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Abstract—We study the problem of link and node delay
estimation in undirected networks when at most k out of n
links or nodes in the network are congested. Our approach relies
on end-to-end measurements of path delays across pre-specified
paths in the network. We present a class of algorithms that
we call FRANTIC . The FRANTIC algorithms are motivated
by compressive sensing; however, unlike traditional compressive
sensing, the measurement design here is constrained by the
network topology and the matrix entries are constrained to
be positive integers. A key component of our design is a new
compressive sensing algorithm SHO-FA-INT that is related to
the SHO-FA algorithm [1] for compressive sensing, but unlike
SHO-FA, the matrix entries here are drawn from the set of
integers {0, 1, . . . ,M}. We show that O(k logn/ logM) measure-
ments suffice both for SHO-FA-INT and FRANTIC . Further,
we show that the computational complexity of decoding is also
O(k logn/ logM) for each of these algorithms. Finally, we look
at efficient constructions of the measurement operations through
Steiner Trees.

I. INTRODUCTION

Monitoring performance characteristics of individual links
is important for diagnosing and optimizing network perfor-
mance. Making direct measurements for each link, however,
is impractical in large-scale networks because (i) nodes inside
the networks may not be available to carry out measurements
due to physical or protocol constraints, and (ii) measuring each
link separately incurs excessive control-traffic overhead and is
not scalable.

A viable alternative approach is network tomography [2].
It aims to infer the performance characteristics of internal
links by path measurements between controllable nodes, where
a path measurement is function of the characteristics of the
links on the path. It does not require access to all the nodes
and, more importantly, it allows clever solutions to leverage
the network structure (e.g., topology and graph properties) to
jointly infer the performance characteristics of multiple links
via path measurements. Many existing work have explored
such insight to design excellent solutions that are able to infer
the congested links with much less measurements than the
direct link measurement approach [3]–[7]. See [8] for a survey.

Recently, Xu et al. [9] further argue that usually only a
small fraction of network links, say k out of total |E| links
(k � |E|), are congested (i.e., experiencing large congestion
delay or high packet loss rate). They interpret each path
measurement as a linear combination of the delays or loss
rates of the k congested links. With these understanding, the
problem of network tomography can be viewed as recovering
a k-sparse link vector from a set of linear measurements.

Exploiting the “sparse congestion structure” insight, Xu et
al. [9] propose a compressive sensing based scheme that can
identify any k congested links using O(T (N )k log |E|) path
measurements over any sufficiently-connected graph. Here,
each of the path measurement is a random walk on the graph,
and T (N ) is the mixing time of the random walk. Further, they
show that one can actually recover the performance character-
istics of any k congested links with again O(T (N )k log |E|)
path measurements by using `1-minimization. Similar results
are also obtained by [10]–[12]. Given all these exciting results,
a natural question is that can we do better and how?

II. OUR CONTRIBUTION

A. Summary

In this paper, we build upon our recently developed com-
pressive sensing algorithm named SHO-FA [1] to design a
new network tomography solution that we call FRANTIC
(Fast Reference-based Algorithm for Network Tomography
vIa Compressive sensing). FRANTIC achieves the following
performance:
• FRANTIC can identify any k congested links (or nodes)

out of n and recover the corresponding link (or node)
performance characteristics using O(ρk log n/ logM)
path measurements with a high probability. Here,
M ∈ � and ρ ∈ Ω(1) ∩ o(n/k) are design parameters.
See Section II-C for a discussion.

• The FRANTIC decoding algorithm can recover
the link (or node) performance characteristics in
O(ρk log n/ logM) steps.

As compared to the solution in [9], our solution improves
both the number of measurements and the number of recovery
steps from O(T (N )k log n) to O(k) (obtainable by setting
M = O(n)).

