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Abstract—We study competitive online algorithms for EV
(electrical vehicle) charging under the scenario of an aggregator
serving a large number of EVs together with its background load,
using both its own renewable energy (for free) and the energy
procured from the external grid. The goal of the aggregator
is to minimize its peak procurement from the grid, subject to
the constraint that each EV has to be fully charged before its
deadline. Further, the aggregator can predict the future demand
and the renewable energy supply with some levels of uncertainty.
The key challenge here is how to develop a model that captures
the prior knowledge from such prediction, and how to best
utilize this prior knowledge to reduce the peak under future
uncertainty. In this paper, we first propose a 2-level increasing
precision model (2-IPM), to capture the system uncertainty. We
develop a powerful computation approach that can compute
the optimal competitive ratio under 2-IPM over any online
algorithm, and also online algorithms that can achieve the optimal
competitive ratio. A dilemma for online algorithm design is that
an online algorithm with good competitive ratio may exhibit poor
average-case performance. We then propose a new Algorithm-
Robustification procedure that can convert an online algorithm
with reasonable average-case performance to one with both the
optimal competitive ratio and good average-case performance.
The robustified version of a well-known heuristic algorithm,
Receding Horizon Control (RHC), is found to demonstrate
superior performance via trace-based simulations.

I. INTRODUCTION

Replacing fossil fuels by renewable energy is a major
priority all over the world [1]. However, high penetration of
renewable energy poses an immense challenge to the existing
power grid. Specifically, renewable energy from wind and solar
is known to exhibit high variability and uncertainty. As renew-
able generation varies, the grid needs additional flexibility to
balance the demand and supply [2]. In this paper, we focus
on balancing the variability and uncertainty of the renewable
supply by exploiting the flexibility from electric vehicle (EV)
charging demand, which is a typical example of deferrable
demands [3]. We expect that future EV demand can potentially
be huge. Currently, transportation consumes 29% of the total
energy in the US, while electricity consumes 40%. If a large
fraction of the vehicles are electrified, their charging jobs will
provide an enormous amount of demand-side flexibility, which
could be used to compensate the variability and uncertainty due
to high penetration of renewable energy.

Our goal in this paper is thus to develop intelligent schedul-
ing algorithms for EV charging that minimizes the impact of
variability and uncertainty of renewable energy to the grid.
Specifically, we consider an (demand) aggregator who has
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its own background demand and renewable energy supply
(the latter is assumed to be of no cost), and who manages
a large number of EVs. Such an aggregator could represent an
apartment or office building with a parking garage, a campus,
or a micro-grid [4]. As the EVs arrive and are connected to
the charging stations, each of them specifies a deadline for
the charging request to be completed. We model the objective
of the aggregator as minimizing the peak consumption from
the grid (the background load plus the EV charging rate,
minus the renewable supply) under the constraints that all
EVs must be charged before their deadlines. Our choice of
the peak-minimization objective is motivated by the following
two considerations. First, a large peak consumption-level re-
quires the grid to provision the corresponding generation and
transmission capacity in order to meet the demand. Thus, a
large peak not only increases the overall cost of supplying
energy, but also poses danger to grid-stability. Second, utility
companies have already developed peak-based pricing schemes
to encourage large customers (including aggregators) to reduce
their peak and smoothen their demand. In this type of pricing
schemes, the customers are charged based on not only the total
usage in a billing period, but also the maximum (peak) usage
at any time in the billing period. Specifically, if a customer’s
energy consumption is given as a sequence (E1, Ea, ..., E,),
then the total bill is of the form ¢; ), E; 4+ co max;{ E;} [5].
In typical schemes (e.g., Wisconsin electric power company
[6]), the unit charge for peak usage co (between 9.03$/kW and
9.38%/kW) is approximately 200 times the unit charge for total
usage ¢y (between 0.03$/kWh and 0.05$/kWh), thus giving
the customers a strong incentive to reduce the peak. Under
this type of pricing schemes, when the aggregator reschedules
EV charging jobs, the total energy consumption from the grid
does not change. It is the peak demand that is changed. Hence,
minimizing the aggregator’s operating cost is also equivalent
to minimizing its peak consumption. Further, the potential
benefit of peak reduction is huge. For campus-level aggregators
(e.g., [4]), the peak energy is usually in the order of 20MW.
Then, every one percent of peak reduction will correspond to
0.01 x 20MW x 93/kW x 12 = 21600$ saving per year.

However, designing good scheduling algorithms for EV-
charging that minimize the peak demand to the grid is a
challenging problem due to the inherent uncertainty in both the
demand and the renewable energy supply. If all the demand and
the supply could be precisely predicted in advance, one could
have used an offline algorithm to compute the optimal charging
schedule that minimizes the peak [7]. Unfortunately, in practice
such prediction is often quite inaccurate. For example, the



maximum day-ahead prediction error for wind can be above
20% [8]. Without accounting for such uncertainty, the resulting
peak could be much higher than what we can achieve. As
readers will see in the numerical results in Section V-A, an
algorithm that is oblivious to such inherent uncertainty will
likely lead to significantly larger peak consumption levels.

In the literature, there are two general technical approaches
to deal with uncertainty. The first approach is to assume a prob-
abilistic model for future uncertainty and cast the problem as a
stochastic decision control problem. This is the approach taken,
e.g., in risk limiting dispatch [9], where a two-stage stochastic
control problem was studied. In contrast, since the amount
of renewable generation is revealed sequentially, here we are
faced with a multi-stage stochastic control problem. However,
this stochastic-control approach is known to have a number of
difficulties. First, as the problem size increases, a multi-stage
stochastic control problem quickly becomes computationally
intractable [10]. Second, even obtaining the probabilistic model
of uncertainty can be challenging, especially when the re-
newable supply is non-stationary and highly-correlated across
time. If the probabilistic model is inaccurate, the resulting
performance guarantee also becomes questionable.

