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Abstract—Privacy Preserving Data Mining (PPDM) addresses the problem of developing accurate models about aggregated data

without access to precise information in individual data record. A widely studied perturbation-based PPDM approach introduces

random perturbation to individual values to preserve privacy before data are published. Previous solutions of this approach are limited

in their tacit assumption of single-level trust on data miners. In this work, we relax this assumption and expand the scope of

perturbation-based PPDM to Multilevel Trust (MLT-PPDM). In our setting, the more trusted a data miner is, the less perturbed copy of

the data it can access. Under this setting, a malicious data miner may have access to differently perturbed copies of the same data

through various means, and may combine these diverse copies to jointly infer additional information about the original data that the

data owner does not intend to release. Preventing such diversity attacks is the key challenge of providing MLT-PPDM services. We

address this challenge by properly correlating perturbation across copies at different trust levels. We prove that our solution is robust

against diversity attacks with respect to our privacy goal. That is, for data miners who have access to an arbitrary collection of the

perturbed copies, our solution prevent them from jointly reconstructing the original data more accurately than the best effort using any

individual copy in the collection. Our solution allows a data owner to generate perturbed copies of its data for arbitrary trust levels on-

demand. This feature offers data owners maximum flexibility.

Index Terms—Privacy preserving data mining, multilevel trust, random perturbation.

Ç

1 INTRODUCTION

DATA perturbation, a widely employed and accepted
Privacy Preserving Data Mining (PPDM) approach,

tacitly assumes single-level trust on data miners. This
approach introduces uncertainty about individual values
before data are published or released to third parties for data
mining purposes [1], [2], [3], [4], [5], [6], [7]. Under the single
trust level assumption, a data owner generates only one
perturbed copy of its data with a fixed amount of uncertainty.
This assumption is limited in various applications where a
data owner trusts the data miners at different levels.

We present below a two trust level scenario as a

motivating example.

. The government or a business might do internal
(most trusted) data mining, but they may also want
to release the data to the public, and might perturb it
more. The mining department which receives the
less perturbed internal copy also has access to
the more perturbed public copy. It would be
desirable that this department does not have more
power in reconstructing the original data by utilizing
both copies than when it has only the internal copy.

. Conversely, if the internal copy is leaked to the
public, then obviously the public has all the power of
the mining department. However, it would be
desirable if the public cannot reconstruct the original
data more accurately when it uses both copies than
when it uses only the leaked internal copy.

This new dimension of Multilevel Trust (MLT) poses new
challenges for perturbation-based PPDM. In contrast to the
single-level trust scenario where only one perturbed copy is
released, now multiple differently perturbed copies of the
same data are available to data miners at different trusted
levels. The more trusted a data miner is, the less perturbed
copy it can access; it may also have access to the perturbed
copies available at lower trust levels. Moreover, a data miner
could access multiple perturbed copies through various other
means, e.g., accidental leakage or colluding with others.

By utilizing diversity across differently perturbed copies,
the data miner may be able to produce a more accurate
reconstruction of the original data than what is allowed by
the data owner. We refer to this attack as a diversity attack. It
includes the colluding attack scenario where adversaries
combine their copies to mount an attack; it also includes the
scenario where an adversary utilizes public information to
perform the attack on its own. Preventing diversity attacks
is the key challenge in solving the MLT-PPDM problem.

In this paper, we address this challenge in enabling
MLT-PPDM services. In particular, we focus on the additive
perturbation approach where random Gaussian noise is
added to the original data with arbitrary distribution, and
provide a systematic solution. Through a one-to-one
mapping, our solution allows a data owner to generate
distinctly perturbed copies of its data according to different
trust levels. Defining trust levels and determining such
mappings are beyond the scope of this paper.
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1.1 Contributions

We make the following contributions:

. We expand the scope of perturbation-based PPDM
to multilevel trust, by relaxing the implicit assump-
tion of single-level trust in existing work. MLT-
PPDM introduces another dimension of flexibility
which allows data owners to generate differently
perturbed copies of its data for different trust levels.

. We identify a key challenge in enabling MLT-PPDM
services. In MLT-PPDM, data miners may have
access to multiple perturbed copies. By combining
multiple perturbed copies, data miners may be able to
perform diversity attacks to reconstruct the original
data more accurately than what is allowed by the data
owner. Defending such attacks is challenging, which
we explain through a case study in Section 4.

. We address this challenge by properly correlating
perturbation across copies at different trust levels. We
prove that our solution is robust against diversity
attacks. We propose several algorithms for different
targeting scenarios. We demonstrate the effectiveness
of our solution through experiments on real data.

. Our solution allows data owners to generate
perturbed copies of their data at arbitrary trust
levels on-demand. This property offers data owners
maximum flexibility.

1.2 Related Work

Privacy Preserving Data Mining (PPDM) was first proposed
in [2] and [8] simultaneously. To address this problem,
researchers have since proposed various solutions that fall
into two broad categories based on the level of privacy
protection they provide. The first category of the Secure
Multiparty Computation (SMC) approach provides the
strongest level of privacy; it enables mutually distrustful
entities to mine their collective data without revealing
anything except for what can be inferred from an entity’s
own input and the output of the mining operation alone [8],
[9]. In principle, any data mining algorithm can be
implemented by using generic algorithms of SMC [10].
However, these algorithms are extraordinarily expensive in
practice, and impractical for real use. To avoid the high-
computational cost, various solutions that are more efficient
than generic SMC algorithms have been proposed for
specific mining tasks. Solutions to build decision trees over
the horizontally partitioned data were proposed in [8] . For
vertically partitioned data, algorithms have been proposed
to address the association rule mining [9], k-means
clustering [11], and frequent pattern mining problems
[12]. The work of [13] uses a secure coprocessor for privacy
preserving collaborative data mining and analysis.

The second category of the partial information hiding
approach trades privacy with improved performance in the
sense that malicious data miners may infer certain proper-
ties of the original data from the disguised data. Various
solutions in this category allow a data owner to transform
its data in different ways to hide the true values of the
original data while at the same time still permit useful
mining operations over the modified data. This approach
can be further divided into three categories: 1) k-anonymity
[14], [15], [16], [17], [18], [19], 2) retention replacement

(which retains an element with probability p or replaces it
with an element selected from a probability distribution
function on the domain of the elements) [20], [21], [22], and
3) data perturbation (which introduces uncertainty about
individual values before data are published) [1], [2], [3], [4],
[5], [6], [7], [23].

The data perturbation approach includes two main
classes of methods: additive [1], [2], [4], [5], [7] and matrix
multiplicative [3], [6] schemes. These methods apply mainly
to continuous data. In this paper, we focus solely on the
additive perturbation approach where noise is added to
data values.

Another relevant line of research concerns the problem
of privately computing various set related operations. Two
party protocols for intersection, intersection size, equijoin,
and equijoin size were introduced in [24] for honest-but-
curious adversarial model. Some of the proposed protocols
leak information [25]. Similar protocols for set intersection
have been proposed in [26] and [27]. Efficient two party
protocols for the private matching problem which are both
secure in the malicious and honest-but-curious models were
introduced in [28]. Efficient private and threshold set
intersection protocols were proposed in [29]. While most
of these protocols are equality based, algorithms in [25]
compute arbitrary join predicates leveraging the power of a
secure coprocessor. Tiny trusted devices were used for
secure function evaluation in [30].

Our work does not reanonymize a data set after it is
updated with insertions and/or deletions, which is a topic
studied by the authors in [31], [32], [33], [34]. Instead, we
study anonymizing the same data set at multiple trust
levels. The two problems are orthogonal.

