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Abstract—We consider the problem of minimizing emission
of a heavy-duty truck transporting freight between two locations
subject to a hard deadline constraint. The truck is equipped with
a multi-speed transmission and a modern combustion engine that
intelligently switches among multiple fuel injection strategies at
certain engine speeds (called switching speeds) to achieve lower
emission profiles. Our objective is to minimize the emission by
optimizing both path and speed planning for heavy-duty trucks
with multi-speed transmission and multiple injection strategies in
the engine. This emission minimization problem, while pervasive
in practice, has two challenges: i) the emission rate function
is discontinuous and non-convex due to switching of the fuel
injections and gear ratios, which makes the common practice of
driving at a constant speed on a road segment not eco-friendly;
ii) the problem is NP-hard due to the combinatorial nature of
the simultaneous path and speed planning. We tackle the first
challenge by considering the case where the truck can travel
at a heterogeneous speed profile over a road segment and then
formulate the speed planning problem as a convex problem. We
further identify special structures in this problem and provide an
efficient method for computing the optimal speed profile. We then
tackle the second challenge by developing an efficient heuristic
for both path planning and speed planning to solve the emission
minimization problem on the scale of national highway systems.
Our extensive simulations on the US highway system show that
our solution reduces up to 46% NOx emission as compared
to the commonly-adopted fastest path approach. We also find
that optimizing heterogeneous speed profiles reduce up to 32%
emission as compared to their homogeneous counterpart, thus
are necessary to be considered in eco-friendly truck operations.

Index Terms—Energy-efficient transportation, timely trans-
portation, engine fuel injection strategy, emission

I. INTRODUCTION

In 2021, 11.0 billion tons of freight were transported by
heavy-duty trucks in the United States, representing 72.2%
of total domestic tonnage shipped [2]. The trucking industry
generated $875.5 billion in revenue in 2021 [2]. This number
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would rank 18th in the world if measured against countries’
GDPs. This trend will likely continue, as the global freight
activity is predicted to increase by a factor of 2.4 by 2050 [3].

Despite their importance to the economy, heavy-duty vehi-
cles are a significant source of emissions, including Carbon
Dioxide (CO2), Nitrogen Oxides (NOx), and fine particle
matter (PM 2.5). With only 4% of the total vehicle population,
heavy-duty trucks produce more than one-third of the CO2
(the primary greenhouse gas causing global warming) emitted
in the transportation sector around the world [3]. In the US,
about 16-18% of NOx is emitted by heavy-duty trucks [4]. In
California, one of the most polluted areas in the US, heavy-
duty trucks contribute to over 70% of the NOx emissions from
on-road vehicles [5]. Therefore, it is critical to reduce their
exhaust emissions for a cleaner environment.

A recent effort to reduce emissions in the transportation
sector is the introduction of multiple injection strategies for
internal combustion engines, which also improves fuel econ-
omy and reduces combustion noise [8]. More specifically, in
each engine revolution, the engine control system determines
the timing and amount of fuel for several possible injections:
(i) the main injection, which provides the bulk of the fuel;
(ii) several optional injections (called pilot injections or pre-
injections) before the main injection to heat the combustion
chamber and ensure a more uniform fuel-air mixture; (iii)
one or two optional injections (called post-injections) after the
main injection to burn the residual and decrease the amount of
pollutants. Fig. 1a illustrates the emission of NOx as a function
of the engine speed for different injection strategies [6], where
the emission rate function for each strategy is approximated by
a convex function. In addition, these functions are monotoni-
cally decreasing with the number of injections: for any engine
speed, a higher number of injections means less emission.

However, multiple injections come with the cost of a higher
computational load. In addition, when a truck drives at high
speed, the time interval for one engine revolution becomes
small. Therefore, the limited computational resources and tight
real-time requirements may not allow sophisticated control
strategies (and multiple injections). Engine control systems
are thus often designed to be self-adaptive in that they switch
to simplified control strategies (e.g., single-injection) at high
engine speeds [7]. Fig. 1b shows a typical engine control
software realized as a sequence of if statements [6], [7].
The control strategy at a speed higher than ω4 (i.e., ω > ω4)
only executes function f1() for single-injection, compared
to (f1()–f5()) for quintuple-injection at ω1. Such engine
control software, in general, makes the cost model discontinu-
ous at the switching speeds (thus non-convex). The thick black
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(a) NOx emission model for different injection strate-
gies [6] in dash lines with different colors. The
corresponding model for the code in Fig. 1b are shown
in thick black line.

#define ω1 1000
#define ω2 2000
#define ω3 4000
#define ω4 6000

task Engine_control_task {
 ω = read_engine_speed();
 f1();
 if (ω ≤ ω1)  f2();
 if (ω ≤ ω2)  f3();
 if (ω ≤ ω3)  f4();
 if (ω ≤ ω4)  f5();

}

(b) Typical engine con-
trol software that switches
strategies with the engine
speed [7].
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(c) An example of emission rate function f(r)
for m = 2 gear positions and q = 2 control
strategies.

Fig. 1: Illustrations for the discontinuity of the emission rate function.

line in Fig. 1a gives an example of the overall NOx emission
model corresponding to the code in Fig. 1b.

Another source of discontinuity in the emission model is
gear shifting, i.e., switching the gear so that the engine speed
is within the fuel-economic range (see Fig. 2). When the gear
is shifted, e.g., from position 9 to 10 at 40 mph, the engine
speed falls from 1150 rpm to 850 rpm, which leads to a large
difference of engine performance (e.g., emission rate) near the
vehicle speed 40 mph. Therefore, the gear-shifting strategy
also introduces points of discontinuity to the emission rate
function with respect to vehicle speed. An example of the
overall emission rate function is presented in Fig. 1c.

Timely transportation is a common requirement in the
trucking industry, for three reasons [9]: (i) the nature of the
goods (such as fresh food) [10]; (ii) service-level agreements
to guarantee delivery delay such as those in Amazon1, uShip2

and Uber Freight3; and (iii) ease of scheduling and operation
in the logistics [11]. For instance, mobile applications like
uShip and Uber Freight collect freight transportation requests
for truck operators, often associated with pickup and delivery
time requirements.

In this work, we consider a common truck operation sce-
nario where a long-haul truck drives across a national highway
system. Our objective is to minimize the total emission subject
to a hard deadline constraint by optimizing path planning
and speed planning and leveraging adaptive engine control
strategies and multi-speed transmission.

Our problem optimizes path planning and speed planning as
in several previous studies [9], [15], [16]. However, we also
consider adaptive engine control strategies and multi-speed
transmission, which makes our problem uniquely challenging,
since the overall emission is a discontinuous and non-convex
function with respect to the vehicle speed due to the switching
among these control strategies and gear positions at runtime.
Table I summarizes the comparison between our work and

1Place an Order with Guaranteed Delivery, Amazon, http://amazon.com
2uShip, https://www.uship.com/
3Uber Freight, https://freight.uber.com/

related studies. To our best knowledge, we are the first to
study the problem of optimizing the operation of a long-haul
heavy-duty truck subject to a hard deadline constraint, where
the truck is equipped with multiple injection strategies and
multi-speed transmission. The contributions are summarized
as follows.
▷ We prove that our problem is NP-hard and show that

switching among multiple engine control strategies and gear
ratios makes the emission rate function discontinuous and
non-convex, hence imposing a unique challenge compared to
existing studies, which all deal with convex cost functions.
▷ We find that driving at a constant speed on one road

segment is not optimal, and it is necessary to consider hetero-
geneous speed profile at one road segment. We explore the
structures of this speed planning problem and formulate it
into a convex programming form. We then further leverage
the properties of the emission rate functions and derive an
efficient method for the optimal speed profile that achieves
three orders of magnitude runtime improvement than the
convex program solver. We develop an efficient dual-based
heuristic for both path planning and speed planning. Moreover,
we give a sufficient condition under which the solution of our
approach is optimal and an upper bound of the optimality gap
when the condition is not satisfied.
▷ We conduct extensive simulations over the US highway

network with 1, 000 origin-destination pairs. The results show
that our scheme reduces up to 46% emissions compared to the
fastest path. We also find that heterogeneous speed profiles
reduce up to 32% emission as compared to its homogeneous
counterpart, thus are necessary to be considered in environ-
mentally friendly truck operations.

