Network Utility Maximization under Maximum
Delay Constraints and Throughput Requirements

Qingyu Liu, Haibo Zeng, Minghua Chen

Abstract—We consider a multi-path routing problem of max-
imizing the aggregate user utility over a multi-hop network,
subject to link capacity constraints, maximum end-to-end delay
constraints, and user throughput requirements. A user’s utility is
a concave function of the achieved throughput or the experienced
maximum delay. The problem is important for supporting real-
time multimedia traffic and is uniquely challenging due to the
need of simultaneously considering maximum delay constraints
and throughput requirements. In this paper, we first show that it
is NP-complete either (i) to construct a feasible solution strictly
meeting all constraints, or (ii) to obtain an optimal solution after
relaxing either the maximum delay constraints or the throughput
requirements. We then develop a polynomial-time approximation
algorithm named PASS. The design of PASS leverages a novel
understanding between non-convex maximum-delay-aware prob-
lems and their convex average-delay-aware counterparts, which
can be of independent interest and suggests a new avenue for solv-
ing maximum-delay-aware network optimization problems. We
prove that PASS always obtains approximate solutions (i.e., with
theoretical performance guarantees), at the cost of violating both
the maximum delay constraints and the throughput requirements
by up to constant ratios. We also develop two variants of PASS,
named PASS-M and PASS-T, to generate approximate solutions
at the cost of violating either the maximum delay constraints
or the throughput requirements by up to problem-dependent
ratios. We evaluate our solutions using extensive simulations on
Amazon EC2 datacenters supporting video-conferencing traffic.
Compared to the existing algorithms and a conceivable baseline,
our solutions obtain up to 100% improvement of utilities, by
meeting the throughput requirements but relaxing the maximum
delay constraints to the extent acceptable for practical video
conferencing applications.

Index Terms—Delay-sensitive multiple-unicast network flow,
delay-aware multi-path routing, network utility maximization

I. INTRODUCTION

We consider a multiple-unicast communication scenario
where there exist multiple network users, each of which
streams a network flow from its source to its destination over
a multi-hop network, possibly using multiple paths. We study
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the problem of maximizing the aggregate user utility, subject to
link capacity constraints, maximum delay constraints, and user
throughput requirements. A user’s utility is a concave function
of the achieved throughput or the experienced maximum delay.
The maximum delay of a user denotes the maximum Source-
to-Destination (S2D) delay, or equivalently the delay of the
slowest S2D path that carries traffic.

Our study is motivated by the increasing interests of sup-
porting delay-critical traffic in various applications, e.g., video
conferencing [14]-[16]. It is reported that 51 million users
per month attend WebEx meetings [17], and 3 billion minutes
of calls per day use Skype [18]. Low S2D delay is vital for
such video conferencing applications. As recommended by the
International Telecommunication Union (ITU) [19], a delay
of less than 150ms can provide transparent interactivity while
delays above 400ms are unacceptable for video conferencing.
We note that the maximum S2D delay, instead of the average
one, is a critical concern for provisioning low delay services,
since there may exist traffic which experiences an arbitrarily
large S2D delay even for the solution that minimizes average
S2D delay performance [10], [11]. In sharp contrast, all the
traffic can be timely streamed from its source to its destina-
tion following any solution that has an acceptable maximum
S2D delay performance, because the maximum S2D delay is
defined as an upper bound of S2D delays of all traffic.

We consider a delay model where data transmission rate
over a link is upper bounded by the link capacity, and data
experiences a constant delay in traversing a link. End-to-end
networking delay is known to be composed of processing
delay, queuing delay, and propagation delay. Our constant
delay model well captures the traffic-independent propagation
delay, but does not consider the traffic-dependent processing
delay or queuing delay. Although our constant delay model
is special, our study under this model has both practical and
theoretical significance, due to the following concerns:

(i) The constant delay model is suitable for a number of
important real-world applications, particularly the routing of
video conferencing traffic over inter-datacenter networks. Ac-
cording to recent reports from Google [20] and Microsoft [21],
for most real-world inter-datacenter networks, cloud providers
typically over-provision inter-datacenter link capacity by 2—3
times on a dedicated backbone [20], and the average link-
capacity utilization even for busy links is 30 — 60% [21]. As
such, most inter-datacenter flows can always be accommodated
at their target rates [15]. The objective of flow assignment is
thus to optimize many other critical performance metrics, e.g.,
network utility and delay, according to their throughput needs.
For these inter-datacenter networks, link data transmission rate



TABLE I
COMPARE OUR WORK WITH EXISTING STUDIES.

Maximization Objective

Constraints Networking Setting

Aggregate Throughput-
Based Utilities

Aggregate Maximum-
Delay-Based Utilities

Throughput Maximum Delay

Requirements Constraints Multiple-Unicast

Many, e.g., [2]-[5] v X v X v
[61-[11] X Ve 7 X X
[12], [13] v X X v v
Our Work v v v v v

Note. *: The objective of [6]-[11] is to minimize maximum delay, which is a special case of maximizing maximum-delay-based utility functions.
**: The objective of [12], [13] is to maximize throughput, which is a special case of maximizing throughput-based utility functions.

cannot exceed link capacity, and the constant propagation
delay dominates the delay for the data to traverse a link
(it is practically justified by a real-world implementation on
globally distributed Amazon EC2 datacenters in Section VI-
A of [15]). These observations justify our delay model for
the critical problem of routing video-conferencing traffic over
real-world inter-datacenter networks.

(i1) The constant delay model is a first-step of modeling net-
works and helps obtain flows which do not congest links (link
queuing delay remains negligible), by setting the link capacity
lower than the link bandwidth. As the first study on network
utility maximization with throughput requirements and maxi-
mum delay constraints, we assume a traffic-independent delay
model to establish fundamental understandings of the problem.
This delay model is not uncommon in the literature, e.g., it
is used in [6], [7], [12], [13], [15]. Later in Section V, we
generalize our results to the general traffic-dependent delay
model and illustrate the challenges.

In this paper, we study a fundamental multiple-unicast
network flow problem of maximizing the aggregate user
utility subject to link capacity constraints, maximum delay
constraints, and user throughput requirements. We summarize
existing studies in Table I, and present detailed discussions in
Section II. Briefly speaking, our study is the first work on the
general network utility maximization problem under maximum
delay constraints and user throughput requirements. In our
problem, a user’s utility is either a function of its achieved
throughput or a function of its experienced maximum delay.
For this general problem, we derive many fundamental results,
which we believe can advance state-of-the-art and serve as
benchmarks for future research in the area. Specifically, we
make the following contributions for our problem.

> We prove that it is NP-complete either (i) to construct a
feasible solution meeting all constraints, or (ii) to obtain an
optimal solution after we relax maximum delay constraints or
throughput requirements, due to the need of simultaneously
considering maximum delay constraints and user throughput
requirements. Thus, it is non-trivial to develop polynomial-
time approximation algorithms even after we relax the maxi-
mum delay constraints or the throughput requirements.

> We design an algorithm named PASS (Polynomial-
time Algorithm Supporting utility-maximal flows Subject to
throughput/delay constraints). We leverage a novel understand-
ing between non-convex maximum-delay-aware problems and
their convex average-delay-aware counterparts, which suggests
a new avenue for solving maximum-delay-aware network

optimization problems. PASS obtains an approximate solution
in polynomial time, after relaxing both maximum delay con-
straints and throughput requirements by up to constant ratios.
(i) For the approximation ratio of PASS, we show that it
is a constant for maximizing the throughput-based utilities,
but it depends on the utility functions for maximizing the
delay-based utilities; (ii) For the derived violation ratios of
constraints of PASS, we show that there exist instances where
solutions of PASS will violate constraints by ratios that are
close to our derived ratios.

>> By slightly modifying PASS, we design two other
algorithms PASS-M and PASS-T. PASS-M (resp. PASS-
T) obtains an approximate solution with a problem-dependent
approximation ratio in polynomial time, after only relaxing
throughput requirements (resp. maximum delay constraints)
by up to problem-dependent ratios. We further prove that
there does not exist either a constant ratio that can bound
the violation of constraints, or a constant approximation ratio
which can bound the performance gap as compared to the
optimal, for PASS-M and PASS-T, for all problem instances
in theory. Therefore, problem-dependent ratios are the best
possible results for PASS-M and PASS-T.

> We evaluate the empirical performance of our algorithms
in simulations of supporting video-conferencing traffic across
Amazon EC2 datacenters. Compared to the existing algorithms
as well as a conceivable baseline, our solutions can obtain
up to 100% improvement of utilities, by meeting throughput
requirements but relaxing maximum delay constraints to the
extent acceptable for video conferencing applications.

II. RELATED WORK

There exist many network utility maximization studies with
throughput concerns, e.g., [2]-[5], but only a few consider
maximum delays. Since the maximum delay of a single-
unicast flow is non-convex in the flow decision variables,
even maximum-delay-aware problems under simple settings
are usually NP-hard, e.g., the single-unicast maximum delay
minimization problem, and challenging to solve [6].

