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Abstract—In this work, we present a robust optimization based
framework for day-ahead reliability assessment (RA) and real-
time dispatch to ensure power system reliability under multi-
stage renewable uncertainty. Our framework jointly considers
fossil-fuel generators and energy storage in the system. To obtain
near-optimal performance in grid reliability, we develop robust
multi-stage decisions based on the concept of “safe-dispatch sets”
in the literature. Although such safe-dispatch sets directly answer
the RA and real-time dispatch problem, their computation often
incurs high computational complexity. To develop low-complexity
algorithms, we adopt a divide-and-conquer paradigm. First, we
derive the conditions to describe the safe-dispatch sets for a pair
of energy storage and generator. The results from this simple
building block provide us with useful insights on how the grid
reliability is related to the parameters, e.g, the generators’ ramp
speeds and the storage capacity. To tackle the general multi-bus
scenario, the uncertainty is split among virtual generator-storage
pairs (VGSPs), where we can utilize the results from the one-bus
building block. Numerical studies on a standard IEEE 30-bus test
case illustrate that our proposed solution requires much lower
storage capacity to ensure system reliability compared to state-
of-the-art approaches, without renewable curtailment.

Index Terms—reliability assessment, energy storage, renewable
uncertainty, multistage decisions, generator-storage pairs.

I. INTRODUCTION

The reliability of power system is challenged by the high
penetration of volatile renewable resources, e.g., solar and
wind energy [1]. One of the most crucial grid operations that
face new difficulty is to maintain the demand-supply balance
at all time, under various physical constraints in the grid.
In particular, under high renewable uncertainty, it becomes
harder to determine the amount of resource commitment ahead
of time, as well as the real-time dispatch of the committed
resources. Meanwhile, energy storage has been considered as
a key resource to improve the power system resilience because
of its capability of shifting the demand and supply over periods
[2]. However, energy storage has its unique characteristics
compared to conventional fossil-fuel generators. Hence, to
maintain system reliability, new questions need to be answered
on how to jointly control conventional generators and energy
storage in an optimal manner.
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In this work, we aim to address these problems at the Inde-
pendent System Operator (ISO) level. The main responsibility
of an ISO is to ensure grid reliability in a large geographic
area, by managing the wholesale electricity market [3]–[5].
The wholesale market usually consists of the following two
components. 1) A day-ahead market takes and clears bids
from market participants for the buying/selling amount of
energy one day before the operating day. 2) A real-time market
occurs at the operation day, where the ISO can send real-
time dispatch decisions to all committed resources in 5-min
intervals in order to account for any demand deviation from the
predicted amount. Further, after the day-ahead market clears
(and thus unit commitment decisions have been made), the ISO
performs a Reliability Assessment and Commitment (RAC)
step to ensure the committed grid resources are adequate
for the next operating day. The goal of this paper is to
study reliability assessment (RA) during the RAC step1, and
to provably ensure grid reliability in real-time dispatch, for
systems with conventional generators and energy storage under
high renewable uncertainty.

For a more accurate model of this control and decision
problem, one must consider the multistage nature of the
renewable uncertainty. Here, the multiple stages refer to the
moments when the uncertainty is revealed, i.e., the actual
realization of the renewable generation is available sequen-
tially over time. Yet, the ISO must make dispatch decisions
using only the observations up to the current time, despite any
future uncertainty. Any practical decision making process must
respect such causality (or non-anticipativity) requirement. In
contrast, a two-stage model has often been adopted in many
related studies in the literature, which violates the above
multistage nature. Specifically, a two-stage model assumes a
second phase in the decision making process, where the entire
uncertainty would be unveiled [6], [7]. Clearly, the assumption
of the second phase with perfect knowledge is impractical.
As a consequence, the resource requirement for reliability can
be significantly under-estimated by any two-stage approach
[8], [9]. In the literature, Model Predictive Control (MPC)
is also studied for control under uncertainty [10]. Further,
it is possible to iteratively apply a two-stage method in
a rolling-horizon manner under multistage uncertainty [11].
However, since these approaches do not explicitly consider
the multistage nature of future uncertainty, they typically do
not provide the required reliability guarantees at the ISO level.

There have been limited studies in the literature that account

1Note that our study focuses on the first step of RAC (i.e., assessing
reliability) and the associated real-time dispatch (if the system is reliable).
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for such a multistage nature while ensuring grid reliability, es-
pecially for the systems with energy storage. In [8], the authors
propose Affinely Adjustable Robust Optimization (AARO)
policies [12], [13] to solve this multistage decision problem
for systems with only generators. The authors later extend this
approach in [9] to work with energy storage. However, [8]
and [9] both suffer from a common weakness, i.e., the affine
policy treats heterogeneous resources in the same manner,
resulting in inefficient usage of resources (see Sec. II-D for
more discussion). Partly because of this reason, renewable cur-
tailment must be allowed in [9] so that they can always achieve
demand-supply balance despite this inefficiency. Intuitively,
generators and energy storage have very different capabilities:
generators can sustain longer-term changes in demand, while
storage units can provide flexibility to accommodate fast
short-term changes. If one can leverage their complementary
capabilities, the system will be able to support a higher level
of uncertainty. Therefore, we are interested in the following
open question: how should one jointly operate the storage and
generators in a complementary and efficient way, such that the
grid reliability can be achieved against multistage renewable
uncertainty?

To answer this open question, a new robust optimization
framework for developing reliability assessment and real-time
dispatch decisions is proposed to jointly operate generators and
energy storage. Without any renewable curtailment, our meth-
ods successfully exploit the complementary characteristics of
energy storage and conventional generators to outperform the
affine policies in [9] in terms of grid reliability under renew-
able uncertainty. In particular, we extend the notion of “safe-
dispatch sets” from [14] to our problem with energy storage
in Sec. II. Roughly speaking, the safe-dispatch set contains
all dispatch decisions at the present time that guarantee the
existence of reliable dispatch decisions any time in the future.
In our previous work [14], we have shown that day-ahead RA
is equivalent to the task of verifying if the safe-dispatch set
is non-empty. Similarly, for real-time dispatch, any decision
points from the safe-dispatch set can be chosen in every
time slot (see Sec. II-C). Theoretically, the safe-dispatch set
maximally exploits the complementary capabilities of the grid
resources, without the restriction of affine decisions. However,
solving safe-dispatch sets in the most general form using
dynamic programming incurs exponential complexity [14]. As
the first step towards developing computationally-efficient and
near-optimal methods, in Sec. III we study a generator-storage
pair. For this simpler building block, both necessary conditions
and sufficient conditions are derived for characterizing the
safe-dispatch set, which are tight under certain circumstances.
In this way, our characterization fully exploits the comple-
mentary capabilities in such a single-generator single-storage
building block. As the second step, Sec. IV studies a general
multi-bus system with arbitrary numbers of generators and
storage. In particular, we conceptually group the generators
and storage into “virtual generator-storage pairs” (VGSPs),
so that we can optimize affine demand splitting to VGSPs.
As a result, such a divide-and-conquer framework leads to
a low-complexity characterization of a suitable subset of
the true safe-dispatch set. Finally, our simulation results in

Sec. V demonstrate significant improvement in reliability and
generation cost over state-of-the-art affine policies [9].

Although similar demand splitting and resource pairing
ideas have been used in [14] to exploit the complementary
capabilities of fast and slow generators, we note that the
techniques and analysis in this work are very different from
[14] due to the introduction of energy storage. First, even
for the single-bus case, unlike generators (which are the sole
focus in [14]), the energy storage cannot supply/consume
power for a long operation period due to its limited energy
capacity, rendering the analysis of [14] inapplicable. Second,
in the general multi-bus case, energy storage also introduces
new and unique challenges: (i) the efficiency loss in charg-
ing/discharging leads to possible discrepancies between the
states of the virtual storage units (in a VGSP) and that of the
physical storage unit; (ii) since storage is more scarce, the
generator and storage forming a VGSP may have to reside on
different buses, which produces new uncertainty for meeting
transmission-line constraints. See Sec. IV how new methods
are developed to address these challenges.

Our preliminary work [15] assumed perfect charg-
ing/discharging efficiency for the energy storage. This work
significantly extends the results in [15] to a storage model
with efficiency loss, by overcoming the above-mentioned
new challenges. Further, we present an intuitive example in
Sec. II-D to demonstrate the gain of our proposed control
policy over affine policies. We also significantly enhanced the
numerical results in Sec. V. Finally, we include key proofs
which are essential to our main results but absent in [15].