The second approach, which we will adopt in this paper, is
to model the uncertainty in a set, and develop algorithms that
can achieve provable performance guarantees for the worst-
case uncertainty within that set. Note that there is no need to
obtain a probabilistic model. Further, as we will show in the
rest of the paper, searching for the worst case could potentially
be more tractable even for fairly complicated problem settings.
This approach is related to robust optimization [11] and two-
stage adaptive robust control [12]. As we discussed earlier, due
to the sequential nature with which renewable generation is
revealed, here we are interested in multi-stage decisions. This
multi-stage problem is also closely related to the problem of
designing competitive online algorithms [13]. For example, it
was shown in [14] that, even without any future information
of job arrivals and deadlines, one can design a competitive
online algorithm whose peak consumption is at most a constant
factor e = 2.718 above the offline optimal (where the latter
assumes that the future information is known in advance).
This constant factor is referred to as the competitive ratio
of the online algorithm. However, this line of research also
encounters a number of challenges. First, existing results on
competitive online algorithms are often based on very simple
models of future uncertainty [15], or do not assume any
model at all. As a result, the worst-case performance (and
the corresponding competitive ratio) is often quite poor. In
practice, both renewable supply and EV demands can be
predicted to a certain degree. Intuitively, such prediction can
provide very useful information for eliminating uninteresting
worst cases, and thus sharpening the competitive ratio of online
algorithms. However, to the best of our knowledge, there is no
systematic methodologies for designing competitive online al-
gorithms under more complicated models of future uncertainty.
The second challenge, which in fact applies to many “robust
optimization” results as well [12], is that the algorithms are
only optimized for the worst-case. As a result, their average-
case performance can be quite poor [15]. Given that the worst-
case input may only occur very rarely, the aggregator may then
be hesitant to endorse the resulting algorithm.

In this paper, we make two contributions to address the
above challenges. First, we propose a very general model,
called 2-IPM (2-level increasing precision model), to capture
the uncertainty of predicting renewable energy, EV demand,
and background load. Compared to existing uncertainty mod-
els, e.g. [15], a key novelty of 2-IPM is that it can model
the scenario where predictions are made at multiple instants
(e.g., day-ahead prediction versus intra-day prediction), and
that the predictions closer to the target time tend to be more
accurate (e.g., intra-day prediction is usually more accurate
than day-ahead prediction). For any given 2-IPM model, we
develop a powerful computation procedure to find the smallest
competitive ratio in terms of the peak consumption. This
smallest competitive ratio can thus be viewed as a measure
of “price of uncertainty” under the 2-IPM. As readers will
see in Section V-B, our 2-IPM yields much lower price-of-
uncertainty compared to the uncertainty models in [15].

We then study online algorithms that attain the optimal
competitive ratio under the 2-IPM. One can easily generalize
the EPS algorithm in [15] to obtain an online algorithm with
the optimal competitive ratio. However, such generalized EPS
algorithm still suffers from the second weakness discussed
earlier, i.e., it is optimized for the worst-case input, and
its average-case performance can be quite poor. Our second
contribution is to propose a general “robustification” procedure
to design online algorithms with both the optimal competitive
ratio and good average-case performance. Given any online
algorithm with good average performance (in terms of the
peak), this robustification procedure can convert it to one with
not only good average-case performance, but also the optimal
competitive ratio. We apply this robustification procedure to a
well-known online algorithm, called Receding Horizon Control
(RHC), which demonstrates good average-case performance,
but poor worst-case competitive ratio. Our numerical results
in Section V-C indicates that the robustified-RHC algorithm
achieves both good average-case and worst-case performance.

II. SYSTEM MODEL

We consider an aggregator serving its EV demand and
background demand using both its own renewable energy
(which is assumed to be cost-free) and the energy procured
from the external grid. We assume that time is slotted, and
index a time-slot by an integer in T = {1,...,7}, where T is
the time-horizon considered. We represent the EV demand by
a T x T upper-triangular matrix a = [a; ;], where a; ; is the
total deferrable (EV) demand with arrival time ¢ and deadline
J > t. We represent the net non-deferrable demand by a 7" x 1
vector b = [b;], where b; is the background demand at time
1 minus the renewable energy available at time 7. Using the
flexibility in the EV demand, the goal of the aggregator is to
schedule EV charging jobs such that the peak energy procured
from the grid is minimized.

A. Model for Prediction and Uncertainty

In practice, there exists considerable uncertainty in both
the net non-deferrable demand and the deferrable demand.
Specifically, we define a (T — t + 2) x 1 vector x(t) =
[@tty .-y at 7, by]T to include both the EV demand with arrival
time ¢ and the net non-deferrable demand at time ¢. Note that
the aggregator will know the precise value of x(t) only at and
after time-slot ¢. In the rest of this paper, we will say that



“the value of x(t) is revealed at time ¢”. At a time s < {,
the value of x(¢) is uncertain to the aggregator. However, the
aggregator can use various sources of information (such as
weather forecast) to predict the future value of these uncertain
quantities in order to improve its decision. In practice, such
predictions can be taken multiple times, e.g., if the operating
time-horizon is a day, one prediction can be made before the
day (called “day-ahead” prediction), and another prediction
can be made a few hours before time ¢ (called “intra-day”
prediction). In general, intra-day prediction is more accurate
than the day-ahead prediction because it is closer to the real
time. Next, we will present a model, called 2-IPM (2-Level
Increasing Precision Model), to model the uncertainty associ-
ated with such prediction procedures. We note that, although
for ease of exposition the model below only assume one intra-
day prediction, both 2-IPM and the subsequent results can be
easily generalized to multiple intra-day predictions.