Misra et al. [6] study the single-unicast maximum delay
minimization problem subject to a throughput requirement,
and design a Fully-Polynomial-Time Approximation Scheme
(FPTAS). Zhang et al. [7] generalize the FPTAS of [6]
and develop an FPTAS to minimize maximum delay subject
to throughput, reliability, and differential delay constraints
also in the single-unicast scenario. Both FPTASes require to
solve flow problems iteratively in time-expanded networks, by



employing a binary-search based idea applicable only in the
single-unicast setting. It is thus unclear how to extend their
techniques to our general multiple-unicast scenario.

Cao et al. [12] develop an FPTAS that can maximize
throughputs subject to maximum delay constraints in a
multiple-unicast setting. This FPTAS is generalized by Yu
et al. [13] to solve other throughput maximization prob-
lems. To satisfy maximum delay constraints while optimizing
throughputs, FPTASes of [12], [13] require to solve flow
problems iteratively in time-expanded networks, which is
time-consuming. Moreover, the design of FPTASes in [12],
[13] leverages the primal-dual algorithm, where their primal
problems and associated dual problems need to be cast as
linear programs. It is unclear how to extend their techniques
to our general scenario where the utility of a unicast can be a
concave function of the throughput.

We note that there exist other maximum-delay-aware studies
in the literature. However, they only develop heuristic ap-
proaches. For example, Liu et al. [15] target the multicast max-
imum delay optimization problem. Their heuristic approach
suffers from two limitations: (i) the running time could be high
because the number of variables increases exponentially with
the network size, and (ii) there is no theoretical performance
guarantee of the achieved solution.

Overall, with the constant link delay model, existing
maximum-delay-aware studies focus on either the throughput-
constrained maximum delay minimization problem or the
maximum-delay-constrained throughput maximization prob-
lem, which are just special cases of our problem. To design
approximation algorithms, they rely on a technique of itera-
tively solving problems in expanded networks, leading to im-
practically high time complexities (e.g., at least O(| E|?|V|*£)
to minimize single-unicast maximum delay where |V| is the
number of nodes, |F| is the number of links, and £ is the
input size of the given problem instance [6]). It is unclear
how to generalize their techniques to our multiple-unicast
utility maximization scenario, where the utility of a unicast
is a concave function of the achieved throughput or the
experienced maximum delay. In sharp contrast, we develop an
approximation algorithm for our problem of maximizing utili-
ties, by leveraging a novel understanding between non-convex
maximum-delay-aware problems and their convex average-
delay-aware counterparts, resulting in a small time complexity
(e.g., O(JE|>L) to minimize single-unicast maximum delay in
a dense network (Theorem 2)).

Instead of modeling link delay as a constant as in [6], [7],
[12], [13], [15], there exist studies which model the link delay
as a traffic-dependent function. For example, Correa et al. [8],
[9] minimize maximum delay with delay-function-dependent
approximation ratios. Liu et al. [10], [11] minimize maximum
delay with constant approximation ratios. Our delay model is
the same as those in [6], [7], [12], [13], [15] but different
from [8]-[11]. We remark that maximum-delay-aware prob-
lems are fundamentally different with different delay models.
For example, to minimize the single-unicast maximum delay,
it is APX-hard (hence no PTAS exists unless P = NP) with

the traffic-dependent delay model [9], but an FPTAS!' exists
with the constant delay model [6].

In the literature there also exist many studies which consider
unreliable links where data transmission over a link only
succeeds with a probability: (i) in a single-hop network, Hou
et al. [23] propose scheduling policies for a set of sources to
be feasible with respect to delay constraints and throughput re-
quirements. In [24], Hou e al. extend their previous work and
study the utility maximization problem. Deng et al. [25] fur-
ther conduct a study on a similar problem but assuming a more
general traffic pattern; (ii) in a multi-hop network, Hou [26]
develops scheduling policies with delay and throughput taken
into account. Singh and Kumar [27] study a similar problem
of maximizing throughput subject to delay constraints. Those
studies [23]-[27] are of little relevance with ours, because they
assume the route is pre-determined, while we optimize route
for maximizing network utility. Deng et al. [28] study a joint
routing and scheduling problem which requires a small amount
of link capacity redundancy to satisfy delay constraints and
throughput requirements. Their focus is on designing online
policies with good performance in terms of competitive ratio,
which is very different from ours. Singh and Kumar [29]
study a joint routing, scheduling, and power control problem
of maximizing throughput under delay constraints, and in [30],
Singh et al. consider a similar problem further subject to wire-
less link interference constraints. Studies [29], [30] both focus
on designing distributed policies, and they leverage stochastic
frameworks to take all randomness, e.g., the unreliability of
links, into account. Hence they fundamentally differ from our
study where no probabilistic information is involved.

III. PRELIMINARY
A. System Model

We consider a multi-hop network modeled as a directed
graph G £ (V, E) with |V| nodes and |E| links. Each link
e € I has a constant capacity c. > 0 and a constant delay
d. > 0. For each link e € E, data streamed to e experiences a
delay of d., and the rate of streaming data to e must be within
the capacity c.. We are given K users, where for each user 1,
a source s; € V needs to stream a single-unicast network flow
to a destination ¢; € V'\{s;}, possibly using multiple paths.

We denote P; as the set of simple paths2 from s; to t;, and
P £ UK P, For any p € P, its path delay dP is defined as

> de,

ecE:ecp

»oL

We denote a multiple-unicast network flow solution as f =
{fi,i=1,2,..., K}, where a single-unicast flow f; is defined
as the assigned flow rate over P, i.e., f; £ {zP :2? > 0,p €
P;}. For f;, we define

e £

p
i > @

peP;:ecp

xT

'Unless P = NP, it holds that FPTAS C PTAS in that the runtime of a
PTAS is required to be polynomial in problem input but not 1/¢, while the
runtime of an FPTAS is polynomial in both the problem input and 1/¢ [22].

2A simple path is a path which does not have repeating nodes.



as the aggregate link rate of e € E of the unicast % (or the user
i equivalently). Similarly, we denote . as the total aggregate
link rate of link e € E, and

Z xP.

peP:ecp

We further denote the flow rate, or the throughput equiv-
alently, achieved by a single-unicast flow f; by |fi|,

flE e = > b
pEP; ecOut(s;) eeln(t;)
where Out(v) (resp. In(v)) is the set of outgoing (resp.
incoming) links of v. The maximum delay experienced by
fi is defined as

M(fz) £ dp7

max
pEP;:xP>0

i.e., the delay of the longest (slowest) path with positive rates
from s; to t;3. The total delay of f; is

T(f) & Y (@-d) = Y (f

peEP; eck

- de).

i.e., the summation of delays experienced by all flow units
from s; to t;. With 7 (f;), we can define the average delay
experienced by f; as A(fi) = T(f:)/|fil, i-e., the total delay
normalized by the amount of flow. We let A(f;) = 0 if |f;| =
0. Our definitions of throughput, maximum delay, and average
delay are the same as those in related studies [6]-[10].

For each f;, we denote its throughput-based utility as
UL(]fi|), which is a function that rewards f; based on the
achieved throughput. We assume that U (| f;|) is concave, non-
negative, and non-decreasing with | f;| > 0. Our assumptions
on U!(|f;]) are realistic, as it is practically reasonable that the
rate of increase in the throughput-based utility shall decrease
with the throughput increasing rate, considering that larger the
throughput is, more severely the network will be congested. As
discussed in Section II, in the literature there exist many works
of optimizing throughput-based network utility, e.g., [2]-[5],
where their utility functions satisfy our assumptions.

For each f;, we denote its maximum-delay-based utility as
—UL(M(fi)), where the disutility U2 (M(f;)) is a function
that penalizes f; based on the experienced maximum delay.
We assume that U2 (M (f;)) is convex, non-negative, and non-
decreasing with M(f;) > 0. Our assumptions on UZ(M(f;))
are realistic, as it is practically reasonable that the rate of
increase in the delay-based disutility (the rate of decrease in
the delay-based utility) shall increase with the delay increasing
rate, considering that in real world our tolerance of commu-
nication delay becomes less as the delay becomes larger. To
our best knowledge, we are the first to optimize delay-based
network utility with the user’s utility to be a general function
of the experienced maximum delay.

3We call a path p € P; with 2P > 0 as a flow-carrying path of f;.