An earlier version of this paper appeared in [35] and
initiated the topic of MLT-PPDM. Recently, Xiao et al.
proposed an algorithm of multilevel uniform perturbation
[36]. Our paper differs from [36] in three main aspects. First,
the two papers address different problems and tackle the
problems under different privacy measures. We propose
multilevel privacy preserving for additive Gaussian noise
perturbation, and use a measure based on how closely the
original values can be reconstructed from the perturbed data
[2], [4], [5]. While [36] presents an algorithm of multilevel
uniform perturbation, and studies its performance using the
�1 � �2 privacy measure [37]. As a result, neither the solution
in [36] can be easily applied to the problem in this paper nor
the solution in this paper can be directly applied to the
problem in [36]. Second, based on Gaussian noise perturba-
tion, the solution in this paper is more suitable for high-
dimensional data, as compared to that in [36] based on
uniform perturbation [38]. Third, We present several non-
trivial theoretical results. We discuss reconstruction errors
under independence noise, analyze the security of our
scheme when collusion occurs, and study the computational
complexities based on Kroneckor product. These results
provide fundamental insights into the problem.

1.3 Paper Layout

The rest of the paper is organized as follows: we go over
preliminaries in Section 2. We formulate the problem, and
define our privacy goal in Section 3. In Section 4, we present
a simple but important case study. It highlights the key
challenge in achieving our privacy goal, and presents the
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intuition that leads to our solution. In Section 5, we formally
present our solution, and prove that it achieves our privacy
goal. Algorithms that target different scenarios are also
proposed, and their complexities are studied. We carry out
extensive experiments on real data in Section 6 to verify our
theoretical analysis. Section 7 concludes the paper.

2 PRELIMINARIES

2.1 Jointly Gaussian

In this paper, we focus on perturbing data by additive
Gaussian noise [1], [2], [4], [5], [7], i.e., the added noises are
jointly Gaussian.1

Let G1 through GL be L Gaussian random variables.
They are said to be jointly Gaussian if and only if each of
them is a linear combination of multiple independent
Gaussian random variables.2 Equivalently, G1 through GL

are jointly Gaussian if and only if any linear combination of
them is also a Gaussian random variable.

A vector formed by jointly Gaussian random variables is
called a jointly Gaussian vector. For a jointly Gaussian
vector GG ¼ ½G1; . . . ; GL�T , its probability density function
(PDF) is as follows: for any real vector g,

fGGðgÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�ÞL detðKGGÞ
q e�ðg��GGÞTK�1

GG
ðg��GGÞ=2;

where �GG and KGG are the mean vector and covariance
matrix of GG, respectively.

Note that not all Gaussian random variables are jointly
Gaussian. For example, let G1 be a zero mean Gaussian
random variable with a positive variance, and define G2 as

G2 ¼
G1; if jG1j � 1;
�G1; otherwise;

�

where jG1j is the absolute value of G1. It is straightforward
to verify that G2 is Gaussian, but G1 þG2 is not. Therefore,
G1 and G2 are not jointly Gaussian.

If multiple random variables are jointly Gaussian, then
conditional on a subset of them, the remaining variables are
still jointly Gaussian. Specifically, partition a jointly
Gaussian vector GG as

GG ¼ GG1

GG2

� �
;

and

�GG ¼
�1

�2

� �
; KGG ¼

K11 K12

K21 K22

� �
;

accordingly. Then the distribution of GG2 given GG1 ¼ v1 is
also a jointly Gaussian with mean �2 þK21K

�1
11 ðv1 � �1Þ and

covariance matrix K22 �K21K
�1
11 K

T
21 [39]. This is a key

property of jointly Gaussian variables. We utilize this
property in Section 5.3.

2.2 Additive Perturbation

The single-level trust PPDM problem via data perturbation
has been widely studied in the literature. In this setting, a
data owner implicitly trusts all recipients of its data
uniformly and distributes a single perturbed copy of the data.

A widely used and accepted way to perturb data is by
additive perturbation [1], [2], [4], [5], [7]. This approach
adds to the original data, X, some random noise, Z, to
obtain the perturbed copy, Y , as follows:

Y ¼ X þ Z: ð1Þ

We assume that X, Y , and Z are all N-dimension vectors
where N is the number of attributes in X. Let xj; yj, and zj
be the jth entry of X, Y , and Z, respectively.

The original data X follows a distribution with mean
vector �X and covariance matrix KX. The covariance KX is
an N �N positive semidefinite matrix given by

KX ¼ E½ðX � �XÞðX � �XÞT �; ð2Þ

which is a diagonal matrix if the attributes in X are
uncorrelated.

The noise Z is assumed to be independent of X and is a
jointly Gaussian vector with zero mean and covariance
matrix KZ chosen by the data owner. In short, we write it as
Z � Nð0; KZÞ. The covariance matrix KZ is an N �N
positive semidefinite matrix given by

KZ ¼ E½ZZT �: ð3Þ

It is straightforward to verify the mean vector of Y is also
�X, and its covariance matrix, denoted by KY , is

KY ¼ KX þKZ:

The perturbed copy Y is published or released to data
miners. Equation (1) models both the cases where a data
miner sees a perturbed copy of X, and where it knows the
true values of certain attributes. The latter scenario is
considered in recent work [7] where the authors show that
sophisticated filtering techniques utilizing the true value
leaks can help recover X.

In general, given Y , a malicious data miner’s goal is to
reconstruct X by filtering out the added noise. Huang et al.
[4] point out that the attributes in X and the added noise
should have the same correlation, otherwise the noise can
be easily filtered out. This observation essentially requires
to choose KZ to be proportional to KX [4], i.e., KZ ¼ �2

ZKX

for some constant �2
Z denoting the perturbation magnitude.

2.3 Linear Least Squares Error Estimation

Given a perturbed copy of the data, a malicious data miner
may attempt to reconstruct the original data as accurately as
possible. Among the family of linear reconstruction
methods, where estimates can only be linear functions of
the perturbed copy, Linear Least Squares Error (LLSE)
estimation has the minimum square errors between the
estimated values and the original values [39].
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1. Note that we do not make any assumptions about the distribution of
the data.

2. Two random variables are independent if knowing the value of one
yields no knowledge about that of the other. Mathematically, two random
variables G1 and G2 are independent if, for any values g1 and g2,
fG1 ;G2

ðg1; g2Þ ¼ fG1
ðg1ÞfG2

ðg2Þ, where fG1 ;G2
ðg1; g2Þ is the joint probability

density function of G1 and G2, and fG1
ðg1Þ and fG2

ðg2Þ are the probability
density functions of G1 and G2, respectively. Generally, random variables
G1 through GL are mutually independent if, for any values g1 through gL,
fG1 ;:::;GL

ðg1; :::; gLÞ ¼ fG1
ðg1Þ:::fGL

ðgLÞ.



The LLSE estimate of X given Y , denoted by X̂ðY Þ, is

(see Appendix A, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TKDE.2011.124, for the deduction)

X̂ðY Þ ¼ KXYK
�1
Y Y � �Xð Þ þ �X; ð4Þ

where KXY (KY resp.) is the covariance matrix of X and

Y ðY resp:Þ: KXY is given by

KXY ¼ E½ðX � �XÞðY � E½Y �ÞT �
¼ E½ðX � �XÞððX � �XÞ þ ðZ � 0ÞÞT �
¼ KX þ 0 ¼ KX:

Note in the above derivation, we compute E½ðX � �XÞZT � ¼
E½ðX � �XÞ�E½ZT � ¼ 0, since X and Z are independent.

The square estimation errors between the LLSE estimates

and the original values of the attributes in X are the

diagonal terms of the covariance matrix of X � X̂ðY Þ. An

important property of LLSE estimation is that it simulta-

neously minimizes all these estimation errors.