II. SYSTEM MODEL

We use B = {1, . . . , Nb} and L = {1, . . . , Nl} to denote
the sets of Nb buses and Nl transmissions lines, respectively.
A discrete-time model is adopted in this work (i.e., the system
time is equally divided into T time slots), which is commonly
used in the literature [9], [14]. Given the day-ahead ON/OFF
decisions of the generators and the storage units (i.e., unit-
commitment decisions), our objective is to verify if the grid
reliability can be assured by the committed resources for the
whole operation period, and to dispatch them in real-time with
assured reliability. The detailed notations are as follows.

A. System Components

1) Renewable Uncertainty and Net Demand: In this work,
we treat the renewable generation as negative load, i.e., the
renewable supply is subtracted from the actual load at bus b
to get the uncertain net-demand Db(t) at time t. For any period
from t1 to t2, we denote the net-demand sequence at bus b
as Db(t1:t2), and define D(t1:t2) ≜ {Db(t1:t2),∀b ∈ B}.
Note that this formulation implies no renewable curtailment in
the system. This assumption can be justified by the following
facts. First, some renewable generation sources are installed
“behind-the-meter,” e.g., rooftop solar panels, and thus cannot
be easily controlled by the ISO. Second, renewable energy is
oftentimes considered a more desirable source of energy, since
it is cheaper and cleaner compared to fossil-fuel generation.
In practice, renewable energy is sometimes curtailed in order
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to ensure grid safety, at the price of sacrificing efficiency
and economy. Therefore, developing such curtailment-free
robust algorithms to ensure grid reliability is still an important
problem both in theory and practice.

Now, let us present the model for uncertainty in net-demand.
The uncertainty set D contains all possible sequences D(1:t)
that should be considered for the grid reliability. In this paper,
we focus on the following uncertainty set:

Dmin
b (t) ≤ Db(t) ≤ Dmax

b (t), for all t, (1)

|Db(t1)−Db(t2)| ≤ ∆b|t1 − t2|, for all t1, t2, (2)

where Dmin
b (t) and Dmax

b (t) correspond to the net-demand
lower and upper bounds, respectively, on bus b at time t. We
use ∆b ≥ 0 to denote the maximum net-demand variation
per time slot on bus b. We model the inter-temporal change
of renewable uncertainty as a Lipschitz constraint in (2). In
practice, the parameters of the uncertainty set are obtained
from historical data and forecast [16]. Notice that, even though
the uncertainty set D contains all possible sequences D(1:T ),
only D(1:t) (the realization of net-demand up to t) is observed
by ISO. In contrast to a two-stage model where the ISO
knows the exact D(1:T ) at the second stage [6] [7], the
multistage uncertainty requires the future values of D(t+1:T )
to remain unknown. Nonetheless, the future uncertainty given
the revealed history can be refined based on (2), which can
be considered as the “near-term prediction.” In particular,
given D(1:t), the set of remaining net-demand sequences
D(t1, t2), t1, t2>t, will be smaller than (1) and (2), i.e.,

Dt
[t1:t2] =

{
D(t1:t2)| there exist D′(1:T ) ∈ D, such that

D′(1:t) = D(1:t), and D′(t1:t2) = D(t1:t2)
}
.

Additionally, if t1 = t2, the above notation reduces to Dt
t1 .

2) Fossil-fuel Generators: The set of conventional genera-
tors in the system is denoted as G = {1, 2, ..., Ng}. Then, the
power level Pg(t) of generator g ∈ G at time t must satisfy

Pmin
g ≤ Pg(t) ≤ Pmax

g ,∀g ∈ G, t = 1, 2, . . . , T, (3)

where Pmin
g and Pmax

g are generator g’s minimum and
maximum power, respectively. Since storage by itself
cannot support a long period of demand-supply imbal-
ance, we assume that

∑
g∈G Pmax

g ≥
∑

b∈B Dmax
b (t) and∑

g∈G Pmin
g ≤

∑
b∈B Dmin

b (t) for all time t. In addition, the
following ramping constraint need to be satisfied:

|Pg(t+ 1)− Pg(t)| ≤ Rg, t = 1, 2, . . . , T − 1, (4)

where Rg is the ramp rate of generator g. Finally, let Gb ⊆ G
be the set of generators at bus b ∈ B.

3) Storage units: We use S = {1, 2, ..., Ns} to denote the
set of storage units in the system, where each s ∈ S has a
finite capacity Qs. Let Qs(t) be the charge level of storage
s at the end of time-slot t, and Qs(0) be the initial storage
level of unit s. Thus, the following storage capacity constraints
must be satisfied at all time:

0 ≤ Qs(t) ≤ Qs,∀s ∈ S, t = 0, 1, ..., T. (5)

A unique feature of energy storage compared to generators
is that the coupling of its charging and discharging actions

across time. Assuming unit-length slot, we can express the
power level of storage s during time-slot t as follows: for
t = 1, 2, ..., T,

Φs(t) =

{
Qs(t− 1)−Qs(t), Qs(t− 1) > Qs(t);
1
θs
[Qs(t− 1)−Qs(t)], Qs(t− 1) ≤ Qs(t),

(6)

where θs ∈ (0, 1] is the round-trip efficiency of the storage.
Note that positive (or negative) signs of Φ(t) correspond to the
storage delivering (or absorbing) energy. The units of Q and Φ
are MWh and MWh/slot, respectively. Similar to [9], for ease
of exposition we have assumed in (6) that the storage can be
discharged without efficiency loss. Note that this assumption
incurs no loss of generality, because the case where the energy
storage has both charging efficiency θchar and discharging
efficiency θdisc can always be mapped to a storage unit of
form (6) by taking Q′

s(t) = θdiscQs(t) and θs = θdisc · θchar.
Finally, we use Φs to denote the power limit of storage s, i.e.,
|Φ(t)| ≤ Φs for all time t, and Sb to denote the set of storage
units on bus b.

B. Demand-supply Balance & Transmission Constraints

In this paper, a DC power flow model is adopted [17].
To ensure grid reliability, the total power generation from
generators and storage must be equal to the total net-demand
at all time, i.e.,∑

g∈G
Pg(t) +

∑
s∈S

Φs(t) =
∑
b∈B

Db(t), t = 1, 2, . . . , T. (7)

Furthermore, we have to respect all transmission-line limits.
For DC model of the transmission system, we let S = [Sl,b]
to denote the shift factor matrix, where Sl,b is the power-flow
contribution from bus b on line l. Thus, the power flow on
line l at time t cannot exceed a value TLl, i.e.,∣∣∣∣ Nb∑

b=1

Sl,b

(
Db(t)−

∑
g∈Gb

Pg(t)−
∑
s∈Sb

Φ(t)

)∣∣∣∣ ≤ TLl,

∀t = 1, 2, . . . , T ;∀l ∈ L.

(8)

C. Objectives of Online Multistage Decisions

Let P(t) = [Pg(t), g ∈ G] and Q(t) = [Qs(t), s ∈ S]. Note
that Q(t−1) corresponds to the storage levels both at the end
of time-slot t− 1 and at the beginning of time-slot t. We first
introduce the following definitions.

Definition 1 (Causality). Given an uncertainty set D, a real-
time dispatch algorithm π(D) is causal if, for every time t, the
algorithm only uses D(1:t) in producing the dispatch decision
V π(D)(t) =

[(
P

π(D)
g (t), Q

π(D)
s (t)

)
|g ∈ G, s ∈ S

]
.

Definition 2 (Robustness). A causal real-time dispatch al-
gorithm π(D) is robust if and only if, for all net-demand
sequences D(1:t) ∈ D and at all time t, the dispatch decision
V π(D)(t) satisfies all physical constraints (3)-(8). Further,
π(D) is robust given D(1:t) and V π(D)(t) if and only if,
for any possible future net-demand sequence D(t+1:T ) ∈
Dt

[t+1:T ], the dispatch output V π(D)(t1) produced by π(D)
will satisfy all constraints (3)-(8), for all t1 > t.
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Our goals of this study are twofold: (i) At the RAC stage,
given the uncertainty set D, determine if a causal and robust
real-time dispatch algorithm π(D) exists; (ii) At time t, find
π(D) and compute the dispatch decisions for the generators
and storage units based on D(1:t), so that all physical con-
straints can be satisfied. Note that the above causality require-
ment is a crucial difference between our online multistage
decisions and two-stage formulations. (Readers may refer to
[14] and [8] for more discussion.) Next, we define the notion
of safe-dispatch set, which extends the similar concept in [14].