B. Problem Definition

We study the following problem of Maximizing aggregate
user Utilities subject to link capacity constraints, maximum
Delay constraints, and Throughput requirements (MUDT),

K
either max ZUf(LﬂDv

i=1
K

or max — Y UHM(f)), (1b)
=1

st |fil > Ry, Vi=1,2,...K, (o)
M(f;) < D, Vi=12, .. K, (ld)
f:{flana'“afK}EX; (le)

where A" defines a feasible multiple-unicast flow f meeting
flow conservation constraints and link capacity constraints, i.e.,
Yo o=, I<i<K;

voef oy o
ecOut(s;) e€lin(t;)

Sooag= ) af WweV\{siti}, VI<i<K;

e€Out(v) e€ln(v)

(MUDT) : obj: (la)

K
S af < . Ve € B vars: af > O,Veﬂi}

i=1

In formula (1), the objective (1a) (resp. (1b)) maximizes
the aggregate throughput-based utility (resp. maximum-delay-
based utility), the throughput requirements (1c) ensure that the
throughput achieved by each user ¢ is no smaller than R;, the
maximum delay constraints (1d) restrict the maximum delay
experienced by each user ¢ to be no greater than D;, and the
feasibility constraint (le) defines a feasible multiple-unicast
network flow solution, meeting link capacity constraints.

C. A Generalization to Popular Communication Problems

MUDT is fundamentally critical as it generalizes several
popular communication settings. Two representative settings
are the Throughput-Constrained maximum Delay Minimiza-
tion problem (TCDM) and the maximum-Delay-Constrained
Utility Maximization (DCUM) problem.

TCDM aims to find a network flow to minimize the
weighted summation of maximum delays of all users, subject
to link capacity constraints and throughput requirements.

K
(TCDM) : min  »  (w; - M(f:)) (2a)
=1
s.t. Ifil > R;, Vi=1,2,..,K, (2b)
f:{ftha"'afK}eXa (ZC)

where in the objective (2a), a non-negative weight w; is asso-
ciated with the maximum delay of f; for each i =1,2,..., K.
TCDM is NP-hard, since as its special case when K = 1, the
problem has been proven to be NP-hard [6]. Maximum delay
minimization problems that are special cases of TCDM have
been studied in [6], [8]-[10].



DCUM aims to find a network flow to maximize aggregate
user utility, subject to link capacity constraints and maximum
delay constraints. It has the following formulation.

K
(DCUM) :max Y Ul (|fi]) (3a)
i=1

st M(f)<Di, Vi=1,2,..K,(3b)
f:{fl,fz,...,f](}e.)(. (30)

DCUM is NP-hard, because as its special case when K = 1
and U!(|f1]) = |f1]. the problem can be proven to be NP-
hard following a similar proof as introduced in the Appendix
of [6]. As an example, [12] studies a throughput maximization
problem that is a special case of DCUM.

By extending existing NP-hardness analysis on problems
that are special cases of MUDT, in the following we give
a theorem, which suggests that it is non-trivial to develop
polynomial-time approximation algorithms for MUDT even
subject to relaxed constraints.

Theorem 1: For MUDT, it is NP-complete (i) to construct
a feasible solution that meets all constraints, or (ii) to obtain
an optimal solution that meets throughput requirements but
relaxes maximum delay constraints, or (iii) to obtain an
optimal solution that meets maximum delay constraints but
relaxes throughput requirements.

Proof: The proof is an easy adoption of Appendix of [6],
and we refer it to Part A of supplementary materials. ]

IV. PROPOSED APPROXIMATION ALGORITHMS

We design an algorithm PASS to solve MUDT approxi-
mately in a polynomial time, at the cost of violating both
throughput requirements and maximum delay constraints by
constant ratios. We slightly modify PASS to get another
two algorithms PASS-M and PASS-T, to obtain approximate
solutions that can either strictly satisfy maximum delay con-
straints or strictly satisfy throughput requirements. Note again
that in sharp contrast, existing maximum-delay-aware studies
either minimize throughput-constrained maximum delay or
maximize maximum-delay-constrained throughput, which are
special cases of our problem MUDT. They rely on a time-
consuming technique of solving problems iteratively in the
time-expanded network to provide approximate solutions. Our
PASS leverages a novel understanding between non-convex
maximum-delay-aware problems and their convex average-
delay-aware counterparts, which can be of independent interest
and suggest a new avenue for solving maximum-delay-aware
network optimization problems.

A. Algorithmic Structure of PASS

We note that the non-convex maximum delays bring diffi-
culties for solving MUDT. The key idea of PASS is to replace
the non-convex maximum delays in MUDT by the convex
average delays, and solve the average-delay-aware counterpart
instead. (i) We denote the average-delay-aware counterpart
of the MUDT that maximizes throughput-based utilities, i.e.,

problem (1) with an objective of (1a), as MUAT-T. MUAT-T
has the following formulation:

K
(MUAT-T) :obj:  max > U(|fil),
st |fil EE, Vi=1,.., K, (4b)

T(fi) £ Di-|fil, Vi=1,..., K,(4c)

f={fi, foys f} € X. (4d)

(ii) We denote the average-delay-aware counterpart of the
MUDT that maximizes maximum-delay-based utilities, i.e.,

problem (1) with an objective of (1b), as MUAT-M. MUAT-
M has the following formulation:

(4a)

K
(MUAT-M) :obj:  max — > Ul (T(£:)/If:). (5a)
=1

st |fil=Ri, Vi=1,..,K, (5b)
T(f:) < Di-|fil, Vi=1,.., K(5¢)
f:{f17f2a"'afK}€X' (Sd)

Note that in our formulation of MUAT-M, the through-
put requirements (5b) are equality constraints. However, the
throughput requirements (1c) of MUDT are inequality con-
straints. The motivation of using equality constraints instead
of inequality ones in MUAT-M is as follows. If the throughput
requirements are equality constraints, |f;| of each user i is a
constant of R;. This allows to replace the variable |f;| with
the constant R;, and makes the objective in (5a) a concave
function of the variables. Otherwise, | f;| is a variable, and (5a)
is no longer concave. In the following lemma, we prove that
MUAT-M is the average-delay-aware counterpart of MUDT
that maximizes maximum-delay-based utilities.

Lemma 1: MUAT-M is the average-delay-aware counterpart
of MUDT that maximizes the maximum-delay-based utilities,
in the sense that (i) it is the average-delay-aware counterpart
of the following problem:

K
obj: max — Zl/lfl (M(f:)), (62)
i=1
S.t. ‘fz| :Ri7 Vi = ].,...7K7 (6b)
M(f)) < Di, Yi=1,..,K, (6¢)
f=Affor s fK} € X, (6d)

(i1) and the above problem formulated in (6) is equivalent to
MUDT formulated in (1) with an objective of (1b).
Proof: Refer to Appendix VIII-A. [ ]
Algorithm 1 presents PASS. It solves the average-delay-
aware counterpart of MUDT and obtains the corresponding
multiple-unicast flow solution f = {f;,i = 1,..., K} (Line 5).
Then for each i = 1, ..., K, we delete a rate of e-| f;| iteratively
from the slowest flow-carrying paths of f; (Line 8). In the end,
the remaining flow is the solution of PASS.

B. Performance Guarantee of PASS

Lemma 2: In Algorithm 1 with an arbitrary e € (0,1),
suppose f = {fi,i = 1,2,..., K} is the solution to the
average-delay-aware counterpart of MUDT (Line 5), and



Algorithm 1 Our Proposed Algorithm PASS
1: input: Problem (1), € € (0,1)
2: output: f={f;,i=1,2,...,K}
3: procedure
4: Formulate either problem (4) or problem (5) that is the

average-delay-aware counterpart of groblem (1)
5: Solve the average-delay-aware problem and get the

solution f ={f;, i=1,2,..,K}

6  adelle — . £ Vi=1,2.,K
7: for:=1,2,...., K do
8 while z¢€" > 0 do
9: Find the slowest flow-carrying path p; € P;
10: if 2P > 29¢°® then
11: pPi = ppi _ pdelete  ,delete _
12: else
13: gpdelete — delete _ .pi  pi — )
. % 7 ’
14: return the remaining flow f = {f;,i=1,2,..., K}
f=1{fi,i =1,2,..,K} is the solution returned in the end
(Line 14). We have
e-M(fi) < A(fy), Vi=1,2,.,K. 7
Proof: Refer to Appendix VIII-B. ]

Different from the proof in Appendix VIII-B, we remark
that our Lemma 2 can be proved by Markov inequality as well.
Lemma 2 suggests that the maximum delay of each single-
unicast flow after deleting rate is bounded by a constant ratio
as compared to the average delay of the corresponding single-
unicast flow before deleting rate. This is a critical observation
that theoretically relates the non-convex maximum delays with
the convex average delays. In fact, by following our proof, it is
easy to verify that Lemma 2 holds for any f and £, as long as
f is the flow before deleting e-fraction rate from each single-
unicast and f is the remaining flow after deleting e-fraction
rate from each single-unicast. The reason why PASS solves
the average-delay-aware counterpart of MUDT to get the flow
f is to provide the theoretical performance guarantee on the
maximum delay constraint in a polynomial time.