II. RELATED WORK

Restricted Shortest Path (RSP). In an RSP problem, the
cost and travel time associated with each road segment are
both fixed. The objective is to find a path with the minimum
total cost such that the total travel time is within a deadline
constraint. However, existing approaches and results for RSP
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Work Path
Planning

Speed
Planning

Hard
Deadline

Adaptive
Fuel Injection Transmission Vehicle

Type Cost Cost Model

RSP [12], [13], [14] ✓ ✗ ✓ ✗ ✗ Truck Any Constant
PASO [9], [15], [16] ✓ ✓ ✓ ✗ ✗ Truck Fuel Convex
Others, e.g., [17], [18], [19] ✗ ✓ ✗ ✗ ✓ Truck Fuel Nonlinear
Other, e.g., [20] ✗ ✓ ✓ ✗ ✓ Truck Fuel Nonlinear
Other, e.g., [21] ✓ ✗ ✗ ✗ ✗ Truck Fuel Constant
Others, e.g., [22], [23] ✗ ✓ ✗ ✗ ✓ General Fuel Nonlinear
Other, e.g., [24] ✗ ✓ ✓ ✗ ✓ General Fuel Nonlinear
Other, e.g., [25] ✓ ✗ ✗ ✗ ✓ General Emission Constant
VRP [26], [27] ✓ ✓ ✓ ✗ ✗ General Emission Nonlinear
This work ✓ ✓ ✓ ✓ ✓ Truck Emission Discontinuous

TABLE I: Comparison of our work and existing studies.

are not applicable to our problem, as the fixed cost and travel
time for each road segment in RSP disregard the challenging
design space of speed planning.

PAth selection and Speed Optimization (PASO) and its
extensions. PASO [9] generalizes RSP with the additional
design space of speed planning. An FPTAS and a dual-based
heuristic have been developed to solve the challenging PASO
problem [9]. An extension to a multi-task setting has been
studied [15] to fulfill multiple transportation tasks under task
pickup and delivery time window constraints. The design space
of opportunistic driving [16] has been explored to leverage
dynamic traffic conditions, wait for benign traffic conditions
and reduce the cost. However, all these studies assume the
fuel consumption model is convex, while in our problem the
cost function is discontinuous and non-convex due to multiple
injection strategies and multiple gear positions.

Other related studies. Reducing emission for vehicles has
been studied extensively [26], [28], [25], [27]. Bektaş et
al. [26] propose an extension of the Vehicle Routing Problem
(VRP) called Pollution Routing Problem (PRP) with vari-
ous optimization objectives including fuel consumption, CO2
emission and travel time. Guo et al. [25] collect a number
of real-world vehicle data and optimize the objectives of
fuel consumption and emissions. Hellström et al. [17] embed
the cost-speed tradeoff in the objective, a weighted sum of
travel time and fuel consumption. They also use look-ahead
information such as estimated road grade [29] to control the
truck’s speed profile under a given path. Boriboonsomsin et
al. [21] present an eco-routing navigation system that deter-
mines the most fuel-economic path. Alam et al. [30] observe
that improved fuel efficiency can be obtained by maintaining
the platoon of trucks throughout a hill, motivating subsequent
studies, e.g., [31], [32], [33], which focus on developing
control strategies for truck platooning to save fuel.

Meanwhile, a continuous effort has been put into engine
emission control from both the industry and the regulatory
authorities; see a recent review in [34]. In particular, heavy-
duty engines are improving at a much slower pace than
light-duty ones [34]. However, all these studies focus on the
optimization of the design and operation of various parts in
the engine (e.g., fuel system and injection strategy [35], [36],
[6], [37], exhaust after-treatment system [38]), and they do
not consider the planning of path and/or speed profile. For
example, Biondi et al. [6] present methods to optimize the
switching speeds of multiple injection strategies at design time

against standard driving cycles (i.e., with fixed path and speed
profile), while Peng et al. [39], [37] propose to adjust the
switching speeds at runtime using predicted driving cycles.

We summarize the comparison of our work and related
studies in Tab. I. To our best knowledge, we are the first to
study the problem of minimizing emissions for a long-haul
heavy truck equipped with multiple engine control strategies
and multi-speed transmission. Compared to existing studies
that also simultaneously optimize path planning and speed
planning under a hard deadline constraint [9], [15], [16], the
consideration of switching among multiple injection strategies
and gear ratios makes our problem uniquely challenging due
to the discontinuity and non-convexity of the emission rate
function.

III. MODEL AND PROBLEM FORMULATION

We model a national highway network as a directed graph
G ≜ (V,E) where an edge e ∈ E represents a road segment,
and a node v ∈ V represents a point of junction for connected
road segments. We denote the distance of an edge e ∈ E by
De > 0. We also denote the minimum (resp. maximum) speed
of an edge e by rel (resp. reu). We assume the driving conditions
to be homogeneous on each road segment, i.e., the grade and
surface resistance are the same on a road segment (otherwise,
we can break it into multiple segments). We consider the
scenario where a truck travels from an origin o ∈ V to a
destination d ∈ V across the highway network G within a
hard deadline requirement T .

A. Emission Rate function

For a truck and its i-th engine control strategy, we denote the
engine performance function by f̂i(ω, p) : R2 → R where ω is
the engine speed in revolutions per minute (rpm), and p is the
output power in kW. The output f̂i(ω, p) is the (instantaneous)
emission rate (unit: g/s).

For a fixed gear position j, the engine speed is linear with
respect to the vehicle speed (see Fig. 2). Therefore, we model
the mapping from the vehicle speed r to the engine speed ω
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Fig. 2: A typical 10-speed transmission plot from the vehicle
speed to the engine speed [40].

as a piece-wise linear function:4

ω(r) = ajr + bj if r ∈ (rωj−1, r
ω
j ] (1)

for all gear positions j ∈ {1, ...,m}, where m is the number
of gear positions. Moreover, for a truck driving at a constant
speed r on a road segment e, we model the output power p(r)
as a third-degree polynomial function [43], [44]:

pe(r) = ae3r
3 + ae2r

2 + ae1r + ae0 (2)

Thus the emission rate function of a truck driving at i-th
control strategy and j-th gear position over a segment e is

f̃e
ij(r) = f̂i(ajr + bj , a

e
3r

3 + ae2r
2 + ae1r + ae0) (3)

The overall emission rate function is given by

fe(r) = f̃e
ij(r), if r ∈ (rωj−1, r

ω
j ] and ω(r) ∈ (ωi−1, wi], (4)

where ωi is the switching speed from strategy i to i + 1,
i ∈ {1, ..., q} and q is the number of control strategies. Note
that we can write the function in a standard piece-wise form
as follows, since the domain for each piece is disjoint

fe(r) = fe
k(r) = f̃e

ij(r) if r ∈ (sk−1, sk] (5)

for k = {1, ..., n}. Here n ≤ mq is the number of pieces. We
set the boundary points to the speed limits on edge e: s0 = rel ,
sn = reu. We then derive each sk, k = {1, ..., n− 1} as:

sk−1 =
ωi−1 − bj

aj
, sk =

ωi − bj
aj

i = k − q

⌊
k − 1

q

⌋
, j =

⌊
k − 1

q

⌋
+ 1

Fig. 1c gives an illustrative example of the emission rate
function fe(r) with n = 4 pieces. There are three points of
discontinuity in total: two of them are due to switching of

4 In practice, drivers often shift the gear position to keep the engine speed
within a “sweet spot” range [41], [42] to ensure smooth driving and engine
performance. In this study, we consider that the driver follows such a gear-
shifting strategy during the whole trip. Consequently, this paper does not
optimize the vehicle-to-engine speed map. That is, given the vehicle speed
r, the engine speed is determined by a fixed piece-wise linear function ω(r)
like Fig. 2.

control strategies at 1, 000 rpm and and one of them is due to
switching of gear positions at 40 mph.