B. Techniques and results

The main techniques that lead to these improvements are as
follows. First, in Section VI, we develop an efficient compres-
sive sensing algorithm SHO-FA-INT when the entries of the
measurement matrix are constrained to be positive integers.
Our algorithm borrows key ideas from a prior work [1] that
studies compressive sensing in the unconstrained setting. A
key technique here is to group together measurements and
choose the “weights” of the measurement matrix as co-prime
vectors. This ensures that each network link has a distinct
signature in the measurement output, which allows us to



decode the delay values for congested links in an iterative
manner. Theorem 1 states the performance guarantees of our
algorithm. Next, we propose a design for measuring the delay
on congested links in a network in Section VII. An important
insight in our design is that by using local loops at individual
edges, end-to-end delay measurements can be designed to
assign different integer weights to delays for different edges.
We start with a compressive sensing matrix given by SHO-
FA-INT and emulate the output of the matrix by first de-
signing two correlated network paths, and then cancelling out
the contribution of unwanted links by subtracting one from
another. Theorems 2-4 state the performance guarantees of
the FRANTIC algorithms. We also note that the path lengths
required for FRANTIC can be suitably optimised by using
Steiner Trees and network decomposition. Theorem 4 and
subsequent discussions point this out.

C. Explanation of design parameters

The parameter M denotes the maximum number of times a
test packet may travel over any edge. In many present day
networks, the value of M is usually fixed to be a small
constant. In this setting, our algorithm requires O(k log n)
measurements and decoding steps. Additionally, if M is al-
lowed to increase with the network size (possibly, in future
generation networks), the number of measurements and de-
coding complexity our algorithms may be decreased to O(k).

The parameter ρ is a design parameter that controls the
tradeoff between the measurement path lengths and the
number of measurements required. When ρ = 1, we re-
quire O(k log n/ logM) measurements with path lengths
O(nD/k). On the other extreme, if ρ is set to be n/(kω(1)),
we require upto o(n) measurements but with as little as ω(D)
path length. In our exposition, we prove the correctness of our
schemes for the case when ρ = 1. The results for other values
of ρ follow from this analysis by pretending that the network
has ρk congested nodes instead of k.

III. MODEL AND PROBLEM FORMULATION

Network and delay model: Let N = (V, E) be a undirected
network with node set V and link set E . In this paper, we
consider the reference-based tomography problem where the
topology of N is known. We assume that N is connected. We
say that a node v ∈ V has delay dv if every packet that passes
through v is delayed by dv . Similarly, a link e ∈ E has delay de
if every packet passing through e in any direction is delayed by
de. We say a node or link is congested if the delay associated
with it is non-zero. A congested node is called isolated if
there exists one of its neighbours which is not congested. Let
dddV = (dv : v ∈ V) and dddE = (de : e ∈ E). Both dddV and dddE
are unknown but have at most k non-zero coordinates.
Measurement model: Each measurement is performed by
sending test packets over pre-determined paths and measuring
the end-to-end time taken for its transmission. Some nodes
(resp. links) may be visited more than once in a given path.
As a result, each measurement output yi, i = 1, 2, . . . , µ, is
a weighted sum of delays involving nodes and links that lie

in the measurement path, where, weight of a given node or
link is the number of times it is visited by the measurement
path. In present day networks, this measurement design may
be implemented by employing source-based routing (c.f. [16])
for the test packets In this paper, we consider two kinds of
measurements – node measurements and link measurements.
In the node (resp. link) measurements, we associate each node
(resp. link) with a real-valued delay and the objective is to
reconstruct the node (resp. link) delay vector dddV (resp. dddE )
given the collection of measurement outputs.

IV. KEY IDEAS

In this section, we present some key observations and
challenges that this paper focuses on. We begin with the
observation that there is a high-level connection between the
compressive sensing and the network tomography problem.
As noted in the previous section, network tomography can be
treated as a problem of solving a system of linear equations.
Under the assumption that the underlying unknown vector is
sparse, it is natural to think of it as a compressive sensing
problem [17] [18] [19]. Building on this intuition, network
tomography can be formulated as the following compressive
sensing problem: i) design a matrix A, ii) obtain delay
measurements yyy = AdddV iii) reconstruct dddV from yyy. Fig. 1
illustrates this connection in a complete graph. Since each
subset of nodes in a complete graph induces a connected
subgraph, we can freely choose the locations of non-zero
entries in each row of A. Then, any compressive sensing
algorithm with 0-1 measurement matrix [20] [21] can be
applied to recover the vector dddV . However, when we go