Theorem 2: Given a feasible problem (1), suppose we use
PASS (Algorithm 1) with an arbitrary € € (0,1) to solve it.
Then PASS must return a solution f = {f;,i = 1,..., K} in
polynomial time, meeting the following relaxed constraints

Ifi] = A—¢)-Ri, Vi=12.,K,  (8a)
M(fi)) < Dife, Vi=1,2,.. K, (8b)
f: {f17f27"'7fK} e k. (80)

Suppose f* = {fF,i=1,2,..., K} is the optimal solution to
problem (1). If the throughput-based utility maximization (1a)
is the objective, f provides the following approximation ratio

iuﬁ (7]

If the maximum-delay-based utility maximization (1b) is the
objective f provides the following approximation ratio

Zud f)) < ofe Zud :

K
> (1 —e)~Zuf(|fi*\); )

(10)

where a(e) is defined as follows

ale) &

Ui (z/e)
max .
i€{1,...K}, 0<a<D; \ Uf(x)

Proof: Refer to Appendix VIII-C. [ ]
It is clear that PASS obtains an approximate solution,
at the cost of violating throughput requirements (lc) by
a constant ratio of (1 — ¢), and violating maximum delay
constraints (1d) by a constant ratio of (1/¢). If the objective
is to maximize throughput-based utilities, the approximation
ratio is (1 — €) which is a constant; otherwise if the objective
is to maximize delay-based utilities, it is «(e) which depends
on the input delay-based utility functions. As an example,
consider the n-order polynomial functions, i.e., US(M(fi)) =
> =0 Ci - (M(f:))? where {c;j,j = 0,1,...,n} are non-
negative weights. We have a(e) = (1/¢€)™ for such polynomial
utility functions, given any ¢ € (0,1) and any D; > 0:

Ul (z/e) >0 Cij (w/€)
Ud(z) Z?:o Cijad
<1>n Z?:O Cij - zJ . en—I

- ,
€ D im0 Civj " ¥

€ e/

Z?:o Ciyj - @

To obtain an approximate solution, according to Theorem 2,
theoretically PASS needs to either violate delay constraints
severely if throughput requirements are only allowed to be
violated mildly, or violate throughput requirements severely if
delay constraints are only allowed to be violated mildly. In
fact, we remark that our derived ratios (1 — ¢) and (1/¢) of
violating constraints have high quality and hence are useful
for PASS. This is because they are constants independent of
instances. Although they appear to be loose in some instances,
in the following lemma we show that for any € € (0, 1), there
always exists an instance where the solution of PASS violates
constraints by ratios that are very close to them.

Lemma 3: Given any € € (0,1), there exists an MUDT
instance, where the following holds for the solution f =
{fi,i=1,2,..., K} of PASS (Algorithm 1)

Ifil < QA-¢) Ry, Vi=1,2,..,K,
M(f)) > ([1/e] =1)- Dy, ¥Vi=1,2,.., K.

Proof: Refer to Part B of supplementary materials. H
We explain why there is a tradeoff between the ratio (1/¢) of
violating maximum delay constraints and the ratio (1—¢) of vi-
olating throughput requirements over the next a few sentences.
PASS resorts to solving the average-delay-aware counterpart
to find a useful solution to the maximum-delay-aware problem
MUDT. However, the proof of Lemma 3 suggests that there is
an instance where the average-delay-optimal solution violates
the maximum delay constraints severely, satisfying throughput
requirements. This is because the delays of paths of the
solution vary severely. To reduce the violation of maximum
delay constraints, for this instance we need to delete a huge
amount of flow rate from the average-delay-optimal solution,
leading to a severe violation of throughput requirements.
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Fig. 1. Approximation ratio of our PASS (z-axis), given a minimum violation
ratio on the throughput requirements (x-axis) and a maximum violation ratio
on the maximum delay constraints (y-axis).

C. Applications of PASS

According to Theorem 2, we can control € € (0,1) to use
PASS to obtain a solution with an approximation ratio of
either (1 — €) or a(e), at the cost of violating throughput
requirements by a ratio of (1—e) and violating maximum delay
constraints by a ratio of (1/¢). Now we look at PASS from a
different perspective. Instead of controlling an approximation
parameter €, suppose we can separately control a minimum
violation ratio € (0,1) of throughput requirements and a
maximum violation ratio y € (1,+00) of maximum delay
constraints. We restrict that an acceptable solution f should
satisfy the following:

(1)

We remark that we can use PASS to figure out such a solution:
let us assume € to be the input approximation parameter of
PASS. Based on Theorem 2, the following holds for the
solution f of PASS:

|fi| >(1—€-Ri, M(fi) <Di/e, Vi=1,2,..,K. (12)

|fil >x-Riy M(f))<y-D;, Vi=12,.. K.

By comparing (12) with (11), it is clear if the following holds,
f will satisfy the constraints in (11):

1/e <y,

implying that 1/y < € < 1 — x. Therefore when 1/y <1 —z,
(i) PASS can figure out a solution meeting the constraints
in (11), with an approximation ratio of (1 — 1/y) for maxi-
mizing throughput-based utilities, by setting € = 1/y; (ii) and
PASS can figure out a solution meeting the constraints in (11),
with an approximation ratio of a(1—z) for maximizing delay-
based utilities, by setting ¢ = 1 — z. If 1/y > 1 — =, PASS
cannot obtain a solution to satisfy the constraints in (11).
Considering an example with linear delay-based utilities, i.e.,
UNM(f)) = wi- M(f:),i =1,2,..., K, we have a(1—x) =
1/(1 — ). We illustrate the approximation ratio of (1 — 1/y)
(resp. 1/(1—x)) of this example with the = and y in Figure 1(a)
(resp. in Figure 1(b)).

For certain applications, the throughput requirements or the
maximum delay constraints are hard constraints that cannot
be violated. We note that one can use pre-scaled maximum
delay constraints and throughput requirements as the input to
PASS to generate feasible solutions as the output. Moreover,
in the following, by slightly modifying PASS, we respectively

1—¢ > x,

Algorithm 2 PASS-M: Modify PASS to Strictly Meet Max-
imum Delay Constraints

1: input: Problem (1)

2: output: f={f;,i=1,2,.., K}

3: procedure

4: Solve the average-delay-aware counterpart of prob-
lem (1), and get the solution f = {f;,;1 =1,2,..., K}

5 for i =1,2,..., K do

6 while M(f;) > D; do

7: Find the slowest flow-carrying path p; € F;
8 Let 2" =0

9 return the remaining flow f = {f;,;i =1,2,..., K}

develop (i) an algorithm PASS-M to achieve approximate so-
lutions that can strictly meet maximum delay constraints, and
(ii) an algorithm PASS-T to achieve approximate solutions
that can strictly meet throughput requirements.

D. Modifying PASS to Meet Maximum Delay Constraints

We introduce PASS-M in Algorithm 2. Different from
PASS that deletes €| f;| rate from slowest flow-carrying paths
of each f;, PASS-M deletes rate from slowest flow-carrying
paths of f; till its maximum delay meets the constraint D;.

Theorem 3: Given a feasible problem (1), suppose we use
PASS-M (Algorithm 2) to solve it. Then PASS-M must return
a solution f = {f;,i = 1,2,..., K} in polynomial time,
meeting the following relaxed constraints

1fi] > (1 —emax) Ri, ¥i=1,2,... K, (13a)
M(fi) < Diy Vi=12,..,K, (13b)
f={f1.fas s JK} EX, (13¢)

where €. is defined as follows

amax { (4] = 171) 74}

where f = {fz,z = 1,2,..., K} is the optimal solution to
the average-delay-aware problem in Line 4 of Algorithm 2.
Suppose f* = {f*,i=1,2,..., K} is the optimal solution to
problem (1). If the throughput-based utility maximization (1a)
is the objective, f provides the following approximation ratio

fi

€max =

K K
STUL(FD = (= emad) - SULASD;  (14)
=1 =1

If the maximum-delay-based utility maximization (1b) is the
objective, f provides the following approximation ratio

K K
STUL(M(f) < alemn) - SULM),  (19)
i=1 =1

where €, is defined as follows

in { (5] = 120) 7|1}
Proof: Tt is a direct extension of Theorem 2. Detailed
proof refers to Part C of supplementary materials. [ ]

Comparing Theorem 2 with Theorem 3, to solve MUDT,
(i) PASS achieves an approximate solution at the cost of

€min —




violating both throughput requirements and maximum delay
constraints by constant ratios, while (ii) PASS-M obtains an
approximate solution and strictly meets maximum delay con-
straints, but at the cost of violating throughput requirements
by a problem-dependent ratio. We highlight that although our
derived problem-dependent ratios of PASS-M can be figured
out only after we use PASS-M to solve MUDT, and can be
arbitrarily bad for certain problem instances, they are the best
effort for PASS-M as shown in the lemma below.

Lemma 4: Suppose f = {f;,i =1,2,..., K} is the solution
of PASS-M (Algorithm 2). Given any positive number o that
is arbitrarily close to 0, there exists an MUDT instance, where
the following holds for f:

il < o Ry, Vi=1,2,..,K.

