝜏𝛽𝜏 (92)

s.t. 𝛼𝑖 ≥ 0, 𝛽𝑡 ≥ 0,∀𝑡, 𝑖, (93)

where

ℎ𝑖,𝜏 (𝜆) = max

0≤𝑣≤𝛿𝑖,𝜏
𝑔𝑖,𝜏 (𝑣) − 𝜆 · 𝑣 . (94)

We compare our online increment with the following dual solution. At slot 𝑡 , we update the dual

variable {𝛼𝑖,𝑡 }𝑖∈[𝑁 ] , determine the dual variable 𝛽𝑡 ,

𝛼𝑖,𝑡 = Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ),∀𝑖; 𝛽𝑡 = ˜𝛽𝑡 . (95)

We note that the dual variable satisfies the dual constraint (93).

Let the increment of the dual objective by the above dual solutions at each slot as Δ𝐷 . To prove

the theorem, the most important step in the framework is to show that at each slot, we have

Δ𝐷 ≤ 1

𝜋

1

1 − 𝑒−1/𝜋 Δ𝑃 . (96)

We can now compute the increment of the dual,

Δ𝐷 =
∑︁
𝑖,𝜏<𝑡

(
ℎ𝑖,𝜏

(
𝛼𝑖,𝑡 + 𝛽𝜏

)
− ℎ𝑖,𝜏

(
𝛼𝑖,𝑡−1 + 𝛽𝜏

) )
+

∑︁
𝑖

ℎ𝑖,𝑡
(
𝛼𝑖,𝑡 + 𝛽𝑡

)
+

∑︁
𝑖

𝐶𝑖

(
𝛼𝑖,𝑡 − 𝛼𝑖,𝑡−1

)
+ 𝛽𝑡𝐴𝑡 (97)

(𝑎)
≤

∑︁
𝑖

ℎ𝑖,𝑡

(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) + ˜𝛽𝑡

)
+

∑︁
𝑖

𝐶𝑖

(
Ψ𝑖,𝑡 (𝑣𝑖,𝑡 ) − Ψ𝑖,𝑡 (0)

)
+ ˜𝛽𝑡𝐴𝑡 (98)

(𝑏)
=

∑︁
𝑖

1

𝜋

[
𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) −

(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) + ˜𝛽𝑡

)
𝑎𝑖,𝑡

]
+

∑︁
𝑖

𝐶𝑖

(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) − Ψ𝑖,𝑡 (0)

)
+ ˜𝛽𝑡𝐴𝑡 (99)

(𝑐)
=

∑︁
𝑖

𝐶𝑖

(
Ψ𝑖,𝑡

(
𝑎𝑖,𝑡

)
− Ψ𝑖,𝑡 (0)

)
+ 1

𝜋

∑︁
𝑖

(
𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) − Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) · 𝑎𝑖,𝑡

)
. (100)

We show the above equality of inequality one by one.

• (a) is according to (95) (the way to set the dual variables) and the facts that 𝑎𝑖,𝑡 ≥ 𝑎𝑖,𝑡−1 and

ℎ𝑖,𝑡 (𝜆) is non-increasing in 𝜆.

• (b) is according to the fact that by (88), (90) and (91), 𝑎𝑖,𝑡 is the optimal solution to

max

0≤𝑣≤𝜋 ·𝛿𝑖,𝜏
𝑔𝑖,𝜏 (𝑣) −

(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) + ˜𝛽𝑡

)
· 𝑣 . (101)
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Also, we have

max

0≤𝑣≤𝜋 ·𝛿𝑖,𝜏
𝑔𝑖,𝜏 (𝑣) −

(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) + ˜𝛽𝑡

)
· 𝑣 (102)

= max

0≤𝑣≤𝜋 ·𝛿𝑖,𝜏
𝜋 · 𝑔𝑖,𝜏 (

𝑣

𝜋
) −

(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) + ˜𝛽𝑡

)
· 𝑣 (103)

=𝜋 · max

0≤𝑣≤𝜋 ·𝛿𝑖,𝜏
𝜋 · 𝑔𝑖,𝜏 (

𝑣

𝜋
) −

(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) + ˜𝛽𝑡

)
· 𝑣
𝜋

(104)

=𝜋 · max

0≤𝑣≤𝛿𝑖,𝜏
𝜋 · 𝑔𝑖,𝜏 (𝑣) −

(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) + ˜𝛽𝑡

)
· 𝑣 (105)

=𝜋 · ℎ𝑖,𝑡
(
Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) + ˜𝛽𝑡

)
. (106)

• (c) is according to (89).