Figure 1. Node Delay Estimation: For a complete graph with four vertices.
We can get any measurements we want since each subgraph of a complete
graph is connected. For example, the subgraphs induced by {v1, v3} (covered
by red cycle) and {v1, v3, v4} (covered by green cycle) are connected,
therefore we get the measurements [1 0 1 0]dddV and [1 0 1 1]dddV respectively.

beyond complete graphs and node measurements, it is not
straightforward to apply compressive sensing directly. The
network topology may impose constraints on implementable
measurement matrices (See Figs. 2,3,5).

Xu et al. [9] get around some of these problems by using
random walks. One drawback of their approach is that it
involves a factor of mixing time T (N ) for both the number of
measurements and path length. For networks without sufficient
connectivity, mixing time may be very large, e.g., cycle graph,
T (N ) = O(|E|2). In the following, we propose two news ideas
that enable us to circumvent the above problem.
Idea 1: Cancellation enables selecting disconnected subsets
of links and nodes. The idea here is similar to that used in



Reference Type # Measurements Decoding Complexity Path Length Network Topology

[11] Node RO(k log(|V|/k)) + R + 1 cs with 0− 1 matrix – General graph, R is the radius of the graph
Node O(rk log(|V|/k)) + r cs with 0− 1 matrix – If G has an r-partition
Node O(2k log(|V|/2k)) + r cs with 0− 1 matrix – Erdos-Renyi random graph G(|V|, p), with

p = β log |V|/|V| and some constant β ≥ 2

[9] Edge O(TNk log |E|) l1 minimization O(|E|/k) G is a (D, c)-uniform graph, D ≥ D0 = O(c2kT 2
N ).

[10] Edge O(k log(|E|/k)) l1 minimization – Network is 1-identifiable
[12] Node O

(
c4k2T 2

N log(|V|/d)
)

Disjunct matrix O(|V|/(c3kTN )) G is a (D, c)-uniform graph.
Edge O(c4k2T 2

N log(|E|/d)) Disjunct matrix O(|V|D/(c3kTN )) D ≥ D0 = O(c2kT 2
N ).

Node O(c8k3T 4
N log(|V|/d)) Disjunct matrix unbounded (sink node)

Edge O(c9k3DT 4
N log(|E|/d)) Disjunct matrix unbounded (sink node)

Node O(k2(log3 |V|))/(1− p)2 Disjunct matrix O(|V|/(c3kTN )) G is D-regular expander graph
Edge O(k2(log3 |E|))/(1− p)2 Disjunct matrix O(|V|D/(c3kTN )) or Erdos-Renyi random graph, G(|V|, D/|V|),
Node O(k3(log5 |V|))/(1− p)2 Disjunct matrix unbounded (sink node) with D ≥ D0 = Ω(k log2 |V|).
Edge O(k3D(log5 |E|))/(1− p)2 Disjunct matrix unbounded (sink node)

This Node O(k log |V|/ logM) O(k log |V|/ logM) O(D|V|/k) General Graph
paper Edge O(k log |E|/ logM) O(k log |E|/ logM) O(D|E|/k)

Table I

Partial literature review: [11] considers the node delay estimation problem where a set of nodes can be measured together in one measurement if and only if the induced subgraph
is connected and each measurement is an additive sum of values at the corresponding nodes. The generated sensing matrix is a 0 − 1 matrix, therefore the decoding complexity
mainly depends on which binary compressive sensing algorithm is used. General graph and some special graphs are studied. The idea of a binary compressive sensing algorithm
is borrowed by [10] where a single edge delay estimation problem is studied and the estimation is done using l1 minimization. In [9], a random-walk based approach is proposed
to solve the k-edge delay estimation problem. TN is the 1