Definition 3 (Safe-Dispatch Set). Given the revealed demand
D(1:t), the safe-dispatch set F

(
D(1:t),Q(t−1)

)
is defined as

F
(
D(1:t),Q(t−1)

)
=
{
[P(t),Q(t)]

∣∣ starting from Q(t−1),
∃ a causal algorithm π (which produces P(t), Q(t)) that
both can balance the demand D(t) subject to (3), (5)-(8)

at time t, and is robust given D(1:t) for the future
}
. (9)

Our preliminary work [14] shows that, both the RA (relia-
bility assessment) decisions and real-time dispatch algorithms
can be easily derived from the safe dispatch sets. Specifically,
the RA decision simply verifies the non-emptiness of the
safe dispatch set without any net-demand realization, i.e.,
F(∅). For real-time dispatch at time t, the causal algorithm
π can simply choose any V π(t) ∈ F(D(1:t),Q(t−1))2 that
is also reachable from P(t − 1). It is guaranteed that such
decisions satisfy all future physical constraints. Moreover,
such an algorithm is “maximally-robust,” i.e., if this algorithm
cannot ensure grid reliability, no other algorithms can do
under the same uncertainty set D. As shown in [14], one can
compute the true safe-dispatch sets via backward induction
or dynamic programming (DP). However, it is impractical to
apply such a DP solution directly to large-scale power system
problems, as the computation complexity grows exponentially
in the problem size (curse of dimensionality). Hence, we aim
to develop lower-complexity approaches for deriving the safe-
dispatch sets in this paper.

D. An Example for the Inefficiency of Affine Policies

To motivate our new conditions for the safe-dispatch set,
we first illustrate the inefficiency of the affine policy used
in [9]. With storage, [9] computes storage dispatch decisions
according to affine mappings of net-demand values, i.e.,

Φaffine
s (t) = ws(t) +Ws(t)

[
D(t)−Dmain(t)

]
, (10)

where Dmain(t) is the pre-determined baseline for each time
t, and ws(t), Wb,s(t) are pre-computed coefficients, subject to
the robust constraints (3)-(8) for all D(1:T )∈D. Suppose that
Dmax(t)−Dmin(t) = 1 for all t, and the rate of change is ∆ =
1. Suppose that the generator’s power range is large enough
for the uncertainty set, but its ramp rate Rg = 1/n is limited,
where n > 1 is a constant. We assume that the storage unit has
capacity Qs, and renewable curtailment is not allowed. Below,
we show that, when the time horizon T is large, any affine

2Note that by definition, F(∅) ̸= ∅ at day-ahead RA also implies that
F(D(1:t),Q(t−1)) ̸= ∅ at all time t during real-time operations.

policy would fail to support the above level of uncertainty.
To see this, note that since Rg = ∆/n, any affine policy can
assign at most 1/n fraction of the uncertainty to generator
g at any time, without violating its ramp limit. On the other
hand, any affine policy can assign at most 2Qs/T fraction of
the uncertainty to the storage. (Otherwise, regardless of how
the baseline Dmain(t) is chosen, the worst-case total energy
dispatched to the storage will exceed Qs.) Thus, regardless of
the storage size Qs, if T ≥ n/Qs, then any affine policy can
support at most 3/n fraction of the uncertainty in total. In the
above example, the curtailment may help to restore the system
reliability only if we curtail a significant amount of renewable
energy, unless the storage capacity Qs increases proportionally
with T . In contrast, based on our solution in the next section,
we only need Qs = 1

2 (n − 1) to support the entire level of
uncertainty above, even when T → ∞. (See Theorem 7 and
the discussion in Sec. III-C.) In summary, the difference in
the supportable level of uncertainty between affine policies
and our solution can be arbitrarily large as n increases. Please
also see Sec. V-B for additional numerical results.

III. A PAIR OF GENERATOR AND STORAGE UNIT

To develop our robust solution, we first study the interaction
within a pair of components: a generator g and an energy
storage unit s. In this section, we assume that the two com-
ponents locate at the same bus. Thus, we omit the subscript
b and denote the net-demand as D(t). However, subscripts g
and s are retained for clarity. Notice that, in this case, the
safe-dispatch set consists of a set of 2-tuples (Pg(t), Qs(t)).
We note that in our previous work [14], we study a case of
a fast generator paired with a slow generator. However, in
[14] it is sufficient to record the output power of the slow
generator in the safe-dispatch set, and thus the set becomes
one dimensional. Unfortunately, the simple one dimensional
set cannot serve the purposes in our case. Therefore, we must
develop the characterization for the safe-dispatch set, despite
the new difficulties involved with two dimensional space. In
the remaining section, we fix t and D(1:t).

A. Necessary Conditions for F(D(1:t), Qs(t−1))̸=∅
Given the storage capacity Qs, we first derive necessary

conditions for non-empty safe-dispatch set. Notice that, given
D(t) and Qs(t−1), because Pg(t) +Φs(t) = D(t) must hold
at time t, Pg(t) uniquely determines V (t) = (Pg(t), Qs(t)).
Thus, for the purpose of characterizing F(D(1:t), Qs(t−1)),
we can focus on the conditions for Pg(t) in terms of Qs(t−1).
Suppose that the generator’s output power at time t is Pg(t).
Due to the limited ramp rate Rg , at t′ ≥ t, Pg(t

′) can be
bounded by P eff

g (t′) ≤ Pg(t
′) ≤ P

eff

g (t′), where

P
eff

g (t′) = min{Pg(t) + (t′ − t)Rg, P
max
g }, (11)

P eff
g (t′) = max{Pg(t)− (t′ − t)Rg, P

min
g }. (12)

Further, to balance demand at t′, we must have

P
eff

g (t′) + Φs(t
′) ≥ max

D(t′)∈Dt
t′

D(t′), (13)

P eff
g (t′) + Φs(t

′) ≤ min
D(t′)∈Dt

t′

D(t′). (14)
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(a) (b) (c)

Fig. 1. (a) Given the generator’s output Pg(t), the least amount of required energy from the storage unit is represented by the blue area.
(b) An outline of the safe-dispatch set under constraints (16) and (17). (Each dotted line corresponds to (16) for some t′ ≥ t.)
(c) An illustration of the storage size needed for meeting the fastest demand changes. Demand upper and lower bounds are of slopes β and −β, respectively.

Notice that from (6), regardless of the sign of Φs(τ), we
always have Qs(τ−1) − Qs(τ) ≥ Φs(τ). Taking the tele-
scopic sum of the upper bound of (13) for τ from t to
t′, since P

eff

g (τ) + Qs(τ−1)−Qs(τ) ≥ P
eff

g (τ)+Φs(τ) ≥
maxD(τ)∈Dt

τ
D(τ), we have

t′∑
τ=t

P
eff

g (τ) +
[
Qs(t−1)−Qs(t

′)
]
≥

t′∑
τ=t

max
D(τ)∈Dt

τ

D(τ). (15)

As Qs(t
′) ∈ [0, Qs], we must have, ∀t′ ≥ t,

Qs(t−1) ≥
t′∑

τ=t

(
max

D(τ)∈Dt
τ

D(τ)− [Pg(t)+ (τ − t)Rg]
)
. (16)

This condition can be illustrated in Fig. 1a, where D(t)
increases with rate ∆ before reaching the net-demand upper
bound Dmax(t′), and Pg(t) tries to catch up the demand as fast
as possible. In this case, the required storage level Qs(t−1)
can be lowered bounded by the blue area between these two
lines. Note that (16) for each t′ is a linear constraint in terms
of (Pg(t), Qs(t−1)) (see dotted lines in shaded region in Fig.
1b). Thus, combining (16) for all t′ leads to a convex constraint
(see the lower blue solid curve in Fig. 1b). The blue solid curve
represents the collection of system states where the storage
unit has just enough energy to support the fastest increasing
demand. Similarly, from (14) we must have:

Qs(t−1) ≤ Qs+θs

t′∑
τ=t

(
min

D(τ)∈Dt
τ

D(τ)−[Pg(t)−(τ−t)Rg]
)
.

