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Abstract
There has been growing interest in employing
neural network (NN) to directly solve constrained
optimization problems with low run-time com-
plexity. However, it is non-trivial to ensure NN
solutions strictly satisfying problem constraints
due to inherent NN prediction errors. Existing
feasibility-ensuring methods either are computa-
tionally expensive or lack performance guarantee.
In this paper, we propose homeomorphic projec-
tion as a low-complexity scheme to guarantee NN
solution feasibility for optimization over a gen-
eral set homeomorphic to a unit ball, covering all
compact convex sets and certain classes of non-
convex sets. The idea is to (i) learn a minimum
distortion homeomorphic mapping between the
constraint set and a unit ball using an invertible
NN (INN), and then (ii) perform a simple bisec-
tion operation concerning the unit ball so that the
INN-mapped final solution is feasible with respect
to the constraint set with minor distortion-induced
optimality loss. We prove the feasibility guar-
antee and bound the optimality loss under mild
conditions. Simulation results, including those
for non-convex AC-OPF problems in power grid
operation, show that homeomorphic projection
outperforms existing methods in solution feasi-
bility and run-time complexity, while achieving
similar optimality loss.

1. Introduction
Constrained Optimization (CO) has tremendous applications
in various engineering domains, including supply chain,
transportation, power systems, and resource allocation. A
large number of iterative algorithms have been developed
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and incorporated into commercial solvers (e.g., Gurobi and
MOSEK) to solve various CO problems exactly or approxi-
mately. While widely successful, iterative algorithms can
still fail to solve challenging CO problems in real-time, lim-
iting their usefulness in time-sensitive applications, such as
solving AC optimal power flow problems in real-time power
grid operations and semi-definite programming-based real-
time scheduling and coding operations in modern wireless
communication systems.

Recently, machine learning (ML) schemes have been devel-
oped for solving CO in real-time, including the end-to-end
(E2E) solution mapping (Kotary et al., 2021; Amos, 2022)
and the learning-to-optimize (L2O) iterative scheme (Khalil
et al., 2016; Chen et al., 2021b). Boosted by the universal
approximation capacity of neural networks (NN) (Hornik
et al., 1989; Leshno et al., 1993), the end-to-end approaches
learn the mapping between the input parameters and high-
quality solutions of CO. After the training procedure, NN
directly outputs the solution in real-time, which is much
faster than iterative solvers. For example, researchers have
developed NN-based approaches for optimal power flow
(OPF) problems, where NN predicts the optimal power gen-
eration schemes based on real-time power demand (Pan
et al., 2019; Guha et al., 2019; Pan et al., 2020; Fioretto
et al., 2020; Zamzam & Baker, 2020; Donti et al., 2021).

However, it is non-trivial to ensure NN solution feasibility
with respect to the problem constraints, due to inherent NN
prediction errors. Existing feasibility-ensuring methods are
either computationally expensive or lacking performance
guarantees. See Sec. 2 for detailed discussions.

In this paper, we develop homeomorphic projection (HP)
as a novel low-complexity approach to take an infeasible
NN solution and generate a feasible solution with bounded
optimality loss. We make the following contributions:

▷ After presenting the optimization problem over a general
ball-homeomorphic set in Sec. 3, we propose an HP frame-
work for ensuring NN solution feasibility in Secs. 4 and
5. The framework includes (i) training an invertible neural
network (INN) in an unsupervised manner to approximate
a minimum distortion homeomorphic (MDH) mapping be-
tween the constraint set and a unit ball, and (ii) performing
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Table 1: Comparison of existing approaches for ensuring NN solution feasibility for constrained optimization problems.

Existing Study Input-Adaptive Solution Feasibility Bounded Optimality Low Run-Time Low Training
(see Sec. 2 for references) Constraint Set Guarantee Loss Complexity Complexity

Penalty approach ✓ ✗ ✗ ✓ ✓
Projection approach ✓ ✓ ✓ ✗ N/A
Sampling approach ✗ ✓ ✓ ✗ ✗
Preventive learning ✓(linear) ✓ ✗ ✓ ✗
Gauge mapping ✓(linear) ✓ ✗ ✓ N/A
Homeomorphic Projection ✓ ✓ ✓ ✓ ✓

simple bisection operation with respect to the unit ball so
that the corresponding final solution in the constraint set is
feasible with minor distortion-induced optimality loss.

▷ In Sec. 6, we prove that the HP framework can take
an infeasible solution and recover a feasible solution with
bounded overall optimality loss. We also discuss the run-
time complexity and training complexity of the framework.

▷ In Sec. 7, we carry out simulations, including for solving
non-convex AC-OPF problems in power grid operations,
to evaluate the performance of our HP approach. The re-
sults show that homeomorphic projection outperforms exist-
ing methods in feasibility and run-time complexity, while
achieving similar optimality loss.

To the best of our knowledge, this is the first work to guar-
antee NN solution feasibility for (fairly) general constrained
optimization problems, with bounded optimality loss and
low run-time complexity. Code is available at HP Code.

2. Related Work
Machine Learning (ML) driven optimization research can
be categorized into two main areas: L2O iterative scheme
(Khalil et al., 2016; Chen et al., 2021b) and E2E solution
mapping (Kotary et al., 2021; Amos, 2022). For both re-
search lines, guaranteeing the feasibility of the output solu-
tion by trained NN under input-dependent constraint is non-
trivial. Researchers have developed different approaches to
improve the feasibility, and a summary is in Table 1.

Penalty approach. To reduce the constraint violation of pre-
dicted solutions, different penalty functions (e.g., quadratic
function) are designed and augmented in the loss function
(Cheng et al., 2019; Pan et al., 2019; 2020; Zamzam &
Baker, 2020; Fioretto et al., 2020). Considering the opti-
mal condition of CO, Karush–Kuhn–Tucker (KKT) condi-
tions (a set of equations) are treated as equality constraints
to improve the performance of NN (Nellikkath & Chatzi-
vasileiadis, 2021a;b; Zhang et al., 2021). However, those
approaches do not guarantee feasibility over constraints set
due to the prediction error of NN.

Projection approach. To ensure feasibility, projection can
be applied for infeasible solutions. However, either solv-

ing projection problem by optimization solver (Diamond &
Boyd, 2016) or applying equivalent projection layers (Amos
& Kolter, 2017; Agrawal et al., 2019; Chen et al., 2021a) is
computationally expensive and inefficient in real-time. Dif-
ferentiable gradient-based methods are proposed to correct
infeasible solutions (Donti et al., 2021). L2O-based methods
are also proposed to learn the iterative process of projec-
tion by different types of NN (Xia & Wang, 2000; Heaton
et al., 2021; 2022). However, those projection-equivalent ap-
proaches do not guarantee feasibility for general constraints.

Sampling approach. To guarantee feasibility, feasible
points are sampled and used to construct the inner approxi-
mation of the original constraint set. A convex combination
of vertexes and rays is adopted to ensure feasibility under
linear constraints (Frerix et al., 2020; Zheng et al., 2021).
For a general but input-invariant constraint sets, sampling-
based methods are theoretically studied in (Kratsios et al.,
2021). These methods work for simple linear constraints or
input-invariant constraints, and the number of required fea-
sible samples grows exponentially with the dimension of the
decision variable, which limits their potential for complex
CO problems.

Preventive learning and gauge mapping. These methods
are dedicated to finding a feasibility-guaranteed NN and
then improving its optimality. A preventive learning frame-
work is proposed in (Zhao et al., 2023), which calibrates
inequality constraints and ensures the feasibility of NN by
solving mixed-integer programs at each iteration. Another
work utilizes a closed-form gauge mapping to constrain the
output within a polytopic set (Tabas & Zhang, 2021; 2022).
Those approaches only work for linear constraints, and there
lacks a general and computational tractable approach to re-
alizing feasibility over general constraints.

In summary, existing schemes to ensure NN solution feasi-
bility either incur high run-time complexity or lack feasibil-
ity/optimality guarantee. In this paper, we propose homeo-
morphic projection as a low run-time complexity scheme to
guarantee NN solution feasibility with bounded optimality
loss. Our scheme is conceptually related to the projection
approach and gauge mapping. But it is uniquely different
in its design, applicability to non-linear constraints, and
performance guarantee.
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3. Settings and Open Issue to Address
We consider a general constrained optimization problem:

min
x∈Rn

f(x, θ) s.t. x ∈ Kθ, (1)

where x ∈ Rn is the decision variable and θ ∈ Θ ⊂ Rd
is the input parameter. The objective function f(x, θ) is
continuous and can be non-convex. The optimal solution of
problem in (1), assumed to be unique, is denoted as x∗θ =
argminx∈Kθ{f(x, θ)}. The constraint set Kθ is compact
and specified by nineq inequalities1: Kθ = {x|gi(x, θ) ≤
0, i = 1, . . . , nineq}, where gi(x, θ) is a continuous function.

Figure 1: Homeomorphism between constraint sets and a
unit ball.

Assumption 1. ∀θ ∈ Θ, Kθ is homeomorphic to the unit
ball2 in Rn, denoted as Kθ ∼= B. See Fig. 1 for illustration.

Homeomorphic mapping (or homeomorphism) is a one-to-
one mapping between topological spaces (e.g., Kθ and B)
that is continuous in both directions (Lee, 2013). In other
words, Assumption 1 means that the constraint set and unit
ball are topologically equivalent, and we can continuously
stretch a ball to the constraint set and vice versa.

We note that Assumption 1 is easy to satisfy, e.g., by any
compact convex set (Geschke, 2012), and certain classes
of compact and simply-connected non-convex set (e.g., star
set and invex set) (Sapkota & Bhattarai, 2021). Thus, the
formulation in (1) under Assumption 1 is pretty general and
covers many continuous optimization problems in various
domains.

3.1. Open Issue: ensuring NN solution feasibility

As discussed in the introduction and related works, there
has been NN schemes that learn the input-solution mapping

1While we do not explicitly consider equality constraints in
the formulation, we remark that equality constraints with constant
rank (e.g., linear equations) can be exploited and removed without
losing optimality as discussed in Appendix A. We thus focus on
problems with only inequality constraints.

2The p-norm ball is is defined as Bp(x0, r) = {x ∈ Rn|∥x−
x0∥p ≤ r}, we denote the zero-centered unit 2-norm ball as B.

F : Rd → Rn for a constrained problem and pass inputs
through the NN to obtain high-quality solutions instantly;
see e.g., (Pan et al., 2020; Donti et al., 2021; Amos, 2022).
However, it is non-trivial to ensure NN solution feasibility
with respect to the problem constraints due to inherent NN
prediction error, defined as ϵpre = supθ∈Θ{∥F (θ)− x∗θ∥}.
As discussed in Sec. 2, existing feasibility-ensuring meth-
ods are either computationally expensive or lacking perfor-
mance guarantees. To date, it remains largely open to ensure
NN solution feasibility to the problem in (1) with bounded
optimality loss and low run-time complexity.

Figure 2: Overview of the HP framework.

4. Our Homeomorphic Projection Framework
We develop homeomorphic projection as a low-complexity
approach to take an infeasible solution to the problem in (1)
and generate a feasible solution with bounded optimality
loss. As shown in Fig. 2, the idea is to (i) learn a mini-
mum distortion homeomorphic (MDH) mapping between
the constraint set Kθ and a unit ball B as defined in Sec. 4.1,
and then (ii) perform a simple bisection operation with re-
spect to the unit ball so that the corresponding solution in
the constraint set is feasible with minor optimality loss, as
discussed in Sec. 4.2. We present a method to learn MDH
mappings using INN in Sec. 5 and carry out performance
analysis in Sec. 6.