(2c|V|)2
-mixing time of N . The networks with degree-bounded assumption are studied. Similar to [9], [12] uses

random-walk measurements to solve both node and edge failure localization problem where group testing (non-linear version of compressive sensing) algorithm is used. The goal
is to generate disjunct matrices which are suitable for group testing. The start points of measurements can be chosen within a fixed set of designated vertices, or, chosen randomly
among all vertices of the graph. The first type of construction which don’t have the length bound covers the case that only a small subset of vertices are accessible as the starting
points of the measurements. Separately, the problem of edge failure localization has also been studied in the optical networking literature [13]–[15]. [13], which consider the single
edge failure localization, has the same flavor as [11]. Binary-search type algorithms are proposed for some special graphs. For the general graphs, the upper bound on the number
of measurements required for single edge failure localization is O(D(N ) + log2(|V|)) where D(N ) is the diameter of the graph. In [14], the problem of multi-link failure
localization is considered. For small networks, tree-decomposition based method has the upper bound on the number of trials is min(O(D(N ) log |V|),O(D(N )+log2(|V|))).
For the large-scale networks, random-walk based method similarly to [12] is proposed. They also consider the practical constraints such as the number of failed links cannot be
known beforehand. In [15], the solution proposed is based on the (k + 2)-edge-connected network for k link failures localization.

Figure 2. General Networks: If
the link (v1, v3) is removed from
the original complete graph, we can-
not get the measurement [1 0 1 0]dddV
any longer.

Figure 3. Inaccessible Nodes: If
there is some constraint that we can
not access to v3 and v3 is the desti-
nation of the paths for us to get the
measurement, then any measurement
in Fig. 1 is not available.

[11] where they use the structure called hub to get arbitrary
measurement matrix. However, they only consider the node
delay model and special graphs which have r-partition. In
this paper, we expand this approach to both link delay and
node delay models. By considering correlated measurements,
we can cancel out the contribution of the undesired links
and nodes in a given measurement. Using this approach, we
can mimic arbitrary measurements on general graphs. See
Fig. 4 as an illustration. One drawback of the cancellation
based approach is that if the selected measurement has too
many disjoint components, then the number of measurements
required is very large. In Fig. 4, the number of cancellations
is 2.
Idea 2: Weighted measurements reduce the number of cancel-
lations required and allow us to implement arbitrary integer
valued matrices. The insight here is that if we have two

Figure 4. Cancellation: There are three paths in this graph:{e1e6e3e5}, {e5}
and {e6}. Triangles indicate the source and destination of a path. Correspond-
ingly, we can derive three measurements [1 0 1 0 1 1]dddE , [0 0 0 0 1 0]dddE ,
and [0 0 0 0 1]dddE . Subtracting the second and the third measurements from
the first measurement, we get the measurement [1 0 1 0 0 0]dddE which cannot
be got by just one path.

paths along the same set of links, we can assign different
weights for each link (or node) on these paths by performing
local loops. Specifically, for a given set of weights on a
subset of links (or nodes), we construct two measurements
- a spanning measurement, and a weighted measurement. The
spanning measurement is constructed by finding any path that
visits through all the links (or nodes) in the desired subset at
least once. The weighted measurement, then follows the same
set of edges as the spanning measurement, but visits each
link (or node) an additional number of times in accordance
with the desired weight for that link (or node). Finally, we
subtract the end-to-end delay for the weighted path from that
of the spanning path to get an output that is proportional to
the output of the corresponding compressive sensing problem



n Total number of links (or nodes) in the network
k Number of congested links (or nodes) in the network
M The maximum number of times a test packet may travel over any edge
D The diameter of N
TN The mixing time of the random walk over graph N
ρ A design parameter that controls the tradeoff between the path lengths and the number of the measurements
N N = (V, E), a undirected network with node set V and link set E
dv Time taken by a test packet to pass through node v ∈ V
dddV Node delay vector of length |V|
de Time taken by a test packet to pass through link e ∈ E in any direction
dddE Link delay vector of length |E|

II-A. Network Parameters

R R ∈ �+ such that MR/ζ(R) ≥ 3n where ζ(·) be the Riemann zeta function
yyy Measurement output of length m = Rµ
A Measurement matrix of dimension Rµ× n
a
(r)
ij The r-th row entry in the j-th column of the i-th group of A for r = 1, 2, . . . , R, i = 1, 2, . . . , µ and j = 1, 2, . . . , n