In this paper we make the following assumptions on the
high-level emission rate fe(r):

• piece-wise convex: each function fe
k is convex over the

interval [rel , r
e
u];

• staircase-shaped: they satisfy that

∀k1 < k2 ∈ [n],∀r ∈ [rel , r
e
u], fe

k1
(r) < fe

k2
(r) (6)

where [n] is the set of positive integers no larger than n.
We remark that the above assumptions on the cost model are

realistic for a number of metrics related to eco-friendly truck
operations. For example, the fuel rate can be described as an
increasing polynomial function of the vehicle speed, verified
with both theoretical and empirical studies [9]. The amount
of CO2 emission is roughly proportional to the amount of
fuel consumption (e.g., about 10.18kg per gallon of diesel,
or 8.887kg per gallon of gasoline) [45]. Hence it exhibits the
same characteristics as the fuel-rate function. Similarly, the
NOx emission can be modeled as an exponential function
that remains convex in the engine speed range based on
extensive simulation data [6]. The rationale behind the second
assumption (6) is that a more complicated and time-consuming
fuel injection strategy makes sense only if it provides some
benefit such as reduced emission, but its complexity makes it
only feasible at lower speeds [6].

While our approach generally applies to any cost function
that satisfies the above assumptions, we focus on minimizing
the emission cost for concreteness in the rest of this paper.
Those assumptions are also verified later in our simulations.

B. Total Emission Function

In contrast to convex cost rate functions discussed in exist-
ing literature [9], [15], [16], the emission rate function fe(r)
we study is discontinuous and non-convex which makes it non-
trivial to optimize. In particular, while it is optimal to drive
at a constant speed to travel through one road segment with a
convex cost rate function [9], this approach is sub-optimal for
discontinuous cost functions. In such cases, operating within
two speed ranges can yield lower costs, as demonstrated in
Example 1 in Appendix VIII-A. Therefore, it is necessary to
consider a heterogeneous speed profile on one road segment to
minimize emission costs. In the following, we shall study how
to optimize the heterogeneous speed profile and compute the
total emission function ce(t) that gives the minimum emission
cost (in grams) for a truck to traverse the edge e with the travel
time of t. We first present a similar result to [9, Lemma 1].

Lemma 1. If the total travel time ti following the speed in
the range (si−1, si] of the i-th piece fi(r) is given, then the
optimal speed profile is to maintain some constant speed ri
for the whole duration ti.

Proof. Similar to [9, Lemma 1], it is proven by applying the
continuous Jensen’s inequality to the convex function fi(r).

Given Lemma 1, we are now ready to formulate the problem
of optimizing the speed profile to pass an edge e, with the
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length of the edge De, and the total travel time te. We denote
rk and tk as the selected speed and travel time for the k-th
piece, respectively. We introduce the auxiliary variable dk =
rk · tk to denote the driving distance for the k-th piece and
formulate the problem as follows5

ce(te) = min
tk≥0,dk≥0,∀k∈[n]

∑
k∈[n]

tk · fk
(
dk
tk

)
(7a)

s.t.
∑
k∈[n]

tk = te,
∑
k∈[n]

dk = De (7b)

sk−1tk ≤ dk ≤ sktk,∀k ∈ [n] (7c)

The objective (7a) is to minimize the total emission on the road
segment. The constraint (7b) makes sure that the total driving
distance is equal to the length De of the road segment and
that the total travel time is equal to te. The constraint (7c) is
to make sure the driving speed dk

tk
is within the corresponding

speed range for each piece k.

Lemma 2. The speed planning problem in (7) is a convex
optimization problem.

Proof. In the objective, each summand tk · fk
(

dk

tk

)
is the

perspective of the convex function fk, thus is also convex [47]
in dk and tk. Therefore, the objective function is the sum
of convex functions and thus is convex. Then convexity
of the objective combined with the observation that all the
constraints (7b)-(7c) are linear, giving the desired result.

Therefore, we can efficiently compute the total emission
function ce(te) by solving problem (7) as a standard convex
program. This approach, however, only exploits the piece-wise
convexity of the emission rate function fe(r). In Section IV,
we will delve deeper into the unique structures of this problem
and introduce a more efficient method. Notably, the proposed
method offers a runtime that is three orders of magnitude faster
than directly solving the convex program (7), as detailed in
Table III in Section VI.

C. Problem Formulation

In this paper, we consider the problem of minimizing the
total emission cost for a truck to travel from an origin o
to a destination d within a hard deadline T . We consider
the problem from the driver’s perspective, where the truck
parameters and engine parameters are predefined. The problem
inputs include the graph G = (V,E), the emission rate
function fe(r) for each road segment e that incorporates the
truck’s and its engine’s characteristics, the vehicle speed to
engine speed map ω(r), the speed limits rel and reu for each
edge e, the origin o, the destination d, and the deadline T .

The solution to our problem include a path from o to d and
the vehicle speed(s) on each road segment along the path. The

5In this paper, we ignore the emission cost due to acceleration and
deceleration during the speed transition phase, because this phase usually
spans over only several hundred feet [46] while the length of one road segment
is several miles or longer. Meanwhile, as we will show in Lemma 3, it is
sufficient to drive with at most two different speeds to achieve the minimum
emission cost at one road segment and our method suggests to travel for more
than a mile every speed change on average (see Fig. 6).

constraints include the speed limits on each road segment, and
a hard deadline that requires the total travel time to be no more
than T . In particular, we formulate our problem as follows:

min
x∈X ,t∈T

∑
e∈E

xe · ce(te) (8a)

s.t.
∑
e∈E

xe · te ≤ T, (8b)

where X defines a simple path from o to d

X ≜

{
x : xe ∈ {0, 1},∀e ∈ E, and

∑
e∈out(v)

xe −
∑

e∈in(v)

xe = 1{v=o} − 1{v=d},∀v ∈ V

}
.

Here 1{·} is the indicator function, in(v) ≜ {(u, v) : (u, v) ∈
E} is the set of incoming edges of node v, out(v) ≜ {(v, u) :
(v, u) ∈ E} is the set of outgoing edges of node v. The set
T captures the speed limits of all roads, which is defined as

T ≜ {t : tel ≤ te ≤ teu,∀e ∈ E},

where tel =
De

reu
and teu = De

rel
are the minimum and maximum

travel times of traversing the edge e, respectively.
We remark that there are two challenges to solve the

problem (8). The first challenge comes from the discontinuity
and the non-convexity of the emission rate function fe(r),
which makes to it more difficult to compute ce(t) than previous
work [9], [15], [16]. The second challenge comes from the
combinatorial nature of the problem 8, which makes it NP-
hard by the following theorem.

Theorem 1. The problem (8) is NP-hard.

Proof. This directly follows the fact that the NP-complete
problem PASO [9] is a special case of our problem, where
PASO only considers one control strategy (i.e., n = 1).

In the following two sections, we shall tackle those two
challenges. We shall provide an efficient method for solving
the speed planning problem (7) by indentifying special struc-
tures of the problem in Sec. IV. In Sec. V, we shall provide
an efficient dual based method that solves the overall path
planning and speed planning problem (8).

IV. SPEED PLANNING

In this section, we shall present an efficient method for
computing ce(t) by exploring the properties of the emission
rate function fe(r). For ease of presentation, we omit the
superscript e from the notations in the rest of the section, e.g.,
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(a) Illustration for Lemma 4. Shifting the
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(b) Illustration for Lemma 5 for small r̄.
The objective is minimized at the general-
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(c) Plot for f⋆(r̄) in solid line. The dot-
ted lines are functions f1(r1) and f2(r2)
respectively.