2.4 Kronecker Product

In the MLT-PPDM problem, the covariance matrix of noises

can be written as the Kronecker product [40] of two

matrices. In this paper, we explore the properties of the

Kronecker product for efficient computation.
The Kronecker product [40] is a binary matrix operator

that maps two matrices of arbitrary dimensions into a larger

matrix with a special block structure. Given an n�m
matrix A and p� q matrix B, where

A ¼
a11 � � � a1m

..

. . .
. ..

.

an1 � � � anm

2
64

3
75;

their Kronecker product, denoted as A�B, is an np�mq
matrix with the block structure

a11B � � � a1mB

..

. . .
. ..

.

an1B � � � anmB:

2
64

3
75:

We list several properties of Kronecker product that will

be used later. Assume that A, B, C, and D are matrices and

their dimensions are appropriate for the computation in

each property, we have

1. ð�AÞ �B ¼ A� ð�BÞ ¼ �ðA�BÞ, where � 2 IR;
2. ðA�BÞT ¼ AT �BT ;
3. ðA�BÞ�1 ¼ A�1 �B�1;
4. ðA�BÞðC �DÞ ¼ AC �BD;
5. vecðABCÞ ¼ ðCT �AÞvecðBÞ, where vecð�Þ denotes

the vectorization of a matrix formed by stacking the
columns of the matrix into a single column vector.

3 PROBLEM FORMULATION

In this section, we present the problem settings, describe our

threat model, state our privacy goal, and identify the design

space. Table 1 lists the key notations used in the paper.

3.1 Problem Settings

In the MLT-PPDM problem, we consider in this paper, a
data owner trusts data miners at different levels and
generates a series of perturbed copies of its data for
different trust levels. This is done by adding varying
amount of noise to the data.

Under the multilevel trust setting, data miners at higher
trust levels can access less perturbed copies. Such less
perturbed copies are not accessible by data miners at lower
trust levels. In some scenarios, such as the motivating
example we give at the beginning of Section 1, data miners
at higher trust levels may also have access to the perturbed
copies at more than one trust levels. Data miners at different
trust levels may also collude to share the perturbed copies
among them. As such, it is common that data miners can
have access to more than one perturbed copies.

Specifically, we assume that the data owner wants to
release M perturbed copies of its data X, which is an N � 1
vector with mean �X and covariance KX as defined in
Section 2.2. These M copies can be generated in various
fashions. They can be jointly generated all at once.
Alternatively, they can be generated at different times upon
receiving new requests from data miners, in an on-demand
fashion. The latter case gives data owners maximum
flexibility.

It is true that the data owner may consider to release only
the mean and covariance of the original data. We remark
that simply releasing the mean and covariance does not
provide the same utility as the perturbed data. For many
real applications, knowing only the mean and covariance
may not be sufficient to apply data mining techniques, such
as clustering, principal component analysis, and classifica-
tion [6]. By using random perturbation to release the data
set, the data owner allows the data miner to exploit more
statistical information without releasing the exact values of
sensitive attributes [1], [2].

Let YY ¼ ½Y T
1 ; . . . ; Y T

M �
T be the vector of all perturbed

copies Yið1 � i �MÞ. Let ZZ ¼ ½ZT1 ; . . . ; ZTM �
T be the vector of

noise. Let H be an ðN �MÞ �N matrix as follows:

H ¼
IN
..
.

IN

2
64

3
75;

where IN represents an N �N identity matrix.
We have the relationship between YY, X, and ZZ as

follows:
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Key Notations



YY ¼
Y1

..

.

YM

2
64

3
75 ¼

IN
..
.

IN

2
64

3
75X þ

Z1

..

.

ZM

2
64

3
75 ¼ HX þ ZZ; ð5Þ

where Zi; 1 � i �M are independent of X. To be robust
against advanced filtering attacks, individual noise terms in
Zi added to different attributes in X should have the same
correlations as the attributes themselves, otherwise Zi can
be easily filtered out [4]. As such, we have

KZi ¼ �2
Zi
KX; and KYi ¼

�
1þ �2

Zi

�
KX;

where �2
Zi

is a constant of the perturbation magnitude. The
data owner chooses a value for �2

Zi
according to the trust

level associated with the target perturbed copy Yi.

3.2 Threat Model

We assume malicious data miners who always attempt to
reconstruct a more accurate estimate of the original data
given perturbed copies. We hence use the terms data miners
and adversaries interchangeably throughout this paper. In
MLT-PPDM, adversaries may have access to a subset of the
perturbed copies of the data. The adversaries’ goal is to
reconstruct the original data as accurately as possible based
on all available perturbed copies.

The reconstruction accuracy depends heavily on the
adversaries’ knowledge. We make the same assumption as
the one in [4] that adversaries have the knowledge of the
statistics of the original data X and the noise ZZ, i.e., mean
�X , and covariance matrices KX and KZZ. Note that the
adversaries with less knowledge are weaker than the ones
we study in this paper.

In addition, we assume adversaries only perform linear
estimation attacks, where estimates can only be linear
functions of the perturbed data Y . It is known that if X
follows a jointly Gaussian distribution, then LLSE estima-
tion achieves the minimum estimation error among both
linear and nonlinear estimation methods. For X with
general distribution, LLSE estimation has the minimum
estimation error among all linear estimation methods.
Various recent works in perturbation-based PPDM, such
as [4] and [5], make this assumption of linear estimation.
See [7] for a comprehensive review.

Noticed KXYY ¼ KXH
T and KYY ¼ HKXH

T þKZZ, the
LLSE estimate X̂ðYYÞ of X given YY can be expressed as

X̂ðYYÞ ¼ KXYYK
�1
YY YY�E½YY�ð Þ þ �X

¼ KXH
T HKXH

T þKZZ

� 	�1
YY�H�Xð Þ

þ �X:
ð6Þ

In our setting, X̂ðYYÞ is the most accurate estimate of X that
an adversary can possibly make. The corresponding
estimation errors of attributes in X are the diagonal terms
of the covariance matrix of X̂ðYYÞ �X. Using (6), we can
compute the covariance matrix as follows:

E½ðX̂ðYYÞ �XÞðX̂ðYYÞ �XÞT �

¼ KX �KXH
TK�1

YY HKX ¼
�
K�1
X þHTK�1

ZZ H
	�1

:
ð7Þ

For an adversary who observes only a single copy Yi ð1 �
i �MÞ and gets a LLSE estimate X̂ðYiÞ, the covariance
matrix of X̂ðYiÞ �X has a simple form as follows:

E½ðX̂ðYiÞ �XÞðX̂ðYiÞ �XÞT �

¼ KX �KXK
�1
Yi
KX ¼

�2
Zi

�2
Zi
þ 1

KX:
ð8Þ

3.3 Definitions

3.3.1 Distortion

To facilitate future discussion on privacy, we define the
concept of perturbation D between two data sets as the
average expected square difference between them. For
example, the distortion between the original data X and the
perturbed copy Y as defined in Section 2.2 is given by

DðX;Y Þ ¼ 1

N

XN
j¼1

E½ðyj � xjÞ2� 	 0:

It is easy to see that DðX;Y Þ ¼ DðY ;XÞ.
Based on the above definition, we refer to a perturbed

copy Y2 to be more perturbed than Y1 with respect to X if and
only if DðX;Y2Þ > DðX;Y1Þ.

3.3.2 Privacy under Single-Level Trust Setting

With respect to the original data X, the privacy of a
perturbed copy Y represents how well the true values of X
is hidden in Y .