Gn,µ A bipartite graph with left vertex set {1, 2, . . . , n} and right vertex set {1, 2, . . . µ}
N(S) The set of right neighbours of a subset of left nodes S in Gn,µ
PPP A path of length T over the network N = (V, E), i.e., a sequence (e1, e2, . . . , eT ) of links from E

W (PPP, e) The multiplicity of a link e ∈ E given a path PPP , i.e., the number of times PPP visits e
∆(PPP ) The end-to-end delay for a path PPP

II-B. Design Variables

Table II
TABLE OF NOTATIONS

Figure 5. Edge Delay Estimation: We know that we can not get arbitrary
measurement by one path even if the graph is complete. (e.g., the measurement
[0 0 0 0 1 1]dddE cannot be got since there is no path just visiting e5 and e6.)

Figure 6. Inaccessible Nodes: The second measurement in Fig. 4 cannot be
got since the v3 which is the destination of the second path is not accessible
(the same node identifier in Fig. 1).

(See Fig. 7). These ideas enable us to reduce the network
tomography problem to a compressive sensing problem with
integer valued matrices. In the Section VI, we present an
efficient compressive sensing algorithm with integer entries.

V. MAIN RESULTS

In this section, we state the main results of this paper. Let
ρ ∈ Ω(1) ∩ o(|E|/k) be a design parameter.

Theorem 1 (Compressive sensing via integer matrices). Let
M ∈ Z+. There exists a constant c such that whenever
m > ckdlog n/ logMe, the ensemble of ZM -valued matrices
{Am×n} designed in Section VI and the SHO-FA-INT
reconstruction algorithm has the following properties:
1) Given (Am×n,Am×nddd) as input, where ddd is an arbitrary
k-sparse vector in Rn, SHO-FA-INT outputs a vector d̂dd ∈
Rn that equals ddd with probability at least 1−O(1/k) under
the distribution of Am×n over the ensemble {Am×n}.

2) Given Am×nddd, d̂ is reconstructed in O(kdlog n/ logMe)
arithmetic operations.

3) Each row of Am×n has O(n/k) non-zeros in expectation.

Theorem 2 (Network tomography for link congestion). Let
N = (V, E) be an undirected network of diameter D such that
at most k have unknown non-zero link delays. Let M ∈ Z+

Then, the FRANTIC algorithm has the following properties:
1) FRANTIC requires O(ρkdlog |E|/ logMe) measure-
ments.

2) For every edge delay vector dddE ∈ R|E|,FRANTIC outputs
d̂ddE that equals dddE with probability 1−O(1/ρk).

3) The FRANTIC reconstruction algorithm requires
O(ρkdlog |E|/ logMe) arithmetic operations.

4) The number of links of N traversed by each test mea-
surement packet in FRANTIC is O(D|E|/ρk) and the total
number of hops for each packet is O(DM |E|/ρk).

Theorem 3 (Network tomography for node congestion). Let
N = (V, E) be an undirected network of diameter D such



that at most k have unknown non-zero node delays and
all congested nodes are isolated. Let M ∈ Z+ Then, the
FRANTIC algorithm has the following properties:
1) FRANTIC requires O(ρkdlog |V|/ logMe) measure-
ments.

2) For every edge delay vector dddV ∈ R|V|, FRANTIC
outputs d̂ddV that equals dddV with probability 1−O(1/ρk).

3) The FRANTIC reconstruction algorithm requires
O(ρkdlog |V|/ logMe) arithmetic operations.

4) The number of links of N traversed by each test mea-
surement packet in FRANTIC is O(D|V|/ρk) and the total
number of hops for each packet is O(DM |V|/ρk).