Recall (38) that

Ψ𝑖,𝑡 (𝑎) = 𝑓𝑖 (𝐶𝑖 ) ·𝐺𝑖,𝑡 (𝐶𝑖 , 𝑎) −
1

𝜋 ·𝐶𝑖

∫ 𝐶𝑖

0

𝐺𝑖,𝑡 (𝑥, 𝑎) · 𝑓𝑖 (𝑥)𝑑𝑥 .

Plugging Ψ𝑖,𝑡 (·), i.e., (38)), in Δ𝐷 , we have that

Δ𝐷 =
∑︁
𝑖

{
𝐶𝑖 · 𝑓𝑖 (𝐶𝑖 )𝐺𝑖,𝑡

(
𝐶𝑖 , 𝑎𝑖,𝑡

)
− 1

𝜋
·
∫ 𝐶𝑖

0

𝑓𝑖 (𝑥)𝐺𝑖,𝑡

(
𝑥, 𝑎𝑖,𝑡

)
𝑑𝑥 (107)

−
(
𝑓𝑖 (𝐶𝑖 )𝐺𝑖,𝑡 (𝐶𝑖 , 0) −

1

𝜋
·
∫ 𝐶𝑖

0

𝑓𝑖 (𝑥)𝐺𝑖,𝑡 (𝑥, 0) 𝑑𝑥
)
+ 1

𝜋
·
(
𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) − Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) · 𝑎𝑖,𝑡

)}
. (108)

By the fact that 𝐶𝑖 · 𝑓𝑖 (𝐶𝑖 ) = 1

𝜋
1

1−𝑒−1/𝜋 according to (39), we have

Δ𝐷 =
1

𝜋

1

1 − 𝑒−1/𝜋

∑︁
𝑖

[
𝐺𝑖,𝑡

(
𝐶𝑖 , 𝑎𝑖,𝑡

)
−𝐺𝑖,𝑡 (𝐶𝑖 , 0)

]
+

∑︁
𝑖

[
− 1

𝜋
·
∫ 𝐶𝑖

0

𝑓𝑖 (𝑥)𝐺𝑖,𝑡

(
𝑥, 𝑎𝑖,𝑡

)
𝑑𝑥 + 1

𝜋
·
∫ 𝐶𝑖

0

𝑓𝑖 (𝑥)𝐺𝑖,𝑡 (𝑥, 0) 𝑑𝑥
]

+
∑︁
𝑖

1

𝜋
·
(
𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) − Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) · 𝑎𝑖,𝑡

)
. (109)

Comparing with (87), to show (96), is sufficient to show that

𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) − Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) · 𝑎𝑖,𝑡 ≤
∫ 𝐶𝑖

0

𝑓𝑖 (𝑥)𝐺𝑖,𝑡

(
𝑥, 𝑎𝑖,𝑡

)
𝑑𝑥 −

∫ 𝐶𝑖

0

𝑓𝑖 (𝑥)𝐺𝑖,𝑡 (𝑥, 0) 𝑑𝑥 . (110)

We further have

𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) − Ψ𝑖,𝑡 (𝑎𝑖,𝑡 ) · 𝑎𝑖,𝑡 (111)

≤ 𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) −
∫ 𝑎𝑖,𝑡

0

Ψ𝑖,𝑡 (𝑎)𝑑𝑎 (112)

≤ 𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) −
∫ 𝑎𝑖,𝑡

0

[
𝑓𝑖 (𝐶𝑖 ) ·𝐺𝑖,𝑡 (𝐶𝑖 , 𝑎) −

1

𝐶𝑖

∫ 𝐶𝑖

0

𝐺𝑖,𝑡 (𝑥, 𝑎) · 𝑓𝑖 (𝑥)𝑑𝑥
]
𝑑𝑎 (113)