Specifically, we assume that at time O (before the first time-
slot), a day-ahead prediction is available for every x(t),t € T.
For each future time-slot ¢, the day-ahead prediction provides
two (T —t+2) x 1 vectors %(0,¢), %Y (0,¢), which are lower
and upper bounds, respectively, to x(¢). In other words, the
future value of x(¢) must lie within

£5(0,1) < x(t) <x7(0,1). (1)

Then, at a later time u;, 1 < wu; < ¢, another intra-day
prediction is performed. (One example of u; could be u; =
max{1l,t — L}, i.e., the intra-day prediction is performed L
time-slots ahead.) The intra-day prediction provides another
two (T —t+42) x 1 vectors %% (uy,t), %Y (uy,t), that are better
lower and upper bounds to x(¢) than the day-ahead prediction.
In other words, the following will hold:

(0, 1) < &L (ug, t) < x(t) < &Y (ug, t) <%Y(0,1).  (2)

Obviously, a key difference between day-ahead prediction
and intra-day prediction is that they are performed at differ-
ent times. Thus, while the value of day-ahead predictioin,
%E(0,t),%Y(0,t) for all ¢, are known even before time-slot
1, the value of % (us,t) and %Y (uy,t) will not be known
until time slot wu;. (We will say that the value of %% (uy,t)
and XY (uy,t) are revealed at time u;.) Thus, from time-slot
0 to time-slot u; — 1, although the aggregator does not know
the future intra-day prediction for x(t) that will be performed
at time wy, it does know that this future intra-day prediction
will be more accurate. In order to model this knowledge, we
assume that there exists a (7' — ¢ + 2) x 1 vector W (us, t) <
%Y(0,t) —%%(0,t), which is known at time 0, that bounds the
(future) intra-day prediction gap XY (uy,t) — %% (uy, ), ice.,

RY (ug, t) — K" (ug, t) < W (ug, ). 3)

In other words, the aggregator knows the (increased) precision
level of future intra-day predictions that will be performed at
time u;, even though it does not know the exact bounds of this
intra-day prediction before time ;.

Remark 1: Readers may question what happens when the
bounds for the intra-day prediction falls outside of the day-
ahead predicted interval (1). If this happens, we suggest tighten
the intra-day prediction bounds so that (2) is satisfied. This
procedure is justified because in practice these bounds are

usually chosen such that the value of x(¢) will fall into the
predicted intervals with high probability. In other words, the
competitive online algorithms defined below implicitly ignore
those cases where these bounds are violated.

We summarize how the variables defined above are re-
vealed in time. At time 0, the aggregator only knows Y =
{%E5(0,1),%Y(0,), W (ug, t),t = 1,2,...,T}. At time-slot ¢,
the aggregator knows the revealed x(s) for all s < ¢, and
the intra-day prediction for any time-slot s such that ug < ¢.
This set of information is summarized in Z; = {x(s),s =
1,2, ..., tHU{&XE (us, 5), %Y (us, 8),us < t}. Note that the set
Zy increases with time ¢. Let Z = J, . Z; denote all quantities
that were not known day-ahead. Thus, at time ¢, the aggregator
knows both Y and Z;, but not those quantities in Z \ Z;.

B. Objective

We are interested in designing online algorithms for sche-
duling EV demand that minimize the peak energy drawn from
the grid. Since Y is known day-ahead (before any scheduling
decisions are made), we define our objectives for a fixed Y as
follows. For a fixed Y, any possible realization Z must be in
the following set: Zy = {Z :Y, Z satisfy (1) — (3)}.

At each time ¢t = 1,2,...,7, an online algorithm 7 must
determine the amount of energy F;(Z;, 7) drawn from the grid,
based only on the knowledge of Y and Z;. In other words,
the decision at time ¢ cannot be based on the values of any
quantity in Z \ Z; that will be revealed in the future. The
online algorithm 7 is said to be feasible if all the EV demands
can be completely served before deadlines using the sequence
of energy-procurement decisions [E:(Z;,7),t € T| minus
the revealed non-deferrable demand (i.e., background demand
minus renewable energy). Let F2(Z) = maxi{E:(Z, m)}
be the peak energy drawn from the grid using a feasible
online algorithm 7. The aggregator is interested on reducing
EP(Z). However, it is not possible for one online algorithm
to minimize EP(Z) for all Z’s. Instead, we consider an offline
solution provided by a “genie” that knows the entire future Z
in advance. This genie can set the energy procurement F;(Z)
at each time-slot ¢ based on Z. This genie can then solve the
following problem offline:

All demand canrlglg)mpletely servedInz;CL X{Et(Z)} (4)
Let E};(Z) be the optimal offline solution to (4). Clearly, for
any online algorithm 7, we will have Ef(Z) < E2(Z). We
can then evaluate the performance of an online algorithm 7 by
comparing it to the above offline optimal. Specifically, for a
fixed Y, define the competitive ratio (CR) ny (7) of an online
algorithm 7 as the maximum ratio between E2(Z) and E(Z)
under all possible Z € Zy, ie., ny(m) = Znézg; {g)’;r((?)}
In other words, the competitive ratio characterizes how in
the worst case the online algorithm can perform more poorly
compared to the offline optimal.

In the rest of the paper, we will first find an achievable low-
er bound on the competitive ratio 7y () under 2-IPM, which
characterizes the fundamental limits how 2-level prediction can
improve the worst-case performance. Then, we will propose a
systematic approach to design online algorithms with both the
optimal competitive ratio and good average-case performance.



III. FUNDAMENTAL LIMIT OF THE COMPETITIVE RATIO

We extend the computation framework in [15] to find a
fundamental lower bound on the competitive ratio ny (7) of
any algorithm 7. This lower bound will be given by the
solution of the optimization problem (9). However, solving (9)
is much more difficult than that in [15]. In Section III-B, we
will develop a general convexification technique to convexify
(9). We need the following two lemmas throughout this section.