(17)
The upper red solid curve in Fig. 1b is obtained by taking
intersection of (17) over all t′ ≥ t. We then combine (16) and
(17) to produce a convex outer bound of the safe-dispatch set
(see Fig.1b), which is termed “leaf-region” at time t given
D(t). Rearranging (16) and (17), we get: ∀t1, t2 ≥ t,

ξmin
t1 (D(1:t), Qs(t−1)) ≤ Pg(t) ≤ ξmax

t2 (D(1:t), Qs(t−1)),
(18)

where

ξmin
t1 (D(1:t), Qs(t−1))

=
1

t1−t+1

( t1∑
τ=t

[ max
D(τ)∈Dt

τ

D(τ)− (τ − t)Rg]−Qs(t−1)
)
,

(19)

ξmax
t2 (D(1:t), Qs(t−1)) =

1

t2−t+1

( 1

θs

[
Qs −Qs(t−1)

]
+

t2∑
τ=t

[
min

D(τ)∈Dt
τ

D(τ) + (τ − t)Rg

])
. (20)

For example, points A and B in Fig. 1b correspond to
maxt1≥t ξ

min
t1 (D(1:t), Qs) and mint2≥t ξ

max
t2 (D(1:t), Qs),

respectively. Thus, a necessary condition for
F(D(1:t), Qs(t−1))̸=∅ is that

max
t1≥t

ξmin
t1 (D(1:t), Q(t−1)) ≤ min

t2≥t
ξmax
t2 (D(1:t), Q(t−1)).

Similarly, the safe-dispatch set needs to be constrained by
the storage’s power limit Φs. Specifically, using |Φ(t′)| ≤ Φs

in (13) and (14), we get, for all t1, t2 ≥ t,

Pg(t) + (t1 − t)Rg +Φs ≥ max
D(t1)∈Dt

t1

D(t1), (21)

Pg(t)− (t2 − t)Rg − Φs ≤ min
D(t2)∈Dt

t2

D(t2). (22)

Thus, we have

max
t1≥t

γmin
t1 (D(1:t)) ≤ Pg(t) ≤ min

t2≥t
γmax
t2 (D(1:t)), (23)

where

γmin
t1 (D(1:t)) = max

D(t1)∈Dt
t1

D(t1)− (t1 − t)Rg − Φs,

γmax
t2 (D(1:t)) = min

D(t2)∈Dt
t2

D(t2) + (t2 − t)Rg +Φs.

A necessary condition for F(D(1:t), Qs(t−1))̸=∅ is then
maxt1≥t γ

min
t1 (D(1:t)) ≤ mint2≥t γ

max
t2 (D(1:t)). Note that

the safe-dispatch set is trimmed again by this condition (see
the vertical dashed lines in Fig. 1b). Hence, the remaining
part of the leaf-region between these two vertical dashed lines
would be referred as the “cropped leaf-region” (CLR) at time
t given D(t).

Now, we can derive important necessary conditions on the
required storage capacity for grid reliability. Here, we study a
special uncertainty set with linear and symmetric net-demand
upper and lower bounds. As shown in Fig.1c, Dmax(·) and
Dmin(·) are straight lines with slope β ≥ 0 and −β ≤ 0,
respectively. For a long planning horizon, we present a lemma
for the lower bound on the required storage capacity to achieve
grid reliability as follows.
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Lemma 4 (Minimum Storage Size). Suppose that the de-
mand upper/lower bounds are linear and symmetric. For
any ϵ > 0, ∃T0 such that, for all T ≥ t+T0, to ensure
F(D(1:t), Qs(t−1))̸=∅ for some Qs(t−1), the storage size
Qs and power limit Φs must satisfy

Qs ≥
Gap(t)2

2

( 1

Rg − β
− 1

∆− β

)
− ϵ, (24)

Φs ≥ Gap(t)
∆−Rg

∆− β
− ϵ, (25)

respectively, where Gap(t) = Dmax(t)−Dmin(t).

Note that the small reduction ϵ in (24) and (25) reflects
the fact that the storage requirement can be lower if the time
horizon T is short (because the shaded triangle in Fig 1c is
cut short). This ϵ will approach zero when the time horizon T
is long. Also, notice that Qs and Φs are both inversely related
to Rg . This is consistent with the intuition that a less flexible
generator needs to pair with a more powerful storage unit to
guarantee the robustness of the system.

We briefly sketch the idea of the proof. Suppose that
the current net-demand is D(t)=Dmin(t). We can show that
there must exist some (Pg(t), Qs(t)) ∈ F(D(1:t), Qs(t−1))
such that Pg(t) ≤ Dmin(t). Otherwise, we can show
that, if D(t′)=Dmin(t) for all t′≥t, all decision points
in future safe-dispatch set F(D(1:t′), Qs(t

′−1)) must also
satisfy Pg(t

′)>D(t′), which implies that the storage is
always in charging state. However, this contradicts to
F(D(1:t), Qs(t−1)) ̸=∅ since the storage’s capacity limit
would eventually be violated as T→∞ and Pg(t

′) > D(t′).
Now, suppose the future net-demand increases at the fastest
rate ∆ until it reaches its upper bound (see Fig. 1c). Since
Pg(t

′) ≤ Dmin(t′), a lower bound for Qs is given by the
shaded blue area, i.e., the right-hand side of (24). Further, the
length of the vertical line in Fig. 1c gives a lower bound of
(25) for Φs. Note that these conditions are independent of θs.
The reason is that when we perform a similar analysis for
charging, it will always require a smaller storage size. (See
details in technical report [18].)

B. Sufficient Conditions for F(D(1:t), Qs(t−1))̸=∅
According to the analysis in Section III-A, for

F(D(1:t), Qs(t−1))̸=∅ to hold, given D(t), it is necessary
that the CLR in Fig. 1b must be non-empty. In other words,
there exists some Qs(t−1) ∈ [0, Qs] that intersects the CLR
horizontally, i.e., h(D(1:t), Qs(t−1)) ̸= ∅ for some Qs(t−1),
where

h(D(1:t), Qs(t−1)) =[
max

{
max
t1≥t

ξmin
t1 (D(1:t), Qs(t−1)),max

t1≥t
γmin
t1 (D(1:t))

}
,

min
{
min
t2≥t

ξmax
t2 (D(1:t), Qs(t−1)),min

t2≥t
γmax
t2 (D(1:t))

}]
.

(26)

However, this condition does not imply that
F(D(1:t′), Qs(t

′−1)) ̸= ∅ at a future time t′ > t because
the value of Qs(t

′−1) cannot be arbitrarily chosen. In other
words, it is possible that the cropped leaf region at t′ does
not intersect with Qs(t

′−1), which is determined by the

decisions Q(t1), t1 = t, . . . , t′−1 (cf. (6) and (7)). Note that,
in [14], we showed that similar conditions are both necessary
and sufficient, thanks to the simplicity of one-dimensional
safe-dispatch set. In sharp contrast, here the property no
longer holds due to the complexity from two-dimensional set
(26). In particular, the set (26) involves much more complex
dependency between decision variables across stages. As a
key contribution of this work, we introduce the following
geometric property of the CLR (termed flat-top/flat-bottom
property). The property effectively breaks the dependency
across stages, and thus helps to develop simpler sufficient
conditions of reliability.

Definition 5 (Flat-top/Flat-bottom). A non-empty “CLR”
given by conditions (16)-(17) and (21)-(22) is “flat-top” if the
horizontal line Qs(t−1) = Qs intersects the “leaf-region”, i.e.,
(26) holds with Qs(t−1) = Qs. Similarly, it is “flat-bottom”
if the horizontal line Qs(t−1) = 0 intersects the “leaf-region”,
i.e., (26) holds with Qs(t−1) = 0.

An example of a “flat-top” and “flat-bottom” CLR is
shown in Fig. 1b. Thanks to the convexity of the “leaf-
region”, the “flat-top/flat-bottom” property implies that, for
any Qs(t−1) ∈ [0, Qs], there must exists a non-empty set of
decisions for Pg(t). Thus, the above-mentioned difficulty due
to the coupling between Qs(t−1) and Pg(t−1) is avoided.
The following theorem is the first main result of our work,
which shows that this property is sufficient for reliability.

Theorem 6. Given D(1:t), if, for all t′ ≥ t and every
D(t′) ∈ Dt

t′ , the “cropped leaf-regions” are both “flat-top”
and “flat-bottom”, there must exist a causal and robust real-
time dispatch algorithm π. Further, π may choose any dispatch
decision (Pg(t), Qs(t)) from the following set

F ′ = {(Pg(t), Qs(t))
∣∣Pg(t) ∈ h(D(1:t), Qs(t−1)),

Qs(t) = Pg(t) +Qs(t−1)−D(t)}, (27)

where h(D(1:t), Q(t−1)) is the interval as described in (26).