Fig. 3: Illustrations for ideas of solving the speed planning problem.

fe(r) is simplified as f(r). We now rewrite problem (7) in
the following equivalent form to better illustrate our method

f∗(r̄) = min
βi≥0,ri≥0,∀i∈[n]

∑
i∈[n]

βi · fi(ri) (9a)

s.t.
∑
i∈[n]

βi = 1, (9b)

∑
i∈[n]

βi · ri = r̄ (9c)

ri ∈ (si−1, si], ∀i ∈ [n] (9d)

where βi =
ti
t , and r̄ = D

t . Essentially, problem (9) is to find
a set of speeds, one ri for each piece i, such that their convex
combination is equal to the average speed r̄ = D

t over the
edge, and the weighted average of the emission rate is mini-
mized (denoted as f∗(r̄)). Note that this reformulation is not
convex anymore due to the nonlinear equality constraint (9c)
and the non-convex objective. However, problem (9) has spe-
cial structures that allow us to design an efficient method for
solving it. The proposed method is three orders of magnitude
faster than directly solving the convex program (7) (cf. Tab. III
in Sec. VI). In the following, we shall present this method for
the function f with n > 1 pieces, because when n = 1, the
optimal solution is simply r1 = r̄ and β1 = 1 by Lemma 1.
We outline the derivation steps as follows:

• We first show by Lemma 3 that we only need to focus
on at most two out of n pieces of function f to obtain
the optimal solution.

• Given i-th piece and j-th piece of function fi and fj
with 1 ≤ i < j ≤ n, we show by Lemma 4 that how to
choose the speed ri for i-th piece and show by Lemma 5
that how to choose the speed rj for j-th piece. Therefore,
we can obtain the minimum-cost solution on two specific
pieces fi, fj .

• Finally, we present our efficient method by searching
over O(n2) pairs of candidate pieces and identifying the
optimal solution.

Next, we present the details on how to derive our efficient
method for solving the speed planning problem (9). Suppose
the average speed r̄ lies in the ir-th piece of the function f , i.e.,
r̄ ∈ (sir−1, sir ). Let r⃗⋆ = [r⋆1 , · · · r⋆n] and β⃗⋆ = [β⋆

1 , · · ·β⋆
n]

be an optimal solution to problem (9). Then we have the
following lemma.

Lemma 3. There exists an optimal solution β⃗⋆ that has at
most two non-zero entries.

Proof. See Appendix VIII-B.

Lemma 3 suggests that we can focus on finding only two
points on the curve of the function f whose convex combina-
tion is minimized. Fig. 3a gives a geometric illustration of our
goal. We want to find two points (r1, y1) and (r2, y2) on two
pieces of function f such that the interpolated point (r̄, ȳ12)
has the the minimum function value ȳ12. To investigate how to
choose two points on two given pieces. We first fix the right
point (r2, y2) and shift the left point (r1, y1) to reduce the
cost, which yields the following lemma.

Lemma 4 (Illustrated by Fig. 3a). Consider a convex function
g(r), a fixed point r̄ ≤ r2, and a point (r2, y2) above the curve
of y = g(x), i.e., y2 > g(r2). For every r1 < r̄, let (r̄, ȳ) be
the convex combination of two points (r1, y1 = g(x1)) and
(r2, y2), i.e.,

ȳ =
y2 − y1
r2 − r1

(r̄ − r1) + y1 (10)

Then for every fixed r̄ and r2 ≥ r̄, ȳ is monotonically non-
increasing with r1 for r1 < r̄. In addition, ȳ ≥ g(r̄).

Proof. See Appendix VIII-C.

Fig. 3a illustrates the geometric interpretation of Lemma 4.
It suggests that given fixed right point (r2, y2), we should
always choose larger point (r3, y3) on the right boundary of
the same piece to decrease the objective. Next, we consider
the case where the left point (r1, y1) is fixed and we want
to shift the right point (r2, y2) to reduce the cost, which is
summarized in the following lemma.

Lemma 5 (Illustrated by Fig. 3b). Consider a convex function
g(r) and a fixed point (r1, y1) that is below the curve of y =
g(r), i.e., it satisfies y1 < g(r1). Define (p, yp = g(p)) as the
generalized right point of tangency from (r1, y1) to its right
hand side of the curve y = g(r), i.e., p > r1 satisfies the
following equation

∂−g(p) ≤
g(p)− y1
p− r1

≤ ∂+g(p) (11)
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where ∂−g(p) and ∂+g(p) are the left and right derivatives
of g at p.

Given r̄ > r1, for every r2 ≥ r̄, let (r̄, ȳ) be the convex
combination between (r1, y1) and (r2, y2 = g(r2)), that is,

ȳ =
y2 − y1
r2 − r1

(r̄ − r1) + y1 (12)

Then ȳ has the following properties:
• If r̄ ≤ p, then ȳ is monotonically non-increasing with
r2 until p, and monotonically non-decreasing with r2
afterwards. In addition, ∀r̄ ≤ r2 ≤ p, ȳ ≤ g(r̄).

• If r̄ ≥ p, then ȳ is monotonically non-decreasing with r2.
In addition, ∀r2 ≥ r̄, ȳ ≥ g(r̄).

Proof. See Appendix VIII-D

Fig. 3b illustrates the geometric interpretation of Lemma 5
when r̄ is small. It suggests that given fixed left point (r1, y1),
we want the right point (r2, y2) as close to (rp, yp) as possible
to reduce to cost. Meanwhile, when r̄ is larger than a threshold
p, we can simply drive at the constant speed r̄.
The efficient method. With Lemma 4 and Lemma 5, we can
directly obtain the optimal solution if the optimal piece(s)
are known. Combined with Lemma 3, we notice that it is
sufficient to check O(n2) pairs of points to obtain the optimal
solution. In particular, we summarize our efficient method in
the following:

Theorem 2. For any two pieces i, j such that 1 ≤ i < ir ≤
j ≤ n, we denote by pij the generalized right point of tangency
from point (si, fi(si)) to the curve y = fj(r). We also denote
the clamped pij as

p̃ij =


sj−1, if pij < sj−1,

pij , if pij ∈ [sj−1, sj ],

sj , if pij > sj

(13)

Then by Lemma 4 and Lemma 5, the minimum objective and
the corresponding solution on pieces i, j are given by:

ri = si, rj = p̃ij

βi =
r̄ − ri
rj − ri

, βj =
rj − r̄

rj − ri

yij = βifi(si) + βjfj(p̃ij)

We additionally define the case i = j = ir:

rir = r̄, βir = 1, yirir = fir (r̄).

Then the optimal solution and objective to the problem (9) are
identified by:

(i⋆, j⋆) = arg max
1≤i≤ir,ir≤j≤n

yij

y⋆ = max
1≤i≤ir,ir≤j≤n

yij

Proof. The proof directly follows from combining Lemma 3,
Lemma 4, and Lemma 5.

Therefore, we only need to check ir(n − ir + 1) ≤ n2

number of candidate points to solve the problem (9). There are
other techniques to reduce the number of candidates by further
exploring the relationship between different pairs of pieces.

However, we remark that the proposed method is efficient
enough in practice because the number of pieces n is relatively
small. In fact, since we are considering a truck travelling across
the highway system with vehicle speed larger than 20 mph on
most road segments, there are only m = 3 gear positions
involved in our scenario (cf. Fig. 2). If we consier an engine
with q = 3 control strategies, then the number of pieces
n ≤ mq = 9 is indeed small. Therefore, Theorem 2 provides
an efficient method for computing c(t) = t · f∗(D/t). It
allows us to efficiently solve the overall emission minimization
problem (8) in the next section. Fig. 3c gives an illustration of
f∗(r̄). It can be seen as the continuous version of the original
discontinuous function f(r) by drawing a line between the
break point (s1, f1(s1)) and (rp, yp). As one may observe
from Fig. 3c, we can show that f∗(r) is convex with respect
to r and thus c(t) = t · f∗(D/t) is also convex, as stated in
the following proposition.

Proposition 1. c(t) is convex over [tl, tu].

Proof. See Appendix VIII-E.

In the next section, we shall leverage the efficient computa-
tion method and convexity of c(t) to provide an efficient dual-
based method that solves the overall emission minimization
problem (8).