Suppose f* = {f*,i=1,2,..., K} is the optimal solution to
MUDT. Given any positive number o that is arbitrarily close
to 0, there also exists an MUDT instance where the following
holds for f: If the throughput-based utility maximization is
the objective, we have the following in this instance:

K ~ K
Sul(|f) < o Y ul (£
i=1 i=1

If the maximum-delay-based utility maximization is the ob-
jective, we have the following in this instance:

Zud fi)) > l~zK:z4f(/vl
g =1

Proof: Refer to Part D of supplementary materials. H
Lemma 4 suggests that there exist instances where the
throughput of PASS-M is arbitrarily small and the utility of
PASS-M is arbitrarily far from optimal. Therefore, we cannot
derive a constant approximation ratio or a positive constant to
bound the throughput requirements violation of PASS-M for
all instances of MUDT. Our derived problem-dependent ratios
are thus the best possible results for PASS-M.

(16)

a7

(18)

E. Modifying PASS to Meet Throughput Requirements

In order to strictly meet throughput requirements, our
PASS-T uses the optimal solution to the average-delay-aware
counterpart of MUDT directly as a solution to the maximum-
delay-aware problem MUDT, i.e.,

> PASS-T: directly solve the average-delay-aware counter-
part of problem (1).

Theorem 4: Given a feasible problem (1), we denote g =
{91, G2, -.-,Gi } as the solution returned if we use PASS
(Algorithm 1) to solve it with an ¢ € (0,1). Now suppose
we use PASS-T to solve problem (1). Then PASS-T must
return a solution f = {f;,i = 1,2, ..., K} in polynomial time,
meeting the following relaxed constraints

|fi| > Ri, Vi=1,2,..,K, (19a)

M(f;) < A-Di, Vi=1,2,...,K, (19b)
€

f_:{f_17f27"'7.fK}€X7 (190)

where ) is defined as follows
max {1, 121;%)%{ {M(fz)//\/l(fh)}} )

Suppose f* = {f*,i=1,2,..., K} is the optimal solution to
problem (1). If the throughput-based utility maximization (1a)
is the objective, f provides the following approximation ratio

K ~ K
DUL(AD = DU (fs

If the maximum-delay-based utility maximization (1b) is the
objective, f provides the following approximation ratio

Zud 7)) < a( Zud

Proof: Tt is a direct extension of Theorem 2. Detailed
proof refers to Part E of supplementary materials. [ ]
Theorem 4 suggests that we can figure out an approximation
ratio of PASS-T with the knowledge of an arbitrary solution
of PASS. Comparing Theorem 2 with Theorem 4, to solve
MUDT, (i) PASS achieves an approximate solution at the cost
of violating both throughput requirements and maximum delay
constraints by constant ratios, while (ii) PASS-T obtains an
approximate solution and strictly meets throughput require-
ments, at the cost of violating maximum delay constraints by
a problem-dependent ratio. Similar to PASS-M, although our
derived problem-dependent ratios can be figured out only after
we use PASS-T to solve MUDT, and can be unbounded for
certain problem instances, they are the best effort for PASS-T
as presented in the following lemma.
Lemma 5: Suppose f = {fi,i =1,2,..., K} is the solution
of PASS-T. Given an arbitrarily large number o, there exists
an MUDT instance, where the following holds for f:

M(fi) > o-D;, Vi=12.. K.

Suppose f* = {f*,i=1,2,..., K} is the optimal solution to
MUDT. Given an arbitrarily large number o, there also exists
an MUDT instance where the following holds for f: If the
maximum-delay-based utility maximization is the objective,
we have the following in this instance:

K
Zud R)) > oS M)

Proof: Refer to Part F of supplementary materials. [ ]
Lemma 5 suggests that for PASS-T, we cannot derive a
constant approximation ratio for maximizing the maximum-
delay-based utility, or a positive constant to bound the maxi-
mum delay constraints violation, for all instances of MUDT.
Therefore, our derived problem-dependent ratios are the best
possible results for PASS-T.

A =

(20)

21

(22)

(23)

FE. Applicability to Other Maximum-Delay-Aware Problems

As shown in the formulation (1), MUDT has an objective of
either (1a) or (1b), both of which maximize the aggregate user
utility. We develop algorithms PASS, PASS-M, and PASS-
T to solve MUDT approximately in previous sections. In this



section we consider two other user-utility-sensitive objectives
which cover the objectives of MUDT as special cases. Our
algorithms PASS, PASS-M, and PASS-T can optimize the
general objectives under maximum delay constraints and user
throughput requirements approximately, too.

A general extension of the function 21K:1 UL(|fi]) s
Ut(f1l, | f2l, - | fxc|) that arbitrarily depends on the achieved
throughput |f;| of each user i,i = 1,2,..., K. Now we
consider the following optimization objective:

max  U* (|f1|7|f2|7"'»|fK|)’ (24)
where U (| f1], | f2|, .-, | fx|) is non-negative, non-decreasing,
and concave with each |f;],7 = 1,2, ..., K. Following the same
proofs to Theorems 2, 3, and 4, it is easy to verify that we
can use PASS, PASS-M, and PASS-T to approximately solve
the problem with an objective of (24) subject to throughput
requirements (1c), maximum delay constraints (1d), and fea-
sibility constraints (le), in polynomial time. A representative
example of the general objective (24) which differs from the
aggregate user utility maximization objective (la) of MUDT
is to maximize the worst utility among all users, i.e.,

max min {U(|fi])} .

1<i<K

Similarly, we also consider the following delay-aware op-
timization objective that generalizes the aggregate user utility
maximization objective (1b) of MUDT:
—UT(M(f1), M(f2), ey M(fK))

max 25)
where U%(M(f1), M(f2), ..., M(fx)) is non-negative, non-
decreasing, and convex with each M(f;),i =1,2,..., K. Itis
easy to verify that we can use PASS, PASS-M, and PASS-T
to approximately solve the problem with an objective of (25)
subject to throughput requirements (1c), maximum delay con-
straints (1d), and feasibility constraints (le), in polynomial
time. Note that by optimizing the general objective (25), the
approximation ratio «(e) of PASS should be defined in the
following way:

ale) 2 max (Ud(wl/w/e, -..,xK/e>> |

Vi=1,2,...,K: 0<z;<D; UNz1, T, ..., TK)

A representative example of the general objective (25) is to
maximize the worst utility among all users, i.e.,

min_{~U(M(f:))} -

1<i<K

max

Overall, we are the first to study the general network utility
maximization problem under maximum delay constraints and
throughput requirements, and propose algorithms with strong
theoretical performance guarantees. The design of our algo-
rithms further suggests a new avenue for solving a broad range
of maximum-delay-aware network optimization problems. We
believe that our fundamental results advance state-of-the-art,
and can serve as benchmarks for future research.

V. EXTENSION TO OTHER DELAY MODELS

In previous sections we study MUDT under a traffic-
independent constant delay model. In this section we consider
a traffic-dependent delay model where link delay is a func-
tion of link traffic. It covers the constant delay model as a
special case. We highlight that when directly extending our
algorithms from the traffic-independent delay model to the
traffic-dependent one, (i) they maintain the same theoretical
performance guarantee; however, (ii) their time complexities
become exponential instead of polynomial.

Let us assume that the delay of link e is d.(z.) which is
a function of the link aggregate traffic x.. It generalizes the
constant link delay d. in Section III. Due to practical concerns,
we assume d.(z.) to be non-negative, non-decreasing, differ-
entiable, and convex with z.. Now we focus on the MUDT
under the traffic-dependent delay model.

Note that in our assumption d.(z.) is non-decreasing with
Z.. As presented in the last paragraph of Appendix VIII-B,
clearly our Lemma 2 holds under the traffic-dependent delay
model. Then following the same proof to Theorem 2 (resp.
Theorem 3, Theorem 4), it is provable that the solution of
PASS (resp. PASS-M, PASS-T) under the traffic-dependent
delay model provides the same approximation ratio satisfying
the same relaxed constraints, as compared to its performance
guarantee under the constant delay model.

However, under the traffic-dependent delay model, the time
complexities of PASS, PASS-M, and PASS-T are all expo-
nential. This is because in such a model we have

K
T(fl) = Z (l‘f “de (xe)) = Z (xle “de (sze>> :

eckE ecE

Here 7 (f;) becomes non-convex with z¢. Therefore, the
average-delay-aware counterpart of MUDT is a non-convex
optimization problem. None of PASS, PASS-M, or PASS-
T hence has a polynomial time complexity, as they all rely
on solving the average-delay-aware counterpart to figure out
useful solutions to MUDT.

Overall, our proposed avenue for maximum-delay-aware
network optimization can be extended to the general setting
of traffic-dependent delay, providing strong theoretical perfor-
mance guarantee. This critical observation further highlights
the theoretical significance of our results. Future directions
include (i) developing efficient polynomial-time algorithms for
MUDT under traffic-dependent delay model, by approximating
the non-convex average-delay-aware counterpart of MUDT;
and (ii) exploring real-world time-sensitive applications to
which our proposed results can be directly applied.