A more perturbed copy of the data does not necessarily
have more privacy since the added noise may be intelli-
gently filtered out. Consequently, we define the privacy of a
perturbed copy by taking into account an adversary’s
power in reconstructing the original data. We define the
privacy of Y with respect to X to be DðX; X̂ðY ÞÞ, i.e., the
distortion between X and the LLSE estimate X̂ðY Þ. A larger
distortion hides the original values better (and thus
preserves more privacy), so we refer to a perturbed data
Y2 to preserve more privacy than Y1 with respect to X if and
only if DðX; X̂ðY2ÞÞ > DðX; X̂ðY1ÞÞ.

3.3.3 Privacy under Multilevel Trust Setting

We now define privacy for the multilevel trust case in the
same spirit of the single-level trust case.

For a vector YY ¼ ½Y T
1 ; � � � ; Y T

M �
T of M perturbed copies of

X, the privacy of YY represents how well the true values of
X is hidden in the multiple perturbed copies YY. The
privacy of YY, with respect to X, is defined as DðX; X̂ðYYÞÞ,
the distortion between X and its LLSE estimate X̂ðYYÞ.

3.4 Privacy Goal and Design Space

In a MLT-PPDM setting, a data owner releases distinctly
perturbed copies of its data to multiple data miners. One
key goal of the data owner is to control the amount of
information about its data that adversaries may derive.

We assume that the data owner wants to distribute a
total of M different perturbed copies of its data, i.e.,
Yið1 � i �MÞ, each for a trust level i. The assumption of M
is for ease of analysis. It will become clear later that our
solution of the on-demand generation allows a data owner
to generate as many different copies as it wishes.

The data owner can easily control the amount of the
information about its data an attacker may infer from a
single perturbed copy. Utilizing (8), we express the privacy
of Yi, i.e., DðX; X̂ðYiÞÞ, as follows:
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DðX; X̂ðYiÞÞ

¼ 1

N
TrðE½ðX̂ðYiÞ �XÞðX̂ðYiÞ �XÞT �Þ

¼
�2
Zi

�2
Zi
þ 1

1

N
Tr KXð Þ;

ð9Þ

where Trð�Þ represents the trace of a matrix.
The data owner can easily control the privacy of an

individual copy Yi by setting �2
Zi

according to trust level i

through a one-to-one mapping. Defining trust levels and

such mappings are beyond the scope of this paper.
However, such control alone is not sufficient in the face

of diversity attacks. Adversaries that can access copies at

different trust levels enjoy the diversity gain when they

combine multiple distinctly perturbed copies to estimate the

original data. We discuss one such case in Section 4.2.1.
Ideally, the amount of information about X that

adversaries can jointly infer from multiple perturbed copies

should be no more than that of the best effort using any

individual copy.
Formally, we say the privacy goal is achieved with

respect to M perturbed copies Yi; 1 � i �M, if the

following statement holds. For an arbitrary subset YYC of

fYi; 1 � i �Mg,

DðX; X̂ðYYCÞÞ ¼ min
�2YYC

DðX; X̂ð�ÞÞ; ð10Þ

where YYC is the set of perturbed copies an adversary uses

to reconstruct the original data.
Intuitively, achieving the privacy goal requires that given

the copy with the least privacy among any subset of these

M perturbed copies, the remaining copies in that subset

contain no extra information about X.
To achieve this goal, the available design space is noise

ZZ. We already determine that individual noise Zi; 1 � i �
M must follow Nð0; �2

Zi
KXÞ. In the rest of the paper, we

show by properly correlating noise Zi; 1 � i �M, the

desired privacy goal can be achieved.

4 CASE STUDY

In this section, we study a basic case corresponding to the

motivating example we described at the beginning of

Section 1. In the case, a data miner has access to two

differently perturbed copies of the same data, each for a

different trust level. We present the challenges in achieving

the privacy goal in (10) with two false starts. As we develop

a solution to this basic base, we show the key ideas in

solving the more general case of arbitrarily fine granularity

of trust levels.

4.1 An Illustrative Case

For ease of illustration, we assume single attribute data. We

assume that the data owner has already distributed a

perturbed copy Y2 of the original data X where

Y2 ¼ X þ Z2:

Denote the variance of X as �2
X , and the Gaussian noise

Z2 � Nð0; �2
2�

2
XÞ is independent of X.

The data owner now wishes to produce another perturbed

copy Y1. It generates Gaussian noise Z1� Nð0; �2
1�

2
XÞ, and

adds it to X to obtain Y1 as

Y1 ¼ X þ Z1:

The new noise Z1 is also independent of X (but could be

designed to be correlated with Z2). We consider the case

where the data owner chooses �2
2 > �2

1 so that Y1 is less

perturbed than Y2.
The privacy goal in (10) requires that

DðX; X̂ðY1; Y2ÞÞ ¼ DðX; X̂ðY1ÞÞ: ð11Þ

To see this, note that minðDðX; X̂ðY1ÞÞ;DðX; X̂ðY2ÞÞÞ can be

simplified to DðX; X̂ðY1ÞÞ, i.e., the less perturbed copy gives

better estimate.

4.2 Two False Starts

In this section, we illustrate the challenges in achieving the

privacy goal with two false starts.

4.2.1 Independent Noise

The first intuitive attempt is to generate the two perturbed

copies independently. The added noise in the two

perturbed copies is not only independent of the original

data, but also independent of each other.
In the case we consider, the above solution generates Z1

to be independent of X and Z2, respectively. Consequently,

adversaries have two perturbed copies as follows:

Y1 ¼ X þ Z1;
Y2 ¼ X þ Z2;

�

where X, Z1, and Z2 are mutually independent. The

adversaries perform a joint LLSE estimation to obtain

X̂ðY1; Y2Þ. Straightforward computation utilizing (7) shows

that

DðX; X̂ðY1; Y2ÞÞ ¼
�2
X

1þ 1=�2
1 þ 1=�2

2

:

This value is strictly smaller than the error of the estimate

based on either Y1 or Y2, which is for i ¼ 1; 2,

DðX; X̂ðYiÞÞ ¼
�2
X

1þ 1=�2
i

;

following (8). Thus, (11) is not satisfied and the desired

privacy goal is not achieved.

Example. Assume that the original data set has single

attribute data X with mean �X ¼ 10 and variance �2
X ¼ 1.

The data owner releases perturbed copies Y1 ¼ X þ Z1

and Y2 ¼ X þ Z2 of two (sensitive) values X ¼ ½9; 11�T to

Alice and Bob with different trust levels �2
1 ¼ 1 and

�2
2 ¼ 4, respectively.

Alice reconstructs the data values using (4), and
obtains X̂ðY1Þ ¼ ½9:5; 10:5�T þ 0:5Z1. The average estima-
tion error is

1

2
E½ðX̂ �XÞT ðX̂ �XÞ� ¼ 0:125E

�
ZT1 Z1

	
þ 0:25 ¼ 0:5:
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Bob reconstructs the data values using (4), and
obtains X̂ðY1Þ ¼ ½9:8; 10:2�T þ 0:2Z2. The average estima-
tion error is

1

2
E½ðX̂ �XÞT ðX̂ �XÞ� ¼ 0:02E½ZT2 Z2� þ 0:64 ¼ 0:8:

Assume that Y1 and Y2 are generated independently.
The reconstructed data after the collusion between Alice
and Bob using (6) are X̂ðYYÞ ¼ ½85; 95�T =9þ 4Z1=9 þ
Z2=9. The average estimation error is

1

2
E½ðX̂ �XÞT ðX̂ �XÞ� ¼ 8

81
ZT1 Z1 þ

1

162
ZT2 Z2 þ

16

81
¼ 4

9
:

Thus, the collusion results in a smaller error.