V. AN EFFICIENT DUAL-SUBGRADIENT ALGORITHM WITH
PERFORMANCE GUARANTEE

With the efficient method to the speed planning for a given
travel time t on an edge e and hence a fast computation
for ce(t), we consider the overall path planning and speed
planning problem (8) which now amounts to finding a path
and assign a travel time to each edge on the path, such that
the emission is minimized and the subject to the hard deadline
constraint T . We shall design an efficient heuristic based on
Lagrangian relaxation and derive a theoretical condition under
which our heuristic outputs the optimal solution. As illustrated
in the simulations, our heuristic quickly finds close-to-optimal
solutions for the scale of the US national highway network.

A. Lagrangian Relaxation and Dual Problem

We introduce a Lagrangian dual variable λ ≥ 0, and derive
the Lagrangian relaxation for problem (8) as

L(x, t, λ) ≜
∑
e∈E

xe · ce(te) + λ · (
∑
e∈E

xe · te − T )

=
∑
e∈E

xe · (ce(te) + λ · te)− λ · T.

The corresponding dual function is given by

D(λ) ≜ min
x∈X ,t∈T

L(x, t, λ).

and the dual problem of the original problem (8) is

max
λ≥0

D(λ)
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Given λ, we can obtain the value of D(λ) by computing the
shortest path with easily computed weights for each edge. In
particular, we have

D(λ) = −λT +min
x∈X

min
t∈T

∑
e∈E

xe · (ce(te) + λte)


= −λT +min

x∈X

∑
e∈E

xe · min
tel≤te≤teu

(ce(te) + λte)

(a)
= −λT +min

x∈X

∑
e∈E

xe ·
[
ce(te∗(λ)) + λ · te∗(λ)

]
(b)
= −λT +min

x∈X

∑
e∈E

xe · we(λ)

(c)
= −λT +

∑
e∈p∗(λ)

we(λ), (14)

Here te∗(λ) in (a) is defined as

te∗(λ) ≜ arg min
tel≤te≤teu

(
ce(te) + λte

)
. (15)

That is, te∗(λ) is the optimal travel time that minimizes
ce(te)+λte for edge e ∈ E, we(λ) in (b) is the corresponding
optimal cost

we(λ) ≜ ce(te∗(λ)) + λ · te∗(λ), (16)

and p∗(λ) in (c) is the resulting minimum-cost path where
each edge is associated with an edge cost of we(λ). Given
a value to the dual variable λ, Equation (14) suggests that
we can figure out D(λ), the value of the dual function, by
finding a shortest path with each edge e assigned an edge
cost of we(λ). In the following, we first derive an analytical
solution to te∗(λ) and hence we(λ) for each edge e ∈ E, then
in Section V-B we propose an iterative procedure to find an
appropriate value for λ.

From Section IV, we can efficiently compute the value of
ce(t) by checking a small number of candidates. Moreover,
Proposition 1 shows that ce(t) is convex (but potential piece-
wise), hence it allows left and right derivatives. The following
lemma provides an analytical solution to te∗(λ) and hence
we(λ).

Lemma 6. In case that ∂+ce(tel ) ≤ −λ ≤ ∂−c
e(teu), define

t∗ as any t such that ∂−ce(t) ≤ −λ ≤ ∂+c
e(t), which is well-

defined since the derivatives of the convex function ce(t) are
non-decreasing. Then te∗(λ) is given as

te∗(λ) =

 tel , if λ+ ∂+c
e(tel ) > 0

t∗, if ∂+ce(tel ) ≤ −λ ≤ ∂−c
e(teu)

teu, if λ+ ∂−c
e(teu) < 0

(17)

Proof. Observe that ce(t) + λt is also convex with respect to
t. Hence its derivatives are non-decreasing.

If λ+ ∂+c
e(tel ) > 0, then ce(t) + λt is non-decreasing for

t ≥ tel , hence its minimum is achieved at the lower bound of t,
i.e., tel . If λ+∂−c

e(teu) < 0, then ce(t)+λt is non-increasing
for t ≤ teu, hence its minimum is achieved at the upper bound
of t, i.e., teu.

If ∂+c
e(tel ) ≤ −λ ≤ ∂−c

e(teu), then the derivatives of
ce(t) + λt remain to be non-positive for t < t∗, and then are

always non-positive for t > t∗, hence its minimum is achieved
at t∗.

When ∂+c
e(tel ) ≤ −λ ≤ ∂−c

e(teu), we can find t∗

with a binary search scheme, because the derivatives of the
convex function ce is non-decreasing. The complexity is thus
O(n2 log

⌈
teu−tel

ϵt

⌉
) where n is the number of control strategies

and ϵt is the error tolerance for t.

B. Our Heuristic Algorithm

For a given λ, we define the total travel time of the
minimum-cost path p∗(λ) as

δ(λ) ≜
∑

e∈p∗(λ)

te∗(λ), (18)

We introduce an important observation on δ(λ) below.

Lemma 7. δ(λ) is non-increasing over λ ∈ [0,+∞).

Proof. Refer to [9, Thm. 3], which is still applicable to our
problem since it only uses the facts that te∗(λ) minimizes
ce(t) + λt and p∗(λ) is the minimum-cost path.

By the Lagrangian dual relaxation, the value of D(λ) as
calculated in (14) is always a lower bound of the minimized
emission to the original problem (8). Hence, we observe that
the Lagrangian dual variable λ∗ with δ(λ∗) = T defines the
optimal solution P∗(λ∗). By Lemma 7, our heuristic suggests
to use a binary-search scheme to update λ to approach λ∗,
by comparing δ(λ) with T . The details of our heuristic are
described in Algorithm 1, where ϵλ is the error tolerance for
λ. λ can be interpreted as a price on the delay. Hence λmax

can be set as the upper bound on the emission rate.
In the algorithm, whenever we find a λ such that δ(λ) =

T (Line 8), it must be the optimal value λ∗. If δ(λ) > T
(Line 10), then the deadline constraint is violated, and we set
λ as the new lower bound λl. Otherwise (Line 12), we set λ as
the new upper bound λu, and update the current best solution
p∗ and t∗.

Algorithm 1 Our Heuristic Approach

1: procedure
2: Set λl = 0 and λu = λmax

3: while λu − λl > ϵλ do
4: Set λ = λl+λu

2
5: Obtain te∗(λ) according to Lemma 6 for all e ∈ E
6: Set we(λ) according to Equation (16) for all e ∈ E
7: Get the shortest path p∗(λ) from o to d in G
8: if δ(λ) = T then
9: return p∗(λ) and {te∗(λ),∀e ∈ E}

10: else if δ(λ) > T then
11: Set λl = λ
12: else
13: Set λu = λ, p∗ = p∗(λ), and {te∗ =

te∗(λ),∀e ∈ E}
14: return p∗ and {te∗,∀e ∈ E}

We remark that our heuristic has a strong theoretical per-
formance guarantee. That is, Algorithm 1 always returns a
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feasible solution as long as the problem is feasible. Moreover,
we give a sufficient condition under which the solution of our
approach is optimal and an upper bound of the optimality gap
when the condition is not satisfied.

Theorem 3. If Algorithm 1 returns in Line 9, then the
returned solution is optimal to our problem. Otherwise if
Algorithm 1 returns in Line 14, the returned solution S =
(p∗ and {te∗,∀e ∈ E}) satisfies the deadline constraint T and
hence is feasible. Furthermore, it has the following theoretical
performance guarantee:

C(S)− OPT ≤ λ× · (T − δ(λ×)), (19)

where C(S) is the total emission of the solution S, OPT is
the optimal emission of our problem, and λ× is the value of
the dual variable corresponding to the returned solution S.

Proof. By Equation (14), for a given dual variable λ, the
duality gap of our problem is:

Duality Gap = λ · (T − δ(λ)), (20)

hence the theorem holds.

Time Complexity. We now analyze the time complexity of
Algorithm 1. The total number of iterations is O(log λmax

ϵλ
).