(𝑎)
= 𝑔𝑖,𝑡 (𝑎𝑖,𝑡 ) −

∫ 𝑎𝑖,𝑡

0

∫ 𝑐𝑖

0

𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)
𝜕𝑥

· 𝑓𝑖 (𝑥)𝑑𝑥𝑑𝑎 (114)

=

∫ 𝑐𝑖

0

∫ 𝑎𝑖,𝑡

0

𝑔′𝑖,𝑡 (𝑎) −
𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)

𝜕𝑥
𝑑𝑎 · 𝑓𝑖 (𝑥)𝑑𝑥, (115)
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where (a) is due to (85).

So, it reduces to show that∫ 𝑎𝑖,𝑡

0

𝑔′𝑖,𝑡 (𝑎) −
𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)

𝜕𝑥
𝑑𝑎 ≤ 𝐺𝑖,𝑡

(
𝑥, 𝑎𝑖,𝑡

)
−𝐺𝑖,𝑡 (𝑥, 0) , (116)

which is equivalent to ∫ 𝑎𝑖,𝑡

0

𝑔′𝑖,𝑡 (𝑎) −
𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)

𝜕𝑥
𝑑𝑎 ≤

∫ 𝑎𝑖,𝑡

0

𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)
𝜕𝑎

𝑑𝑎. (117)

To show the above inequality, it is sufficient to show that,

𝑔′𝑖,𝑡 (𝑎) ≤
𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)

𝜕𝑥
+ 𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)

𝜕𝑎
. (118)

To proceed, we recall that 𝐺𝑖,𝑡 (𝑥, 𝑎) is the optimal objective to the following problem,

𝐺𝑖,𝑡 (𝑥, 𝑎) = max

∑︁
𝜏 ∈[𝑡 ]

𝑔𝑖,𝜏 (𝑣𝑖,𝜏 ) (119)

s.t

∑︁
𝜏 ∈[𝑡 ]

𝑣𝑖,𝜏 ≤ 𝑥 (120)

0 ≤ 𝑣𝑖,𝑡 ≤ 𝑎 (121)

0 ≤ 𝑣𝑖,𝜏 ≤ 𝑎𝑖,𝜏 ,∀𝜏 ∈ [𝑡 − 1] . (122)

Let 𝜂,𝜓𝑡 and 𝜙𝑡 , and {𝜓𝜏 }𝜏 ∈[𝑡−1] and {𝜙𝜏 }𝜏 ∈[𝑡−1] be the dual variable associated with (120), (121),

and (122), respectively.

According to sensitivity analysis of convex program, we have

𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)
𝜕𝑥

= 𝜂∗,
𝜕𝐺𝑖,𝑡 (𝑥, 𝑎)

𝜕𝑎
= 𝜙∗

𝑡 . (123)

According to the KKT condition of the optimal solution, we have

𝑔′𝑖,𝑡 (𝑎) ≤ 𝑔′𝑖,𝑡 (𝑣∗𝑖,𝑡 ) = 𝜂∗ + 𝜙∗
𝑡 −𝜓 ∗

𝑡 ≤ 𝜂∗ + 𝜙∗
𝑡 , (124)

where 𝑣∗𝑖,𝑡 , 𝜙
∗
𝑡 ,𝜓

∗
𝑡 , 𝜂

∗
and 𝜙∗

𝑡 represent the optimal primal solution and dual solution, and the first

inequality is due to the fact that 𝑔𝑖,𝑡 (·) is concave and 𝑣∗𝑖,𝑡 ≤ 𝑎.

Combining (123) and (124), we conclude (118), which leads to (116) and (117). Combining (115)

and (116), we conclude (110). Combining (110), (87) and (109), we easily conclude (96). Summing (96)

over all time slots, we have∑︁
𝑖∈[𝑁 ]

˜𝑂𝑃𝑇 𝑖,𝑡 ≥ 𝜋 · (1 − 𝑒−1/𝜋 ) · Dual-OOIC-M ≥ 𝜋 · (1 − 𝑒−1/𝜋 ) ·𝑂𝑃𝑇𝑡 . (125)

□
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