Intuitively, this is because the two copies of the data

are generated independently, each containing some in-

novative information of the original data that are absent

from the other. When estimation is performed jointly, the

innovative information from both copies can be utilized,

resulting in a smaller estimation error and thus a more

accurate estimate.

4.2.2 Linearly Dependent Noise

In light of the incorrectness of the first solution, one might

consider a second approach to generate new noise so that it

is linearly dependent to the existing one.
In the case we consider, the above approach may generate

Z1 ¼ �1

�2
Z2. It is easy to verify thatZ1 � Nð0; �2

1�
2
XÞ. However,

Y1 ¼ X þ Z1 again fails to achieve the privacy goal.
To see this, notice that the adversaries who have access

to both copies can reconstruct X perfectly as follows:

X ¼ �2Y1 � �1Y2

�2 � �1
¼ �2ðX þ Z1Þ � �1ðX þ Z2Þ

�2 � �1
:

The estimation error is zero, and (11) is not satisfied.

4.3 Proposed Solution

Intuitively, (11) requires that given Y1, observing the more

perturbed Y2 does not improve the estimation accuracy.
One way to satisfy (11) is to generate Z1 so that Y1 ¼

X þ Z1 and Z2 � Z1 are independent. To see why, we

rewrite Y2 as

Y2 ¼ Y1 þ ðZ2 � Z1Þ: ð12Þ

If Y1 and Z2 � Z1 are independent, then Y2 is nothing but a

perturbed observation of Y1. All information in Y2 useful for

estimating X is inherited from Y1. Consequently, given Y1,

Y2 provides no extra innovative information to improve the

estimation accuracy, and (11) is satisfied.
Since X and Z1 (resp. Z2) are independent, Y1 and Z2 �

Z1 are independent if Z1 and Z2 � Z1 are independent.

The following theorem gives a sufficient and necessary

condition for Z1 and Z2 to satisfy that Z1 and Z2 � Z1 are

independent.

Theorem 1. Assume Z1 � Nð0; �2
1�

2
XÞ, Z2 � Nð0; �2

2�
2
XÞ, and

�2
1 < �2

2. Z1 and Z2 � Z1 are independent if and only if Z1 and

Z2 are jointly Gaussian and their covariance matrix is

�2
1�

2
X �2

1�
2
X

�2
1�

2
X �2

2�
2
X

� �
: ð13Þ

Proof. Refer to Appendix B, available in the online
supplemental material. tu

The following theorem states that Z1 and Z2 � Z1 being
independent is a sufficient condition for (11) to hold.

Theorem 2. Given that Z1 � Nð0; �2
1�

2
XÞ and Z2 � Nð0; �2

2�
2
XÞ,

and�2
1 < �2

2, ifZ1 andZ2 � Z1 are independent, then (11) holds.

Proof. Refer to Appendix C, available in the online
supplemental material. tu

Example. We now revisit the example in Section 4.2.1 to

show that collusion does not improve estimation

accuracy in our scheme. Assume that Y1 and Y2 are

generated following the proposed solution, i.e., Z1 and

Z2 are jointly Gaussian and their covariance matrix is

½1 1
1 4�. The reconstructed data after the collusion between

Alice and Bob using (6) are X̂ðY1Þ ¼ ½9:5; 10:5�T þ 0:5Z1.

The average estimation error is

1

2
E½ðX̂ �XÞT ðX̂ �XÞ� ¼ 0:125E½ZT1 Z1� þ 0:25 ¼ 0:5:

This error of joint estimation is the same as the error of
estimation using only the least perturbed copy. Thus, the
collusion does not result in a smaller error in our scheme.

Remark. Intuitively, since Y2 is a perturbed observation of
Y1 as shown in (12), Y2 cannot provide extra innovative
information to improve the estimation accuracy achieved
by utilizing only Y1, and (11) is satisfied.

This sufficient condition is key in achieving the
privacy goal in this simple case, as well as in the general
cases, on which we elaborate in Section 5.

Following the above analysis, our solution to this
simple case is as follows:

. Given �2
1 and �2

2, construct the covariance matrix
of Z1 and Z2 as in (13). Derive the joint
distribution of Z1 and Z2.

. Compute the conditional distribution of Z1 given
Z2. Generate Z1 according to this conditional
distribution.

. Generate the desired Y1 ¼ X þ Z1.

In this way, Z1 and Z2 � Z1 are guaranteed to be
independent; hence, (11) is satisfied.

5 SOLUTION TO GENERAL CASES

We now show that the solutions to the general cases of
arbitrarily fine trust levels follow naturally from that to the
two trust level case studied in Section 4.

5.1 Shaping the Noise

5.1.1 Independent Noise Revisited

In Section 4, we show that adding independent noise to
generate two differently perturbed copies, although con-
venient, fails to achieve our privacy goal. The increase in the
number of independently generated copies aggravates the
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situation; the estimation error actually goes to zero as this

number increases indefinitely. In turn, the attackers can

perfectly reconstruct the original data. We formalize this

observation in the following theorem.

Theorem 3. Let YY ¼ ½Y T
1 ; . . . ; Y T

M �
T be a vector containing M

perturbed copies. Assume that YY is generated from the original

data X as follows:

YY ¼ HX þ ZZ;

where H ¼ ½IN; . . . ; IN �T , and ZZ ¼ ½ZT
1 ; . . . ; ZT

M �
T with Zi �

Nð0; �2
Zi
KXÞ is the noise vector.

If noise Zi; 1 � i �M are mutually independent, then the
square errors between the LLSE estimate X and X̂ðYYÞ are the
diagonal terms of the following matrix:

1þ
XM
i¼1

1

�2
Zi

 !�1

KX:

As M increases, the estimation errors decrease, so does the

distortion DðX; X̂ðYYÞÞ.
Proof. Refer to Appendix D, available in the online

supplemental material. tu
Remark. The theorem says that when adding a new copy

that is perturbed by independent noise, the estimation

error decreases. It agrees with the intuition that a new

independently-perturbed copy adds extra innovative

information to improve the estimation accuracy.

We conclude that noise Zi; 1 � i �M should not be

generated independently.

5.1.2 Properly Correlated Noise

We show by the case study that the key to achieving the

desired privacy goal is to have noise Zi; 1 � i �M properly

correlated. To this end, we further develop the pattern

found in the 2� 2 noise covariance matrix in (13) into a

corner-wave property for a multidimensional noise covar-

iance matrix. This property becomes the cornerstone of

Theorem 4 which is a generalization of Theorems 1 and 2.
Corner-wave Property. Theorem 4 states that for

M perturbed copies, the privacy goal in (10) is achieved

if the noise covariance matrix KZZ has the corner-wave

pattern as shown in (15). Specifically, we say that an M �
M square matrix has the corner-wave property if, for every

i from 1 to M, the following entries have the same value as

the ði; iÞth entry:

. all entries to the right of the ði; iÞth entry in row i,
and

. all entries below the ði; iÞth entry in column i.

The distribution of the entries in such a matrix looks like

corner-waves originated from the lower right corner.

Theorem 4. Let YY ¼ ½Y T
1 ; . . . ; Y T

M �
T represent an arbitrary

number of perturbed copies. Assume that YY is generated from

the original data X as follows:

YY ¼ HX þ ZZ;

where H ¼ ½IN; . . . ; IN �T , and ZZ ¼ ½ZT1 ; . . . ; ZT
M �

T with Zi �
Nð0; �2

Zi
KXÞ is the noise vector. Without loss of generality, we

further assume

�2
Zi
< �2

Ziþ1
; 8i ¼ 1; . . . ;M � 1: ð14Þ

Then, the following equation holds:

DðX; X̂ðYYÞÞ ¼ min
i¼1;...;M

DðX; X̂ðYiÞÞ ¼
�2
Z1

�2
Z1
þ 1

1

N
TrðKXÞ;

if ZZ is a jointly Gaussian vector and its covariance matrix KZZ

is given by

KZZ ¼

�2
Z1
KX �2

Z1
KX � � � �2

Z1
KX

�2
Z1
KX �2

Z2
KX � � � �2

Z2
KX

..