VI. PERFORMANCE EVALUATION

Now we simulate a delay-critical video conferencing traf-
fic over a real-world continent-scale inter-datacenter network
topology of 6 globally distributed Amazon EC2 datacenters
(see Figure 2). The network is modeled as a complete undi-
rected graph. Each undirected link is treated as two directed
links that operate independently and have identical delays and
capacities, a common way to model an undirected graph by
a directed one, e.g. in [31]. We set link delays and capacities
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Fig. 2. Topology of the 6 Amazon EC2 datacenters [15].

TABLE II
INFORMATION OF (de, ce) IN THE AMAZON EC2 NETWORK [15], [16] (de
IS IN MS AND c. IS IN MBPS) (OR: OREGON, VA: VIRGINIA, IR:
IRELAND, TO: TOKYO, SI: SINGAPORE, SP: SAO PAULO).

OR VA IR TO SI SP
OR | N/A | (41,82) | (86,86) | (68,138) | (117,74) | (104,67)
VA - N/A (54,72) (101,41) (127,52) (82,70)
IR - - N/A (138,56) | (117,44) | (120,61)
TO - - - N/A (45,166) | (151,41)
SI - - - - N/A (182,33)
SP - - - - - N/A
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Fig. 3. Simulation results of using PASS to minimize the summation of
maximum delays under throughput requirements.

according to practical evaluations on Amazon EC2 from [15],
[16] (see Table II). We assume two unicasts (K = 2), one
from Virginia to Singapore, the other from Oregon to Tokyo.
Linear programs are solved using CPLEX [32].

A. Minimizing Maximum Delay

We first use our algorithms to minimize maximum delay,
subject to link capacity constraints and throughput require-
ments (i.e., to solve TCDM with formula (2)). We assume
K =2, wy =wy, and Ry = Ry = R in (2).

We compare PASS with the optimal solution, a conceivable
greedy baseline, and PASS-T respectively. Because link de-
lays are all integers (see Table II), the delay of any path must
be an integer. Therefore, we can obtain the optimal solution
minimizing the summation of maximum delays, by enumer-
ating all possible maximum delays of individual unicasts to
figure out the minimal performance such that a feasible flow
exists in the time-expanded network. Note that this approach
theoretically has an exponential time complexity, and is the
foundation of the FPTAS [6] designed for the single-unicast
maximum delay minimization problem. The baseline greedily
obtains the routing solution from the unicast 1 to the unicast K
one by one. In the iteration of the unicast ¢, it assigns as much
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and PASS-M obtain the optimal). achieved result to the constraint.

Fig. 4. Simulation results of using PASS to maximize throughput under
maximum delay constraints with various €, where D1 = D2 = 150.

rate as possible to the shortest paths from s; to t; iteratively
respecting the link capacity constraints, till the throughput
requirement R; is satisfied. Similar heuristic approaches have
been used in other delay-aware network flow studies, e.g.,
in [33], yet without performance guarantee.

First, we evaluate the maximum delay of PASS with differ-
ent values of e (see Figure 3(a)). We set R = 230 and vary €
from 1% to 99% by a step of 1%. According to the figure, (i)
PASS-T obtains the optimal solution to our problem, (ii) the
delay of the baseline is strictly larger than optimal, and (iii)
the delay of PASS is a staircase function with e. We remark
that the delay of PASS can be smaller than optimal in many
instances because PASS only supports (1 — ¢)-fraction of the
throughput requirement, while the optimal solution supports
the full throughput requirement.

Second, we evaluate the maximum delay of PASS with the
throughput requirement R (see Figure 3(b)). We set ¢ = 3%
since a 3% throughput loss is very acceptable for video confer-
encing with protection/recovery capabilities [34]. We vary R
from 116Mbps to 239Mbps with a step of 1Mbps. We remark
that 116Mbps is the smallest throughput when the baseline
needs multiple paths, and 239Mbps is the largest throughput
that can be routed. Figure 3(b) suggests that PASS outputs a
smaller maximum delay compared with the baseline in most
instances. On average, the maximum delay of the baseline
(402ms) is over 11% more than that of the optimal (362ms)
and of the PASS (359ms). In the worst case (R € [116, 138]),
the maximum delay of the baseline is over 40% more than
that of the optimal and of the PASS. In addition, PASS-T
obtains the optimal solution to our problem in most instances,
except for instances where R € [212,223].

B. Maximizing Throughput

We then use our algorithms to maximize throughput, subject
to link capacity constraints and maximum delay constraints
(i.e., to solve DCUM with formula (3)). We assume K = 2,
Ui(lf1l) = 1Al Us(If2]) = |f2|, and Dy = Dy = D in the
formula (3). We compare PASS with the optimal solution, a
conceivable baseline, and PASS-M, respectively. Similar to
the greedy approach introduced in Section VI-A, the baseline
assigns as much rate as possible to the shortest paths respecting
both link capacity constraints and maximum delay constraints
iteratively from unicast 1 to unicast 2 one by one. Besides,
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Fig. 5. Simulation results of using PASS to maximize the weighted summa-
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similar to Section VI-A, we can obtain the optimal solution
by solving problems in the time-expanded network.

We set D = 150ms due to the following concerns. (i) An
end-to-end delay less than 150ms can provide a transparent
interactivity for video conferencing [19]. (ii) A delay larger
than 150ms (as long as it is less than 400ms) is still acceptable
for video conferencing [19], and hence a solution that violates
the maximum delay constraint may still be useful if it can
achieve a substantial amount of throughput improvement.

We vary € from 1% to 99% with a step of 1%. The
throughput results are illustrated in Figure 4(a), and Fig-
ure 4(b) provides the achieved maximum delay ratios, i.e.,
max{M(f1), M(f2)}/D where f = {f1, f2} is the solution.
In our simulations, both the baseline and PASS-M obtain
the optimal throughput while strictly meeting the maximum
delay constraints. For ¢ < 49%, the throughput of PASS
is strictly larger than the optimal, while violating maximum
delay constraints (e.g., 8% more than D when ¢ = 49%).
For € > 51%, the solution of PASS meets maximum delay
constraints, but the achieved throughput is strictly smaller than
optimal. It is impressive that with a small ¢, e.g., € = 1%, the
throughput of PASS is over 90% more than the optimal, while
at the same time the maximum delays of PASS are less than
331ms which is still acceptable for video conferencing. For
instances where € < 49%, when ¢ is decreased by 1%, on
average a 2.0% throughput improvement as compared to the
optimal can be achieved at the cost of a 2.2% violation to the
maximum delay constraints.

C. Maximizing Network Utility

Finally we use PASS to maximize network utility sub-
ject to link capacity constraints, maximum delay constraints,
and throughput requirements (i.e., to solve MUDT with for-
mula (1)). We maximize the weighted summation of through-
puts of individual users, i.e., U (| f;]) = w; - |fi],i = 1,2, and
we assume R, = Ry, = 80, D1 = Dy = 150.

We vary the weight w; (resp. wg) from 1 to 10 with a step
of 1, thus leading to 100 simulation instances each of which is
characterized by a specific (wq,ws),1 < w; < 10,1 < wy <
10. For each instance, we respectively run PASS, PASS-M,
PASS-T, the conceivable baseline introduced in Section VI-B,
and compare their solutions with the optimal. Note that we

obtain the optimal solution by solving multiple-unicast flow
problems in the time-expanded network.

We present the aggregate throughput results of different
algorithms of the 100 simulation instances in Figure 5(a). In
Figure 5(b), we give the throughput improvement of different
algorithms as compared to the optimal. Note that PASS,
PASS-M, and PASS-T can obtain utilities strictly greater than
optimal, because they all optimize utility subject to relaxed
constraints, while the optimal utility is achieved by a feasible
solution strictly meeting all the constraints.

From Figure 5 we learn that PASS and PASS-T obtain a
large improvement on the aggregate user throughput compared
to the optimal (over 100% more than the optimal), while the
aggregate user throughput achieved by PASS-M and the base-
line is close-to-optimal. According to Theorem 2, theoretically
PASS can violate both throughput requirements and maximum
delay constraints. Empirically, (i) the throughput achieved by
PASS is 138 (resp. 302) on average for the first unicast
(resp. second unicast), both satisfying throughput requirements
Ry = Ry = 80. (ii) The maximum delay experienced by
PASS is 195 (resp. 301) on average for the first unicast
(resp. second unicast), violating maximum delay constraints
Dy = Dy = 150. But considering that video conferencing ap-
plications can accept a delay less than 400ms [19], the solution
of PASS is acceptable. According to Theorem 3, theoretically
PASS-M can meet maximum delay constraints while violate
throughput requirements. Empirically, the throughput achieved
by PASS-M is 71 (resp. 154) on average for the first unicast
(resp. second unicast). It is clear that the first unicast flow
violates throughput requirement. According to Theorem 4,
theoretically PASS-T can meet throughput requirements while
violate maximum delay constraints. Empirically, the maximum
delay experienced by PASS-T is 222 (resp. 322) on average
for the first unicast (resp. second unicast), violating the max-
imum delay constraints but within 400ms that is the largest
acceptable delay.