4.1. Minimum distortion homeomorphic mapping

Definition 4.1 (Distortion). Let ψ : Rn → Rn be a home-
omorphic mapping. Its distortion over a compact set Z is
defined as D(ψ,Z) = κ2/κ1 ≥ 1, where

κ1 = inf
z1,z2∈Z, z1 ̸=z2

{∥ψ(z1)− ψ(z2)∥/∥z1 − z2∥}, (2)

κ2 = sup
z1,z2∈Z, z1 ̸=z2

{∥ψ(z1)− ψ(z2)∥/∥z1 − z2∥}. (3)

Distortion evaluates the variation of distance metrics in
different spaces transformed by a mapping ψ. Small dis-
tortion, e.g., close to its minimum value 1, implies that
geometrical operation in one space, e.g., projection onto a
set, can be approximately done in its mapped space with
respect to distance measure and vice versa. Mappings with
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unit distortion are called isometric mappings. Mappings
with bounded distortion are also referred as bi-Lipschitz
mappings. The concept has been widely applied in the em-
bedding studies (Xiao et al., 2018; Agrawal et al., 2021)
and computational graphics (Schmidt et al., 2019; Liu et al.,
2022).

The first step in our framework is to learn an MDH mapping
ψθ between Kθ and B, critical for bounding optimality loss.
Definition 4.2 (MDH mapping). The MDH mapping is
defined as the optimal solution for the following problem:

min
ψθ∈Hn

logD(ψ−1
θ ,Xθ) s.t. Kθ = ψθ(B), (4)

whereHn is the set of all n-dim homeomorphic mappings,
and we denote the set of homeomorphic mappings satisfying
Kθ = ψθ(B) asHn(Kθ,B). The set Xθ = Kθ+B(0, ϵpre)

3

contains all possible outputs of the NN predictor.

We remark that solving the problem in (4) gives (at least)
one homeomorphic mapping with the minimum distortion
among all such mappings between Kθ and B, as (i) it has
feasible solution according to Assumption 1 and (ii) the
distortion of a homeomorphic mapping over a compact set
Xθ is bounded (Behrmann et al., 2021). We then denote an
optimal solution as ψ∗

θ .

In general, the problem in (4) is an infinite-dimension one
and challenging to solve. We develop a method to learn an
optimal solution approximately by INN in Sec. 5, denoted
as Φθ. It is guaranteed to be a homeomorphic mapping,
i.e., Φθ ∈ Hn, with bounded distortion over Xθ. However,
Φθ may not lie in Hn(Kθ,B), i.e., Φθ(B) ̸= Kθ, due to
INN approximation error, defined as dH(Φθ(∂B), ∂Kθ)4,5.
Nevertheless, if Φθ is also valid, the second step in the
HP framework guarantees to “project” an infeasible NN
predicted solution back to the feasible set Kθ.
Definition 4.3 (Valid mapping). The INN approximated
mapping Φθ ∈ Hn is valid for Kθ if Φθ(0) ∈ Kθ, i.e., it
maps the origin in the unit ball to a feasible point in Kθ.

Figure 3: Illustration of homeomorphic bisection.

3Here + denotes the Minkowski sum between two sets, defined
as X + Y = {x+ y|x ∈ X , y ∈ Y}.

4dH(·, ·) represents the Hausdorff distance between two sets,
defined as dH(X ,Y) = max{dh(X ,Y), dh(Y,X )}, where
dh(X ,Y) = supx∈X infy∈Y{∥x− y∥}.

5Here ∂ indicates the boundary of a set.

4.2. Homeomorphic bisection

Suppose for an input θ, we are given an infeasible NN
solution x̃θ ̸∈ Kθ and a valid INN mapping Φθ. Then
we perform homeomorphic bisection to recover a feasible
solution x̂θ as:

x̂θ = Φθ(α
∗ · z̃θ), (5)

where z̃θ = Φ−1
θ (x̃θ) and α∗ = sup

α∈[0,1]

{Φθ(α · z̃θ) ∈ Kθ}.

As illustrated in Fig. 3, homeomorphic bisection consists
of three steps: (i) map x̃θ to the homeomorphic space as
z̃θ = Φ−1

θ (x̃θ) and set α = 1, (ii) perform bisection search
on α in [0, 1] (trajectory shown as z̃θ → ẑ1 → ẑθ) to find the
largest α, denoted as α∗, such that x̂θ = Φθ(α

∗ · z̃θ) ∈ Kθ,
and (iii) return the feasible x̂θ. The pseudo-code is in Alg. 1.
Such a low-complexity operation, observed with respect to
the constraint set Kθ, is to search along a curve connecting
the infeasible x̃θ and an internal point Φθ(0) until reach-
ing a boundary feasible point x̂θ. As to be discussed in
Sec. 6, such operation incurs a minor optimality loss as the
homeomorphic mapping has a minimized distortion.

Algorithm 1 Homeomorphic bisection to recover feasibility.
Input: Infeasible solution x̃θ /∈ Kθ and valid mapping Φθ.
Output: Feasible solution x̂θ ∈ Kθ.

1: initialize total iteration steps k
2: calculate z̃θ = Φ−1

θ (x̃θ), set n = 0, αl = 0, αu = 1
3: while n ≤ k do
4: bisection: αn = (αl + αu)/2
5: candidate: ẑn+1 = αn · z̃θ
6: if Φθ(ẑn+1) ∈ Kθ then
7: increase lower bound: αl ← αn
8: else
9: decrease upper bound: αu ← αn

10: end if
11: n← n+ 1
12: end while
13: find optimal α∗ = αl and feasible point ẑθ = α∗ · z̃θ
14: return x̂θ = Φθ(ẑθ)

We make the following remarks. First, in the ideal case
when Φθ = ψ∗

θ and B = Φ−1
θ (Kθ), i.e., the INN learns the

MDH mapping perfectly, the homeomorphic bisection in (5)
is equivalent to projecting z̃θ onto the unit ball boundary,
with a closed-form expression ẑθ = z̃θ/∥z̃θ∥. Such an oper-
ation incurs very low complexity, thanks to the unit ball’s
geometrical structure. Since Φθ = ψ∗

θ is an MDH mapping,
the corresponding x̂θ = Φθ(ẑθ) must be on the boundary of
the feasible set Kθ, and the projection distance ||x̃θ − x̂θ||
is small because (i) Φθ has a minimum distortion and (ii)
ẑθ is the closest point in the unit ball to z̃θ. These obser-
vations provide an intuitive justification for the complexity
and performance of our framework.
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Second, in practice, the INN may not learn ψ∗
θ exactly, i.e.,

B ̸= Φ−1
θ (Kθ) and the distortion D(Φ−1

θ ,Xθ) is not the
minimum. In fact, we may not know the exact shape of
Φ−1
θ (Kθ) to project z̃θ to its boundary directly. Instead,

we perform the operation in (5) to mimic the operation in
the ideal case described above, i.e., performing bisection
between z̃θ and the origin of the unit ball but evaluating
the feasibility with respect to Kθ. As long as the INN
mapping is valid and maps the origin of the unit ball to
an internal point in Kθ, such operation is guaranteed to
return a feasible point, with minor optimality loss, similar
to the discussion for the ideal case. We formally prove the
feasibility guarantee, bound the optimality loss, and discuss
the complexity of imperfect INN learning in Sec. 6.

5. Learning θ-dependent MDH mappings
In this section, we propose an unsupervised learning method
to train one conditional INN to learn the MDH mapping ψ∗

θ

for every θ ∈ Θ. We first introduce INN for learning homeo-
morphic mappings. We then reformulate the MDH mapping
problem in (4) and present the INN training procedure.

5.1. INN for homeomorphic mappings

INN is essentially an invertible NN owing to its design,
such that it is differentiable in forward and inverse direc-
tions (Papamakarios et al., 2021). It is thus a homeomorphic
mapping with tunable parameters; see Appendix C for more
INN background. It is well known that feed-forward neural
networks can approximate any continuous mapping arbitrar-
ily well (Hornik et al., 1989). Similarly, INN can also learn
any (piecewise) differentiable homeomorphic mapping arbi-
trarily well given a sufficient number of neurons (Teshima
et al., 2020; Ishikawa et al., 2022). Therefore, we can utilize
INN to represent the homeomorphic mapping and train it to
approximate an optimal MDH mapping.

Further, we do not need to train separate INN Φθ for dif-
ferent input parameters θ. Instead, we can leverage the
conditional INN (Winkler et al., 2019; Lyu et al., 2022),
which also takes θ as input, to learn the augmented homeo-
morphism ψ : Rn+d → Rn+d such that ∀θ ∈ Θ, [Kθ, θ] =
ψ([B, θ]). When given a new θ, we have a corresponding
homeomorphism ψθ ∈ Hn such that Kθ = ψθ(B).

For ease of discussion later, we denote an m-layer INN as
Φθ = Φmθ ◦ ... ◦ Φlθ ◦ ... ◦ Φ1

θ, where each layer is an affine
coupling layer or an invertible linear layer (Papamakarios
et al., 2021). Such a composition is also a universal differen-
tiable homeomorphism approximator (Teshima et al., 2020).
Further, for these layers, owing to their invertible design,
the singular values for the Jacobian matrix of Φlθ exist every-
where over its support set and have a closed-form expression
by its tunable parameters; see Appendix C for detailed for-

mulations. As will become clear later, such closed-form
singular values bring convenience for distortion approxi-
mation. We then denote the sorted singular values for the
Jacobian matrix J of INN as σ1(J) ≥ ... ≥ σn(J) > 0.

5.2. Reformulation of homeomorphism constraint

To facilitate INN learning, we first reformulate the MDH
mapping problem in (4). We have the following understand-
ing of its homeomorphism constraint ψθ ∈ Hn(Kθ,B) such
that ψθ(B) = Kθ.

Proposition 5.1. The feasible setHn(Kθ,B) is equivalent
to the set of optimal solutions of the problem:

max
ψθ∈Hn

log V(ψθ(B)) s.t. ψθ(B) ⊆ Kθ. (6)

The complete proof is in Appendix E.

V(ψθ(B)) evaluates the volume of set ψθ(B). The con-
straint means that the set ψθ(B) is a subset of Kθ. Intu-
itively, the proposition says that any feasible homeomorphic
mapping must maximize the volume of mapped set ψθ(B)
while keeping it within the constraint set Kθ, and vice versa.

Thus, the MDH mapping problem in (4) is equivalent to
the following bi-level problem of minimizing the distortion
among the optimal solutions of the problem in (6):

min
ψθ∈Hn

logD(ψ−1
θ ,Xθ) (7)

s.t. ψθ ∈ argmax{Problem in (6)}. (8)

As will become clear later, such a reformulation opens the
door for unsupervised learning for INN training.

5.3. Unsupervised INN training

We employ the following loss function and maximize it to
train an INN Φθ with m layers for learning an optimal solu-
tion to the problem in (7)-(8) in an unsupervised manner:

L(Φθ) = V̂(Φθ(B))− λ1P(Φθ(B))− λ2D̂(Φ−1
θ ,Xθ), (9)

where λ1 and λ2 are positive coefficients to balance among
the three terms. V̂(Φθ(B)) is a computable approximation
of the log-volume term log V(Φθ(B)) in (6) as:

V̂(Φθ(B)) =
1

V(B)

∫
B

n∑
k=1

m∑
l=1

log σk(JΦlθ (z
l))dz

+ logV(B), (10)

where zl = Φl−1
θ (zl−1) for l = 2, ..,m, and z1 = z ∈ B,

JΦlθ (z
l) denotes the Jacobian matrix of Φlθ(·) at zl, and σk(·)

returns the k-th largest singular value of a matrix, which has
a closed-form expression as discussed earlier in Sec. 5.1.
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P(Φθ(B)) is the penalty term for representing the constraint
violation of Φθ(B) ⊆ Kθ in (6) as:

P(Φθ(B)) =
∫
B
∥ReLU(g(Φθ(z), θ))∥1dz, (11)

where g(Φθ(z), θ) calculates the residual for each in-
equality constraint as [g1(Φθ(z), θ), . . . , gnineq(Φθ(z), θ)].
D̂(Φ−1

θ ,Xθ) is a computable approximation of the log-
distortion term logD(Φ−1

θ ,Xθ) in (7) as:

D̂(Φ−1
θ ,Xθ) = sup

z∈Zθ
{
∑m

l=1
log σ1(JΦlθ (z

l))}

− inf
z∈Zθ
{
∑m

l=1
log σn(JΦlθ (z

l))}, (12)

where zl = Φl−1
θ (zl−1) for l = 2, ..,m, and z1 = z ∈

Zθ = Φ−1
θ (Xθ).