. ..
. . .

. ..
.

�2
Z1
KX �2

Z2
KX � � � �2

ZM
KX

2
6664

3
7775: ð15Þ

Proof. Refer to Appendix C, available in the online

supplemental material. tu
Remark. The corner-wave property of KZZ given in (15)

guarantees that (10) holds. Therefore, the diversity attack

does not help to improve the estimation accuracy.

Moreover, for any subset of these M perturbed copies,

the covariance matrix of the corresponding noise also has

the corner-wave property, and thus the privacy goal is

achieved. We summarize this observation in Corollary 1.

Corollary 1. If the privacy goal in (10) is achieved with respect to

M perturbed data Y1; . . . ; YM , then the goal is also achieved

with respect to any subset of fY1; . . . ; YMg.

Based on Theorem 4 and Corollary 1, one way to

achieve the privacy goal in (10) is to ensure that noise ZZ

is a jointly Gaussian vector and follows Nð0; KZZÞ where

KZZ is given by (15). We consider two scenarios when

generating noise ZZ and the corresponding perturbed

copies YY. We discuss these two scenarios in the following

two sections.

5.2 Batch Generation

In the first scenario, the data owner determines the M trust

levels a priori, and generates M perturbed copies of the data

in one batch. In this case, all trust levels are predefined and

�2
Z1

to �2
ZM

are given when generating the noise. We refer to

this scenario as the batch generation.
We propose two batch algorithms. Algorithm 1 generates

noise Z1 to ZM in parallel while Algorithm 2 sequentially.

Algorithm 1. Parallel Generation

1: // Input: X, KX , and �2
Z1

to �2
ZM

2: // Output: YY

3: Construct KZZ with KX and �2
Z1

to �2
ZM

, according to (15)

4: Generate ZZ with KZZ, according to (16)

5: Generate YY ¼ HX þ ZZ

6: Output YY
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Algorithm 2. Sequential Generation
1: // Input: X, KX , and �2

Z1
to �2

ZM

2: // Output: Y1 to YM
3: Construct Z1 � Nð0; �2

Z1
KXÞ

4: Generate Y1 ¼ X þ Z1

5: Output Y1

6: for i from 2 to M do

7: Construct noise � � Nð0; ð�2
Zi
� �2

Zi�1
ÞKXÞ

8: Generate Yi ¼ Yi�1 þ �
9: Output Yi

10: end for

5.2.1 Algorithm 1: Parallel Generation

Without loss of generality, we assume �2
Zi
< �2

Ziþ1
where

1 � i �M � 1. Algorithm 1 generates the components of
noise ZZ, i.e.,Z1 toZM , simultaneously based on the following
probability distribution function, for any real ðN �MÞ-
dimension vector v,

fZZðvÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�ÞM detðKZZÞ
q e�

1
2v
TK�1

ZZ v; ð16Þ

where KZZ is given by (15).
Algorithm 1 then constructs YY as HX þ ZZ and outputs

it. We refer to Algorithm 1 as parallel generation.
Algorithm 1 serves as a baseline algorithm for the next

two algorithms.

5.2.2 Algorithm 2: Sequential Generation

The large memory requirement of Algorithm 1 motivates us
to seek for a memory efficient solution. Instead of parallel
generation, sequentially generating noise Z1 to ZM , each of
which a Gaussian vector of N dimension. The validity of the
alternative procedure is based on the insight in the
following theorem.

Theorem 5. Consider ZZ ¼ ½ZT1 ; . . . ; ZTM �
T where Zi �

Nð0; KZiÞ with KZi ¼ �2
Zi
KX. Without loss of generality,

further assume

�2
Zi
< �2

Ziþ1
; 8 i ¼ 1; . . . ;M � 1:

Then, ZZ is a jointly Gaussian vector and KZZ has the form in
(15), if and only if Z1, and ðZi � Zi�1Þ; i ¼ 2; :::;M are
mutually independent.

Proof. Refer to Appendix F, available in the online
supplemental material. tu

Based on Theorem 5, Algorithm 2 sequentially generates
M independent noise Z1, and ðZi � Zi�1Þ for i from 2 to M.
Noise Zi is then simply ðZi � Zi�1Þ þ Zi�1 for i from 2 to M.
Finally, Algorithm 2 generates the perturbed copies Y1 to
YM by adding the corresponding noise. We refer to
Algorithm 2 as sequential generation.

We now explain intuitively why the mutual indepen-
dence requirement for Z1, and ðZi � Zi�1Þ for i from 2 to M
is sufficient to achieve our privacy goal in (10).

We rewrite Yi as X þ Z1 þ
Pi

j¼2ðZj � Zj�1Þ. Since X, Z1

and Zj � Zj�1 for j ¼ 2; . . . ;M are mutually independent,
Yi; 2 � i �M are perturbed observations of Y1. Intuitively
all information in them that are useful for estimating X is

inherited from Y1. As such, given Y1, Yi; 2 � i �M provides
no extra innovative information to improve the estimation
accuracy. Similar analysis applies to any subset of Y1 to YM .
Hence, (10) is satisfied. This intuition is similar to the
explanation for the case study in Section 4.

5.2.3 Disadvantages

The main disadvantage of the batch generation approach is
that it requires a data owner to foresee all possible trust
levels a priori.

This obligatory requirement is not flexible and some-
times impossible to meet. One such scenario for the latter
arises in our case study. After the data owner already
released a perturbed copy Y2, a new request for a less
distorted copy Y1 arrives. The sequential generation algo-
rithm cannot handle such requests since the trust level of
the new request is lower than the existing one. In today’s
ever-changing world, it is desirable to have technologies
that adapt to the dynamics of the society. In our problem
setting, generating new perturbed copies on-demand would
be a desirable feature.

5.3 On-Demand Generation

As opposed to the batch generation, new perturbed copies
are introduced on demand in this second scenario. Since the
requests may be arbitrary, the trust levels corresponding to
the new copies would be arbitrary as well. The new copies
can be either lower or higher than the existing trust levels.
We refer this scenario as on-demand generation. Achieving
the privacy goal in this scenario will give data owners the
maximum flexibility in providing MLT-PPDM services.

We assume LðL < MÞ existing copies of Y1 to YL. We also

assume that the data owner, upon requests, generates

additional M � L copies of YLþ1 to YM . Thus, there will be

M copies in total. Note in this section �2
Z1

to �2
ZM

can be in

any order. Finally, we define vectors ZZ0 and ZZ00 as

ZZ0 ¼
Z1

..

.

ZL

2
64

3
75 and ZZ00 ¼

ZLþ1

..

.

ZM

2
64

3
75:

According to Theorem 4, the data owner should generate
new noise ZZ00 in such a way that the covariance matrix of
ZZ ¼ ½ZZ00TZZ00

T �T has corner-wave property, and they are
jointly Gaussian.

The desired covariance matrix KZZ can be constructed
according to (15) (after properly ordering Z1 to ZM
according to �2

Z1
to �2

ZM
).