VII. CONCLUSION

We consider the problem of maximizing aggregate user
utilities subject to link capacity constraints, maximum delay
constraints, and throughput requirements. A user’s utility is
a concave function of the achieved throughput or the ex-
perienced maximum delay. We first prove that it is NP-
complete either (i) to construct a feasible solution meeting all
constraints, or (ii) to obtain an optimal solution after we relax
maximum delay constraints or throughput requirements. We
then design the first polynomial-time approximation algorithm
named PASS to obtain an approximate solution, at the cost
of violating both maximum delay constraints and throughput
requirements by up to constant ratios. By slightly modifying
PASS, we develop two algorithms PASS-M and PASS-T to
obtain approximate solutions at the cost of violating either
maximum delay constraints or throughput requirements by
up to problem-dependent ratios. Our results can serve as
benchmarks for future research in the area. The design of our
algorithms leverages a new understanding between maximum-
delay-aware problems and their average-delay-aware counter-



parts. It suggests a new avenue for solving a broad range of
maximum-delay-aware network optimization problems.

REFERENCES

[11 Q. Liu, H. Zeng, and M. Chen, “Network utility maximization under
maximum delay constraints and throughput requirements,” in Proc. ACM
Int’l Sym. Mobile Ad Hoc Networking and Computing, 2019, pp. 391—
392.

[2] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: shadow prices, proportional fairness and stability,” Journal of
the Operational Research society, vol. 49, no. 3, pp. 237-252, 1998.

[31 S. H. Low and D. E. Lapsley, “Optimization flow control—i: basic
algorithm and convergence,” IEEE/ACM Trans. Networking, vol. 7,
no. 6, pp. 861-874, 1999.

[4] J. Wang, L. Li, S. H. Low, and J. C. Doyle, “Can shortest-path
routing and tcp maximize utility,” in Proc. IEEE Int’l Conf. Computer
Communications, 2003, pp. 2049-2056.

[5] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439-1451, 2006.

[6] S. Misra, G. Xue, and D. Yang, “Polynomial time approximations for
multi-path routing with bandwidth and delay constraints,” in Proc. [EEE
Int’l Conf. Computer Communications, 2009, pp. 558-566.

[71 W. Zhang, J. Tang, C. Wang, and S. de Soysa, “Reliable adaptive multi-
path provisioning with bandwidth and differential delay constraints,” in
Proc. IEEE Int’l Conf. Computer Communications, 2010, pp. 1-9.

[8] J. R. Correa, A. S. Schulz, and N. E. S. Moses, “Computational
complexity, fairness, and the price of anarchy of the maximum latency
problem,” in Proc. Int’l Conf. Integer Programming and Combinatorial
Optimization, 2004, pp. 59-73.

[9] J. Correa, A. Schulz, and N. Stier-Moses, “Fast, fair, and efficient flows

in networks,” Operations Research, vol. 55, no. 2, pp. 215-225, 2007.

Q. Liu, L. Deng, H. Zeng, and M. Chen, “A tale of two metrics

in network delay optimization,” in Proc. IEEE Int’l Conf. Computer

Communications, 2018, pp. 2123-2131.

——, “A tale of two metrics in network delay optimization,” [EEE/ACM

Trans. Networking, vol. 28, no. 3, pp. 1241-1254, 2020.

Z. Cao, P. Claisse, R.-J. Essiambre, M. Kodialam, and T. Lakshman,

“Optimizing throughput in optical networks: The joint routing and power

control problem,” IEEE/ACM Trans. Networking, vol. 25, no. 1, pp. 199—

209, 2017.

R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog

computing-enabled internet-of-things: A network perspective,” in Proc.

IEEE Int’l Conf. Computer Communications, 2018, pp. 783-791.

X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: a

low-delay multi-party conferencing solution,” in Proc. ACM Int’l Conf.

Multimedia, 2011, pp. 493-502.

Y. Liu, D. Niu, and B. Li, “Delay-optimized video traffic routing in

software-defined interdatacenter networks,” IEEE Trans. Multimedia,

vol. 18, no. 5, pp. 865-878, 2016.

M. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and A. Khonsari,

“Cost-effective low-delay design for multiparty cloud video conferenc-

ing,” IEEE Trans. Multimedia, vol. 19, no. 12, pp. 2760-2774, 2017.

WebEx, 2017. [Online]. Available: https://blog.webex.com/2016/01/

five-reasons-to-join-a- webex-now/

Skype, 2017. [Online]. Available:

bythenumbers/skype-calls

ITU, “Series g: Transmission systems and media, digital systems and

networks,” International Telecommunication Union, Geneva, Switzer-

land, 2003.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with

a globally-deployed software defined wan,” in Proc. ACM SIGCOMM

Computer Communication Review, 2013, pp. 3-14.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and

R. Wattenhofer, “Achieving high utilization with software-driven wan,”

in Proc. ACM SIGCOMM Computer Communication Review, 2013, pp.

15-26.

WIKI.  (2017)  Polynomial  time  approximation  scheme.

[Online].  Available: https://en.wikipedia.org/wiki/Polynomial-time_

approximation_scheme

I.-H. Hou, V. Borkar, and P. Kumar, “A theory of qos for wireless,” in

Proc. IEEE Int’l Conf. Computer Communications, 2009.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18] https://news.microsoft.com/

[19]

[20]

[21]

[22]

[23]

[24] I.-H. Hou and P. Kumar, “Utility maximization for delay constrained
qos in wireless,” in Proc. IEEE Int’l Conf. Computer Communications,
2010.

L. Deng, C.-C. Wang, M. Chen, and S. Zhao, “Timely wireless flows
with general traffic patterns: Capacity region and scheduling algorithms,”
IEEE/ACM Trans. Networking, vol. 25, no. 6, pp. 3473-3486, 2017.
I.-H. Hou, “Packet scheduling for real-time surveillance in multihop
wireless sensor networks with lossy channels,” IEEE Trans. Wireless
Communications, vol. 14, no. 2, pp. 1071-1079, 2014.

R. Singh and P. R. Kumar, “Decentralized throughput maximizing
policies for deadline-constrained wireless networks,” in Proc. IEEE
Conf. Decision and Control, 2015, pp. 3759-3766.

H. Deng, T. Zhao, and I.-H. Hou, “Online routing and scheduling
with capacity redundancy for timely delivery guarantees in multihop
networks,” IEEE/ACM Trans. Networking, vol. 27, no. 3, pp. 1258-1271,
2019.

R. Singh and P. Kumar, “Throughput optimal decentralized scheduling
of multihop networks with end-to-end deadline constraints: Unreliable
links,” IEEE Trans. Automatic Control, vol. 64, no. 1, pp. 127-142,
2018.

R. Singh, P. Kumar, and E. Modiano, “Throughput optimal decen-
tralized scheduling of multi-hop networks with end-to-end deadline
constraints: Ii wireless networks with interference,” arXiv preprint
arXiv:1709.01672, 2017.

B. Grimmer and S. Kapoor, “Nash equilibrium and the price of anarchy
in priority based network routing,” in Proc. IEEE Int’l Conf. Computer
Communications, 2016, pp. 1-9.

IBM, “Cplex optimizer,” 2017. [Online]. Available: https://www-01.
ibm.com/software/commerce/optimization/cplex-optimizer/

F. Devetak, J. Shin, T. Anjali, and S. Kapoor, “Minimizing path delay in
multipath networks,” in Proc. IEEE Int’l Conf. Communications, 2011,
pp. 1-5.

I. M. Weinstein, “Polycom’s lost packet recovery (lpr) capability,” Wain-
house Research, 2008. [Online]. Available: http://docs.polycom.com/
global/documents/whitepapers/lost_packet_recovery_eval_report.pdf

F. Potra and Y. Ye, “A quadratically convergent polynomial algorithm for
solving entropy optimization problems,” SIAM Journal on Optimization,
vol. 3, no. 4, pp. 843-860, 1993.

M. Grotschel, L. Lovasz, and A. Schrijver, Geometric algorithms and
combinatorial optimization. Springer Science & Business Media, 2012.
Y. Ye, “An O(n3L) potential reduction algorithm for linear program-
ming,” Mathematical programming, vol. 50, no. 1-3, pp. 239-258, 1991.
L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian journal of Mathematics, vol. 8, no. 3, pp. 399-404, 1956.

[25]
[26]
[27]

(28]

[29]

(30]

[31]

[32]

[33]
[34]
[35]

(36]
[37]

[38]

VIII. APPENDIX
A. Proof to Lemma 1

Proof: We prove that (6) is feasible if and only if (1)
with an objective of (1b) is feasible, and they share the same
optimal solution.