We have the following observations for the approximations.
Proposition 5.2. The two approximation terms in
(10) and (12) satisfy log V(Φθ(B) ≥ V̂(Φθ(B)) and
logD(Φ−1

θ ,Xθ) ≤ D̂(Φ−1
θ ,Xθ). The complete proof is in

Appendix E.

The above proposition implies that the loss function in (9)
is actually a lower bound to the Lagrangian of the problem
in (7)-(8). Therefore, we can maximize the loss function in
(9) to approximate the MDH mapping under the equivalent
reformulation in (7)-(8). Further, to train one conditional
INN Φ ∈ Hn+d to learn the θ-dependent MDH mappings
for any θ ∈ Θ, we generalize the loss in (9) to

L(Φ) = Eθ[L(Φθ)], (13)

where θ ∈ Θ is uniformly sampled. For the INN training,
we prepare quasi Monte Carlo (QMC)6 samples {zi}Ni=1 ⊂
B to approximate the integration in (10) and (11). When
evaluating the distortion in (12), since we may not know
Zθ in advance, we sample from Zθ = Φ−1

θ (Xθ) ⊂ B(0, R)
over a larger ball as {R · zi}Ni=1, where R ≥ 1 is a hyper-
parameter as discussed in Appendix E.3. In each iteration,
we sample a batch of collected data and employ the Adam
optimizer to maximize the loss function L(Φ), similar to
training standard NNs (Kingma & Ba, 2014).

6. Performance analysis
In this section, we formally prove the feasibility guarantee
and bound the optimality loss of homeomorphic projection.
We also characterize its run-time complexity and a condition
for the trained INN to be universally valid over the input-
parameter set. Finally, we discuss its training complexity,
scalability, and limitations.

6The integration error for the QMC approach is
O

(
(logN)n−1/N

)
, which is faster in the rate of conver-

gence than Monte Carlo using a pseudorandom sequence (Dick &
Pillichshammer, 2010).

6.1. Feasibility, optimality, and run-time complexity

Theorem 1. For compact constraint set Kθ of di-
ameter diam(Kθ), given an infeasible NN prediction
x̃θ = F (θ) /∈ Kθ with bounded prediction error
ϵpre = supθ∈Θ ∥F (θ) − x∗θ∥, and a valid m-layer trained
INN mapping Φθ with bounded approximation error
ϵinn = supθ∈Θ{dH(Φθ(∂B), ∂Kθ)}, the bisection proce-
dure shown in Alg. 1 with maximum k steps will return a
solution x̂kθ such that:

• it is guaranteed to be feasible, i.e., x̂kθ ∈ Kθ;

• it has a bounded optimality loss as

∥x̂kθ − x∗θ∥ ≤ ϵpre +D(Φ−1
θ ,Yθ)(2ϵinn + ϵpre + ϵkbis),

where Yθ = Kθ + B(0,max{ϵpre, ϵinn}) and ϵkbis =
2−k(diam(Kθ) + ϵpre);

• it has a run-time complexity asO(k(mn2+G)), where
G is the complexity for verifying the inequality con-
straints.

The complete proof is in Appendix F.

First, given a valid INN, the bisection algorithm always
returns a feasible solution because there exists at least one
feasible solution along the curve connecting Φθ(0) and x̃θ,
as shown in Fig. 3. Second, the optimality gap depends
on the prediction error ϵpre, the approximation error ϵinn,
the distortion D(Φ−1

θ ,Yθ), and the k-step bisection-induced
error ϵkbis. The prediction error ϵpre is dominated by the given
predictor. The approximation error ϵinn evaluates the quality
of the trained INN in reaching the constraint Kθ = Φθ(B).
Therefore, our training scheme attempts to minimize it under
the reformulation in Prop. 5.1. The distortion in our training
scheme is evaluated and regularized over the set B(0, R),
where R ≥ 1 is a hyperparameter without knowing Yθ in
advance. However, when the prediction and approximation
errors are small such that the infeasible solution z̃θ in the
homeomorphic space is near B, the bisection algorithm is
robust under different selections of the hyperparameter R.
Nevertheless, considering a poor-quality NN predictor, we
can sample and regulate the distortion over a larger ball to
reduce the optimality gap. The bisection error ϵkbis can be
exponentially reduced by increasing the maximum steps k,
as shown in Alg. 1. Note that the results above are analyzed
under the worst cases. In practice, the optimality loss of the
homeomorphic projection can be much better.

Under an optimal MDH mapping ψ∗
θ in Problem (4),

the approximation error ϵinn = 0 and the distortion
D(ψ−1,∗

θ ,Yθ) = D(ψ−1,∗
θ ,Xθ) is minimized, such that the

upper bound of the optimality gap is also minimized. In
summary, the distortion and the approximation error play a
significant role in the optimality gap, which justifies our de-
sign in the MDH mapping problem in (4) and the proposed
INN loss function in (9).
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The overall run-time complexity, i.e., the number of arith-
metic operations, when executing Alg. 1 isO(k(mn2+G)),
includes the INN forward calculation O(mn2) and the con-
straint calculationO(G). If the inequality constraint gi(x, θ)
is a linear function, then G = n · nineq.

6.2. Universal validity condition of INN

Theorem 2. Let D1 = {θi, i = 1, . . . ,M} ⊆ Θ be an
rc-covering training dataset, i.e., ∀θ ∈ Θ, ∃θ0 ∈ D1

such that ∥θ − θ0∥ ≤ rc. Suppose the trained INN
mapping Φθ is valid for the interior of constraint set
on dataset D1, i.e., ∀θ0 ∈ D1, Φθ0(0) ∈ K◦

θ0 . If
(C0 + C1)rc ≤ C2, then ∀θ ∈ Θ, Φθ(0) ∈ Kθ, i.e., Φθ
will also be valid for any input parameter in Θ. Here
C0 = supθ1,θ2∈Θ,θ1 ̸=θ2{dH(∂Kθ1 , ∂Kθ2)/∥θ1 − θ2∥},
C1 = L(Φ(0, ·),Θ), C2 = arg supr>0{B(Φθ0(0), r) ⊆
Kθ0 , ∀θ0 ∈ D1}.

The complete proof is in Appendix G.

C0 represents the ”Lipschitz” of the constraint set over Θ,
C1 indicates the Lipschitz of the trained INN mapping over
Θ, and C2 denotes the radius of the largest inner approxima-
tion ball for the constraint set under dataset D1.

Theorem 2 provides a sufficient condition for the trained
INN to be universally valid over the entire input-parameter
set Θ, which is the premise for Theorem 1. First, we need to
make the INN valid for finite samples, i.e., Φθ0(0) ∈ K◦

θ0 ,
where θ0 ∈ D1 in the training dataset. In the empirical
study in Sec. 7, we observe that this condition is easy to
achieve by proper training. This observation is perhaps not
surprising, as we penalize constraint violations P(Φθ0(B))
in (11) for all points in B. Naturally, the origin 0 ∈ B is
likely mapped to an internal point Φθ0(0) ∈ K◦

θ0 .

To generalize the valid condition to any input parameter
θ ∈ Θ, a sufficient condition is (C0 + C1)rc ≤ C2. These
constants C0, C1, and C2 depend on the geometric structure
of the constraint set. For example, if the constraint set is
very “thin”, i.e., C2 is small, or the constraint set varies dra-
matically according to the input parameters, i.e., C0 is large,
we need rc to be small to satisfy the condition. Meanwhile,
rc is directly related to the data size and covering number,
such that the number of collected input parameters for the
rc-covering set, i.e.,M , has an order asO((diam(Θ)/rc)

d).
Therefore, facing a highly irregular or input-sensitive con-
straint set, we may need to sample more input parameters θ
to train an INN so that the trained INN will be universally
valid over the entire input-parameter set Θ.

6.3. Training complexity, scalability, and limitation

First, we need QMC samples in a unit ball {zi}Ni=1 ⊂ B
to approximate the integration in (9) and uniform samples
for the input parameters {θj}Mj=1 ⊂ Θ to train the INN.

Both of these can be easily prepared using SciPy (Virtanen
et al., 2020). Afterward, we sample a batch of z and θ sep-
arately at each iteration and train the INN using the Adam
optimizer implemented in PyTorch (Kingma & Ba, 2014;
Paszke et al., 2019). Due to the closed-form expressions of
(13) by INN parameters, the training computation depends
on the forward-backward propagation of the INN, which
can be executed efficiently on a GPU.

The scalability of the HP framework depends on the INN
structure, where both input and output have dimensions cor-
responding to the constraint set, and only invertible layers
can be applied. Existing works have demonstrated its scala-
bility, especially in generative models where both input and
output are high-dimensional matrices (Kingma & Dhariwal,
2018; Papamakarios et al., 2021). Nevertheless, more flexi-
ble network structures, such as Neural ODEs (Chen et al.,
2018), will be explored in future work. The limitation of the
HP framework also lies in Assumption 1, which assumes
the constraint set to be homeomorphic to a unit ball. To
consider more general constraints, such as disconnected sets
or manifold constraints, we discuss them in Appendix B.

7. Numerical Experiments
We carry out simulations to (i) evaluate whether our pro-
posed INN unsupervised-learning scheme can approximate
MDH mappings between constraint sets and a unit ball, and
(ii) compare the performance of homeomorphic projection
with existing methods in ensuring NN solution feasibility for
constrained optimization problems, including non-convex
AC-OPF problems in power grid operation. The detailed
setting of hyper-parameters, INN implementation, and NN
predictor implementation are in Appendix H.

7.1. Approximating MDH mappings

We first investigate the learning of MDH mapping Φ for
a 2-dimension constraint approximation. The parametric
constraint set is defined by a quadratic inequality as:

Kθ = {x ∈ R2 | xTQx+ qTx+ b ≤ 0, θ = [Q, q, b]}},

where Q ∈ R2×2, q ∈ R2, b ∈ R. By changing the input
parameters θ such that assumption 1 is valid, the constraint
set Kθ can be convex or non-convex.

We train two MDH mappings from different norm ball B to
the parametric constraint set Kθ following the loss function
in (13). The log-volume, constraint violation, and aver-
age log-distortion during iterations are shown in Figure
4(a) and 5(a). We find that the volume is maximized, and
the constraint violation is converged to zero, which shows
that the approximated homeomorphism between two sets is
achieved. The log-distortion decreases to 0 over iterations,
demonstrating the effectiveness of our training scheme.
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(a) Training performance. (b) Testing performance.

Figure 4: Training the INN approximated MDH mapping from 2-norm ball to constraint set.

(a) Training performance. (b) Testing performance.

Figure 5: Training the INN approximated MDH mapping from∞-norm ball to constraint set.

After training, we visualize the constraint approximation
Φθ(B) for different input parameters θ in the test dataset, as
shown in Figure 4(b) and 5(b). First, we find the mapped
set well approximates the true constraint set (blue curve).
Even the constraint Kθ under different input parameters
has widely varying geometric structure, the trained INN Φ
still shows good generalization ability to fit the constraint
set. Second, it does not show obvious differences between
∞-norm ball and 2−norm ball to approximate the complex
constraints. However, for the high-dimension case, we will
select the∞-norm ball (e.g., unit cube) since it is easy to
conduct QMC sampling and the cube has an invariant vol-
ume as 1. Last, the mapped data point is equally distributed
in the constraint set with low distortion, where the color
represents the norm of data points in the norm ball B.

In summary, the INN Approximated MDH mapping Φθ
derives a well-fitted constraint set under different input pa-
rameters through the proposed training scheme.