Sketch of Proof. The flat-top/flat-bottom property implies that
the set h(D(1:t), Qs(t−1)), and thus F ′s must be non-empty.
Suppose that we choose (Pg(t), Qs(t)) ∈ F ′. The equality
Qs(t) = Pg(t)+Qs(t−1)−D(t) ensures that the net-demand
D(t) at time t can be balanced by (Pg(t), Qs(t)). We next
show the reliability for all future t′ > t by constructing
a causal real-time dispatch algorithm π that is robust given
D(1:t). Algorithm π essentially picks a dispatch level from
the interval h(D(1 : t′), Qs(t

′ − 1)), while satisfying the
generator’s ramping constraint from Pg(t

′ − 1). See our
technical report [18] for detailed proof for the sufficiency of
the algorithm.

Remark: We note that Theorem 6 is crucial for the rest
of the analysis in this section because it successfully breaks
the coupling between time t and t−1. Instead of keeping
track of previous decisions to ensure F(D(1:t), Qs(t−1))̸=∅,
it is now sufficient to verify the CLR at time t, which
tremendously simplifies the analysis. Note that only a minor
loss of optimality occurs in such decoupling, since the derived
sufficient conditions are tight in some cases.
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Despite the significance of Theorem 6, checking the the
flat-top/flat-bottom property for every value of D(t′) can still
be tedious. To develop more efficient approaches, we again
focus on the special case with linear and symmetric net-
demand bounds (see Lemma 4 and Fig. 1c). The following
theorem shows that the flat-top/flat-bottom property can indeed
be verified in a simple way.

Theorem 7. Given the uncertainty set D with symmetric
bounds (parameterized by β), the “cropped leaf-region” at
time t for every D(t) is “flat-top” and “flat-bottom” if the
storage size Qs and power limit Φs satisfy the following:
Qs ≥

Gap(t)2

2

(
1

Rg−β − 1
∆−β

)
and Φs ≥ Gap(t)

∆−Rg

∆−β .

Proof. See Appendix A.

Note that we do not mean to use the result of Theorem 7
to size generators or storage units in any long-term planning
stage. Rather, the result becomes a building block later for
the general multi-bus case, where demand will be split among
virtual generator-storage pairs with varied capacity.

Next, we extend the result of Theorem 7 to the general cases
with arbitrary upper and lower bounds. Note that the minimum
requirement for Qs and Φs may not happen at the two extreme
scenarios when the net-demand realization is equal to its up-
per/lower bound. Note that although Theorem 7 is based on the
same β for the upper and lower bounds of the uncertainty, we
can apply the result to more general uncertainty sets by finding
an outer approximation set with linear and symmetric bounds
(parameterized by β) that contains the original uncertainty set.
Specifically, at time t, we find the value of β as follows:
consider a time-dependent β(t) such that

β(t)
∆
= max{βu(t), βl(t)}, (28)

where βu(t) = max
{
maxt′>t

Dmax(t′)−Dmax(t)
t′−t , 0

}
and

−βl(t) = min
{
mint′>t

Dmin(t′)−Dmin(t)
t′−t , 0

}
. Plugging β(t)

and Gap(t) into (24) and (25), and taking a maximum over
all time t, we obtain the following sufficient conditions for the
storage size and power limit for the general case:

Qs = max
t

{Gap(t)2

2

( 1

Rg − β(t)
− 1

∆− β(t)

)}
, (29)

Φs = max
t

{
Gap(t)

∆−Rg

∆− β(t)

}
. (30)

C. Discussion & Comparison with Prior Work

From Theorem 7 and Lemma 4, it is not hard to find that
our conditions for the safe-dispatch set are quite accurate.
In fact, for the cases with constant net-demand bounds (i.e.,
β=0) and very long planning horizons T→∞, the condi-
tions in Theorem 7 are both sufficient and necessary for
F(D(1:t), Qs(t−1)) ̸=∅. To the best of our knowledge, for
the first time in the literature, the required storage capacity
for reliable grid operations under multistage uncertainty is
precisely characterized. The intuitions are as follows. Suppose
we take away the storage to leave the generator g only. Then,
generator g’s ramp speed must satisfy Rg ≥ ∆. The extra
storage s enables a generator with Rg<∆, at the “price”
of meeting the minimum storage requirements specified in

Theorem 7. More specifically, the required storage capacity
Qs increases with ∆ and decreases with Rg . If Φs is large,
as ∆ approaches infinity, the storage capacity Qs approaches
Gap(t)2

2(Rg−β) < ∞. Therefore, these results illustrate novel insights
for operating energy storage in future power grid under high
renewable uncertainty.

Another highlight for the conditions in Theorem 7 is that
they are independent of the time horizon T . Recall from
the example in Section II-D, if we do not allow renewable
curtailment, affine policies in [9] may require storage capacity
to increase linearly in T . Our proposed conditions overcome
the drawbacks in [9] because we successfully exploit the com-
plementary capabilities of the generator and the storage, which
leads to much more efficient storage utilization compared to
[9]. We will verify these statements later in the simulation
results in Section V.

IV. THE MULTI-BUS SCENARIO

Next, we study the reliability assessment and real-time
dispatch for general power systems with multiple buses. In
this case, deriving the exact F(D(1:t), Qs(t−1)) becomes in-
tractable because of high dimensionality. However, we can still
manage to obtain a subset of the exact F(D(1:t), Qs(t−1))
for general power systems. The idea is similar to the demand
splitting in [14], where a fraction of the total net-demand
uncertainty was sent to each resource group (i.e., a pair of
generator and storage in our case) based on pre-calculated
splitting factors. Therefore, to fully exploit the benefit of
generator-storage pairing, we implement the following: 1)
Each storage unit is split into multiple virtual storage units
(of potentially different sizes); 2) We form VGSPs by pairing
the virtual storage units with generators; 3) Once the pairing
is done, we can send the future net-demand uncertainty to
every VGSP, and check the resource adequacy for each VGSP
separately using our results developed in Sec. III.

We note that similar pairing ideas have been used in [14]
to create virtual pairs of fast and slow generators. Compared
to generator pairing, however, the setting of generator-storage
pairing is significantly more challenging due to: (i) a new
state-inconsistency issue when the storage has efficiency loss
(Sec. IV-A) and (ii) the difficult in ensuring transmission
limits when the storage and generator are on different buses
(Sec. IV-C). Next, we first describe the elements of the VGSP
idea, and then explain how we address these two challenges.

A. Creating VGSPs

For each physical generator g, we create Ns virtual genera-
tors, one for each storage unit s, s = 1, . . . , Ns. We index each
of these virtual generators by (g, s), with the corresponding
maximum power P vmax

(g,s) , minimum power P vmin
(g,s) and ramp limit

Rv
(g,s). Similarly, each storage unit s is divided into Ng virtual

storage units, with corresponding capacity limit Qvmax
(g,s) and

power limit Φ
v
(g,s), each of which is then paired with a virtual

generator to form a VGSP (g, s).
Next, we specify the conditions for such splitting to be feasi-

ble. Similar to [14], the total capability of the virtual generator
or storage units must be consistent with the corresponding
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physical units. However, here we face a new difficulty due to
the use of storage. In contrast to the case θ = 1 in [15],
when θ < 1, discrepancy may occur when combining the
charging and discharging decisions across the virtual storage
units into a single decision on the physical storage unit. To
see this, suppose that a physical storage s is divided into two
virtual units s1 and s2. Since each VGSP is first independently
dispatched to meet a given fraction of the uncertain demand,
it is possible that Φs1(t) = −Φs2(t) > 0, i.e., the dispatch
decision is to charge virtual storage s2 and discharge s1 by the
same amount. Obviously, to obtain a decision for dispatching
the physical storage, the central controller (i.e., ISO) should
combine these two opposite decisions, e.g., by dispatching the
total power Φs1(t)+Φs2(t) = 0. Now, if we want to maintain
the same physical storage state, then the physical storage
should be discharged. However, this is then inconsistent with
the dispatch power Φs1(t) + Φs2(t) = 0.