Within each iteration, the calculation of the optimal te∗(λ)

and we(λ) for all edges takes time O(n2M · log
⌈
tmax−tmin

ϵt

⌉
)

where M is the number of edges in the highway network,
n is the total number of control strategies of the engine,
tmax (resp. tmin) is the maximum (resp. minimum) travel
time among all edges. The step of finding the shortest path
takes time O(M + N · logN), where N is the number
of vertices. Overall, Algorithm 1 has a time complexity of

O

(
log λmax

ϵλ

(
n2M · log

⌈
tmax−tmin

ϵt

⌉
+M +N · logN

))
.

VI. PERFORMANCE EVALUATION

In this section, we present simulation results with real-
world traces to evaluate the performance of our algorithm.
Our objectives are i) to study the impact of heterogeneous
speed over one road segment; ii) to study the impact of the
deadline on the performance of different approaches. iii) to
study the performance of the proposed approach as compared
to the conceivable alternatives;

A. Simulation Setup

Transportation Network. We collect the highway network
data from the Map-based Educational Tools for Algorithm
Learning (METAL) project [48]. The constructed network
consists of 84504 nodes and 178238 directed edges. The grade
of each road segment is derived from the elevations of its
end nodes provided by the Shuttle Radar Topography Mission
(SRTM) [49] project.

Traffic Data. We set the maximum speed reu of a road seg-
ment e as the historical average speed by collecting real-time
speed data from HERE map [50] for two weeks. The mini-
mum speed rel is manually set to be rel = min{30mph, reu}.

Origin Destination Distance
(miles)

Value
(billion USD)

Los Angeles CA Columbus OH 1977 17.725
Los Angeles CA Dallas-Fort Worth TX 1240 12.247
Los Angeles CA Chicago IL 1745 11.293
Los Angeles CA Nashville TN 1780 10.718
Los Angeles CA Houston TX 1373 7.837

TABLE II: Five popular origin-destination pairs from Los
Angeles. Here the distance means the straight-line distance
between the origin and destination.
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Fig. 4: The fitted emission rate function with respect to the
vehicle speed with switching speed ω1 = 1000 rpm.

Origin-destination pair. We collect origin-destination pairs
from the Freight Analysis Framework (FAF) [51]. We select
1,000 origin-destination pairs with distances longer than 1,000
miles. Those pairs represented 950 billion dollars of freight
by trucks in 2017. Tab. II illustrates a subset of the selected
origin-destination pairs in the US starting from Los Angeles.

Emission Model. We consider a class-8 heavy-duty truck
Kenworth T800 with a 36-ton full load [52] We collect the
emission data for a typical four-stroke six-cylinder diesel en-
gine [41] using the engine simulation software Diesel-RK [53].
We consider two fuel injection strategies: the traditional single
injection and the cost-effective triple injection. We use the 10-
speed transmission data from [40]. We consider the case where
the driver follows the gear-shifting strategy that maintains the
engine speed at around 1,000 RPM. The resulting engine speed
to vehicle speed mapping is illustrated in Fig. 2. We then fit
each piece of fuel rate function by a three-order polynomial.
As shown in Fig. 4, the overall emission rate function satisfies
the two assumptions in Sec. III.

Baseline Comparison. In the simulations, we implement our
algorithm in Julia [54]. We run all the simulations on a desktop
with 13th Gen Intel(R) Core(TM) i5-13400F processor and
64 GB RAM. We implement and compare the following
approaches:

• FAST: The fastest path driving at its maximum speed.
Given a graph G, we set the weight of each edge e as
its minimum travel time De/reu. We then find the fastest
path from the origin to the destination in G using the
Dijkstra algorithm.

• MFI: Our heuristic algorithm with both single-injection



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

and triple-injection control strategies. By default, we set
the switching speed to 1, 000 rpm. We set ϵλ and ϵt to
be both 10−6.

• MFI-NS: Same as MFI but with a constant speed over
one road segment. That is, we use ce(t) = t · fe(De/te)
in Algorithm 1. We use the golden-section search method
to obtain te∗(λ) in (15).

• SFI: Our heuristic algorithm with only the single-
injection strategy. That is, the emission rate function
fe(r) only relects the single-injection strategy. Note
that the fe(r) is still non-convex due to different gear
positions at different driving speeds.

• TFI: Our heuristic algorithm with only the triple injec-
tion strategy. That is, the emission rate function fe(r)
only relects the triple-injection strategy. This approach
gives a performance upper bound for MFI, but it is not
computationally feasible for the engine’s software due to
the high load of the triple-injection strategy.

Deadline Selection and Performance Evaluation. Given the
origin and destination, we denote T f as the minimum traveling
time by FAST. We then set the deadline T as T = ρ · T f ,
where the ρ ranges from 1.05 to 2.0 in the simulation. We
call ρ the delay factor. For two algorithms A1 and A2, with
emission cost C1 and C2, the relative emission reduction of
A1 as compared to A2 is given by (C2 − C1)/C2 × 100%.

B. A Case Study

We first present a case study from Los Angeles, CA, to
Columbus, OH, which represents the first row in Tab. II. We
set the switching speed to 1, 000 rpm and the deadline to be
T = 1.5Tf to better illustrate the benefit of heterogeneous
speed planning. Using our MFI approach, we determine an
emission-efficient solution that includes both a path and a
speed profile, depicted by the blue lines in Figure 5. For
comparison, we also present a modified speed profile that
remains constant over each road segment, shown by the red
lines in the same figure. To provide a clearer view, we
zoom into a section of the trip in Figure 5, showcasing the
truck’s operational states. In the first two road segments,
our approach MFI suggests driving at heterogeneous speed
profiles, maintaining the engine speed just below the switching
speed (1, 000 rpm) to leverage the benefit of the triple-injection
control strategy. Such a heterogeneous speed profile indeed
achieves a smaller emission cost than the homogeneous speed
profile, as evidenced in the last row of Figure 5.

To assess computational efficiency, we compare the runtime
of calculating the emission function c(t) using the convex
program (7) and our efficient method introduced in Theorem 2.
The convex problem is solved using the nonlinear program-
ming solver MadNLP [55] integrated with JuMP [56]. The
results, presented in Table III, reveal that our method is three
orders of magnitude faster than directly solving the convex
problem. Such improvement makes our method practical for
computing the emission-efficient timely transportation plan on
the national scale highway network.
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Fig. 5: A demonstration of the operational states of a truck
traveling from Los Angeles, CA to Columbus, OH, using our
MFI approach. The figure zooms into a specific section of
the journey for enhanced visibility. The switching speed is
1, 000 rpm, and the delay factor is 1.5. Each road segment is
delineated by two vertical grey dashed lines.

.

Convex program (7) Our efficient method
for problem (9)

Total runtime (seconds) 23,271 11
Number of solves 5.1× 106 5.1× 106

Average runtime per solve 4.5× 10−3 2.2× 10−6

TABLE III: Runtime comparison of the convex program (7)
and our efficient method for problem (9) for solving the case
study with MFI.
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Fig. 6: Impact of heterogeneous speed over one road segment.
The relative emission reduction of MFI as compared to MFI-
NS is shown as green line.

C. Impact of heterogeneous speed over one road segment

We found in Sec. IV that the driver can drive with het-
erogeneous speed profile on one road segment to achieve
emission reduction. In this subsection, we further explore this
interesting observation by s. We set the engine switching
speed to 1000 rpm and conduct the simulations with different
delay factors over 1, 000 origin-destination pairs. The results
are presented in Fig. 6. When the deadline is tight (e.g.
ρ = 1.1), the design space of speed planning is small, so
heterogeneous speed profile MFI only saves 4% emission as
compared to its homogeneous counterpart MFI-NS. As the
deadline gets relaxed, MFI can leverage more design space
from heterogeneous speed planning over one road segment and
thus can achieve up to 32% emission reduction on average.
Therefore, it is necessary to consider heterogeneous speed
profiles in environmentally friendly truck operations.