According to Section 2.1, it is sufficient and necessary for
the conditional distribution of ZZ00 given that ZZ0 takes any
value v1 to be a Gaussian with mean

KZZ00ZZ00K
�1
ZZ0 v1; ð17Þ

and covariance

KZZ00 �KZZ00ZZ0K
�1
ZZ0 K

T
ZZ00ZZ0 ; ð18Þ

where KZZ0 is the covariance matrix of ZZ0, KZZ00ZZ0 is the
desired covariance matrix between ZZ00 and ZZ0, and KZZ00 is
the desired covariance matrix of ZZ00.
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Note KZZ0 is known to the data owner, and KZZ00ZZ0 and KZZ00

can be extracted from the desired covariance matrix KZZ. We

turn the above analysis into Algorithm 3.

Algorithm 3. On Demand Generation

1: // Input: X, KX , �2
Z1

to �2
ZM

, and values of ZZ0: v1

2: // Output: New copies ZZ00

3: Construct KZZ with KX and �2
Z1

to �2
ZM

, according to (15)

4: Extract KZZ0 , KZZ00ZZ0 , and KZZ00 from KZZ

5: Generate ZZ00 as a Gaussian with mean and variance in

(17) and (18), respectively
6: for i from Lþ 1 to M do

7: Generate Yi ¼ X þ Zi
8: Output Yi
9: end for

5.4 Time and Space Complexity

In this section, we study the time and space complexity of

the three algorithms. One may notice that all the covariance

matrices of noise in the three algorithms, such as (15) and

(18), can be written as the Kronecker product of two

matrices. For such covariance matrices, we have the

following observation:

Lemma 1. Assume that � and K are the mean and covariance

matrix of the jointly Gaussian random vector GG. If

KGG ¼ �GG �K0, where �GG and K0 are P � P and Q�Q,

respectively, and K0 is also a covariance matrix, then the time

complexity of generating GG is OðP 3 þQ3Þ.
Proof. Refer to Appendix G.1, available in the online

supplemental material. tu
Remark. Directly generating GG using KGG, the complexity is

OðP 3Q3Þ. Viewing KGG as a Kronecker product of two

matrices of smaller dimensions, we can utilize the

properties of Kronecker product to reduce the complex-

ity to OðP 3 þQ3Þ.

The proof suggests an efficient implementation of the

proposed three algorithms. Note that for each algorithm,

the time complexity may be further reduced.
Utilizing Lemma 1, we give the following theorems on

the time and space complexity of the proposed three

algorithms.

Theorem 6. Given an N-dimensional data vector X, the time

complexity of generating M perturbed copies using Algorithm

1 is OðN3 þMN2Þ, and the space complexity is OðM þN2Þ.
Proof. Refer to Appendix G.2, available in the online

supplemental material. tu

Theorem 7. Given an N-dimensional data vector X, the time
complexity of generating M perturbed copies using Algo-
rithm 2 is OðN3 þMN2Þ, and the space complexity is OðN2Þ.

Proof. Refer to Appendix G.3, available in the online
supplemental material. tu

Remark. Using a similar set of arguments, we can show the
time complexity of the independent noise scheme
described in Section 5.1.1 is the same as Algorithm 2.

Theorem 8. Given an N-dimensional data vector X and L
(1 � L �M � 1) perturbed copies of X, the time complexity
of generating ðM � LÞ perturbed copies using Algorithm 3 is
OðM3 þN3Þ, and the space complexity is OðM2 þN2Þ.

Proof. Refer to Appendix G.4, available in the online
supplemental material. tu

Table 2 compares the applicabilities and complexity of
the three proposed algorithms. In summary, Algorithms 1
and 2 have less space and time complexity than Algorithm
3. Algorithm 3 offers data owners maximum flexibility by
generating perturbed copies in an on-demand fashion.

6 EXPERIMENTS

6.1 Methodology and Settings

We design two experiments, performance test (Experiment
1) and scalability test (Experiment 2). Experiment 1 explores
answers to the following questions numerically:

. How severe can LLSE-based diversity attacks be,
given that the perturbed copies at different trust
levels are generated independently?

. How effective is our proposed scheme against LLSE-
based diversity attacks, compared to the above
independent noise scheme?

. How does an adversary’s knowledge affect the
power of such attacks?

Experiment 2 demonstrates the runtime of our proposed
Algorithm 3.

We run our experiments on a real data set CENSUS [41],
which is commonly used in the literature of privacy
preservation such as [42], for carrying out the experiments
and evaluating their performance in a fully controlled
manner. This data set contains one million tuples with four
attributes: Age, Education, Occupation, and Income. We take
the first 105 tuples and conduct the experiments on the Age
and Income attributes. The statistics and distribution of the
data are shown in Table 3 and Fig. 1, respectively.

Given data X (Age and Income), to generate perturbed
copies Yi at different trust levels i, we generate Gaussian
noise Zi according to Nð0; �2

Zi
KXÞ, and add Zi to X. The

constant �2
Zi

represents the perturbation magnitude deter-
mined by the data owner according to the trust level i. The
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noise for different trust levels are generated either inde-
pendently, or in a properly correlated manner following our
proposed solution in Section 5.

Data miners can access one or more perturbed copies Yi,
either according to application scenario setting or by
collusion among themselves. Recall our assumption that
data miners perform joint LLSE estimation to reconstruct X.
We study two classes of data miners with different
knowledge about the original data and noise:

. the first class of adversaries has perfect knowledge,
i.e., the exact values of �X, KX , and �2

Zi
for every

trust level i;
. the second class of adversaries has partial knowl-

edge, i.e., the exact values of �2
Zi

for every trust level
i, but not �X and KX.

To perform LLSE estimation, data miners with partial
knowledge estimate �X and KX using their perturbed
copies. For each Yi, its mean is simply �X, and its covariance
matrix is ð1þ �2

Zi
ÞKX . Knowing the exact values of �2

Zi
, a

data miner can estimate �X and KX using the sample mean
and sample covariance matrix of Yi. Accuracy of such
estimation depends on the sample size; the larger the
sample size, the more accurate the estimation of �X and KX.

In Experiment 1, we use two performance metrics,
average normalized estimation error and distribution of
estimation error. For LLSE estimate of X based on YY, i.e.,
X̂ðYYÞ, we define its normalized estimation error as

DðX; X̂ðYYÞÞ
TrðKXÞ

:

It takes values between 0 and 1. The smaller it is, the more
accurate the LLSE estimation is. It generally decreases as
more perturbed copies are used in the LLSE estimation. When
showing the distribution of the estimation error, we useffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðX; X̂ðYYÞÞ
q

directly, and one may see how large the distortion is,
compared to the values of the original data shown in Fig. 1,
as we do not normalize it. The distribution is represented by
a histogram as well as a cumulative histogram. The curve of
cumulative histogram starts from 0 and increases to 1. The
faster the curve approaches 1, i.e., the bigger proportion of
accurate estimates, the better the LLSE-based diversity
attack performs. We conduct experiments on data with two

attributes (i.e., N ¼ 2); however, for ease of illustration, we
show the performance on different attributes separately.

6.2 Experiment 1: Performance Test

In this section, we show the superiority of our scheme over the
scheme that simply adds independent noise, and how data
miner’s knowledge affects the power of LLSE-based diversity
attacks. Algorithm 3 is used for the experiment due to its
maximum flexibility among the three proposed algorithms.
M perturbed copies Yi, 1 � i �M, are generated one by

one upon requests, adding independent noise to the
original data or using our proposed Algorithm 3. Each
request is at a different trust level with corresponding �2

Zi
randomly generated in ½0:25; 1�. Fig. 2 shows �2

Zi
as a

function of perturbed copy number i.
We assume that data miners can access all the

M perturbed copies. This setting represents the most severe
attack scenario where data miners jointly estimate X using
all the available M perturbed copies. Since the perturbed
copies are released one by one, the number of the available
perturbed copies also increases one by one.