Below, we develop Lemma 8 to address the sub-optimality
in terms of reliability. Note that in the above example, if
we could use another generator to provide a negative power
of −Φs1(t) − θsΦs2(t), then both the storage state and the
dispatch power can be viewed as consistent across physical
and virtual storage. Therefore, our idea is to set aside some
ramp-down capabilities of generators as reserves to provide
such negative power. The following lemma gives an upper
bound on the largest magnitude of the negative power that
needs to be provided.

Lemma 8. Suppose a physical storage unit s (parameter-
ized by [Qs(t),Φs,Φs(t), θs]) is divided into K virtual units
{[Qi(t),Φi(t),Φi, θs], i ∈ [1:K]}. To maintain both the dis-
patch power and the total energy level of all virtual storage
units to be consistent with Qs(t), the amount of additional
discharge of the physical storage, ∆O(t), satisfies

0 ≤ ∆O(t) ≤ (1/θs − 1)Φs/2, at any time t.

Note that this additional ramp resource to produce ∆O is zero
if θs = 1, but is positive if θs < 1.

Proof. See details in Appendix B.

Using Lemma 8, we can now state the precise conditions
for generator splitting (31)-(36) and storage splitting (37)-
(38) to be feasible. Notice that a reserved amount of ramp-
down rate

∑
s∈S r(g,s) is taken from each generator g in (36)

to compensate for the potential inconsistency discussed in
Lemma 8. The parameters for virtual generators must satisfy
the following.∑

s∈S
P vmax
(g,s)(t

′) = Pmax
g ,∀g ∈ G,∀t′ ≥ t (31)∑

s∈S
[P vmin

(g,s)(t
′)− r(g,s)(t

′)] = Pmin
g ,∀g ∈ G,∀t′ ≥ t (32)∑

s∈S
[Rv

(g,s)(t
′) + r(g,s)(t

′)] = Rg,∀g ∈ G,∀t′ ≥ t (33)

0 ≤ P vmin
(g,s)(t

′) ≤ P vmax
(g,s)(t

′), ∀(g, s) ∈ G × S,∀t′ ≥ t (34)

Rv
(g,s)(t

′) ≥ 0, r(g,s)(t
′) ≥ 0, ∀(g, s) ∈ G × S,∀t′ (35)∑

g∈G
r(g,s)(t

′) ≥ (1/θs − 1)Φs/2, ∀s ∈ S,∀t′ ≥ t (36)∑
g∈G

Qvmax
(g,s)(t

′) = Qs, ∀s ∈ S,∀t′ ≥ t (37)

∑
g∈G

Φ
v
(g,s)(t

′) = Φs, ∀s ∈ S,∀t′ ≥ t (38)

B. Demand Splitting for VGSPs

Next, we specify the demand splitting procedure to send
fractions of the future uncertainty to the VGSPs. For
the net-demand, we define its main part as Dmain

b (t0) =
(max{Db(t0)} + min{Db(t0)})/2. There is a decision
Pmain
(g,s) (t

′) for each VGSP (g, s) that balances the sum of the
main part of net-demand, i.e.,∑

b∈B
Dmain

b (t′) =
∑

(g,s)∈G×S
Pmain
(g,s) (t

′),∀t′ ≥ t (39)

Define the splitting factors ηb,(g,s) that satisfy∑
(g,s)∈G×S

ηb,(g,s) = 1, ∀b ∈ B (40)

For the remaining uncertain demand (Db(t0)−Dmain
b (t0)), we

use affine splitting according to ηb,(g,s), such that

Dv
(g,s)(t

′) = Pmain
(g,s)(t

′)+
∑

b∈B
ηb,(g,s)(Db(t

′)−Dmain
b (t′)),

∀t′ ≥ t,∀(g, s) ∈ G×S. (41)

Dv
(g,s)(t

′) is then the total demand that is sent to VGSP (g, s).

C. Transmission-line Limit Constraints

The above demand splitting onto VGSPs must satisfy the
line limit constraints (8). In contrast to generator-only case in
[14], here we face a new difficulty as the physical generator
and the storage forming the same VGSP may locate at different
buses. As a result, different ratios of power splitting between
them will also change the power flows on transmission lines.
However, when we form the VGSP, we do not know how
power will be split between the virtual generator and virtual
storage in the future. To address this difficulty, we introduce
the following lemma such that, regardless of the power split-
tings between the virtual generator and storage within the same
VGSP, at any time t the line-limit constraints will always hold.

Lemma 9. For transmission line l, denote the power flow
through l at time t as fl(t). Then, regardless of how power
is split between the virtual generator and the virtual storage
within the same VGSP, the transmission constraint fl(t

′) ≤
TLl holds if∣∣∣∣∣∣
∑
b∈B

Sl,b

(
Db(t

′)−
∑

(g,s):g∈Gb

Dv
(g,s)(t

′)

)∣∣∣∣∣∣+ |αg,s| ≤ TLl,

(42)
where αg,s =

∑
(g,s)

∣∣∣Sl,B(g)−Sl,B(s)

∣∣∣Φv
(g,s), and B(·) returns

the bus index where the generator or storage unit locates.

Proof. A sketch of the proof is available in Appendix C.

In Lemma 9, the variable αg,s corresponds to an upper
bound on the maximum power change on line l due to
the unknown power splitting between the virtual generator
and virtual storage. Based on Lemma 9, we only need to
ensure that the line limit is met for each possible value of
Db(t

′) ∈ Dt′

[1:t] and Dv
(g,s)(t

′) according to (41), ∀t′ ≥ t.
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D. Non-empty Safe Dispatch Set

So far we have specified the conditions to split uncertain
demand onto VGSPs. In addition, we need to ensure that
the parameters of VGSP (g, s) and the uncertain net-demand
Dv

(g,s)(t
′) in (41) produces a non-empty safe-dispatch set

(recall from Sec. III-B):

{P vmax
(g,s) , P

vmin
(g,s), R

v
(g,s), Q

vmax
(g,s),Φ

v
(g,s), P

main
(g,s)(t

′), η⃗} satisfy

(16)-(17),(21)-(22),(29)-(30), ∀ (g, s) ∈ G × S (43)

Let Z(t) = {P vmax
(g,s) , P

vmin
(g,s), R

v
(g,s), Q

vmax
(g,s),Φ

v
(g,s), Q

v
(g,s)(t −

1), ηb,(g,s), P
main
g,s (t′), Pg(t),∀t′ ≥ t,∀g ∈ G,∀s ∈ S,∀b ∈ B}

denote the set of all decision variables at time t. Finally, the
decision variables of the virtual generators and virtual storage
units must be mapped back to the physical units to produce
a safe dispatch decision (P(t),Q(t)) for time t according to
the following.(

P v
(g,s)(t), Q

v
(g,s)(t)

)
∈ FZ(t)

(g,s)

(
D(1:t), Qv

(g,s)(t− 1)
)
,∀(g, s)

(44)∑
g∈Gb

Pg(t) =
∑

(g,s):g∈Gb

[P v
(g,s)(t)− r(g,s)(t)], ∀b ∈ B

(45)∑
(g,s):g∈G

Qv
g,s(t

′) = Qs(t
′), t′ = t− 1, t,∀s ∈ S (46)∑

b∈B

Db(t) =
∑
g∈G

Pg(t) +
∑
s∈S

[Qs(t− 1)−Qs(t)] (47)

r(g,s)(t) ≤ r(g,s)(t), ∀(g, s) ∈ G × S (48)

−Φs ≤ Qs(t− 1)−Qs(t) ≤ Φs, if t ≥ 2, ∀s ∈ S (49)
|Pg(t)− Pg(t− 1)| ≤ Rg, only if t ≥ 2,∀g ∈ G. (50)

Remark. Note that the pre-computed splitting factors ηb,(g,s)’s
are only used to compute the decisions at time t. In the future,
they can be recomputed to allow for correction when future
uncertainty is revealed.

E. Real-time Dispatch and Reliability Assessment

As we mentioned before, RA and real-time dispatch prob-
lems are closely related. For ease of exposition, we first go
straight to the real-time dispatch and formulate the following
optimization problem.

minimize
Z(t)

Cost(P(t)) (51a)

subject to Constraints (31)-(50). (51b)

Note that the optimal solution Z∗(t) of (51) determines
the demand splitting among VGSPs and how physical gen-
erator/storage units are divided into virtual ones. While (51)
focuses on real-time dispatch, similar expressions can be
obtained for RA or for the safe-dispatch subset, i.e.,

FVGSP(D(1:t)) = {[P(t),Q(t)]|The parameter set Z(t) exists
such that (31)-(48) holds}. (52)

The RA part can be similarly formulated as a minimization
problem with any trivial objective function, subject to con-
straints (31)-(43) with the original uncertainty set D for entire
T [14]. If a finite value is obtained from the minimization

problem, then FVGSP(D(1:t)) must be non-empty for every t,
i.e., the system passes the RA check.