VI. SHO-FA-INT ALGORITHM FOR COMPRESSIVE
SENSING

We begin by describing a new compressive sensing algo-
rithm SHO-FA-INT which has several properties that are
desirable for our application. SHO-FA-INT is related to the
SHO-FA algorithm – originally developed in the unconstrained
compressive sensing setting [1] – but differs from it in that the
non-zero entries of the sensing matrix A are constrained to be
positive integers less than or equal to some M ∈ �. On the
other hand, [1] proposes a design of matrix Aµ×n such that
given yyy = Addd for a k-sparse vector ddd ∈ �n, a reconstruction d̂dd
can be obtained in O(k) steps by using a measurement vector
of length µ = O(k). A key requirement of this design is that
both the locations of non-zero entries of A as well as their
values may be arbitrarily chosen – in particular, the non-zero
entries of A are chosen to be unit norm complex numbers.

Let {Gn,µ}n,µ∈� be an ensemble of left-regular bipartite
graphs, where each Gn,µ is a bipartite graph with left vertex set
{1, 2, . . . , n} and right vertex set {1, 2, . . . , µ}. For each left
vertex j ∈ {1, 2, . . . , n}, we pick three distinct vertices uni-
formly at random from the set of right vertices {1, 2, . . . , µ}.
Measurement Design: Let ζ(·) be the Riemann zeta function.
Let R ∈ �+ such that MR/ζ(R) ≥ 3n and let [M ]

Figure 7. Cancellation using weighted measurements: To get the measure-
ment [1 0 1 0 0 0]dddE , we design the paths as follows. First, we just follow the
path {e1e6e3e5}, we get the measurement [1 0 1 0 1 1]dddE . Second, when
visiting e1 and e3 for the first time, the probe does one more local loop
for both links to get the measurement [3 0 3 0 1 1]dddE . Finally, we take the
difference of these two measurements and divide the result by 2. Note that
1) Only one cancellation is required. 2) Even if v3 is inaccessible, we still
can achieve the two target measurements. 3) One additional local loops at e1
in the second step (so that e1 is visited 5 times), allows us the measurement
[2 0 1 0 0 0]dddE . Thus, controlling the number of local loops allows us to
implement other ensembles of measurement matrices.

denote the set {1, 2, . . . ,M}. Given the graph Gn,µ, we
design a Rµ × n measurement matrix A(= ARµ×n) as
follows. First, we partition the rows of A into µ groups
of rows, each consisting of R consecutive rows as fol-
lows. Let a

(r)
ij be the r-th row entry in the j-th col-

umn of the i-th group and let aaaij = [a
(1)
ij a

(2)
ij . . . a

(R)
ij ]T .

First, for each (i, j) not in Gn,µ, we set aaaij = 0R.
Next, we randomly chose 3n distinct values from the set
C ,

{
[c1, c2, . . . , cR]T ∈ (ZM )R : gcd(c1, c2, . . . , cR) = 1

}
and use these to set the values of aaaij for each edge (i, j)
in Gn,µ.
Reconstruction algorithm: The decoding process is essentially
equivalent to the “peeling process” to find 2-core in uniform
hypergraph [22], [23]. The decoding takes place over O(k)
iterations. Since the decoding algorithm is very similar to [1,
Section IV-B], we skip the description here.

VII. THE FRANTIC ALGORITHM

A. Link Delay Estimation: We define a path PPP of length T
over the network N = (V, E) as a sequence (e1, e2, . . . , eT ) =
((v1, v2), (v2, v3), . . . (vT , vT+1)) such that et ∈ E for t =
1, 2, . . . , T . For a given path PPP , we define the multiplicity
W (PPP , e) of a link e ∈ E as the number of times PPP visits e.
Let ∆(PPP ) be the end-to-end delay for a path PPP . Given a mea-
surement weight vector www = [w1w2 . . . w|E|], we define a www-
spanning measurement to be a path PPP = (e1, e2., . . . eT ) in the
network N such that PPP visits each e in {e : we 6= 0} at least
once and a (www,PPP )-weighted measurement to be a path QQQ =
(e′1, e

′
2, . . . e

′
H) such that W (QQQ, e) = W (PPP , e) + 2we for each

link e. Observe that the end-to-end delay for a www-spanning
measurement PPP is equal to ∆(PPP ) =