Lemma 1: An online algorithm 7 is feasible if and only
if for all Z € Zy and all t; < t5,t1,t5 € T, the following
inequality holds,

to ta to

to
Zzat,s—i-zbt < ZEt(Zt,W)~ (5)

t=t, s=t t=ty t=t1

Lemma 1 states that, in order for an online algorithm to
be feasible, the total energy procured from the grid plus the
renewable energy supply in any time interval [tq,¢s] must
be no smaller than the total demand that must be served in
the same interval. Further, the condition (5) is also sufficient.
Specifically, if the service profile of the algorithm 7 satisfies
(5), and the algorithm 7 uses the Earliest-Deadline-First (EDF)
policy to serve the demand, then this algorithm 7 can finish all
the demands before their corresponding deadlines. The detailed
proof of Lemma 1 is available in [16].

Lemma 2: Given a realization of Z, for any ¢; <
ta,t1,t2 € T, define the intensity of an interval J = [t1,to] as

2 (O ans + by)

Z)===4 6
9(Z) i (6)

Then, the offline optimal peak is given by
Egr(Z) = max{0, max{g,(Z)}}. ©

Lemma 2 states that the offline optimal peak is equal to
the maximum intensity over all possible intervals. This result
is easy to show based on the offline optimal algorithm in [7].

A. Lower Bound

Consider an online algorithm 7 with competitive ratio

Ny (). We first study the maximum value for E;(Z;, ) given

a realization Z. Recall that the decision E;(Z;, ) should only

depend on Z,. Further, we note that there may exist different

realizations Z that yield the same value of Z;. Thus, the value

of Ei(Zy,m) must be chosen such that the competitive ratio
7y (7) holds for all the possible future uncertainty. Let

EY(Zy) = Z’eziyn,gt’:zt Eg(Z'), (3)

where the superscript “pe” stands for “peak estimation”. Then,

we have the following lemma (the proof is available in [16]).

Lemma 3: Given an online algorithm 7 with competitive
ratio ny (m), we must have F;(Z;, m) < ny (7)EY(Z).

We now apply Lemma 1. If 7 is feasible, then for all Z €
Zy and all t1 < ty,t1,t; € T, we must have

Z <Z At s +bt> < Z Et(Ztvﬂ—) < 77Y(7T) Z Efe(Zt)’

t=t1 s=t t=t1 t=t,

Define the following optimization problem:

(T ans + )

o (Y)= su 9)
ml,tz( ) Zegy ?:tl Efe(Zt)
Letny =  max {n;, ,,(Y)}. Then, ny provides a lower

t1<to,t1,t2€T ) . .
bound on the competitive ratio, which is stated below.

Theorem 4: For any feasible online algorithm 7, its com-
petitive ratio must be no smaller than n§-, i.e., ny (7) > 1.

The above arguments share some similarity to Theorem 4
in [15]. However, computing 13- here is much more difficult
than that in [15]. The computation of 75~ requires solving the
optimization problem (9). Like in [15], the denominator of
the objective function in (9) is the optimal value of another
optimization problem. In general, such a bi-level optimization
problem is NP-hard [17]. In [15], special structures of the
problem are exploited to convert a similar bi-level optimization
problem to a convex problem, which is then easier to solve.
However, the techniques in [15] critically rely on the property
that the input Z can be freely scaled up or down without
violating system constraints. Unfortunately, this property does
not hold in this paper. Specifically, if Z is component-wise
multiplied by a large constant, it may violate the bounds from
day-ahead prediction in (1). In the next subsection, we will
develop a more general convexification technique than that in
[15] to convexify the optimization problem (9).

B. Convexification of Problem (9)
We present the key convexification technique in Lemma 5.
Lemma 5: Consider the following optimization problem:
(cTZ+a)/y
y=[f(T),AT <), (10

My = max
Ty
subject to

where Z, c are n x 1 vectors, A is a m X n matrix, bisam x 1
vector, and «,y are scalers. Suppose that f(-) is a convex
function of #, and f(&) > 0 over the entire constrained region
of AZ < b. If there exists Z, such that ¢TZ + « > 0, then the
optimal value M; of (10) is equal to the optimal value M5 of
the following optimization problem:

M = max T+ au
subject to 1> uf(@/u), AZ <bu,u>0. (11)

Remark 2: In order to prove Lemma 5, we use the mapping
¥ = Z/y,u =1/y and the properties of perspective functions
[18] to transform problem (10) to (11). The details are available
in our technical report [16]. The result of Lemma 5 can be
viewed as a generalization of fractional-linear program [19],
which requires f(Z) to be linear.

Based on Lemma 5, in order to convexify (9), we only
need to show that FY°(Z;) is a convex function of Z;. (A
more detailed discussion is available in our technical report
[16].) The convexity of EY°(Z,) is ensured by the following
lemma.

Lemma 6: Suppose that f(z,y) is a convex function de-
fined on a convex set D. Let D, = {y : (x,y) € D}, then
g(x) =inf,ep, f(x,y) is also a convex function.



Specifically, we can view Z; as z, and Z’ \ Z; as y.
Then, based on (8), we can rewrite EY°(Z;) as EY(z) =
inf, { E}4(z,y)}. The region of (x,y) is a convex set because
all the constraints in (1)-(3) are linear constraints. Further, it
is easy to verify that El;(x,y) is a convex function of (z,y)
according to (7). Therefore, EY°(Z;) is a convex function.

IV. ALGORITHM DESIGN AND ROBUSTIFICATION

Note that we have obtained a lower bound 75- for the com-
petitive ratio of any online algorithm, the next step is to design
an online algorithm that can attain this lower bound. It turns
out that we can use the idea of the EPS algorithm proposed
in [15]. Specifically, at each time, an online algorithm can
set By (Zy,m) = 0y EY°(Z;). We also refer to this algorithm
as the EPS (Estimated Peak Scaling) algorithm because it
always scales up the estimated value EY°(Z;) of the lowest
possible future peak by the competitive ratio 7y-. Like in [15],
it is not difficult to prove from the definition of 75 that this
EPS algorithm is feasible for any input Z € Zy because
the condition (5) is always satisfied. Thus, the EPS algorithm
attains the optimal competitive ratio 75-.