However, this emission reduction comes with side effects.
The driver has to change the speed more frequently to achieve
this further emission reduction. In particular, when the delay
factor ρ is 1.1, our approach MFI suggests changing speed
every 1.85 miles on average while MFI-NS suggest changing
speed every 2.38 miles. When the ρ increases to 2.0, MFI
increases the speed change frequency to 1.4 miles per speed
change to further leverage the design space of speed planning.

D. Impact of Deadline

We now study the impact of timely delivery requirements on
different approaches. We set the switching speed to 1, 000 rpm
and vary the delay factor from 1.05 to 2.0. Fig. 7 illustrates
the relative emission reductions of different approaches as
compared to FAST. We observe that as the delay factor
increases, all compared approaches reduce more emissions
because a relaxed deadline allows for slower travel speeds and
more space for speed planning, resulting in more emission
reduction. Meanwhile, when the delay factor exceeds 1.8,

1.2 1.4 1.6 1.8 2.0

delay factor ρ

10

20

30

40

50

60

re
la

ti
ve

em
is

si
on

re
d

u
ct

io
n

(%
)

MFI (multiple fuel injection)

MFI-NS (homogeneous speed)

SFI (single fuel injection)

TFI (triple fuel injection)

Fig. 7: Average relative emission reduction of different algo-
rithms as compared to FAST w.r.t. delay factor. The switching
speed is 1, 000 rpm.

the travel speeds reach the lower bounds, and there is no
further space for speed planning. As a result, the emission
reductions saturate when the delay factor is higher than 1.8
for all alternatives.

Among all alternatives, the TFI has the biggest emission
reduction. However, TFI is the ideal case that requires the
engine to use the computationally expensive complicated triple
injection at all engine speed ranges, which is infeasible since
the engine control software task may miss its deadline. The
second best is MFI with the heterogeneous speed profile. We
find that it outperforms MFI-NS, which coincides with our
observations in Sec. VI-C. MFI also outperforms SFI because
SFI only considers single fuel injection and has less design
space to optimize. Meanwhile, as the delay factor increases
to 2.0, the cost reduction of MFI (46%) becomes close to the
cost reduction of the ideal case TFI (50%). This is because a
relaxed deadline allows MFI to optimize the speed profile to
use the cost-effective triple injection control strategy at most
of the road segments, achieving a close-to-ideal performance.

Another interesting observation comes from the comparison
between MFI-NS and SFI. Those two methods consider two
separate ways to reduce the emission cost: MFI-NS has cost-
effective triple-injection but only drives at a constant speed
over one road segment, while SFI considers heterogeneous
speed profile but does not have the triple injection strategy.
When the deadline is tight (e.g., ρ = 1.1), SFI is slightly worse
than MFI-NS because there is little design space for heteroge-
neous speed profile so the benefit of multiple control strategies
is larger. When the deadline gets relaxed (e.g., ρ from 1.2 to
2.0), the emission reduction of SFI outperforms the emission
reduction of MFI-NS. This is because, with a relaxed deadline,
a heterogeneous speed profile has larger design space and its
benefit outperforms the benefit of multiple control strategies. It
thus also justifies the necessity of heterogeneous speed profiles
in environmentally related truck operations.
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Fig. 8: Relative emission reduction of MFI as compared to
FAST with different switching speeds. The delay factor is 1.2.

E. Impact of Switching Speed

In this subsection, we study the impact of switching speed
for MFI. We set the delay factor ρ to 1.2 for all 1, 000
origin-destination pairs and vary the switching speed from 800
rpm to 1, 200 rpm. Note that a lower switching speed leads
to a smaller feasible rpm range for the cost-effective triple
injection. The results are presented in Fig. 8. We find that as
switching speed increases, the relative emission reduction of
MFI decreases because higher switching speeds allow larger
engine speed ranges and thus larger vehicle speed ranges for
the cost-effective triple injection strategy. Meanwhile, for all
switching speeds from 800 to 1, 200, the boxes in Fig. 8
have small lengths. This means that the variance of relative
emission reduction of MFI is small and MFI has uniformly
good performance for all 1, 000 origin-destination pairs.

VII. CONCLUSION

In this paper, we consider a scenario where a heavy-duty
truck hauls freight across a national highway network subject
to a hard deadline. We ride on the recent advancement in
engine control that adaptively selects the fuel injection strategy
to effectively reduce the emission. We show that the problem
is NP-hard, and the adaptive fuel injection strategy imposes a
unique challenge compared to existing studies due to the non-
convexity of the emission rate function. We reformulate the
speed planning problem as a convex problem and leverage the
problem structure to compute the optimal solution by checking
a small number of candidates. We then propose an efficient
heuristic for the overall problem with both path planning and
speed planning, and derive an upper bound of the performance
gap for the heuristic.

We evaluate the performance of our approach using real-
world traces over the US national highway system. The results
show that our approach reduces up to 46% emission as
compared to the fastest path, which is commonly adopted in
practice. We also study the impact of heterogeneous speed
profile on one road segment and find that it reduces up to 32%
as compared to its counterpart that uses constant speed on one

road segment. It is thus necessary to consider heterogeneous
speed profiles in environment-friendly truck operations. An
interesting future direction is to study the multiple objectives
by jointly considering fuel consumption and emissions. It
would also be interesting to jointly optimize the gear position
shifting strategy, path planning and speed planning.
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VIII. APPENDIX

A. An example of heterogenous speed planning

Example 1. Let us consider the following emission rate
function

f(r) =

{
(r − 30)2/100 + 1 if 30 ≤ r ≤ 50,

(r − 50)2/100 + 10 if 50 < r ≤ 60

We further set the length of the edge to be 110, and the total
time for traversing this edge is t = 2.

(i) By following a constant speed of 110/2 = 55, the total
emission is

2 · f(55) = 20.5

(ii) In comparison, consider another solution where we first
drive at a speed of 40 for time 0.5, and then drive at a speed
of 60 for time 1.5. This solution is feasible since it traverses
the edge (with a length of 110) by a total travel time of 2. The
incurred emission is

0.5 · f(40) + 1.5 · f(60) = 17.5

Therefore, driving at a constant speed of 55 incurs a larger
emission than the solution (ii); the solution (i) is not optimal.
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Fig. 9: An illustration of Example 1

B. Proof of Lemma 3

Proof. Suppose there is a solution β⃗ with at least three non-
zero entries and its corresponding speed vector r⃗. We will
show that we can decrease the non-zero entries by one without
loss of optimality. Pick any three of nonzero entries of β⃗ and
denote them by βi1 , βi2 , βi3 > 0 with corresponding function
values y1 = fi1(ri1), y2 = fi2(ri2), y3 = fi3(ri3). Let

β̂ = βi1 + βi2 + βi3

r̂ =
βi1ri1 + βi2ri2 + βi3ri3

β̂

Without loss of generality, we assume the following conditions

ri1 < r̂ < ri2 , r̂ < ri3 (21)
y2 − y1
ri2 − ri1

≤ y3 − y1
ri3 − ri1

(22)

Note that similar argument holds for the case when ri1 and
ri2 is less than r̄ or when the slope order in (22) is swapped.
Let β̃i1 , β̃i2 to the following equations:

β̂ = β̃i1 + β̃i2

β̂r̂ = β̃i1ri1 + β̃i2ri2
(23)

Then we can construct a new solution

β̃j =


β̃i1 , if j = i1

β̃i2 , if j = i2

0, if j = i3

βj , otherwise.

and the same speed profile r⃗. By construction, ⃗̃
β and r⃗

satisfy the constraints of problem (9). Meanwhile, we have

the following inequality.
n∑

i=1

βifi(ri)−
n∑

i=1

β̃ifi(ri) (24)

=βi1y1 + βi2y2 + βi3y3 −
(
β̃i1y1 + β̃i2y2

)
(25)

=
βi3

ri2 − ri1

(
(y3 − y1)(ri2 − ri1)− (y2 − y1)(ri3 − ri1)

)
(26)

=βi3(ri3 − ri1)

(
y3 − y1
ri3 − ri1

− y2 − y1
ri2 − ri1

)
(27)

≥ 0 (28)

Here, equality (26) is derived by substituting the solution of
equations (23). The last inequality is true because all of the
product components in (27) is positive. The above inequality
means that the new solution decrease the number of non-
zero entries with no larger objective. Therefore, if there is
an optimal solution with more than two nonzero entries, we
can always follow the above procedure to construct another
optimal solution with at most two non-zero entries.