We also assume that data miners with partial knowledge

estimate �X and KX with different sample sizes. In

particular, we assume that they have 100N2, 200N2, and

300N2 samples, where N2 is the number of entries in KX

and N ¼ 2 in our experiments.
Figs. 2a and 2b show the normalized estimation errors of

both schemes as a function of the number of perturbed
copies, on attributes Age and Income, respectively.

The results of the experiments clearly show that the
diversity gain in joint estimation reduces the normalized
estimation error dramatically. While for our algorithm, we
find that the estimation error drops only when a perturbed
copy with minimum perturbation magnitude so far
becomes available. Using our algorithm, the curve of
attacks utilizing the least perturbed copy overlaps with
the curve of attacks utilizing all the available M copies. The
above observations imply that the joint estimation based on
all existing copies is only as good as the estimation based on
the copy with the minimum privacy, and there is no
diversity gain in performing the LLSE estimation jointly.
Moreover, we have verified that the estimation error
matches our analytical result in Theorem 4.

We also find that when data miners have perfect
knowledge, the normalized estimation error decreases
monotonically as M increases for copies perturbed by
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Fig. 1. Distribution of sensitive values Age and Income.



independent noise. This trend indicates a perfect recon-

struction of X when M goes to infinity. It also confirms

Theorem 3 empirically.
On the other hand, if the adversaries have to estimate

�X and KX from samples, i.e., the attackers have partial

knowledge, the curve flattens and even slightly increases

as M becomes large. This is because the estimation error

depends not only on the number of perturbed copies, but

also on the precision of �X and KX. The estimation based

on inaccurately estimated mX and KX is not optimal.
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Fig. 2. Comparisons of average normalized estimation error of the independent noise scheme (denoted as IN) and our scheme (denoted as Ours) on
the data (a)Age and (b)Income, respectively. The average normalized estimation error of each setting is shown as a function of the number of
generated perturbed copies. Note that using our algorithm, the curve of attacks utilizing the least perturbed copy overlaps with the curve of attacks
utilizing all the available M copies. Perturbation magnitude �2

Zi
is shown as a function of perturbed copy number i at the bottom.

Fig. 3. The corresponding histogram and cumulative histogram of the estimation error when M ¼ 5, 10, 20 and 30, respectively, using the two
different schemes.



Consequently, the estimation accuracy does not always

improve as M increases. Fig. 2 also shows that adver-

saries having more samples perform better in estimating

�X and KX , resulting in improved overall accuracy.
Figs. 3a and 3b show the corresponding histograms and

cumulative histograms of the estimation errors for M ¼ 5,

10, 20, and 30, using our proposed scheme and the

independent noise scheme. The cumulative histograms of

our scheme approaches 1 much slower than those of the

independent noise scheme. This indicates that the adver-

saries obtain less accurate estimations from copies gener-

ated by our scheme than from those generated by the

independent noise scheme. We also observe that as M

increases, the cumulative histograms of our scheme are

almost identical as expected; while those by the indepen-

dent noise scheme approaches the vertical axis, implying

estimation errors decrease as adversaries obtain more

independently perturbed copies.
In summary, the privacy goal in Section 3.4 is achieved in

this most severe attacking scenario.
We further verify that the perturbed copy by our scheme

has the same utility as that by the independent noise

scheme, if their trust levels are the same. We use the Iris

Plant and Wisconsin Diagnostic Breast Cancer databases

from the UCI Machine Learning Repository for the experi-

ment. We measure the utilities with a decision tree classifier

and a SVM classifier with radial basis kernel. The average

accuracies over 10-fold cross validation are reported in

Fig. 4. As seen from Fig. 4, at all noise levels, the accuracies

by the same classifier on the data perturbed by adding

independent noise and by properly adding correlated noise

following our scheme are identical. Therefore, the perturbed

copies at the same trust level by different noise addition

techniques have the same utilities.

6.3 Experiment 2: Scalability Test

The scalability test is conducted in Matlab v7.6 on a PC with

2.5 GHz CPU and 2 GB memory. The attribute Income is

used as the original data. We only test Algorithm 3 as it

offers the maximum flexibility in generating perturbed

copies and it has the highest time complexity among our

three proposed algorithms. We use the independent noise

scheme with the same settings as a baseline algorithm. Note

that this scheme, although with less runtime, is not resistent

to diversity attacks.
Theorem 8 states that to generate one tuple, the time

complexity is OðM3 þN3Þ. To generate T tuples together,

some of the computation can be shared, e.g., generating the

covariance matrix of ZZ00. As a result, the total time

complexity to generate T perturbed tuples is OðM3 þ
N3 þ T ðM2N þMN2ÞÞ, and the average time complexity

for one tuple is OðM2N þMN2Þ for large T .
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Fig. 4. Comparison of utilities of perturbed copies by different noise addition techniques. We show the classification accuracy on the perturbed data
at M ¼ 20 different noise levels. The Iris Plant database has 150 tuples with four numerical attributes, and contains three classes of 50 tuples each.
The Wisconsin Diagnostic Breast Cancer database has 699 tuples with nine numerical attributes, and contains two classes.

Fig. 5. The runtime as a function of the total number of perturbed copies
M, when the data owner generates M � L perturbed copies each of 105

tuples. The runtime is averaged on 100 repeated tests.



Fig. 5 shows the runtime of Algorithm 3 as a function of the
total number of perturbed copiesM. For each value ofM, the
data owner generates M � L perturbed copies each of 105

tuples. We set L ¼ bM=4c, bM=2c, and b3M=4c, respectively.
Our observations are three-folded. First, our algorithm is fast.
For example, generating 23 perturbed copies (M ¼ 30,
L ¼ bM=4c ¼ 7) only takes 0.37 seconds. Second, the actual
runtime of Algorithm 3 we observe only increases approxi-
mately linearly in M. This observed complexity is much
smaller than the theoretical upper bound OðM3 þN3 þ
M2N þMN2Þwe estimated in Section 5.4. Third, the runtime
difference between Algorithm 3 and the independent noise
scheme is considerably small. The time complexity of
Algorithm 3 is the same as that of generating jointly Gaussian
noise given the mean and covariance. One of the reasons why
the independent noise scheme is marginally faster is that it
uses an all-zero mean vector and diagonal covariance matrix.

7 CONCLUSION AND FUTURE WORK

In this work, we expand the scope of additive perturbation
based PPDM to multilevel trust (MLT), by relaxing an
implicit assumption of single-level trust in exiting work.
MLT-PPDM allows data owners to generate differently
perturbed copies of its data for different trust levels.

The key challenge lies in preventing the data miners
from combining copies at different trust levels to jointly
reconstruct the original data more accurate than what is
allowed by the data owner.

We address this challenge by properly correlating noise
across copies at different trust levels. We prove that if we
design the noise covariance matrix to have corner-wave
property, then data miners will have no diversity gain in
their joint reconstruction of the original data. We verify our
claim and demonstrate the effectiveness of our solution
through numerical evaluation.

Last but not the least, our solution allows data owners to
generate perturbed copies of its data at arbitrary trust levels
on-demand. This property offers the data owner maximum
flexibility.

We believe that multilevel trust privacy preserving data
mining can find many applications. Our work takes the
initial step to enable MLT-PPDM services.

Many interesting and important directions are worth
exploring. For example, it is not clear how to expand the
scope of other approaches in the area of partial information
hiding, such as random rotation-based data perturbation, k-
anonymity, and retention replacement, to multilevel trust. It
is also of great interest to extend our approach to handle
evolving data streams.

As with most existing work on perturbation-based
PPDM, our work is limited in the sense that it considers
only linear attacks. More powerful adversaries may apply
nonlinear techniques to derive original data and recover
more information. Studying the MLT-PPDM problem under
this adversarial model is an interesting future direction.
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