The problem of this EPS algorithm, however, is that
although it achieves the optimal competitive ratio for the
worst-case input, its average-case performance can be quite
poor, i.e., its peak can be high for many other inputs. To
understand this dilemma, note that according to Lemma 3,
any online algorithm with optimal competitive ratio 7y- should
set Ey(Z;,m) to be no larger than n}-EY°(Z;). In the case
of the EPS algorithm, it always set E;(Z;, ) to the highest
possible value. Thus, it can be viewed as the most conservative
algorithm. If the future input indeed followed the worst-case,
such conservatism would have been essential to attain the
optimal competitive ratio: by serving more demand up-front,
the EPS algorithm avoids a potentially large peak in the future.
However, if the future input is different from the worst case,
the EPS algorithm will likely be too conservative. For example,
if the future input followed precisely the one that produces the
value EY°(Z;) in (8), then using a rate F;(Z;, m) = EY°(Z;)
would have been sufficient. Thus, one could argue that, since
the worst-case perhaps occurs very rarely, using EPS may turn
to be a poor choice in most scenarios.

This conflict between worst-case performance and average-
case performance is not uncommon in the context of com-
petitive online algorithms [13]. An algorithm designed for
the worst-case can exhibit poor average-case performance,
making it less appealing for practical implementation. Ideally,
we would like to design an algorithm with both good worst-
case and good average-case performance. In the rest of this
section, we will present a novel “robustification” procedure to
design such an algorithm. Our key idea is as follows. We first
identify not one, but a class of algorithms that all attain the
optimal competitive ratio. Then, starting from any algorithm
with reasonable average-case performance, we “robustify” its
decision by comparing it to the above class of algorithms.
The resulting algorithm will then achieve both the optimal
competitive ratio and good average-case performance.

A. Online Algorithms with the Optimal Competitive Ratio

Suppose that 7 is an optimal online algorithm with com-
petitive ratio 7y-. For any realization Z € Zy, we next study

all possible values of E;(Z;, ) that the algorithm 7 can take.
The upper bound on E;(Z;,7) is given by Lemma 3, i.e.,

E(Zy,m) < ny EY(Zy). (12)
Next, we derive a lower bound for E;(Z;, ).

At time ¢, we use 7 ;, to represent the total not-yet-served
demand with deadline no greater than ¢, which includes all
the remaining demand (with deadline no greater than ¢;) from
the previous time slots, the newly arrived net demand, and the
newly arrived EV demand with deadline no greater than ¢;.
Consider any time instant ¢; > ¢, given any input Z with the
first part being Z;, we must have

ty

t1 t1
Et(Zt,ﬂ')+7];' Z E{’e(Zg) Z Tt,t1+ Z (Z Qs w + bg) .

s=t+1 s=t+1 \w=s

Here, a, ., and b, are the elements of Z. The right hand side is
the total demand that has to be served within [¢,¢;], while the
left hand side is the maximum possible energy procurement
from the grid (assuming that each future energy procurement
rate is set to the upper bound in (12)). Then, we have

ty [t

Et(Zt,’/T) Z Tt,t1+z (Z As,w —+ bs — U;Efe(zs)> . (13)
s=t+1\w=s

Note that (13) must hold for all possible future inputs. Define

the following optimization problem that maximizes the right

hand side of (13) over all possible future inputs:

t1 t1
/ / * e /
sup asw+bs -1 Eg (Zs) (14’)
72y 7i=7 s:;l (Z_: ’ '

where a, .0} are the corresponding elements of Z’. Let

R;;(Zt,tl) be the optimal value of (14). Then, in order to
attain the optimal competitive ratio, the following must hold

EfZy,m) > ree, + R;; (Zt,t1). (15)

Finally, the above inequality must hold for all ¢; > ft.
Therefore, we obtain the following lower bound for Fy(Z;, 7):

Ey(Zy,m) > ?f%’f{”’“ + Ry (Zi, 1)} (16)

Remark 3: Note that EP¢(Z!) is a convex function (see
Section III-B). Therefore, the objective of (14) is a concave
function. Further, both constraints (Z' € Zy and Z] = Z;) of
(14) are linear constraints. Hence, (14) is a convex optimization
problem, and thus can be efficiently solved.

We summarize the above discussion into Lemma 7.

Lemma 7: For any feasible online

algorithm, we must have

Itng)t({rt’tl + Rf,;, (Zi,t1)} < Ey(Zy,m) <y EY(Zy).
1=

73--competitive

Remark 4: We note a key difference in the qualitative
nature of the upper and lower bounds. The upper bound of
E(Z;,7) depends only on the optimal competitive ratio 13-
and the past realization Z;, but is independent of the past
decisions Es(Zs,m),s < t. In contrast, the lower bound
of E¢(Z;,m) also depends on the past energy procurement
Es(Zs,m),s < t. Due to this reason, the lower bound is more



adaptive: if the energy procured from the grid in the previous
time slots is large, we will have less remaining demand 7,
and thus have a smaller value for the lower bound. Such an
ability to adjust based on the past decisions is the key reason
that we can robustify an algorithm with good the average-case
performance to have optimal competitive ratio.

Input: Time slot ¢, the remaining demand 7, ;, and the
part Z; that has been revealed.

1 Compute the lower bound (16) and upper bound (12),
and let E;(Z;, ) be any value in between.

2 The aggregator purchases E;(Z;, ) amount of energy
from the external power grid, and uses the renewable
energy and the purchased energy E:(Z:, ) to serve the
existing demand. The aggregator first serves the
background demand b;, and then serves the deferrable
demand by the earliest deadline first (EDF) policy (i.e.,
demand with earlier deadline gets served first). The
aggregator will stop serving demand if all the available
demand at time ¢ is completely served or the amount of
energy E;(Z;, ) is exhausted.

Algorithm 1: A Class of Optimal Online Algorithms

Motivated by Lemma 7, we define a class of online
algorithms, called ABS (Adaptive Bound-based Scheduling),
in Algorithm 1. We first show that all ABS algorithms are
well-defined. Specifically, we show that the lower bound (16)
is always no greater than the upper bound (12). Therefore, it
is always feasible to pick a value for F;(Z;, ) at each slot.