Only if part. Suppose the problem formulated in (6) is fea-
sible. Because any feasible solution to the problem formulated
in (6) must also be feasible to MUDT formulated in (1) with
an objective of (1b), it holds that MUDT formulated in (1)
with an objective of (1b) must be feasible.

If part. Suppose MUDT formulated in (1) with an objective
of (1b) is feasible, and f = {f1, ..., fi } is an arbitrary feasible
solution to it. For each unicast i = {1, ..., K'}, if | f;| > R;, we
delete flow rate from f; till |f;| = R;; otherwise we do noth-
ing. Then we can always obtain a solution ¢ = {¢1,..., 9k }
from f such that |g;| = R; for all 4, meeting constraints (6b)
and (6d). It is clear that M(g;) < M(f;) because link delay
is a constant, which implies that g satisfies (6¢). Thus g is
feasible to the problem formulated in (6), implying that the
problem formulated in (6) is theoretically feasible.

We prove that the two problems share the same optimal
solution by contradiction. Suppose ¢* = {g},i =1,2,..., K}
is the optimal solution to the problem formulated in (6),



fr={fri=12,.., K} is the optimal solution to MUDT
formulated in (1) with an objective of (1b), and

K K
Zug (M(g7)) _Zuf (M(£7))

Note that Zfil UIM(gr) < Zfil UL(M(fF)) does not
holds because g* is feasible to MUDT.

As introduced in the previous proof, we can construct a g
from f* where ¢ is feasible to the problem formulated in (6),
and M(g;) < M(f;),Vi = 1,2, ..., K. Considering that utility
functions are non-decreasing, we have

K K
> U (M > ut(m
i=1 i=1
implying that
K K
DU M) > Y U (M(g))
i=1 i=1

which is contradicted with that g* is optimal to (6). Therefore,
the two problems share the same optimal solution.

After we replace the maximum delays in (6) by the average
delays, clearly we get MUAT-M formulated in (5). Because we
prove that (6) is feasible if and only if (1) with an objective
of (1b) is feasible, and they share the same optimal solution,
it holds that MUAT-M is the average-delay-aware counterpart
of MUDT that maximizes delay-based utilities. ]

B. Proof to Lemma 2

Proof: According to Algorithm 1, for any + = 1,2, ..., K,
f; is obtained by iteratively deleting € - |f;| rate from f;.
Suppose that there are in total N; iterations to get f; by
deleting rate from fz (namely assume N; to be the number
of iterations of the while-loop of line 8). And we use f/" to
represent the flow of the unicast 7 at the beginning of the n-th
iteration (or equivalently, at the end of the (n—1)-th iteration).
Obviously, f} = ﬁ, fiN i1 — f,. We denote P as the set
of of all flow-carrying paths in flow f*, and p}' € P as the
slowest flow-carrying path in P*. In the n-th iteration of the
unicast 7, PASS delete some rate, say z* > 0, from p.
Since all link delays are non-negative constants, the path

delay cannot increase with reduced flow rate. Thus,

MY <M1, Yn=1,2,..,N;,Vi=1,2,.... K.

(26)
For any 1 < n < N;,, the following held for any %

T =) >

[z{de] + (25 de]

ecE:edpl ecE:ecpl
= Z [zide] + Z [(2f — 27') de + x7'de]
ecE:edpl ecE:ecpl?
DNl Y [ - el + M)
e€E:edpy r:‘GE'er;l

O () b2t M) S T + M ().

27)

In (27), equality (a) holds because Zeep . is the path
delay of the slowest flow-carrying path p'. Equality (b) holds
because flow ff“ is the flow when f* deletes x' rate from
path p?. Inequality (c) comes from (26) and f" i+ = fi.

We then do summation for (27) over n € [1, N;], and get

TR =TUh) =T (1) + <Zz> 7)
il M(F)

which proves our Lemma 2 since it holds that 7(f;) > 0.
Finally, note that our constant delay model is sufficient but
not necessary for our Lemma 2 to hold. Following the similar
proof, it is easy to verify that our Lemma 2 holds if for each
link we have that the link delay does not increase when the
flow rate assigned to the link decrease. [ ]

T[] +e

C. Proof to Theorem 2

Proof: First, we prove the polynomial time complexity.
Both problem (4) and (5) can be solved in polynomial time,
since (i) they are convex programs with a polynomial size,
and (ii) convex programming problems can be solved up to
an arbitrarily small additive error in polynomial time (e.g.,
see [35], [36] for details). For example, the time complexity
is O(JE]?K3L) where L is the input size of the instance of
the problem (4) or (5) if they are linear programs [37].

After solving the average-delay-aware problem, we get K
single-unicast flows each of which is defined on edges. By
the classic flow decomposition technique [38], we can then
achieve K single-unicast flows f = {fz,z =1,2,..., K} each
of which is defined on paths within a time of O(|V|?|E|K).
Note that the flow decomposition outputs at most |E| paths for
each fz and hence there are at most |E| iterations to obtain
each f; by deleting rate from f, . Overall, Algorithm 1 has a
polynomial time complexity that is even independent to .

Second, we prove the existence of f.

(1) Suppose (1a) is the objective of the problem (1). Because
problem (1) is feasible and f* is its optimal solution, f* must
satisfy all the constraints of problem (1), implying that f* also
satisfies the constraints (4b) and (4d) of the problem (4) that is
the average-delay-aware counterpart of the problem (1). Now
consider that we have 7 (g) < M(g)-|g| for any single-unicast
flow g, for any ¢ = 1,2, ..., K, the following holds

T(f7) < M(f7)- |f| D; - |71,

where the inequality (a) comes from that f* meets the con-
straints (1d). Therefore, f* is also a feasible solution to the
problem (4). Due to the existence of f*, (4) must be feasible
and hence Algorithm 1 must return a solution f.

(ii) Suppose (1b) is the objective of the problem (1).
Because problem (1) is feasible and f* is its optimal solution,
f* must meet all the constraints of problem (1), e.g., we have
|ff| > R;,Vi = 1,2,..., K. Now we construct another net-
work flow f based on f* as follows: for each i = 1,2, ..., K,
we obtain f; directly from f, by deleting flow rate from
arbitrary flow-carrying paths of f* till |f*| = R;. The



existence of f* implies the existence of f. For problem (5), it
is clear that f meets the throughput requirements (5b). Since
f* meets the constraint (le), f must satisfy the constraint (5d).
Since we delete certain flow rate from f;* to obtain f;, the
maximum delay does not increase, i.e., we have

further implying the following for any ¢ = 1,2,..., K
T(fi) < M(fo)lfil = M(fi)-Ri < M(f{)-Ri < Di-R;,

i.e., f meets (5c). Therefore, f is a feasible solution to the
problem (5). Due to the existence of f, (5) must be feasible
and hence Algorithm 1 must return a solution f.

Third, we prove that f satisfies the relaxed constraints (8).
Suppose f is the solution to the average-delay-aware problem
in line 5. Clearly that f meets the following:

fil >Ry, Vi=1,2,.., K, (29a)
A <f) <Dy, Vi=12 . K, (29b)
f={f1, fars f} € X. (29¢)

We know f; is the solution by deleting a rate of € - | f;|
from f; for each i = 1,2, ..., K. It is clear that f satisfies the
constraints (8a) and (8c). Based on Lemma 2 and the satisfied
constraints (29b), we have the following for any

M(fi) < Alfi)/e < Dife,
implying that the constraints (8b) are satisfied.
Finally, we prove the approximation ratio of f. If (la) is
the objective of problem (1), we have

K B K R
Sut(|fil) = u (0 =a)- |
) Yo

(@)

K
> (1-o- >l (
=1

where the inequality (b) holds because in the second part of
this proof, we have proved that f* is a feasible solution to
the average-delay-aware problem (4), while f is its optimal
solution. Inequality (a) comes from the following inequalities
foreachi=1,2,.... K

u (6-0—|—(1—6)- fz)
(4)

u;((1—e). ):
)= a-o-u(|7]),

©
> e UN0) + (1) .uf(
where the inequality (c) holds due to the concavity of the
function U/ (-), and the inequality (d) comes from that the
function U!(-) is non-negative.
If (1b) is the objective of problem (1), first

fi

fi

fi fi

UL(x)-ale) > U (x/e),Y0 < x < D;, Vi =1,2,..., K. (30)

Note that the non-decreasing property of U¢(-) implies that
a(e) > 1. We assume f is the feasible solution to the

average-delay-aware problem (5) that is constructed from f*
as discussed in the second part of this proof. Then

Sut (i) = S (4(7) )
@ i N

< afe) - Z:Z/If (A <f7,>) < a(e) -
< a(e) - iuﬁ (M (fi) ; afe) -

where the inequality (a) comes from the inequalities (30),
the inequality (b) holds since f is feasible to (5) while f
is optimal to (5), and the inequality (c) is true because of the
inequality (28) and the non-decreasing property of UZ(-). m
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