∑
e∈EW (PPP , e)de, and

that for a (www,PPP )-weighted measurement is equal to

∆(QQQ) =
∑
e∈E

W (QQQ, e)de = ∆(PPP ) + 2
∑
e∈E

wede. (1)

Proof of Theorem 2: To prove Theorem 2, we start with a
measurement matrix A drawn according to the SHO-FA-INT
construction for Theorem 1. For each row of the measurement
matrix, we construct two paths in the network - a spanning
measurement and a weighted measurement. Next, we subtract
the end-to-end delay for the spanning measurement from the
weighted measurement to get an output that is exactly twice
the measurement output corresponding to the compressive
sensing measurement using measurement matrix A. Thus, we
can apply the SHO-FA-INT reconstruction algorithm from
Section VI to reconstruct the delay vector dddE . More precisely,
Let A be a Rµ × n matrix drawn from the ensemble of
Section VI, where R = O(dlog n/ logMe) and n = |E|.
Measurement Design: Let aaa(i) = [ai1ai2 . . . ain] be the i-th
row of A. Consider network measurements PPP (i) and QQQ(i)
defined as follows. Let PPP (i) be an aaa(i)-spanning measurement
obtained by picking the links in {e : aaa(i) 6= 0} one-by-one
and finding a path from one link to another. By the definition
of the diameter of the graph, there exists a path of length
at most D between any pair of links. Therefore, there exists
a path PPP (i) = ((v1, v2), (v2, v3), . . . , (vT , vT+1)) of length



T = O(Dn/k) that covers all the O(n/k) vertices that have
non-zero components in aaa(i).

Next, letQQQ(i) = (e′1, e
′
2 . . . , e

′
T ′) be a (PPP (i), aaa(i))-weighted

measurement of length T ′ = T + 2
∑
e∈E ae(i) as follows.

Let e′1 = (v1, v2). If a(v1,v2)(i) 6= 0, we traverse the
edge (v1, v2) an additional 2a(v1,v2)(i) times by going in the
forward direction, i.e. on (v1, v2), and the reverse direction,
i.e. on (v2, v1), an additional a(v1,v2)(i) times each. Thus, for
τ = 1, 3, 5, . . . , 2a(v1,v2)(i) + 1, we set e′τ = (v1, v2) and
for τ = 2, 4, . . . , 2a(v1,v2)(i), we set e′τ = (v2, v1). Next,
if v3 = v1, i.e., we have already visited e2, we traverse the
link we traverse the link e2 once more, else we traverse it
a(v2,v3)(i) + 1 times in the forward direction and a(v2,v3)(i)
times in the reverse direction, i.e., for τ = 2a(v1,v2)(i) +
2, 2a(v1,v2)(i) + 4, . . . , 2a(v1,v2)(i) + 2a(v2,v3)(i) + 2, we set
e′τ = (v2, v3) and for τ = 2a(v1,v2)(i) + 3, 2a(v1,v2)(i) +
5, . . . , 2a(v1,v2)(i) + 2a(v2,v3)(i) + 1, we set e′τ = (v3, v2).
We continue this process for each link (vt, vt+1) in the path
PPP (i), , i.e., if (vt, vt+1) has been visited already in either the
forward or reverse direction by QQQ(i), we add it to PPP (i) only
once, else, we traverse it an additional a(vt,vt+1)(i) times in
each direction. Therefore, QQQ(i) visits every edge e ∈ E a total
of 2ae(i) times more than PPP (i) does.
Reconstructing dddE : Next, we measure the end-to-end delays
for the paths PPP (i) and QQQ(i) for each i = 1, 2, . . . , Rµ and
let yi = (∆(QQQ(i)) − ∆(PPP (i)))/2. From equation (1), it
follows that yi =

∑
e∈E aiede. Note that this exactly equals

the output of a compressive sensing measurement with ddd as
the input vector, A as the measurement matrix, and yyy and
the measurement output vector. Using this observation, we
input the vector yyy to the SHO-FA-INT algorithm to correctly
reconstruct ddd with probability 1−O(1/k). The guarantees on
the decoding complexity follow from the decoding complexity
of the SHO-FA-INT algorithm and that on the total number
of hops follows by noting that each link in a measurement
path may be visited at most 2M times.