Lemma 8: Given Z € Zy and an algorithm 7 in the class
ABS, at each time slot ¢, we must have

max{rt,tl + R;* (Zt’tl)} S n;‘/Efe(Zt) (17)
t1>t Y

Lemma 8 is the key of this section, and its proof is non-
trivial. We can see that both sides of (17) depend on 75-. In
fact, ny- is the smallest value such that (17) always holds. For
any 7 < 15, it is possible to construct a case Z’' € Zy such
that max;, >¢{r¢¢, + E;(Zi,t1)} > nE{(Z;) for some t.

In order to prove Lemma 8, it suffices to show that
ny EY(Z;) > right hand side of (13) (18)

for all possible future realizations of the input. We note that
Ty, i (13) can be written as ry;, = T4, + by + Zg £ Ot s
where 7,4, is the total remaining demand (with deadline no
greater than ¢1) from the previous time slots. Then, we can
rewrite the inequality (18) as follows:

nyZEW >ml+z(b+2asw) (19)

The maln difficulty of proving (19) comes from the term

If #ty, = 0, then (19) would have hold trivially
because of the definition of 75 (see (9)). If 7,4, > 0, we
have to develop new techniques to prove (19). The key idea
here is to apply induction from time ¢ — 1 to time ¢. Due to
space constraint, we omit the proof here. The detailed proof
is provided in our technical report [16].

Next, we show that all ABS algorithms are indeed optimal.

Lemma 9: Any algorithm 7 in the class of ABS is feasible
and achieves the optimal competitive ratio of 7y-.

Proof: The proof is straightforward. First, based on the
choice of Ey(Z;,m), it is easy to see that the peak of the
algorithm 7 never exceeds 7y- times the offline optimal peak.
Thus, the algorithm 7 is 73 -competitive. Second, let ¢ = ¢
in (15). It is easy to check that R;; (Zt,t) = 0. Therefore,

E(Z;,m) > 144, which implies that no demand will violate
its deadline at time ¢. This completes the proof. [ ]

B. Algorithm Robustification

We have characterized the structure of optimal online
algorithms. It only remains to find an online algorithm in ABS
that also has good average performance. Our strategy is to take
any algorithm with reasonable average-case performance, and
convert it into one in the class ABS. We call this procedure
Algorithm-Robustification. The Algorithm-Robustification pro-
cedure is formally stated in Algorithm 2. Specifically, Step 3
of the procedure states that, if £,(Z;, ) is between the upper
bound and the lower bound, then we use the decision of the
original algorithm 7. Otherwise, we “robustify” the decision
by setting E;(Z;, TRobust) to one of the bounds, so that the
resulting “robustified” algorithm belongs to ABS. Intuitively,
this procedure implies that for most inputs the robust version of
7 will likely behave in the same way as the original algorithm.
Hence, the average-case performance will likely be similar.
However, if there is a danger that the competitive ratio may be
violated in the future, the robustified algorithm will then take
the more conservative decision represented by the bounds.

Input: A realization Z € Zy, the optimal competitive
ratio 75~ and any online algorithm 7.
Output: An optimal online algorithm 7mopys and its
schedules E;(Zy, TRobust)-
1fort=1:T7T do
2 Compute o= mathzt{n,tl + R:;* (Zt,tl)},
B =n3EF(Z;), and the schedule Ey(Z;, ) of the
online algorithm 7.
3 Set Ey(Zys, Trobust) = MP(Ey(Zys, 7)), where
MPB(x) = max{min{z, 3}, a}.
4 end
Algorithm 2: Algorithm-Robustification Procedure

In practice, in Section V-C, we will robustify a well-known
online algorithm, called receding-horizontal-control (RHC).
The RHC algorithm usually exhibits good average-case per-
formance [20]. However, its worst-case competitive ratio can
be very poor. We then apply this Algorithm-Robustification
procedure to the RHC algorithm. This robustified RHC al-
gorithm will then achieve optimal competitive ratio in the
worst case. Further, our numerical results demonstrate that the
robustified RHC algorithm achieves almost the same average-
case performance as the RHC algorithm.

V. SIMULATION

We conduct simulation using real traces from two data sets.
Elia [21], Belgium’s electricity transmission system operator,
provides day-ahead predictions and real-time values of back-
ground demand and renewable energy for every hour of each



day. (However, Elia [21] does not provide data for intra-day
prediction.) The National Household Travel Survey (NHTS)
dataset [22] provides vehicle driving records for 150147 house-
holds. By assuming that future EV driving patterns are similar,
it is not difficult to use the data in [22] to synthesize a model
for the EV demand (see Fig. 1), including EV arrival time,
deadline and amount of energy charging demand, as has been
done in earlier works in [23]. The details are available in [16].

A. The importance of Accounting for Uncertainty

We note that the day-ahead prediction in our 2-IPM con-
sists of an upper bound and a lower bound for each time-slot.
In contrast, the day-ahead prediction in Elia data-set [21] only
contains one predicted value. Nonetheless, by comparing the
difference between day-ahead predicted value and the real-
time value over long periods of time (e.g., a year), it is easy
to compute upper and lower bounds of the prediction error
(for a given confidence level). Combining them with the day-
ahead predicted values of [21], we can then generate the upper
and lower bounds for day-ahead predictions as required in
our model. (Details are available in our technical report [16].)
In Fig. 2 (a), we apply this methodology to Elia’s data on
background demand and renewable energy over a 24-hour
period from 8am 02/05/2013 to 8am 02/06/2013, and plot the
following versions of net non-deferrable demand b (as the
background demand minus the renewable energy): the real-
time value, the day-ahead predicted value directly from [21],
and the upper and lower bounds of the real-time values as
constructed above. From Fig. 2 (a), we can see that the gap
between the upper and lower bounds can be quite large (up
to 20% of the day-ahead predicted value). The dataset in
[21] does not provide explicit intra-day prediction. Hence, in
our first experiment, we only consider day-ahead prediction.
Lastly, for EV demand, we scale up' the synthesized model
(see Fig. 1) by a factor 20, and assume that the day-ahead
prediction of the EV demand is always accurate. In other
words, we consider the uncertainty of background demand and
renewable energy only.