7.2. Ensuring NN solution feasibility

We then cope with the constrained optimization problem
with the HP framework. We select three numerical cases:
QP, convex QCQP, and SDP, and one real-world case: AC-
OPF, which is a non-convex problem. With different input
parameters θ, the iterative solver solves the optimal solution
x∗θ as the training dataset. The NN predictor learns the map-
ping between the input parameters and optimal solutions.
Detailed experimental settings of these problems are in Ap-
pendix H. The NN-based schemes use reconstruction tech-
niques to ensure the feasibility of equality constraints (Pan
et al., 2019; Donti et al., 2021), as discussed in Appendix
A. To deal with the infeasible predictions under inequality
constraints, we compare the proposed HP framework with
the following approaches:

1) Optimizer: for convex optimization, we use CVXPY
(Diamond & Boyd, 2016) to solve the optimal solution. For
AC-OPF problems, we adopt PYPOWER as the specialized
solver (Zimmerman et al., 1997; Brown et al., 2017); 2)
NN: it directly maps input parameter to the solution using
a fully connected NN; 3) Proj: the predicted solution by
NN may be infeasible, so the projection is adopted for the
post-processing. The projection problem is solved with
the iterative Optimizer; 4) WS: The infeasible prediction
of NN is regarded as the warm-start initialized solution
for the iterative Optimizer; 5) D-Proj: this is proposed in
DC3 (Donti et al., 2021), which applies gradient descent
with implicit function theorem to conduct projection in a
differentiable manner; 6) H-Proj: for the infeasible solution
of NN, we apply bisection in Alg. 1 to recover the feasibility.

The criteria include 1) Feasibility: we calculate the percent-
age of feasible instances out of 1,024 testing instances and
the average constraint violation; 2) Optimality: the solution
error and objective error evaluate the optimality of predicted
solutions, including all instances and infeasible instances; 3)
Speedup: we record the total inference time (NN inference
time + post-processing time) of testing instances and calcu-
late the speedup compared with the iterative optimizer. The
performances over four constraint optimization problems
are shown in Table 2. We have the following observations.

First, existing NN predictors cannot guarantee the feasibility
of the predicted solution due to prediction errors. Different
post-processing approaches are used to recover feasibility.
The proposed H-Proj achieves a 100% feasibility rate for
both convex and non-convex constraint sets, under testing
input parameters. This demonstrates the effectiveness of the
proposed training scheme and the bisection algorithm. In
contrast, the gradient-based D-Proj method cannot guaran-
tee feasibility and is highly sensitive to the stepsize.
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Table 2: Performance in convex and non-convex constrained optimization

Feasibility Optimality Speedup
feas. rate ineq. vio. eq. vio. sol. err. infeas. sol. err. obj. err. infeas. obj. err. Total Post.

% 1-norm 1-norm % % % % × ×
QP: n = 200, d = 100, neq = 100, nineq = 100

NN 64.26 0.189 0 5.99 6.12 1.91 1.81 112269.3 −
NN+WS 100 0 0 3.8 0 1.26 0 2.9 1
NN+Proj 100 0 0 5.99 6.11 1.91 1.83 17.6 6.3
NN+D-Proj 67.09 0.037 0 5.99 6.12 1.9 1.8 1170 421.9
NN+H-Proj 100 0 0 6.22 6.75 2.10 2.36 700.8 250.1

Convex QCQP: n = 200, d = 100, neq = 100, nineq = 100

NN 54.49 0.163 0 8.16 8.23 3.05 2.96 795657.1 −
NN+WS 100 0 0 4.41 0 1.7 0 2.1 1
NN+Proj 100 0 0 8.15 8.23 3.07 3 2.1 1
NN+D-Proj 56.54 0.023 0 8.15 8.21 3.06 2.98 10.8 4.9
NN+H-Proj 100 0 0 8.36 8.67 3.33 3.58 1618.5 738.8

SDP: n = 15× 15, d = 100, neq = 100, nineq = 1

NN 74.02 11.43 0 6.77 6.99 4.08 3.7 21440.2 −
NN+WS 100 0 0 4.96 0 3.12 0 1.5 0.4
NN+Proj 100 0 0 6.60 6.31 4.43 5.06 1.5 0.4
NN+D-Proj 87.7 5.69 0 6.76 6.94 4.08 3.7 2.6 0.7
NN+H-Proj 100 0 0 7.49 9.76 4.94 7.03 87.6 22.8

118-node AC-OPF: n = 344, d = 236, neq = 236, nineq = 452

NN 73.24 0.006 0 1.27 1.23 0.24 0.23 178.2 −
NN+WS 100 0 0 0.94 0 0.18 0 3.6 1
NN+Proj 100 0 0 1.55 2.31 0.24 0.23 3.8 1
NN+D-Proj 87.79 0.0001 0 1.26 1.23 0.24 0.23 4.9 1.4
NN+H-Proj 100 0 0 1.41 1.78 0.34 0.63 24.6 7.6

Second, H-Proj can recover feasibility with minor optimality
loss even under a large prediction error. In other words, the
main optimality gap is caused by the NN predictor, and our
H-Proj introduces minor projection errors to find a feasible
solution near the infeasible NN prediction.

Last, the speedup of the bisection operation is competitive
compared to other post-processing approaches in all testing
cases. Although WS and Proj methods can achieve feasi-
bility and have a minor optimality gap, they have a poor
speedup due to the reliance on iterative solvers. The D-Proj
method also does not have the advantage of speeding up
because of the expensive gradient computation for complex
constraints such as quadratic constraints in convex QCQP.

Overall, the HP framework guarantees solution feasibility
with respect to both convex and non-convex constraint sets,
with considerable speedup and minor optimality loss.

8. Conclusions
We propose homeomorphic projection as the first scheme
in the literature that (i) guarantees NN solution feasibility
for optimization over a general set homeomorphic to a unit
ball, covering all compact convex sets and certain classes

of nonconvex sets, (ii) incurs low run-time complexity, and
(iii) attains bounded optimality loss. Our design leverages
the universal approximation capability of INN to learn a
minimum distortion homeomorphic mapping between the
constraint set and a unit ball. We then perform a bisection
operation concerning the unit ball so that the INN-mapped
final solution is feasible with respect to the constraint set.
We prove the feasibility guarantee and bound the optimality
loss. Simulation results corroborate our analysis and show
that homeomorphic projection outperforms existing meth-
ods. Future directions include generalizing the approach to
optimization over multiple disjoint constraint sets.
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versal approximation under constraints is possible with
transformers. arXiv preprint arXiv:2110.03303, 2021.

Lee, J. M. Smooth manifolds. In Introduction to smooth
manifolds, pp. 1–31. Springer, 2013.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Mul-
tilayer feedforward networks with a nonpolynomial ac-
tivation function can approximate any function. Neural
networks, 6(6):861–867, 1993.

Liu, H.-T. D., Williams, F., Jacobson, A., Fidler, S., and
Litany, O. Learning smooth neural functions via lipschitz
regularization. arXiv preprint arXiv:2202.08345, 2022.

Lyu, J., Chen, Z., Feng, C., Cun, W., Zhu, S., Geng, Y.,
Xu, Z., and Chen, Y. Universality of parametric coupling
flows over parametric diffeomorphisms. arXiv preprint
arXiv:2202.02906, 2022.

Nellikkath, R. and Chatzivasileiadis, S. Physics-informed
neural networks for minimising worst-case violations
in dc optimal power flow. In 2021 IEEE International
Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), pp. 419–
424. IEEE, 2021a.

Nellikkath, R. and Chatzivasileiadis, S. Physics-informed
neural networks for ac optimal power flow. arXiv preprint
arXiv:2110.02672, 2021b.

Pan, X., Zhao, T., and Chen, M. Deepopf: A deep neural
network approach for security-constrained dc optimal
power flow. In 2019 IEEE International Conference on
Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm), 2019.

Pan, X., Zhao, T., Chen, M., and Zhang, S. Deepopf: A
deep neural network approach for security-constrained
dc optimal power flow. IEEE Transactions on Power
Systems, 36(3):1725–1735, 2020.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1–64, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Sapkota, S. and Bhattarai, B. Input invex neural network.
arXiv preprint arXiv:2106.08748, 2021.

Schmidt, P., Born, J., Campen, M., and Kobbelt, L.
Distortion-minimizing injective maps between surfaces.
ACM Transactions on Graphics (TOG), 38(6):1–15, 2019.

Tabas, D. and Zhang, B. Computationally efficient safe
reinforcement learning for power systems. arXiv preprint
arXiv:2110.10333, 2021.

Tabas, D. and Zhang, B. Safe and efficient model predic tive
control using neural networks: An interior point approach.
arXiv preprint arXiv:2203.12196, 2022.

Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M., and
Sugiyama, M. Coupling-based invertible neural networks
are universal diffeomorphism approximators. Advances in
Neural Information Processing Systems, 33:3362–3373,
2020.

Virmaux, A. and Scaman, K. Lipschitz regularity of deep
neural networks: analysis and efficient estimation. Ad-
vances in Neural Information Processing Systems, 31,
2018.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature
methods, 17(3):261–272, 2020.

Winkler, C., Worrall, D., Hoogeboom, E., and Welling, M.
Learning likelihoods with conditional normalizing flows.
arXiv preprint arXiv:1912.00042, 2019.

Xia, Y. and Wang, J. A recurrent neural network for solving
linear projection equations. Neural Networks, 13(3):337–
350, 2000.

Xiao, C., Zhong, P., and Zheng, C. Bourgan: Generative
networks with metric embeddings. Advances in Neural
Information Processing Systems, 31, 2018.

Zamzam, A. S. and Baker, K. Learning optimal solutions
for extremely fast ac optimal power flow. In 2020 IEEE
International Conference on Communications, Control,
and Computing Technologies for Smart Grids (Smart-
GridComm), pp. 1–6. IEEE, 2020.

Zhang, H., Gao, X., Unterman, J., and Arodz, T. Approxi-
mation capabilities of neural odes and invertible residual
networks. In International Conference on Machine Learn-
ing, pp. 11086–11095. PMLR, 2020.

11



Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set

Zhang, L., Chen, Y., and Zhang, B. A convex neural network
solver for dcopf with generalization guarantees. IEEE
Transactions on Control of Network Systems, 2021.

Zhao, T., Pan, X., Chen, M., and Low, S. H. Ensuring
dnn solution feasibility for optimization problems with
convex constraints and its application to dc optimal power
flow problems. In International Conference on Learning
Representations, 2023.

Zheng, L., Shi, Y., Ratliff, L. J., and Zhang, B. Safe rein-
forcement learning of control-affine systems with vertex
networks. In Learning for Dynamics and Control, pp.
336–347. PMLR, 2021.

Zimmerman, R. D., Murillo-Sánchez, C. E., and Gan,
D. Matpower. PSERC.[Online]. Software Available at:
http://www. pserc. cornell. edu/matpower, 1997.

12



Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set

A. Handling equality constraints

Figure 6: Constraint homeomorphism with equality constraints.

Consider the following constraint set Kθ defined by inequality and equality constraints:

Kθ = {x ∈ Rn|h(x, θ) = 0, g1(x, θ) ≤ 0, ..., gnineq(x, θ) ≤ 0}, (14)

where h(x, θ) : Rn → Rr is continuous with respect to x and θ. Given input θ, we use hθ(x) for convenience.

By assuming the constant rank of equality constraint as:

rank(Jhθ (x)) = r, ∀θ ∈ Θ and ∀x ∈ Kθ. (15)

The equality constraint with constant rank implies Kθ is Euclidean of dimension7 of n− r by the Constant-Rank Level Set
Theorem (Lee, 2013). In other words, we can use a subset of decision variables x1 ∈ Rn−r and reconstruct full decision
variable [x1, x2] ∈ Rn via the equality constraint as shown in Figure 6, where x2 = ϕθ(x1) and hθ([x1, ϕθ(x1)]) = 0.
Such a reconstruction process ensuring the feasibility of equality constraint is widely used in the literature (Pan et al., 2019;
Zamzam & Baker, 2020; Donti et al., 2021).

