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Abstract—With the increasing penetration of renewables, AC
optimal power flow (AC-OPF) problems need to be solved more
frequently for reliable and economic power system operation.
Supervised learning approaches have been developed to solve
AC-OPF problems fast and accurately. However, due to the
non-convexity of AC-OPF problems, it is non-trivial and com-
putationally expensive to prepare a large training dataset, and
multiple load-solution mappings may exist to impair learning
even if the dataset is available. In this paper, we develop
an unsupervised learning approach (DeepOPF-NGT) that does
not require ground truths. DeepOPF-NGT utilizes a properly
designed loss function to guide neural networks in directly
learning a legitimate load-solution mapping. Kron reduction is
used to remove the zero-injection buses from the prediction. To
tackle the unbalanced gradient pathologies known to deteriorate
the learning performance, we develop an adaptive learning rate
algorithm to dynamically balance the gradient contributions from
different loss terms during training. Further, we derive conditions
for unsupervised learning to learn a legitimate load-solution map-
ping and avoid the multiple mapping issue in supervised learning.
Results of the 39/118/300/1354-bus systems show that DeepOPF-
NGT achieves optimality, feasibility, and speedup performance
comparable to the state-of-the-art supervised approaches and
better than the unsupervised ones, and a few ground truths can
further improve its performance.

Index Terms—AC optimal power flow, unsupervised learning,
deep neural network, adaptive learning rate, Kron reduction.

I. INTRODUCTION

The essential AC optimal power flow (AC-OPF) problem has
been extensively investigated to minimize operational costs by
optimizing power generation subject to physical and operational
constraints. A study conducted by FERC highlights the potential
of efficient AC-OPF solutions, which could result in substantial
annual savings amounting to tens of billions of dollars [1]. With
the increasing penetration of renewable energy sources such as
wind and solar power, the AC-OPF problem will need to be
solved more frequently to maintain the stable and economic
operation of power systems. As a result, it is of great interest
to solve AC-OPF problems with high efficiency.
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In recent decades, considerable advancements have been
made in optimizing techniques for efficient AC-OPF problem-
solving. These techniques can be broadly classified into mathe-
matical and metaheuristic methods. Conventional mathematical
methods mainly contain the gradient method, Newton method,
linear programming, quadratic programming, and Interior Point
method [2]. Additionally, decomposition algorithms such as
Benders decomposition and alternating direction method of
multipliers have been proposed to reduce problem size [2].
However, these methods encounter inherent limitations in
computational speedup due to the need for repetitive solving
of AC-OPF problems for the same system but with varying
loads. To achieve faster computational speeds, metaheuristic
techniques such as genetic algorithms and particle swarm
optimization have been introduced [3]. Nevertheless, these
methods still face significant computational burdens and
scalability challenges when applied to large-scale systems.

Recently, machine learning methods have gained significant
attention for their promising achievements in solving AC-OPF
problems [4], demonstrating computational speedups of up to
2∼3 orders of magnitude compared to conventional solvers [5],
[6]. Most machine learning schemes employ supervised learning
techniques to learn the load-solution mapping, utilizing datasets
generated by physics-based solvers, such as the interior point
optimizer (IPOPT) solver. Well-trained deep neural network
(DNN) models have been utilized to reduce the number of
constraints [7]–[11], expedite the convergence of conventional
solvers [12]–[14], or directly predict decision variables [5],
[15]–[24]. Further discussions on related works are presented
in Section II.

Despite the promising results achieved, the supervised
learning approach faces two primary limitations. First, it
requires a large training dataset with ground truths to achieve
considerable accuracy. However, obtaining such a dataset is non-
trivial and computationally expensive as the AC-OPF problems
are non-convex and hard to solve, particularly for large-scale
instances [25]. Second, even if such a large dataset is available,
DNNs may still fail to perform well. Due to the non-convexity
of AC-OPF problems, existing solvers may provide one of the
globally/locally optimal solutions, and different initial points
may lead to diverse solutions [26]. Hence, the training data
may encompass different load-(sub-)optimal-solution mappings.
As a result, the supervised learning method may learn an
average of these mappings that exhibit inferior performance;
see Section III-B for an illustrating example. It is challenging
to prepare a dataset containing ground truths from only one
mapping. A study by Kotary et al. [27] propose to address this
issue by a bi-level optimization approach. However, the problem
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TABLE I
COMPARISON OF EXISTING MACHINE LEARNING BASED-APPROACHES FOR SOLVING OPF PROBLEMS

Category Approach Existing study Problem Metrics in consideration Ground
truth

Gradient
pathologiesDC-OPF AC-OPF Feasibility Optimality

Supervised
learning

Predict active/
inactive constraints

[7], [8]
[9], [10]

[11]

Predict warm-start points [12]
[13], [14]

Learn load-solution mapping
[15]–[19]

[20], [21], [29]
[5], [6], [30]

Reinforcement
learning Learn load-solution mapping [22]–[24]

Unsupervised
learning

Learn load-feasible-solution
mapping and make refinements [31]

Learn load-solution mapping [32]–[35]
This work

is proven NP-hard, and finding exact solutions for large-scale
instances is computationally prohibitive. A generative learning
approach is developed to solve non-convex problems with multi-
valued input-solution mapping in [28]. It would be interesting
to investigate its application to the non-convex AC-OPF setting.