V. SIMULATION RESULTS

Next, we simulate our proposed multistage dispatch algo-
rithm using MATLAB. Specifically, we cover two cases: 1) a
generator-storage pair, and 2) a standard IEEE 30-bus power
system [19] with a fleet of generators and storage. Since
system reliability is our top concern, we compare our proposed
algorithm with state-of-the-art robust affine policy [9].

A. A Generator + A Storage Unit on the Same Bus

First, we simulate a setting where a generator and an energy
storage unit locate on same bus, in order to demonstrate that
our proposed VGSP algorithm utilizes energy storage more
efficiently compared to the affine policy in [9]. As mentioned
earlier, curtailing renewable generation is both wasteful and
costly, even though it may be used to improve the system
reliability [9]. Thus, for the sake of algorithm comparison,
renewable curtailment is not allowed in the simulation. Then,
we evaluate the minimum required storage capacity for grid
reliability under our proposed VGSP algorithm and compare
with [9]. The data traces of load (Fig. 2a) and wind (Fig. 2b-
2c) are obtained from Elia, the operator of transmission system
in Belgium [16], with a scaling factor of 2. In practice, com-
pared to renewable availability, load data is easier to predict
at the ISO level. Hence, we adopt the common assumption in
the literature that the load prediction is accurate at during the
operation [9], i.e., the wind variability is the only source of net-
demand uncertainty. We model the uncertainty set according
to (1) and (2), and compute the related parameters using
Elia’s day-ahead prediction. In particular, we show the wind
uncertainty bounds and variations in Fig. 2b and Fig. 2c,
respectively. The generator can generate power (MW) in
[2000, 8000], with ramp rate 300MW/15min. Fig. 2d show the
minimum required storage capacity to ensure grid reliability
for different lengths of planning time. Clearly, the affine policy
needs a significantly larger storage capacity as the operation
horizon increases, while the required storage capacity for
VGSP-RA only differs slightly. This observation aligns with
our earlier discussion in Section III-C that sending a constant
fraction of uncertainty to the storage can be inefficient. Instead,
a better way to utilize storage is to pair it with generators.

B. IEEE 30-bus Test Case

Next, we test our algorithm on a standard IEEE 30-bus test
case with 41 transmission lines [19]. We simulate our VGSP
algorithm and state-of-the-art robust algorithm [9] based on
AARO, and compare their performance. There are nineteen
conventional generators, one wind farm (Bus 3), one pumped
hydro energy storage unit (ES) with 90% charging efficiency,
two loads (Bus 2 and 3) in the system. The conventional
generators have 4 different types. The detailed specifications
and location information of generators and ES are included in
Table I. (See more details in [18].) We consider that ISO sends
a dispatch decision every 15 min in real-time dispatching.
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Fig. 2. (a)-(c) experimental data for load and wind uncertainty; (d) Simulation results for Sec. V-A.

Table I. Types of Generators and Energy Storage

Type Power Limit Ramp Rate Energy Price Location
A 300-1100MW 20MW/15min $40/MWh 1
B 210-300MW 10MW/15min $32/MWh 2,13,22
C 190-450MW 30MW/15min $60/MWh 13,22,23
D 0-100MW 60MW/15min $100/MWh 1,2,22,23,27

Capacity Power Limit Efficiency Location
ES 750MWh 1000MW 90% 5

Table II. RA Decisions and Real-Time Generation Cost

Wind Scale 1 2 3 3.5 4
VGSP-RA safe safe safe safe safe
Affine-RA safe safe safe safe not safe

VGSP-ED($) 746,096 608,088 498,233 451,391 414,932
Affine-ED1($) 762,050 644,047 555,982 504,392 Inf

Savings 2.09% 5.58% 10.39% 10.51% Inf
Affine-Curtail 767,802 662,426 587,876 549,724 509,903

Savings 2.83% 8.20% 15.25% 17.89% 18.63%

Again, we use Elia’s load data and wind data in Fig. 2a-2c
(over 3 hours, i.e, 12 slots). As shown in Fig. 2a, the loads
at Bus 2 and Bus 3 are the same (total load about 7200MW).
For renewable generation, the wind data for the same period
of time is fed onto Bus 3. To admit some feasible solutions for
both VGSP algorithm and affine policy [9] under the above
data scale, we multiply transmission line limits from MAT-
POWER’s IEEE 30-bus case file by 70× [20]. In Table II, we
show the experimental results for RA and real-time dispatching
under our proposed VGSP algorithm and the affine policy in
[9]. We split into two cases depending on whether renewable
curtailment is allowed. When the curtailment is prohibited,
Row 2 and 3 in Table II show that, under the same set of
resources, our proposed VGSP algorithm can guarantee grid
safety up to a wind uncertainty scale of 4, while the affine
policy fails beyond a wind scale of 3.5. This result justifies
our discussion in Section III-C, thanks to the larger safe
dispatch set by the VGSP algorithm over the affine policy.
Next, we show that even at the wind scales lower than 3.5,
such a higher level of safety assurance by VGSP algorithm
can be translated to better economy gains. Indeed, Row 4-
6 of Table II show that our proposed VGSP-ED algorithm
always achieves lower fuel costs as compared to the affine
policy with no wind curtailment (Affine-ED1). Further, we
observe that the cost saving percentage increases from 2.09%
to 10.51% as the wind uncertainty scale increases from 1 to

3.5. This is partly due to the fact that the day-ahead decisions
can unnecessarily restrict the real-time dispatching in [9].
Specifically, the “policy-guided robust ED” decisions in [9] try
to “follow” the worst-case trajectory identified by day-ahead
RA, while VGSP algorithm does not have such restriction [14].
Finally, when renewable curtailment is allowed, [9] may safely
operate at higher wind uncertainty level, but at the cost of
significant renewable curtailment. To see this, we simulate the
affine policy with possible wind curtailment (Affine-Curtail)
in the last two rows in Table II. While Affine-Curtail can
guarantee grid safety up to a wind scale of 4, its fuel costs are
higher than both Affine-ED1 and VGSP-ED. This is because
curtailment simply wastes “free” renewable energy. At a wind
scale of 4, the saving of our VGSP-ED algorithm over Affine-
Curtail is significant (18.63%).

C. Computational Complexity
Next, we show run-time results of our proposed solution. We

run the simulations using MATLAB/CVX with Mosek solver
on a MacBook with Intel Core i5 @ 2.3 GHz, 16GB Memory.
To gain insight on the scalability of the proposed approach, we
run our proposed VGSP-RA on an IEEE 118-bus test system
with 54 generators. The running time for the 118-bus system is
about 84s, while that for an 30-bus system with 19 generators
is 18s (see further results in our technical report [18]).

VI. CONCLUSION

This work studies robust multistage decisions for operating
both generators and energy storage to ensure grid reliability
under significant renewable uncertainty. Following a divide-
and-conquer paradigm, we first focus on a pair of generator
and storage, and derive a very accurate characterization for
the safe-dispatch set under multistage uncertainty. Then, by
combining the ideas of VGSP pairing and demand splitting,
we utilize the above results to develop an efficient robust
algorithm for general multi-bus systems. The numerical results
show that our proposed solution outperforms state-of-the-art
affine policy in [9] in terms of reliability and economy. For
future work, we will extend the approach to incorporate unit
commitment and possible renewable curtailment.
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We can prove the theorem in the following two steps: 1)
The uncropped “leaf-regions” given by (19) and (20) (i.e.,
without the power limits) for every D(t) is both flat-top and
flat-bottom; 2) The “cropped leaf-region” induced by power
limits (21) and (22) will retain the flat-top/flat-bottom property.
Due to space limit, we only show Step 1, which is precisely
the result of Lemma 10 below. Step 2 can be shown similarly.

Lemma 10. Given the uncertainty set D with symmetric
bounds (parameterized by β), the uncropped “leaf-region” for
every D(t) (without considering power limits) is “flat-top”
and “flat-bottom” if the storage size satisfies

Qs ≥
Gap(t)2

2

( 1

Rg − β
− 1

∆− β

)
. (53)

.