We then denote the equivalent constraint set with equality reconstruction as Ksθ = {x ∈ Rn−r|g1([x1, ϕθ(x1)], θ) ≤
0, ..., gnineq([x1, ϕθ(x1)], θ) ≤ 0}. Under assumption 1, it is homeomorphic to the original constraint set Kθ ∼= Ksθ (Lee,
2013). The forward and inverse mappings of homeomorphism are as follows:

[x1, x2] ∈ Kθ → x1 ∈ Ksθ, (16)
x1 ∈ Ksθ → [x1, ϕθ(x1)] ∈ Kθ. (17)

We give two examples to illustrate such an equality completion/reconstruction process:

Case 1: Linear equality

Let us consider the following equality constraint as {x ∈ Rn|Ax = θ,A ∈ Rr×n, θ ∈ Rr}, where x is the decision variable
and θ is the input parameter. Without loss of generality, we assume the rank of matrix A as rank(A) = r. We then partition
the decision variable into two groups as x1 ∈ Rn−r and x2 ∈ Rr. Matrix A is correspondingly partitioned as A = [A1, A2],
where A1 ∈ Rr×(n−r) and A2 ∈ Rr×r. The equality constraint is also partitioned as A1x1 +A2x2 = θ.

The reconstruction is to say, we only need a subset of variable x1 to ensure the equality constraints as:

x2 = ϕθ(x1) = A−1
2 (θ −A1x1). (18)

There exist multiple partitions of x1 and x2 leading A2 to have the full rank of r. Empirically, we select the partition leading
A2 with a large determinant. After taking the inverse of A2, x2 is insensitive to x1, which is beneficial to the prediction and

7If an open set Kθ is Euclidean of dimension, then every point x ∈ Kθ has a neighborhood that is homeomorphic to an open subset of
Rn (Lee, 2013).
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error propagation when training the NN predictor and MDH mapping. The Jacobian matrix used for back-propagation is as
follows:

Jϕθ (x1) = −A
−1
2 A1. (19)

Case 2: Non-linear equality

If the equality constraint is defined by the following non-linear equality {x ∈ Rn|h(x, θ) = 0, θ ∈ Rd,h : Rn → Rr}.
Similarly, we partition the decision variable as x1 and x2, the completion function ϕθ is implicitly decided by:

h([x1, ϕθ(x1)], θ) = 0. (20)

Applying Newton’s methods, such a non-linear equation can be solved iteratively. The Jacobian matrix used for back-
propagation is as follows:

Jϕθ (x1) = − J−1
hθ

(x2) Jhθ (x1). (21)

In summary, we can leverage reconstruction techniques to exploit the equality constraints and reduce the predicted decision
variables. So we only need to model the constraint set with inequality constraints. Further, such a reconstruction is
differentiable and can be integrated into the training process (Donti et al., 2021).

B. Discussion on disconnected constraint and manifold constraint.
Assumption 1 indicates that the constraint set Kθ is topologically equivalent to a unit ball. Under Assumption 1, the
constraint set contains (i) all compact convex sets and (ii) certain classes of compact and simply-connected non-convex
sets. Thus, we leverage the homeomorphism between them to learn the mapping and conduct projection with low run-time
complexity.

However, a general disconnected constraint set Kθ may contain multiple ball-homeomorphic subsets as Kθ =
⋃N
c=1Kcθ,

where Kcθ ∼= B. We can still apply the HP framework to learn multiple MDH mappings such that Kθ =
⋃N
c=1 Φ(B|θ, c).

However, it may be non-trivial to determine the number of disconnected parts in advance.

On the other hand, a general manifold constraint can be formulated as the level setKθ = {x ∈ Rn|f(x) = 0, f : Rn → Rm}
(Lee, 2013). It may not be homomorphic to a unit ball or have a non-constant rank. However, a similar idea can be applied
again to learn multiple MDH mappings to cover the original constraint. For example, the sphere constraint Kθ = {x ∈
Rn|∥x∥2 = 1} has a constant rank of 1, but it is not homeomorphic to a unit ball. After we apply the reconstruction techniques
in Appendix A, we have two separated constraint sets as follows: K1

θ = {[xs ∈ Rn−1,
√
1− ∥xs∥2] | ∥xs∥2 ≤ 1} and

K2
θ = {[xs ∈ Rn−1,−

√
1− ∥xs∥2] | ∥xs∥2 ≤ 1}, where both sets are homeomorphic to the n− 1 dimensional unit ball.

Therefore, more general constraint sets will be investigated in future work.

C. INN introduction
The INN Φ : Rn → Rn is a class of neural networks that is a continuous bijection with continuous inverse (homeomorphic
mapping). It is a finite composition of invertible layers, where each layer is also a homeomorphic mapping. Let us denote an
m-layer INN as: Φ = Φm ◦ ... ◦ Φl ◦ ... ◦ Φ1.

First, the Jacobian of such a composited mapping can be expressed as

JΦ(x) =

m∏
l=1

JΦl(x
l), (22)

where xl = Φl−1(xl−1) for l = 2, ..,m and x1 = x.

Then the Jacobian determinant det J(·) of INN can be expressed as:

|det JΦ(x)| =
m∏
l=1

|det JΦl(xl)|. (23)
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For each layer, the Jacobian determinant can be expressed as the multiplication of singular values:

|det JΦl(xl)| =
n∏
k=1

σk(JΦl(x
l)), (24)

where σ1(·) ≥ ... ≥ σn(·) > 0 are the sorted singular values of the Jacobian matrix of mapping Φl(·) at x.

Owing to the invertibility of INN, the singular value is non-zero and exists everywhere over the support set of INN
(Papamakarios et al., 2021). By the design of each layer, such an invertible transformation has a closed-form expression of
singular values, and we give several examples of them in the following sections. For a more comprehensive overview of
INN, we refer readers to (Papamakarios et al., 2021)

C.1. Some examples

• Coupling layer
The coupling layer first randomly splits the input into two parts as x = [x1 ∈ Rn1 , x2 ∈ Rn2 ], and then the invertible
transformation is defined as:

Forward: [y1, y2] = [x1,w(x1) · x2 + b(x1)], (25)
Inverse: [x1, x2] = [y1, (y2 − b(y1))/w(y1)], (26)

where w(·) : Rn1 → Rn2 and b(·) : Rn1 → Rn2 are two normal NNs with learnable parameters, which takes x1 as
input and predicts the weight and bias for the element-wise affine transformation of x2. Since the transformation is
element-wise, the Jacobian matrix is diagonal, and the singular values are 1 and |w(x1)|. For the conditional layer, we
augment the input parameters θ as w(x1, θ), b(x1, θ).

One particular case of the coupling layer is the auto-regressive flow (Huang et al., 2018), where yi = w(x1:i−1)xi +
b(x1:i−1) and it can be efficiently implemented by masking weight matrix. Therefore, the run-time complexity for the
coupling layer or the auto-regressive layer is O(n2)

• Invertible 1× 1 convolution
The invertible convolution layer is an invertible linear layer as:

Forward: y =Wx, (27)

Inverse: x =W−1y, (28)

where W ∈ Rn×n is an invertible and learnable matrix. Further, by the LU decomposition, the invertible matrix is
designed as W = PL(U + diag(s)), where P is a fixed permutation matrix, L is a lower triangular matrix, U is
an upper triangular matrix, and s ∈ Rn is the diagonal elements. The singular values are then as |s|. The run-time
complexity of this invertible linear layer is O(n2).

• Actnorm
The Actnorm layer can be regarded as a normalization layer, i.e., the input is scaled and translated as:

Forward: y = w · x+ b, (29)
Inverse: x = (y − b)/w, (30)

where w, b ∈ Rn are trainable parameters. The singular value of the Actnorm layer is |w|. The run-time complexity of
this Actnorm layer is O(n)

C.2. Approximation ability

A neural network (NN) is known as the universal approximator for continuous functions (Hornik et al., 1989; Leshno et al.,
1993; Kratsios et al., 2021), i.e., it can approximate any continuous function with arbitrarily small error given a sufficient
number of neurons. However, for an INN, to the best of our knowledge, existing works only prove that it is the universal
approximator of (piecewise) diffeomorphisms Dn (differentiable bijections with differentiable inverses) (Zhang et al., 2020;
Teshima et al., 2020; Lyu et al., 2022; Ishikawa et al., 2022), which is a subset of homeomorphisms Dn ⊂ Hn. Nevertheless,
in our empirical study, INNs still show good performance when approximating the homeomorphism between sets.
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D. Technical Lemmas
Lemma 1 (Property of distortion). The distortion for a homeomorphic mapping ψ ∈ Hn over the compact set Z is denoted
as D(ψ,Z). Then the following properties hold:

(1) D(ψ,Z) = L(ψ,Z) L(ψ−1,X );

(2) D(ψ,Z) = D(ψ−1,X ) = supz∈Z{σ1(Jψ(z))}
infz∈Z{σn(Jψ(z))} =

supx∈X {σ1(Jψ−1 (x))}
infx∈X {σn(Jψ−1 (x))} ;

(3) if Z1 ⊆ Z2, then D(ψ,Z1) ≤ D(ψ,Z2);

where X = ψ(Z), L(·, ·) indicates the Lipschitz constant of a mapping over a set, σ1(·) ≥ ... ≥ σn(·) denotes the sorted
singular values of the Jacobian matrix J for a mapping at a certain point.

Proof:

(1) According to the definition of distortion in 4.1, The distortion of mapping ψ over set Z is defined as D(ψ,Z) = κ2/κ1
such that:

κ2 = sup
z1,z2∈Z,z1 ̸=z2

{∥ψ(z1)− ψ(z2)∥/∥z1 − z2∥} = L(ψ,Z), (31)

1/κ1 = 1/ inf
z1,z2∈Z,z1 ̸=z2

{∥ψ(z1)− ψ(z2)∥/∥z1 − z2∥} (32)

= sup
z1,z2∈Z,z1 ̸=z2

{∥z1 − z2∥/∥ψ(z1)− ψ(z2)∥} (33)

= sup
x1,x2∈X ,x1 ̸=x2

{∥ψ−1(x1)− ψ−1(x2)∥/∥x1 − x2∥} = L(ψ−1,X ). (34)

Therefore, we have D(ψ,Z) = L(ψ,Z) L(ψ−1,X ).

(2) Further, we adopt the spectral norm, i.e., the largest singular value, to represent the Lipschitz constant as

L(ψ,Z) = sup
z∈Z
{σ1(Jψ(z))}, (35)

L(ψ−1,X ) = sup
x∈X
{σ1(Jψ−1(x))}. (36)

Because of the invertibility of homeomorphic mapping such that J−1
ψ (z) = Jψ−1(x) for x = ψ(z), we have σ1(Jψ(z)) =

1/σn(Jψ−1(x)) for x = ψ(z). The distortion can be represented as:

D(ψ,Z) =
supz∈Z{σ1(Jψ(z))}
infz∈Z{σn(Jψ(z))}

=
supx∈X {σ1(Jψ−1(x))}
infx∈X {σn(Jψ−1(x))}

= D(ψ−1,X ). (37)

As a result, we can evaluate the distortion of a homeomorphic mapping ψ over X or Z equivalently as D(ψ,Z) =
D(ψ−1,X ).

(3) According to Eq. (37), if Z1 ⊆ Z2, then:

D(ψ,Z1) =
supz∈Z1

{σ1(Jψ(z))}
infz∈Z1{σn(Jψ(z))}

≤
supz∈Z2

{σ1(Jψ(z))}
infz∈Z2{σn(Jψ(z))}

= D(ψ,Z2). (38)

Lemma 2 (Property of Hausdroff distance). The Hausdroff distance between sets is denoted as dH(X ,Y) =
max{dh(X ,Y),dh(Y,X )}, where the one-side Hausdroff distance is defined as: dh(X ,Y) = supx∈X infy∈Y{∥x− y∥}.
Then the following properties hold:

(1) Y ⊆ X + B(0, r) ⇔ dh(Y,X ) ≤ r, further, Y = X + B(0, r) ⇒ dH(Y,X ) ≤ r;
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(2) For a homeomorphic mapping ψ ∈ Hn, we have dh(ψ(X ), ψ(Y)) ≤ L(ψ,X ∪Y) dh(X ,Y) ≤ L(ψ,X ∪Y) dH(X ,Y);

(3) Let Y = {x ∈ Rn|∥x∥2 ≤ r}, then dh(∂X , ∂Y) ≥ supx∈∂X {|∥x∥ − r|}.