We next demonstrate that, even for the scenario with low
uncertainty, an algorithm that is oblivious to future uncertainty
may lead to large peak consumption levels. Specifically, we
consider the following uncertainty-oblivious algorithm. At day-
ahead, this uncertainty-oblivious algorithm assumes that the
day-ahead predicted values of the background demand, the
renewable energy (both from [21]) and the EV demand, are
accurate. It thus computes the offline optimal peak and the
corresponding charging schedule (e.g., one possible schedule
is to procure at each time-slot the amount of energy equal
to this offline optimal peak), and then applies this schedule
during real-time operation. Note that there is a chance that
this schedule may not meet the deadline constraints of some
EV demands because the real-time values will differ from
the predicted values. In that case, this uncertainty-oblivious
algorithm will then need to procure additional energy at the
time of the deadlines to meet the requirement of these EV
demands. Intuitively, this algorithm will perform poorly even if
there is only a slight deviation between the real-time values and

IThis EV trace [22] is obtained based on 150147 households. However,
Belgium has 4 million households. Scaling the EV demand up by 20 will
correspond to the future scenario where all vehicles in Belgium are electrified.

the predicted values because it always wait until the last minute
to remediate the prediction error. This is confirmed from Fig.
2 (b), where we plot the energy procurement schedule of
this uncertain-oblivious algorithm versus the EPS algorithm
(discussed at the beginning of Section IV). The uncertainty-
oblivious algorithm suffers a large peak at the last minute
because the deadlines of most EV demands are 8am (see
Fig. 1). In contrast, since the EPS algorithm increases the
amount of energy procured early on, it avoids this last-minute
peak. (We will see shortly that algorithms in the class of
ABS will tend to have even lower peak than that of the EPS
algorithm.) Hence, this figure clearly illustrates the importance
of explicitly accounting for future uncertainty in the system.

B. 2-IPM and the Price of Uncertainty

We next evaluate the merit of the proposed 2-IPM in
capturing the uncertainty of prediction. Note that given specific
parameters of 2-IPM, we can calculate the lowest competitive
ratio over all online algorithms (see Section III). This optimal
competitive ratio can thus be viewed as measure of the
“price of uncertainty”, i.e., it represents the increase in cost
(compared to the offline optimal peak) due to the inherent
uncertainty captured by 2-IPM. Note that we have simulated
based entirely on real traces in Section V-A. In the rest of
the numerical experiments, we will artificially manipulate the
trace to observe the performance in different settings.

We first compare the competitive ratio under 2-IPM versus
that under the prediction model in [15]. Note that the uncer-
tainty model in [15] assumes that the ratio between the future
uncertainty (i.e., the walk-in demand in [15]) and the predicted
value (i.e., the reserved demand in [15]) is bounded. However,
the absolute quantity of the predicted value is not specified.
Thus, we refer to the uncertainty model in [15] as a relative
uncertainty model. In contrast, in 2-IPM the absolute quantities
for the predicted upper/lower bounds are specified. Hence, we
refer to 2-IPM as an absolute uncertainty model. One can map
absolute uncertainty in this paper to relative uncertainty in [15]
by using only the ratio between the prediction error and the
predicted value. For instance, suppose x°*(t) is the day-ahead
predicted value. In 2-IPM, the upper and lower bounds of day-
ahead prediction are specified as

£2(0,4) = xP(#) x (1—), £ (0, ) = xPA (1) x (14¢). (20)

In contrast, with the relative uncertainty model in [15], only €
is specified, but not xPA(¢).

Intuitively, absolute uncertainty contains more information
than relative uncertainty, and thus 2-IPM should yield lower
competitive ratios. To confirmed this point, we use the day-
ahead predicted values as in Section V-A, but varies the up-
per/lower bounds of day-ahead prediction by varying € in (20).
In Fig. 3, we plot the optimal competitive ratios under both
2-IPM and under the relative uncertainty model from [15], as
€ varies from 0.05 to 0.2. We can see that, even with only day-
ahead prediction, the optimal competitive ratios under 2-IPM
are lower. For example, when ¢ = 0.2, the competitive ratio
reduces from 1.2 to 1.16, which corresponds to approximately
4% reduction on the peak demand (which is significant as 1%
reduction corresponds to 0.01 x 20MW x 9§ /kW x 12 = 21600$
saving per year for campus-level aggregators [4] with peak
energy in the order of 20MW). In this sense, we argue that
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the price of uncertainty under 2-IPM is lower than that under
a comparable model of relative uncertainty as in [15].

We next evaluate the impact of intra-day prediction. Note
that the Elia data set [21] does not have intra-day prediction
data. Thus, in the following we will artificially vary the param-
eters of intra-day prediction and evaluate the corresponding
optimal competitive ratios. Such an evaluation methodology
has a unique advantage: even before the operator carries out
the intra-day prediction, our methodology will be able to reveal
how useful such information will be in terms of reducing the
optimal competitive ratio. Again, this knowledge of “price of
uncertainty”, i.e., how must the cost can be reduced by intra-
day prediction, could be very useful in deciding which types of
intra-day prediction to perform and how accurate they need to
be. Specifically, we evaluate three types of intra-day prediction,
i.e., hour-ahead prediction, 12-hour-ahead prediction and 18-
hour-ahead intra-day prediction. For each type of intra-day
prediction, we vary the intra-day prediction gap as