C. Proof of Lemma 4

Our proof replies on the following lemma, which is also
known as chordal slope lemma.

Lemma 8 (Chordal Slope Lemma [57]). Suppose g(r) is a
function of one real variable r. Consider the slope S(r1, r2) =
g(r2)−g(r1)

r2−r1
of the line connecting two points (r1, g(r1)) and

(r2, g(r2)) on the curve. If g is convex, then S(r1, r2) is
monotonically non-decreasing in r1, for every fixed r2.

Proof of Lemma 4. The intercept point ȳ can be written as

ȳ =
y2 − g(r1)

r2 − r1
(r̄ − r1) + g(r1)

= y2 +
g(r2)− g(r1)

r2 − r1
(r̄ − r2) +

(r2 − r̄)(y2 − g(r2))

r1 − r2

By Lemma 8 and that (r̄ − r2) is non-positive, the sec-
ond summand on the right hand side is monotonically non-
increasing with r1. The third summand is also monotonically
non-increasing with r1, since both (r2−r̄) and (y2−g(r2)) are
non-negative. Hence, ȳ is also monotonically non-increasing
with r1.

D. Proof of Lemma 5

We consider the slope of the line connecting (r1, y1) and
(r2, g(r2)), which is the major component of ȳ.

T (r2) =
g(r2)− y1
r2 − r1

In the following, we will first prove the following two useful
Lemmas before we prove Lemma 5.

Lemma 9. The following two statements are true.

• If r1 ≤ r ≤ p, then ∂−g(r) ≤ T (r);
• If r ≥ p ≥ r1, then ∂+g(r) ≥ T (r).
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Proof. We first consider a help function

h(r) = g(r) + ∂g(r)(r1 − r)

where ∂g(r) is the subgradient of function g at point r and
both left derivative and right derivative lie in ∂g(r). For any
a, b such that r1 ≤ a ≤ b, we have

h(b)− h(a)

= g(b)− g(a) + ∂g(b)(r1 − b)− ∂g(a)(r1 − a)

≤ ∂g(b)(b− a) + ∂g(b)(r1 − b)− ∂g(a)(r1 − a)

=
(
∂g(b)− ∂g(a)

)
(r1 − a) ≤ 0

(29)

The inequality directly follows from the convexity of function
g. Therefore, function h(x) is non-increasing when x ≥ r1.
When r1 ≤ r ≤ p, we have

∂g−(r)− T (r)

=
y1 −

(
g(r) + ∂−g(r) (r1 − r)

)
r − r1

(30)

≤
y1 −

(
g(r) + ∂−g(p) (r1 − p)

)
r − r1

(31)

=
r1 − p

r − r1
·
(
y1 − g(p)

r1 − p
− ∂−g(p)

)
(32)

≤ 0 (33)

Here, inequality (31) follows from (29) and inequality (32)
follows from the definition of the generalized right point of
tangency p. Similarly, when r ≥ p ≥ r1, we have

∂g+(r)− T (r)

=
y1 −

(
g(r) + ∂+g(r) (r1 − r)

)
r − r1

≥
y1 −

(
g(r) + ∂−g(p) (r1 − p)

)
r − r1

=
r1 − p

r − r1
·
(
y1 − g(p)

r1 − p
− ∂+g(p)

)
≥ 0

Then we complete our proof for Lemma 9.

The following Lemma characterize the monotonicity of
T (r).

Lemma 10. T (r) is first monotonically non-increasing with
r before p, then monotonically non-decreasing with r after p,

Proof. When a ≤ b ≤ p, we have

T (a) =
g(a)− y1
a− r1

(I1)

≥ g(b) + ∂−g(b)(a− b)− y1
a− r1

(I2)

≥
g(b) + g(b)−y1

b−r1
(a− b)− y1

a− r1

=
g(b)− y1
b− r1

= T (b)

Here inequality (I1) is because g is convex hence g(a) −
g(b) ≥ ∂−g(b)(a− b), and inequality (I2) is because b is no
larger than the generalized right point of tangency p.

Similarly, when p ≤ a ≤ b, we have

T (b) =
g(b)− y1
b− r1

(I3)

≥ g(a) + ∂+g(a)(b− a)− y1
b− r1

(I4)

≥
g(a) + g(a)−y1

a−r1
(b− a)− y1

b− r1

=
g(a)− y1
a− r1

= T (a)

Then we complete our proof for Lemma 10.

Now we proceed to prove Lemma 5.

Proof of Lemma 5. Recall that we can write ȳ as

ȳ =
g(r2)− y1
r2 − r1

(r̄ − r1) + y1

By Lemma 10 and that (r̄ − r1) is non-negative, we have
the monotonicity of ȳ follows the monotonicity of T (r2).
That is, ȳ is monotonically non-increasing before p, then
monotonically non-decreasing after p.

If r̄ ≤ p, since ȳ is monotonically non-increasing with r2,
∀r2 ∈ [r̄, p], thus we have

ȳ = y1 +
g(r2)− y1
r2 − r1

(r̄ − r1)

≤ y1 +
g(r̄)− y1
r̄ − r1

(r̄ − r1) = g(r̄)

If r̄ ≥ p, since ȳ is monotonically non-decreasing with r2,
∀r2 ≥ r̄ ≥ p, thus we have

ȳ = y1 +
g(r2)− y1
r2 − r1

(r̄ − r1)

≥ y1 +
g(r̄)− y1
r̄ − r1

(r̄ − r1) = g(r̄)

E. Proof of Proposition 1

Proof. The proof idea follows from [58, Proposition 2.1]. We
first rewrite problem in the following compact form

c(τ) = min
z⃗∈Z(τ)

F (z⃗)

where z⃗ = [d1, . . . , dn, t1, . . . , tn] is the stacked variable, and

Z(τ) =

{
z⃗ :
∑
i∈[n]

ti = τ,
∑
i∈[n]

di = D

si−1ti ≤ di ≤ siti,∀i ∈ [n]

} (34)

F (z⃗) =
∑
i∈[n]

ti · fi
(
di
ti

)
(35)

are the constraint set and the objective. By Lemma 2, we know
that F (z⃗) is convex in z⃗. Note that for every τ ∈ [tl, tu],
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Z(τ) is simply a polyhedron and it is linear in τ , thus for any
τ1, τ2 ∈ [tl, tu], λ ∈ (0, 1), we have

λZ(τ1) + (1− λ)Z(τ2) ⊂ Z(λτ1 + (1− λ)τ2) (36)

That is, for every z⃗1 ∈ Z(τ1) and z⃗2 ∈ Z(τ2), we have λz⃗1+
(1− λ)z⃗2 ∈ Z(λτ1 + (1− λ)τ2). Therefore, we have

c(λτ1 + (1− λ)τ2) (37)
= min

z⃗∈Z(λτ1+(1−λ)τ2)
F (z⃗) (38)

≤ min
z⃗1∈Z(τ1)

z⃗2∈Z(τ2)

F (λz⃗1 + (1− λ)z⃗2) (39)

≤ min
z⃗1∈Z(τ1)

z⃗2∈Z(τ2)

λF (z⃗1) + (1− λ)F (z⃗2) (40)

=λ min
z⃗1∈Z(τ1)

F (z⃗1) + (1− λ) min
z⃗2∈Z(τ2)

F (z⃗2) (41)

=λc(τ1) + (1− λ)c(τ2) (42)

Here (39) follows from (36) and that a smaller constraint
set leads to a bigger optimal value. (40) follows from the
convexity of objective F (z). Therefore, function c(τ) is a
convex function.
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