Proof. We mainly focus on the proof of the “flat-top” part,
as the proof of the “flat-bottom” part is similar. As shown
in Fig. 3, suppose that the bounds of net-demand Dmax(·)
and Dmin(·) are changing at rate β and −β, respectively.
Suppose that the net-demand is D(t) at time t. Point PA

in Fig. 3 corresponds to the generator’s lowest power that
satisfies (16) with Qs(t−1) = Qs, i.e., the shaded area
between blue upward dotted line and red upward dash line
is Qs. Similarly, Point PB is the generator’s highest power
that satisfies (17) with Qs(t−1) = Qs. The flat-top property
in Fig. 1b thus corresponds to PB ≥ PA. In order to prove
that PB ≥ PA for all D(t), we break into the following
two steps: (i) Prove PB ≥ PA for D(t) = Dmin(t); (ii)
Noting that both PA and PB increase with D(t), prove that
∂PB

∂D(t) ≥ ∂PA

∂D(t) . We first show Step (i). If D(t) = Dmin(t),
then PB = D(t) since the orange triangles are simply empty.
If PA ≥ D(t) = Dmin(t) = PB , the area of the blue region
would be at most Gap(t)2

2(Rg−β) −
Gap(t)2

2(∆−β) . By (53), this area cannot
be equal to Qs. Thus, PA must be the same as or below PB ,
i.e., PB ≥ PA.

The next proof of (ii) is the key component of the lemma.
Suppose that D(t) = D ∈ [Dmin(t), Dmax(t)]. We first look
at the rate of change dPA

dD . In Fig. 3, PA corresponds to the
area of blue shaded region being equal to Qs, i.e.

1

2

(Dmax − PA)
2

Rg − β
=

1

2

(Dmax −D)
2

∆− β
+Qs. (54)

This equation defines an implicit function between PA and D.
To get the rate of change on PA w.r.t. D, we can differentiate
both sides of (54)

dPA

dD
=

Dmax −D

Dmax − PA

Rg − β

∆− β
≤ Rg − β

∆− β
, (55)

where the last inequality comes from the fact that PA ≤ D,
and thus Dmax−D

Dmax−PA
≤ 1. Next, we derive the derivative of

PB in similar way. As shown in Fig. 3, the interpretation
of PB is the generator’s highest power such that the storage
does not require any charging room for the future decreasing
demand. That is to say, assuming θs ≤ 1, the area S(∆2) of
the triangle on the bottom-right (i.e., charging part) must be
equal to 1/θs times the area S(∆1) of the triangle on the left
(i.e., discharging part), i.e., S(∆1) = θsS(∆2). We can add
to both sides θs times the area of the polygon Spoly in Fig. 3.
Noting that S(∆1) =

1
2
(D−PB)2

∆−Rg
, S(∆1)+Spoly=

1
2
(D−Dmin)2

∆−β

and S(∆2)+Spoly = 1
2
(PB−Dmin)

2

Rg−β , Eq. S(∆1) = θsS(∆2) is
equivalent to

(1−θs)
1

2

(D−PB)
2

∆−Rg
+θs

1

2

(D−Dmin)2

∆− β
= θs

1

2

(PB−Dmin)
2

Rg − β
.

(56)
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Similar to (55), we can differentiate both sides of (56) and

get dPB

dD =

(
α + θs

D−Dmin

∆−β

)/(
α + θs

PB−Dmin

Rg−β

)
, where

α = (1−θs)
D−PB

∆−Rg
. As 0 ≤ β ≤ Rg ≤ ∆, we can further

show that dPB

dD ≥ Rg−β
∆−β . Combining with (55), we thus have

dPA

dD ≤ Rg−β
∆−β ≤ dPB

dD . Therefore, Statement (ii) is true and
Lemma 10 then follows.

For Step 2, with power limit of the storage, the feasible
range within the “leaf-region” will be cropped to contain
only those operation points with Pg(t) ∈ [maxt1 γ

min
t1 (D(1 :

t)),mint2 γ
max
t2 (D(1 : t))]. However, such cutting still retains

the “top&bottom-flatness” of the leaf-region. The proof is very
similar to that of Lemma 10. Due to limited space, more details
are included in [18]. The result of the theorem then follows.
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Proof. Denote the changes of charge states on physical storage
s and all virtual units i ∈ [1:K] as ∆Qs = Qs(t−1)−Qs(t),
and ∆Qi = Qi(t−1) − Qi(t),∀i = 1, . . . ,K,
respectively. Suppose that the dispatch power Φi(t)
of the virtual storage is given for each i, we have
∆Qi =

(
1{∆Qi(t)≥0} + θs1{∆Qi(t)<0}

)
Φi(t). In

order to ensure that the physical storage state is
consistent, we have Qs(t

′) =
∑K

i=1 Qi(t
′) for

t′ = t−1, t and ∆Qs =
∑K

i=1 ∆Qi. From (6),
the actual discharge to the physical storage is then
Φs(t) = ∆Qs

(
1{∆Qs(t)≥0} + 1

θs
1{∆Qs(t)<0}

)
. However,

Φs(t) may differ from
∑K

i=1 Φi(t), and the additional
discharge power needed from other generation can
be bounded as ∆O(t) = Φs(t) −

∑K
i=1 Φi(t) =(∑K

i=1 ∆Qi(t)
)(

1{∆Qs(t)≥0} +
1
θs
1{∆Qs(t)<0}

)
−∑K

i=1 ∆Qi(t)
(
1{∆Qi(t)≥0} +

1
θs
1{∆Qi(t)<0}

)
. We first

show that ∆O(t) ≥ 0, i.e., a non-positive generation is
always needed to discharge the physical storage. To see this,
when ∆Qs(t) ≥ 0, ∆Qs(t) can be written as

∆O(t) =
∑K

i=1
∆Qi(t)

(
1− 1{∆Qi(t)≥0} −

1

θs
1{∆Qi(t)<0}

)
=
∑

i:∆Qi(t)<0

(
1− 1

θs

)
∆Qi(t) ≥ 0. (57)

Similarly, when ∆Qs(t) < 0, we have ∆O(t) =∑
i:∆Qi(t)≥0 (1/θs − 1)∆Qi(t) ≥ 0. For the upper bound of

∆O(t), notice that in (57), when ∆Qs(t) =
∑K

i=1 ∆Qi(t) >
0, we must have

∑
i:∆Qi(t)<0 ∆Qi(t) > −Φs/2. Similarly,

when ∆Qs(t) =
∑K

i=1 ∆Qi(t) ≤ 0, ∆O(t) is bounded by∑
i:∆Qi(t)≥0 ∆Qi(t) ≤ Φs/2. In both cases, we thus have

0 ≤ ∆O(t) ≤ Φs/2(1/θs − 1).

APPENDIX C
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In the DC power model, the power flow on line l is a linear
combination of the net injection on each bus, i.e.

fl(t
′) =

∑
b∈B

Sl,b

(
Db(t

′)−
∑
g∈Gb

Pg(t
′)−

∑
s∈Sb

Φs(t
′)
)

(58)

=
∑
b∈B

Sl,b

[
Db(t

′)−
∑

(g,s):g∈Gb

P v
(g,s)(t

′)−
∑

(g,s):s∈Sb

Φv
(g,s)(t

′)
]
.

For each (g, s), the following must hold

D(g,s)(t
′) = P v

(g,s)(t
′) + Φv

(g,s)(t
′). (59)

Note that we need to ensure that |fl(t′)| ≤ TLl for any
splitting of demand to the VGSP. From (58) and (59), we
can see that there are two levels of splitting happening in
the system: 1) the first level splits net-demand onto VGSPs,
i.e., Dv

(g,s) in (41); and 2) the second level splits each VGSP
demand onto the virtual generator and the virtual storage unit,
i.e., between P v

(g,s)(t
′) and Φv

(g,s)(t
′) in (59). Both of them

will affect the bus injection in [·] on the RHS of (58).
While the first level of splitting is determined by the linear

function (41), the second level of splitting is determined by
the dispatch decision of each VGSP, which is unknown when
we formulate the optimization problem (51). Thus, we seek
to ensure that the transmission constraint (8) will hold for
any demand splitting D(g,s)(t

′) and Φv
(g,s)(t

′) ≤ Φ
v
(g,s)(t

′).
Our idea is to use the virtual storage-power limit Φ

v
(g,s)(t

′)
to obtain an upper bound of (58). Then, we ensure that this
upper bound will not exceed the line limit TLl. Due to space
limits, we refer readers to [18] for details.
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