W (ug, t) = min{2€nea x xP2(t), %Y (0,1) — £5(0,1)},

where %£(0,),%Y(0,t) are the day-ahead predicted bounds
specified in (20), and €y, is the parameter we can vary. In
Fig. 3, we plot the corresponding optimal competitive ratios
under several choices of €y, as the € (i.e., error of day-
ahead prediction) varies from 0.05 to 0.2. We can make a
number of interesting observations. First, even if the hour-
ahead prediction is perfect (i.e., €pnra = 0), the optimal
competitive ratio barely changes from the case with only day-
ahead prediction. Intuitively, this is because the hour-ahead
prediction is too late: most of the decisions have already
been made well before such hour-ahead prediction becomes
available. In contrast, a perfect 12-hour-ahead prediction re-
duces the optimal competitive ratio by 2%. Interestingly, even
an imperfect 18-hour-ahead prediction can be very helpful.
For example, when ¢ = (.2, 18-hour-ahead prediction with
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€ntra = 0.08 reduces the optimal competitive ratio from 1.16
(no intra-day prediction) to 1.13, which is comparable to the
gain from a perfect 12-hour-ahead prediction. In practice, the
earlier the intra-day prediction is performed, the less accurate
it will likely be. Thus, the results in Fig. 3 will allow the
operator to evaluate which type of intra-day prediction will be
most useful, i.e., in reducing the cost of uncertainty.

C. Worst-case vs. Average-case Performance

Until now we have focused on evaluating the worst-
case competitive ratio. This worst-case competitive ratio is
achievable by the EPS algorithm. However, as we discussed
in Section IV, the EPS algorithm has poor average-case
performance. In Section IV, we also present a robustification
procedure that can be used to design algorithms with both good
average-case performance and worst-case guarantees. Our next
set of simulations will demonstrate this point.

Specifically, we will robustify a well-known heuristic al-
gorithm, called Receding Horizon Control (RHC) [20]. In our
setting, RHC means that, at each time-slot, the aggregator
assumes that future demand and supply will be exactly equal
to their most-recently predicted values, and then computes
the schedule that minimizes the future peak based on the
remaining EV demand and the currently-known background
demand and renewable energy supply. The aggregator will then
apply the first time-slot of the schedule. In the next time-slot,
this procedure is repeated with the newly-revealed information.
Empirically, the RHC algorithm is often found to exhibit good
average-case performance, especially when the future values of
uncertain quantities are close to the predicted values. However,
it is not difficult to construct cases where the RHC algorithm
will perform much poorer than the optimal competitive ratio
achieved by the EPS algorithm. (Details of such an example
are available in our technical report [16].)

We next show that the robustified version of the RHC



algorithm (according to Section IV-B), will achieve both good
worst-case and average-case performance. We will use two
traces (see Fig. 4). In both traces, the day-ahead predicted
values of background demand and renewable energy, and their
corresponding upper-bounds and lower-bounds, are the same
and are obtained using the methodology in Section V-A. Both
traces also employ the same intra-day prediction model that
uses the values of the respective quantities one time-slot ahead
as the slot-ahead prediction for the next time-slot, and the intra-
day prediction gap W (u,t) is set according to the maximum
difference between the corresponding quantities in adjacent
time slots (see technical report [16] for more details). Further,
they use the same EV traces as in Section V-A, although
here we also allow prediction errors of the EV demand.
Specifically, we use EV demand model in Section V-A as the
day-ahead predicted value, and assume that the real demand
vary uniformly randomly between 0.8 to 1.2 times the day-
ahead predicted value. (We do not use intra-day prediction for
EV demand.) However, the two figures differ in their revealed
values of the net non-deferrable demand. In Fig. 4 (a), the
revealed values of the net non-deferrable demand are closer
to their day-ahead predicted values, while in Fig. 4 (b), the
difference is much bigger (particularly at the end of the time-
horizon). We will also refer to the trace in Fig. 4 (a) as the
“easy trace”, and the trace in Fig. 4 (b) as the “difficult trace”.

In Fig. 5, we compare the schedules of the EPS algorithm,
the RHC algorithm and the robustified-RHC algorithm under
both traces. By comparing Fig. 5 (a) and 5 (b), we observe that
the EPS algorithm cannot distinguish between the easy trace
and the difficult trace, and its peaks are similar high in both
traces. In other words, the EPS algorithm is too conservative:
it treats every trace as the worst trace, and scales up EY(Z;)
by the maximum value 75.. In contrast, the RHC algorithm
produces a much lower peak in the easy trace, when the day-
ahead prediction is fairly accurate. However, its performance
in the difficult trace is very poor. In the difficult trace, the
day-ahead predicted values consistently underestimate the net
non-deferrable load. As a result, the RHC algorithm sets its
service rate too low at the beginning, and has to use a much
higher rate when all the EV demand approaches the deadlines.
Our robustified-RHC algorithm, on the other hand, inherits the
benefits of both the EPS algorithm and the RHC algorithm. For
the easy trace, the robustified-RHC algorithm gives virtually
the same schedule as the RHC algorithm. For the difficult trace,
the robustified-RHC algorithm detects that the service rate of
the RHC algorithm is too low at about 6pm. It then increases
the service rate afterwards, and avoids the potential peak in
the end. In summary, the robustified-RHC algorithm achieves
both good average-case and good worst-case performance.

VI. CONCLUSION

We study competitive online EV-charging algorithms for
an aggregator to reduce the peak procurement from the grid.
We model the uncertainty of the system using the 2-IPM,
which captures both day-ahead and intra-day predictions of the
demand and the renewable energy supply. We then develop a
powerful computation approach that can compute the optimal
competitive ratio under 2-IPM over any online algorithms, and
also develop a class of online algorithms that can achieve
the optimal competitive ratio. Noting that algorithms with
the optimal competitive ratio (e.g., the EPS algorithm) may

have poor average-case performance, we then propose a new
Algorithm Robustification procedure that can convert an online
algorithm with reasonable average-case performance to one
with both the optimal competitive ratio and good average-
case performance. We demonstrate the superior performance
of such robustified algorithms via trace-based simulations.
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