B. Node Delay Estimation: The measurement design and
the decoding algorithm for node delay estimation proceeds
in a similar way to the link delay estimation algorithm of
Section VII. The difference here is that instead of assigning
weights to links in a path, our design assigns weights to nodes
in a path by visiting each node repeatedly. We skip the proof
of Theorem 3 here as it essentially follows from the technique
used in the proof of Theorem 2. The only difference is that
for node delay estimation we add the isolation assumption.
If there exists one congested node, v ∈ V , whose neighbors
are all congested nodes, then we are not able to generate
the measurement involving v by subtracting the weighted
measurement from the spanning measurement. The reason
is that each local loop involving v adds one more delay
corresponding to one of its congested neighbor. However, this
problem doesn’t happen in the edge delay measurements. (See
Fig. 8)
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Figure 8. Isolated Node: For a subgraph
with 5 vertices and 4 links, all vertices are
congested. v1 is not isolated since all of its
neighbors are congested. Suppose there is a
local loop involving v1, v2, and e1. For link
measurement, only the delay of e1 is added to
the weighted measurement. However, for the
node measurement, the delays of v1 and v2
are both added to the weighted measurement.
The delay of v2 will not be canceled by the
corresponding spanning measurement.

VIII. EXPLOITING NETWORK STRUCTURE

A. Reducing Path Lengths through Steiner Trees:

One drawback of the approaches presented in the previous
section is that even though on an average, each row of A
contains only O(n/ρk) non-zero entries, our upper bound on
the path length relies on worst case pairwise paths for each
pair of successive edges to be measured. In this Section, we
propose a Steiner Tree based approach to design the mea-
surement paths given a measurement matrix A. Let S ⊆ V .
We say that T ⊆ E is a Steiner Tree for S if T has the
least number of edges among all subsets of E that form a
connected graph that is incident on every v ∈ S . Let L(S)
be the length of a Steiner Tree for S. For every s ∈ Z+, let
L∗(s) , max{L(S) : S ⊆ V, |S| ≤ s}. Note that, in general,
L∗(s) ≤ Ds. Further, in many graphs of practical interest,
L∗(s) � Ds. For example, in a line graph with n vertices,
L∗(s) is at most n, while Ds maybe as large as O(ns). Using
this observation, we may further improve the performance
guarantee of our algorithm. We note that it suffices to find a
Steiner Tree that passes through all links specified by a given
row of the measurement matrix A. Also, we already know
that, with a high probability, the number of non-zero entries
in each row of A is O(n/ρk). Thus, in general, the number
of links traversed by each link (or node) delay measurement is
O(L∗(s)) where s = O(|E|/ρk) (or O(|V|/ρk) respectively)
is the number of non-zero entries in the measurement. This
proves the following assertion.

Theorem 4 (Network tomography for link/node congestion
using Steiner Trees). For the setting of Theorem 2, the number
of links of N traversed by each measurement of FRANTIC
is at most O(L∗(s)) where s = O(|E|/ρk) is the number of
non-zero entries in the measurement and the total number of
hops for each measurement is O(ML∗(s)).

B. Average length of Steiner Trees:

In Theorem 4, we analyzed the length of measurement paths
in terms of the worst-case length of Steiner trees that contain
an arbitrary subset of s links (resp. nodes). However, on an
average, however, this may be too conservative an estimate.
We define the average length of Steiner trees for node-sets
of size s as L(s) ,

∑
S:S⊆V,|S|=s L(S)/|{S ⊆ V : |S| = s}|.

In the example shown in Fig. 9, we argue that, with a high
probability, the length of paths required is upper bounded by
L(s) which may be significantly smaller than L∗(s).



C. Network decomposition:

Since we already know the topology of the network, explor-
ing the structure of the topology may help us to reduce the
path length of each measurement. In Fig. 10, we illustrate how
to reduce the length of Steiner tree by network decomposition.
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