Proof:

(1) First, to prove dh(Y,X ) ≤ r ⇒ Y ⊆ X + B(0, r), we have:

inf
x∈X
{∥x− y∥} ≤ sup

y∈Y
inf
x∈X
{∥x− y∥} = dh(Y,X ) ≤ r, (39)

such that ∀y ∈ Y , the distance infx∈X {∥x− y∥} ≤ r. In other words, ∀y ∈ Y , there exist a x0 ∈ X such that y ∈ B(x0, r),
which indicates Y ⊆ X + B(0, r).

Secondly, to prove Y ⊆ X + B(0, r) ⇒ dh(Y,X ) ≤ r, we have the Minkowski sum for the set Y ⊆ Y ′ = X + B(0, r),
where Y ′ = {y′ = x+ r⃗ | x ∈ X , ∥r⃗∥ = r}. Then we have

dh(Y,X ) = sup
y∈Y

inf
x∈X
{∥x− y∥} ≤ sup

y∈Y′
inf
x∈X
{∥x− y∥} (40)

= sup
x′∈X ,r⃗

inf
x∈X
{∥x− (x′ + r⃗)∥} ≤ sup

x′∈X ,r⃗
{∥x′ − (x′ + r⃗)∥} = r. (41)

Therefore, we conclude Y ⊆ X + B(0, r) ⇔ dh(Y,X ) ≤ r

Further, if Y = X + B(0, r), where Y = {y = x+ r⃗ | x ∈ X , ∥r⃗∥ = r}, we have:

dh(X ,Y) = sup
x∈X

inf
y∈Y
{∥x− y∥} = sup

x∈X
inf

x′∈X ,r⃗
{∥x− (x′ + r⃗)∥} ≤ sup

x∈X
{∥x− (x+ r⃗)∥} = r. (42)

Therefore, we have dh(X ,Y) ≤ r and dh(Y,X ) ≤ r, leading to dH(Y,X ) ≤ r.

(2) According to the definition of one-side Hausdroff distance, we have:

dh(ψ(X ), ψ(Y)) = sup
x∈X

inf
y∈Y
{∥ψ(x)− ψ(y)∥} (43)

≤ L(ψ,X ∪ Y) sup
x∈X

inf
y∈Y
{∥x− y∥} (44)

= L(ψ,X ∪ Y) dh(X ,Y) ≤ L(ψ,X ∪ Y) dH(X ,Y), (45)

where L(·, ·) indicates the Lipschitz constant of a mapping over a set.

(3) According to the definition of one-side Hausdroff distance, we have:

dh(∂X , ∂Y) = sup
x∈∂X

inf
y∈∂Y

{∥x− y∥} = sup
x∈∂X

{∥x− Proj∂Y(x)∥} (46)

≥ sup
x∈∂X

{|∥x∥ − ∥Proj∂Y(x)∥|} (47)

= sup
x∈∂X

{|∥x∥ − r|}. (48)

Lemma 3. For a, b ∈ Rn and ∥a∥2 = ∥b∥2, if λ ≥ 0, then ∥λa− a∥2 ≤ ∥λa− b∥2

Proof:

Let the angle between a and b as β, where 0 ≤ β ≤ π, then we have:

∥λa− b∥22 − ∥λa− a∥22 = λ2∥a∥22 + ∥b∥22 − 2λ∥a∥2∥b∥2 cos(β)− λ2∥a∥22 − ∥a∥22 + 2λ∥a∥22 (49)

= 2λ∥a∥22 − 2λ∥a∥2∥b∥2 cos(β) (50)

= 2λ∥a∥22(1− cos(β)) ≥ 0. (51)
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E. Proof for Propositions
E.1. Reformulation in Proposition 5.1

Proof:

We consider the following reformulation of the set equivalent constraints ψθ ∈ Hn(Kθ,B) such that Kθ = ψθ(B).

The feasible setHn(Kθ,B) of problem in (4) is equivalent to the set of optimal solutions of the problem:

max
ψθ∈Hn

log V(ψθ(B)) s.t. ψθ(B) ⊆ Kθ. (52)

Under Assumption 1, those sets Kθ ∼= ψθ(B) ∼= B are topologically equivalent and have non-zero volume in Rn. Therefore,
we can define the volume of those sets such as V(B) =

∫
B dz. Because of the containment constraint ψθ(B) ⊆ Kθ, the

volume satisfies V(ψθ(B)) ≤ V(Kθ). Therefore, the maximum of V(ψθ(B)) under constraint ψθ(B) ⊆ Kθ is V(Kθ). The
maximum is reached only when ψθ(B) = Kθ, which is the homeomorphism constraint.

E.2. Volume estimation in Proposition 5.2

Proof:

We consider a uniform probability distribution over B as z ∼ Unif(B), where the probability density function is as
p(z) = 1

V(B) . To approximate the volume log V(Φθ(B)) under an m-layer INN Φθ, we apply the Jensen inequality for

log V(Φθ(B))
V(B) :

log
V(Φθ(B))
V(B)

= log

∫
B |det JΦθ (z)|dz

V(B)
(53)

= logEz∼p(z)[|det JΦθ (z)|] (54)
≥ Ez∼p(z)[log |det JΦθ (z)|] (55)

= Ez∼p(z)[
n∑
k=1

m∑
l=1

log σk(JΦlθ (z
l))], (56)

where zl = Φl−1
θ (zl−1) for l = 2, ..,m and the initial value z1 = z ∼ p(z).

We then have a lower bound of the log-volume for the maximization problem as

log V(Φθ(B)) ≥ V̂(Φθ(B)) =
1

V(B)

∫
B

n∑
k=1

m∑
l=1

log σk(JΦlθ (z
l))dz + logV(B). (57)

We use this bound because of numerical stability and the closed-form expression of singular values for INN, as shown in
Appendix C.

E.3. Distortion estimation in Proposition 5.2

Proof:

According to Lemma 1, the distortion of m-layer INN Φθ can be expressed as the multiplication of the Lipschitz constant as:

logD(Φ−1
θ ,Xθ) = log L(Φθ,Zθ) + log L(Φ−1

θ ,Xθ) (58)
= sup
z∈Zθ
{log σ1(JΦθ (z))}+ sup

x∈Xθ
{log σ1(JΦ−1

θ
(x))} (59)

≤ sup
z∈Zθ
{log

m∏
l=1

σ1(JΦlθ (z
l))}+ sup

x∈Xθ
{log

m∏
l=1

σ1(JΦ−1,l
θ

(xl))} (60)

= sup
z∈Zθ
{log

m∏
l=1

σ1(JΦlθ (z
l))} − inf

z∈Zθ
{log

m∏
l=1

σn(JΦlθ (z
l))} (61)
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= sup
z∈Zθ
{
m∑
l=1

log σ1(JΦlθ (z
l))} − inf

z∈Zθ
{
m∑
l=1

log σn(JΦlθ (z
l))} (62)

= D̂(Φ−1
θ ,Xθ), (63)

where zl = Φl−1
θ (zl−1) for l = 2, ..,m and the initial value is z1 = z ∈ Zθ, while xl = zm−l+1 and x1 = x ∈ Xθ. The set

is defined as Zθ = Φ−1
θ (Xθ) = Φ−1

θ (Kθ + B(0, ϵpre)).

Inequality in (60) follows the property of spectral norm as ∥AB∥ ≤ ∥A∥∥B∥, where the singular values for the Jacobian
matrix of a composited function are limited by the multiplication of singular values for each layer (Virmaux & Scaman,
2018; Behrmann et al., 2019; 2021). It can be viewed as we try to limit the distortion of each invertible layer such that the
distortion of the composition of them is also bounded.

Further, when evaluating distortion over set Zθ in the homeomorphic space, we can bound the set as:

dh(∂Zθ, ∂B) = dh(Φ
−1
θ (∂Xθ), ∂B) (64)

≤ L(Φ−1
θ ,Xθ ∪ Φθ(B)) dH(∂Xθ,Φθ(∂B)) (by Lemma 2) (65)

≤ L(Φ−1
θ ,Kθ + B(0,max{ϵpre, ϵinn}))(dH(∂Xθ, ∂Kθ) + dH(∂Kθ,Φθ(∂B))) (66)

≤ L(Φ−1
θ ,Yθ)(ϵpre + ϵinn), (67)

where Yθ = Kθ + B(0,max{ϵpre, ϵinn}).

Under the prediction error ϵpre and approximation error ϵinn, the sampling region Zθ = Φ−1(Xθ) for distortion estimation is
as:

Zθ ⊆ B + B(0,dh(∂Zθ, ∂B)) (by Lemma 2) (68)

⊆ B(0, 1 + L(Φ−1
θ ,Yθ)(ϵpre + ϵinn)). (69)

Therefore, theoretically, we can sample and evaluate the distortion over such a ball instead of the original irregular regions
Zθ. However, we do not know the prediction error nor the approximation error in advance to set such a radius of the ball as
R = 1 + L(Φ−1

θ ,Yθ)(ϵpre + ϵinn). In practice, we set R ≥ 1 as a hyperparameter.

On the other hand, for the implementation of distortion estimation, we use the expectation instead of the sup and inf
operators as D̂(Φ−1

θ ,Xθ) ≈ Ez∈Zθ [
∑m
l=1 log σ1(JΦlθ (z

l))− log σn(JΦlθ (z
l))]. In other words, the overall approximation

estimates the average local distortion at each point over each layer. Such an average-case distortion simplifies the original
worst-case formulation and stabilizes the INN training. Such an average approximation has also been demonstrated efficient
in the related Lipschitz regularization schemes (Virmaux & Scaman, 2018; Behrmann et al., 2019; 2021).

We select the singular values to represent distortion because of the closed-form expression under some INN structures.
When using a more general INN structure (e.g., i-ResFlow (Behrmann et al., 2019) ), we may leverage the commonly used
finite difference estimation to evaluate and limit the distortion (Schmidt et al., 2019; Behrmann et al., 2021; Liu et al., 2022).
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F. Proof for Theorem 1
F.1. Feasibility

Since Φθ is a valid mapping, we have Φθ(0) ∈ Kθ ↔ 0 ∈ Φ−1
θ (Kθ). Therefore, from 0 to 1, at least one feasible point exists

(e.g., 0). The bisection process is to find the nearest feasible point to the infeasible prediction z̃θ = Φ−1
θ (x̃θ) /∈ Φ−1

θ (Kθ) in
the homeomorphic space by solving:

α∗ = sup
α∈[0,1]

{Φθ(α · z̃θ) ∈ Kθ}. (70)

The process can be view as “projecting” the infeasible point z̃θ = Φ−1
θ (x̃θ) to the mapped constraint boundary Φ−1

θ (∂Kθ)
as ẑθ = α∗ · z̃θ ∈ Φ−1

θ (∂Kθ).

(a) The illustration of approximation error in homeomorphic space.(b) The illustration of the lower bound such that α∗
l B ⊆ Φ−1

θ (Kθ).

Consider point over constraint boundary z ∈ Φ−1
θ (∂Kθ), we have:

0 ≤ r + inf
x∈∂Kθ

{∥Φ−1
θ (x)∥ − r} ≤ ∥z∥ ≤ r + sup

x∈∂Kθ
{∥Φ−1

θ (x)∥ − r}, ∀z ∈ Φ−1
θ (∂Kθ), (71)

where r is the radius for the ball (we use r = 1 for implementation). For simplicity, we denote δ−inn = infx∈∂Kθ{∥Φ
−1
θ (x)∥−

r}, δ+inn = supx∈∂Kθ{∥Φ
−1
θ (x)∥ − r} and δinn = dh(Φ

−1
θ (∂Kθ), ∂B). It can be viewed as evaluating the approximation

error of INN between ∂B and Φ−1
θ (∂Kθ).

According to Lemma 2, we have dh(Φ
−1
θ (∂Kθ), ∂B) ≥ supx∈∂Kθ{|∥Φ

−1
θ (x)∥2 − r|}, which leads to δinn =

dh(Φ
−1
θ (∂Kθ), ∂B) ≥ max{|δ+inn|, |δ

−
inn|}.

Therefore, we have the bound for the optimal α∗:

0 ≤ r + δ−inn ≤ ∥α
∗z̃θ∥ ≤ r + δ+inn → 0 ≤ r + δ−inn

∥z̃θ∥
≤ α∗ ≤ r + δ+inn

∥z̃θ∥
. (72)

By taking the lower bound of α∗
l =

r+δ−inn
∥z̃θ∥ , we can next analyze the worst-case optimality loss after ensuring the feasibility

given infeasible predictions.

F.2. Optimality

To analyze the optimality loss of returned solution x̂kθ by Algorithm 1, we decompose the loss by following terms:

∥x̂kθ − x∗θ∥ ≤ ∥x̂kθ − x̂θ∥︸ ︷︷ ︸
bisection error

+ ∥x̂θ − x̃θ∥︸ ︷︷ ︸
projection error

+ ∥x̃θ − x∗θ∥︸ ︷︷ ︸
prediction error

, (73)

where x̂θ is the feasible solution as x̂θ = Φθ(ẑθ) = Φθ(α
∗ · z̃θ) = Φθ(α

∗ · Φ−1
θ (x̃θ)), x̃θ ∈ Xθ is the predicted infeasible

solution, and x∗θ is the optimal solution for problem in (1).

• Prediction error
By definition of ϵpre = supθ∈Θ{∥F (θ)− x∗θ∥}, where x̃θ = F (θ), the prediction error is then bounded as:

∥x̃θ − x∗θ∥ ≤ ϵpre. (74)

20



Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set

Figure 7: Illustration of Proof for projection error.

• Projection error
The second part is the error by “projecting” the infeasible solution back to the constraint set after perfecting solving
α∗ = supα∈[0,1]{Φθ(α∗ · z̃θ) ∈ Kθ}. For predicted infeasible solution x̃θ ∈ Xθ and projected feasible solution
x̂θ ∈ Kθ ⊆ Xθ, we have the projection distance as:

∥x̂θ − x̃θ∥ = ∥Φθ(ẑθ)− Φθ(z̃θ)∥ (75)
≤ L(Φθ,Zθ)∥ẑθ − z̃θ∥ = L(Φθ,Zθ)∥α∗z̃θ − z̃θ∥︸ ︷︷ ︸

where x̂θ, x̃θ ∈ Xθ and ẑθ, z̃θ ∈ Zθ

(76)

≤ L(Φθ,Zθ)∥α∗
l z̃θ − z̃θ∥︸ ︷︷ ︸

Lower bound: α∗
l = (r + δ−inn)/∥z̃θ∥

(77)

≤ L(Φθ,Zθ)∥α∗
l

∥z̃θ∥
∥z′θ∥

z′θ − z̃θ∥︸ ︷︷ ︸
Lemma 3: ∥ẑl − z̃∥ ≤ ∥z′l − z̃∥

(Let z′θ = Φ−1
θ (x′θ), where x′θ = λx∗θ + (1− λ)x̃θ ∈ ∂Kθ.) (78)

≤ L(Φθ,Zθ)(∥α∗
l

∥z̃θ∥
∥z′θ∥

z′θ − z′θ∥+ ∥z′θ − z̃θ∥) (79)

≤ L(Φθ,Zθ)∥α∗
l

∥z̃θ∥
∥z′θ∥

z′θ − z′θ∥+ L(Φθ,Zθ) L(Φ−1
θ ,Xθ)(∥x′θ − x̃θ∥)︸ ︷︷ ︸

Lemma 1: D(Φθ,Zθ)=L(Φθ,Zθ) L(Φ−1
θ ,Xθ)

(80)

≤ L(Φθ,Zθ)|α∗
l ∥z̃θ∥ − ∥z′θ∥| · ∥

z′θ
∥z′θ∥

∥+D(Φθ,Zθ)ϵpre (81)

≤ L(Φθ,Zθ)|r + δ−inn − ∥z
′
θ∥|+D(Φθ,Zθ)ϵpre (82)

≤ L(Φθ,Zθ)(|r − ∥z′θ∥|+ |δ−inn|)︸ ︷︷ ︸
|r−∥z′θ∥|≤δinn, |δ−inn|≤δinn

+D(Φθ,Zθ)ϵpre (83)

≤ 2L(Φθ,Zθ)δinn +D(Φθ,Zθ)ϵpre (84)

≤ 2L(Φθ,Zθ) L(Φ−1
θ ,Kθ ∪ Φθ(B))ϵinn︸ ︷︷ ︸

Lemma 2: δinn≤L(Φ−1
θ ,Kθ∪Φθ(B))ϵinn

+D(Φθ,Zθ)ϵpre (85)

≤ 2L(Φθ,Zθ) L(Φ−1
θ ,Xθ ∪ Kθ ∪ Φθ(B))ϵinn︸ ︷︷ ︸

Lemma 2 : Xθ∪Kθ∪Φθ(B))⊆Kθ+B(0,max{ϵpre,ϵinn})

+D(Φθ,Zθ)ϵpre (86)

≤ 2L(Φθ,Zθ) L(Φ−1
θ ,Kθ + B(0,max{ϵpre, ϵinn}))ϵinn +D(Φθ,Zθ)ϵpre︸ ︷︷ ︸

Xθ=Φθ(Zθ)=Kθ+B(0,ϵpre)⊆Yθ=Kθ+B(0,max{ϵpre,ϵinn})

(87)

≤ D(Φ−1
θ ,Yθ)(2ϵinn + ϵpre)︸ ︷︷ ︸

Lemma 1: D(Φ−1
θ ,Xθ)≤D(Φ−1

θ ,Yθ)

. (88)

Further, if we select the x′θ as the point by standard projection, i.e., x′θ = x̂∗θ ∈ ProjKθ (x̃θ) = argminy∈Kθ{∥x̃θ−y∥}
and denoted the projection distance as ϵpro = ∥x̂∗θ − x̃θ∥ ≤ ϵpre, then we have a bound for ∥x̂θ − x̃θ∥ related to the
standard projection distance: ∥x̂θ − x̃θ∥ ≤ D(Φ−1

θ ,Yθ)(2ϵinn + ϵpro).
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• Bisection error
The last part is the error coming from solving α∗ = supα∈[0,1]{Φθ(α∗ · z̃θ) ∈ Kθ} using bisection in Algo. 1. Since
we set the maximum bisection steps as k, the error is bounded as:

∥x̂kθ − x̂θ∥ ≤ L(Φθ,Zθ)∥ẑkθ − ẑθ∥ (89)

= L(Φθ,Zθ)∥αkz̃θ − α∗z̃θ∥ (90)

= L(Φθ,Zθ)|αk − α∗|∥z̃θ − 0∥ (91)

≤ L(Φθ,Zθ)
1

2k
∥z̃θ − 0∥ (92)

≤ L(Φθ,Zθ) L(Φ−1
θ ,Xθ)

1

2k
∥x̃θ − Φθ(0)∥ (93)

≤ D(Φ−1
θ ,Xθ)

1

2k
(∥x̃θ − x∗θ∥+ ∥x∗θ − Φθ(0)∥) (94)

≤ D(Φ−1
θ ,Xθ)

1

2k
(ϵpre + diam(Kθ)) (95)

≤ D(Φ−1
θ ,Yθ)

1

2k
(ϵpre + diam(Kθ)). (96)

Combing the prediction error, projection error, and bisection error, we have the results:

∥x̂kθ − x∗θ∥ ≤ ϵpre +D(Φ−1
θ ,Yθ)(2ϵinn + ϵpre + ϵkbis), (97)

where Yθ = Kθ + B(0,max{ϵpre, ϵinn}) and ϵkbis = 2−k(diam(Kθ) + ϵpre).

F.2.1. OPTIMALITY UNDER SPECIAL CASES

From the analysis of optimality loss, we find the prediction error is dominated by the given predictor, the bisection error
converges to zero with increasing bisection steps, and the main gap comes from the projection error. To minimize the
projection error, we formulate the MDH mapping problem to minimize the distortion and the approximation error. To better
understand the projection error, we discuss its upper bound under several special cases, as shown in Table 3.

Table 3: Projection error under different cases.

Setting Projection error: ∥x̂θ − x̃θ∥

Valid INN mapping Φθ(0) ∈ Kθ D(Φ−1
θ ,Yθ)(2ϵinn + ϵpre)

Valid outer approximation Φθ(0) ∈ Kθ and Φθ(B) ⊇ Kθ D(Φ−1
θ ,Yθ)(ϵinn + ϵpre)

Inner approximation Φθ(B) ⊆ Kθ D(Φ−1
θ ,Xθ)(ϵinn + ϵpre)

Lower bound by standard projection x̂∗
θ ∈ ProjKθ (x̃θ) ϵpro = ∥x̂∗

θ − x̃θ∥ ≤ ϵpre

Feasible homeomorphic mapping Φθ(B) = Kθ D(Φ−1
θ ,Xθ)ϵpro

Feasible isometric homeomorphic mapping Φθ(B) = Kθ and D(Φ−1
θ ,Xθ) = 1 ϵpro

• Case 1: inner approximation
If we have an approximated MDH such that Φθ(B) ⊆ Kθ, which constructs an inner approximation of the constraint
set and it is also valid Φθ(0) ∈ Kθ.

∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,Xθ)(ϵinn + ϵpre). (98)

Proof: Since Φθ(B) ⊆ Kθ, after homeomorphic mapping B ⊆ Φ−1
θ (Kθ), we have 0 ≤ δ−inn ≤ δ

+
inn = δinn. Following

(82), we have:

∥x̂θ − x̃θ∥ ≤ L(Φθ,Zθ)|r + δ−inn − ∥z
′
θ∥|︸ ︷︷ ︸

δ+inn≥δ
−
inn≥0

+D(Φθ,Zθ)ϵpre (99)
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≤ L(Φθ,Zθ)(|δ+inn − δ
−
inn|) + D(Φθ,Zθ)ϵpre (100)

≤ L(Φθ,Zθ)δinn +D(Φθ,Zθ)ϵpre (101)

≤ L(Φθ,Zθ) L(Φ−1
θ ,Xθ ∪ Kθ ∪ Φθ(B))ϵinn︸ ︷︷ ︸

Lemma 2: Xθ∪Kθ∪Φθ(B))=Xθ=Kθ+B(0,ϵpre)

+D(Φθ,Zθ)ϵpre (102)

≤ L(Φθ,Zθ) L(Φ−1
θ ,Xθ)ϵinn +D(Φθ,Zθ)ϵpre (103)

= D(Φ−1
θ ,Xθ)(ϵinn + ϵpre). (104)

Similarly, if we select the x′θ as the point by standard projection, i.e., x′θ = x̂∗θ ∈ ProjKθ (x̃θ) = argminy∈Kθ{∥x̃θ −
y∥}, then we have a bound related to the standard projection distance: ∥x̂θ − x̃θ∥ ≤ D(Φ−1

θ ,Xθ)(ϵinn + ϵpro).

• Case 2: valid outer approximation
Similarly, if we have an approximated MDH such that Φθ(0) ∈ Kθ and Φθ(B) ⊇ Kθ, which constructs an otter
approximation of the constraint set.

∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,Yθ)(ϵinn + ϵpre). (105)

Proof: Since Φθ(B) ⊇ Kθ, after homeomorphic mapping B ⊇ Φ−1
θ (Kθ), we have δ−inn ≤ δ+inn ≤ 0 and δinn = |δ−inn|

Following (82), we have:

∥x̂θ − x̃θ∥ ≤ L(Φθ,Zθ)(|r + δ−inn − ∥z
b
θ∥|)︸ ︷︷ ︸

δ−inn≤δ
+
inn≤0

+D(Φθ,Zθ)ϵpre (106)

≤ L(Φθ,Zθ)(|δ+inn − δ
−
inn|) + D(Φθ,Zθ)ϵpre (107)

≤ L(Φθ,Zθ)δinn +D(Φθ,Zθ)ϵpre (108)

≤ L(Φθ,Zθ) L(Φ−1
θ ,Xθ ∪ Kθ ∪ Φθ(B))ϵinn︸ ︷︷ ︸

Lemma 2: Xθ∪Kθ∪Φθ(B))⊂Kθ+B(0,max{ϵpre,ϵinn})

+D(Φθ,Zθ)ϵpre (109)

≤ L(Φθ,Zθ) L(Φ−1
θ ,Kθ + B(0,max{ϵpre, ϵinn}))ϵinn +D(Φθ,Zθ)ϵpre (110)

≤ D(Φ−1
θ ,Yθ)(ϵinn + ϵpre). (111)

Similarly, if we select the x′θ as the point by standard projection, i.e., x′θ = x̂∗θ ∈ ProjKθ (x̃θ) = argminy∈Kθ{∥x̃θ −
y∥}, then we have a bound related to the standard projection distance: ∥x̂θ − x̃θ∥ ≤ D(Φ−1

θ ,Yθ)(ϵinn + ϵpro).

• Case 3: feasible homeomorphic mapping
Under the feasible mapping Φθ ∈ Hn(Kθ,B), given an infeasible prediction x̃θ, the homeomorphic bisection algorithm
is equivalent with following projection operator: x̂θ = HPΦθ

Kθ (x̃θ) = Φθ(ProjB(Φ
−1
θ (x̃θ))). Let the optimal projection

solution as x̂∗θ ∈ ProjKθ (x̃θ) = argminy∈Kθ{∥x̃θ − y∥} ⊂ ∂Kθ and the projection distance as ϵpro = ∥x̂∗θ − x̃θ∥.
The homeomorphic projection error is bounded as:

ϵpro ≤ ∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,Xθ)ϵpro ≤ D(Φ−1

θ ,Xθ)ϵpre. (112)

Proof: By definition, the homeomorphic projection is bounded as:

∥x̂θ − x̃θ∥ = ∥Φθ(ProjB(Φ−1
θ (x̃θ)))− Φθ(ψ

−1
θ (x̃θ))∥ (113)

≤ L(Φθ,Zθ)∥ProjB(Φ−1
θ (x̃θ))− ψ−1

θ (x̃θ)∥︸ ︷︷ ︸
Zθ=ψ−1

θ (Xθ)

(114)

≤ L(Φθ,Zθ) ∥Φ−1
θ (x̂∗θ)− ψ−1

θ (x̃θ)∥︸ ︷︷ ︸
property of projection

(115)

≤ L(Φθ,Zθ) L(ψ−1
θ ,Xθ)∥x̂∗θ − x̃θ∥ = D(Φ−1

θ ,Xθ)ϵpro (116)

≤ D(Φ−1
θ ,Xθ)∥x∗θ − x̃θ∥ = D(Φ−1

θ ,Xθ)ϵpre. (117)

Therefore, the homeomorphic projection error has a lower bounded as the standard projection error and an upper
bounded by the standard projection error multiplied by the distortion of homeomorphic mapping. Further, if the feasible
mapping is isometric, the homeomorphic projection error reaches the lower bound.
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Definition F.1. A mapping ψ : Rn → Rn is isometric if it preserves the distance as: ∥ψ(x) − ψ(y)∥ = κ∥x −
y∥,∀x, y ∈ Z , where κ > 0.

In other words, if the homeomorphic mapping Φθ is isometric over Zθ, the distortion D(Φθ,Zθ) = 1. The homeomor-
phic projection distance is exactly the same as the standard projection distance.

F.3. Run-time complexity

The run-time complexity involves the m-layer INN forward calculation and the inequality constraint calculation.

• INN forward calculation: We adopt three kinds of INN layers in our design: the auto-regressive layer, the actnorm layer,
and the invertible linear layer. As mentioned in Appendix C. Those layers have the run-time complexity as O(n2). The
inverse of those layers has exactly the same run-time complexity.

• Constraint calculation: After the INN forward calculation, we have a candidate solution x̂ and calculate g(x̂, θ) =
[gi(x̂, θ), ..., gnineq(x̂, θ)] to find if it is a feasible solution. We denote the complexity for calculating g(x̂, θ) as G.

Therefore, to execute k-step binary search, we have the total run-time complexity as O(k(mn2 +G))

G. Proof for Theorem 2
Since D1 is rc-covering dataset, i.e., for any θ ∈ Θ, there exist θ0 ∈ D1 such that ∥θ − θ0∥ ≤ rc. For such a pair of (θ, θ0),
first, we bound the variation of the constraint boundary:

dH(∂Kθ, ∂Kθ0) ≤ ∥θ − θ0∥C0 ≤ rcC0, (118)

where C0 = supθ1,θ2∈Θ,θ1 ̸=θ2{dH(∂Kθ1 , ∂Kθ2)/∥θ1 − θ2∥} indicates the “Lipschitz” of the constraint set over input
parameters. Then rcC0 provides an upper bound for the constraint boundary variation according to the input parameter
variation under rc- covering dataset D1. Further, by Lemma 2, we have ∂Kθ ⊆ ∂Kθ0 + B(0, rcC0).

Figure 8: Illustration of C0rc, C1rc, and C2.

Since the INN is valid for the interior of the constraint set under the training dataset, i.e., for any θ0 ∈ D1, Φθ0(0) ∈ K◦
θ0 ,

there exists r > 0 such that B(Φθ0(0), r) ⊆ Kθ0 , i.e., the inner approximation ball for constraint set centered in Φθ0(0), we
then denote the largest radius of the inner ball as C2 = arg supr>0{B(Φθ0(0), r) ⊆ Kθ0 , θ0 ∈ D1}. In other words, we
have to move the point Φθ0(0) or the boundary ∂Kθ0 with a distance of at least C2 such that the point would be outside the
boundary.

If the condition C1rc + C0rc ≤ C2 holds, the distance between boundaries dH(∂Kθ, ∂Kθ0) ≤ C0rc ≤ C2 holds, then the
point is inside the boundary as Φθ0(0) ∈ Kθ.

Given y ∈ ∂Kθ, let xy = arg infx∈∂Kθ0 {∥x− y∥} and zxy = λΦθ0(0) + (1− λ)xy ∈ ∂B(Φθ0(0), C2), then

∥Φθ0(0)− y∥ ≥ ∥Φθ0(0)− xy∥ − ∥xy − y∥ (119)
≥ ∥Φθ0(0)− zxy∥ − inf

x∈∂Kθ0
{∥x− y∥} (120)
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≥ C2 − sup
y∈∂Kθ

inf
x∈∂Kθ0

{∥x− y∥} (121)

≥ C2 − rcC0. (122)

Therefore infy∈∂Kθ{∥Φθ0(0)− y∥} ≥ C2 − rcC0, i.e., B(Φθ0(0), C2 − rcC0) ⊆ Kθ.

Second, we bound the variation of the mapped center for a pair of (θ, θ0) as:

∥Φ(0, θ)− Φ(0, θ0)∥ ≤ ∥θ − θ0∥L(Φ(0, ·),Θ) ≤ rcC1, (123)

where C1 = L(Φ(0, ·),Θ) indicates the Lipschitz of the trained INN over in the input parameters. rcC1 provides an upper
bound for the variation of the mapped center according to the input parameter variation under rc- covering dataset D1 such
that Φθ(0) ∈ B(Φθ0(0), rcC1).

If the condition C1rc + C0rc ≤ C2 holds, we have:

Φθ(0) ∈ B(Φθ0(0), rcC1) ⊆ B(Φθ0(0), C2 − rcC0) ⊆ Kθ. (124)

Therefore, if C1rc + C0rc ≤ C2 holds, ∀θ ∈ Θ, we have Φθ(0) ∈ Kθ.

H. Experiment settings
In this appendix, we will specify the formulation of constrained optimization problems in Appendix H.1, the detailed
structure of NN predictors and training parameters in Appendix H.2, and the structure of INN mapping and the training
parameters of INN approximated MDH mapping are in Appendix H.3.

H.1. Formulation of constrained optimization problem

We test the HP framework for three constraint optimization problems: QP, convex QCQP, SDP, and AC-OPF. The
mathematical formulation is presented below:

QP :min
x∈Rn

1

2
xTQx+ pTx (125)

s.t. Gx ≤ h, Ax = θ,

where Q ∈ Sn++, p ∈ Rn, A ∈ Rneq×n, G ∈ Rnineq×n, h ∈ Rnineq , and θ ∈ Rneq .

Convex QCQP :min
x∈Rn

1

2
xTQx+ pTx (126)

s.t. xTHix+ gTi x ≤ hi, Ax = θ,

where Hi ∈ Sn++, gi ∈ Rn, and hi ∈ R for i = 1, ..., nineq.

SDP : min
X∈Rn×n

tr(CX) (127)

s.t. X ⪰ 0, tr (AiX) = θi,

where C ∈ Rn×n, Ai ∈ Rn×n, and θi ∈ R for i = 1, ..., neq.

A specific introduction of AC-OPF (non-convex QCQP) is as follows.

AC-OPF : min
pg∈Rn,qg∈Rn,v∈Cn

pTgQpg + bTpg (128)

s.t. pmin
g ≤ pg ≤ pmax

g , (129)

qmin
g ≤ qg ≤ qmax

g , (130)

vmin ≤ |v| ≤ vmax, (131)
(pg − pd) + (qg − qd) i = diag(v)W̄ v̄. (132)

For a power network with n nodes, pd ∈ Rn, qd ∈ Rn represent the real power and reactive power demand. pg ∈ Rn, qg ∈
Rn represent the real power and reactive power generation. v ∈ Cn denotes the voltage (both real and imaginary parts).
W ∈ Cn×n is the nodal admittance matrix of the power network, which represents its topology. Given different power
demands, we solve the optimal power generation satisfying the flow-balance constraints and minimizes the generation cost.
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H.2. Structure and training for NN predictor

We adopt the fully connected NN to predict the optimal solution for constrained optimization problems given the input
parameters. The parameters are in Table 4.

H.3. Structure and training for INN mapping

Motivated by the GLOW (Kingma & Dhariwal, 2018), we build INN containing three basic layers as shown in Table 5. To
train the MDH mapping for different examples, we select the parameters shown in Table 5.

Table 4: Structure of NN predictor in experiments

Parameter Value

NN structure

dimension of input layer d
dimension of output layer n
dimension of hidden layer ⌊(d+ n)/2⌋

activation function ReLU(·)
number of layer 3

last layer Sigmoid(·)
NN training parameters

number of training samples (θ, x∗
θ) 20,000

number of testing samples 1,024
number of iteration 5,000

optimizer Adam
learning rate 0.001

batch size 512
the coefficient for objective function 0.1
the coefficient for inequality penalty 10
the coefficient for equality penalty 10

Table 5: Structure of INN mapping in experiments

Parameter Value

INN structure

dimension of input layer n+ d
dimension of output layer n

basic INN block
{

Actnorm, Inv. Conv.
Actnorm, Autoregressive

}
number of INN block 3

the last layer Sigmoid(·)
INN training parameters

B 2/∞-norm
scale ratio R 1

number of QMC samples z ∈ B 1,024
number of Uniform samples θ ∈ Θ 10,000

number of iteration 10,000
optimizer Adam

learning rate 0.0001
batch size 512

the coefficient for penalty 50
the coefficient for distortion 5

H.4. More examples for MDH mapping approximated constraint set

We train two MDH mappings to approximate the constraint set Kθ from a 2-norm ball and a∞-norm ball, respectively.
After that, we visualize the approximated constraint set by plotting Φ(B|θtest) under new input parameters. The visualization
is shown in Fig. 9 and 10, respectively.
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Figure 9: Testing performance for 2-norm ball to constraint sets under different testing input parameters.

Figure 10: Testing performance for∞-norm ball to constraint sets under different testing input parameters.

27