To tackle the aforementioned issues, we propose an unsu-
pervised learning approach called DeepOPF-NGT (where
NGT denotes “No Ground Truth”) to solve AC-OPF problems
efficiently. Unsupervised learning, as we know, focuses on ex-
tracting patterns and relationships from unlabeled data, without
using explicit labels or predefined outcomes. DeepOPF-NGT
is designed to discern the mapping between load and solution
without the need for ground truth, thereby circumventing learn-
ing the average of multiple mappings - a scenario that could
lead to subpar performance due to the existence of multiple
global or local optimal solutions for each input. Remarkably,
we demonstrate that DeepOPF-NGT can learn a legitimate
mapping (one that produces a unique global or local optimal
solution for each input) under certain conditions. Although
reinforcement learning also does not require ground truth, it is
primarily developed to tackle multi-step or sequential decision-
making problems in uncertain and dynamic environments, while
this study focuses on the standard AC-OPF problem, a single-
step problem within certain scenarios. Detailed discussion is
provided in Section II. Our main contributions are three-fold:

• An unsupervised learning approach, DeepOPF-NGT, is
proposed to solve AC-OPF problems without the need
for ground truths. It leverages a properly designed loss
function consisting of the objective and the penalties for
constraint violations and dissatisfied loads to guide DNNs
to learn a legitimate load-solution mapping directly. Kron
reduction [36] is employed to remove the zero-injection
buses (ZIBs) from the prediction, improving the scalability
and feasibility.

• An adaptive learning rate algorithm is designed to tackle
the unbalanced gradient pathologies known to deteriorate
the learning performance [37] by dynamically balancing
the gradient contributions from different terms in the loss
function. Besides, we provide theoretical insights into
learning a legitimate mapping for optimization problems
with multiple mappings by the unsupervised learning

method. To the best of our knowledge, this gives the
first justification of applying unsupervised learning to
learn a legitimate mapping and avoid the multiple mapping
issue encountered in supervised learning (see Section III-B
for an illustrating example). Moreover, we consider the
situation with a few ground truths and leverage them to
improve DeepOPF-NGT by designing a semi-supervised
learning approach.

• Simulation results of the modified IEEE 39/118/300/1354
bus systems validate that DeepOPF-NGT achieves com-
parable performances to state-of-the-art supervised and
unsupervised learning approaches when there is only one
global/local optimal solution for each load input, but
outperforms these approaches when there are multiple
global/local optimal solutions for each load input. Besides,
it has good scalability. Furthermore, the proposed adaptive
learning rate algorithm can alleviate the unbalanced
gradient pathologies, and a few ground truths can improve
DeepOPF-NGT.

The structure of the remaining part is as follows. Section
II discusses the related works. Section III formulates the AC-
OPF problem and explains the multiple load-solution mapping
issue. Section IV illustrates the framework of DeepOPF-NGT.
Section V analyzes the performance of DeepOPF-NGT and
extends it to a semi-supervised learning approach. Section VI
validates the effectiveness of DeepOPF-NGT. Section VII
concludes this paper and discusses future directions.

II. RELATED WORK

The field of machine learning offers three main categories
for addressing optimal power flow (OPF) problems: supervised
learning, unsupervised learning, and reinforcement learning, as
outlined in Table I.

Within the supervised learning approach, two distinct subcat-
egories can be identified: hybrid and stand-alone approaches.
The hybrid approach involves predicting active [8], [11] or
inactive [7], [9], [10] constraints to reduce the problem size or
warm-start points to expedite the convergence of conventional
solvers [12]–[14]. To enhance solution feasibility, some studies
incorporate penalties for constraint violations into the loss
function [9], [10], [12]–[14]. Nevertheless, the potential for
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computational speedup is limited, as the AC-OPF problem still
needs to be solved iteratively.

The stand-alone approach directly predicts solutions for
OPF problems. Several researchers utilize DNNs to predict
all variables and incorporate constraint violations into the loss
function using Lagrangian duality, aiming to enhance feasibility
[20], [21], [29]. By avoiding the need to solve the optimiza-
tion problem, this approach achieves a higher computational
speedup compared to the hybrid approach. Nonetheless, the
resulting solution is prone to in-feasibility due to prediction
errors, as it does not guarantee the satisfaction of equality
constraints. To tackle this challenge, several studies [15]–[17]
propose a two-stage predict-and-reconstruct framework to solve
the (security-constrained) DC-OPF problem. This approach
predicts a subset of the variables and reconstructs the remaining
ones by leveraging the equality constraints. The study in [5]
extends this framework to the AC-OPF problem, which predicts
decision variables and reconstructs the remaining variables
using a power flow solver. However, due to the requirement of
solving power balance equations, the computational speedup
of this extended framework remains limited. Furthermore,
the presence of prediction errors can lead to scenarios with
no feasible solution or voltage violations. To simultaneously
enhance computational speedup and feasibility, DeepOPF-
V predicts all bus voltages and reconstructs the remaining
variables via simple matrix operations [6]. Topology-adaptive
approaches have also emerged to handle grid topology changes
[38], [39]. Moreover, a recent study in [30] proposed the
low complexity homeomorphic projection to ensure solution
feasibility.

In contrast to the supervised learning approach that learns the
load-solution mapping embedded in the training dataset, the un-
supervised learning approach utilizes the loss function to guide
DNNs in learning the load-solution mapping directly. However,
only a few unsupervised learning approaches have been
proposed for solving OPF problems. In [32], a Deep Constraint
Completion and Correction (DC3) algorithm is developed to
enforce feasibility through a differentiable procedure designed
for optimization problems with hard constraints. Meanwhile,
the proposed DeepOPF-NGT significantly expands our pre-
liminary work in [33]1 with three critical improvements: (i)
a substantial improvement in training efficiency is achieved
through the application of Kron reduction [36] and the proposed
adaptive learning rate algorithm, which is particularly essential
for large-scale systems2; (ii) the multiple mapping issue of
the AC-OPF problem is explored, offering theoretical insights
into learning one legitimate mapping; (iii) DeepOPF-NGT is
extended to a semi-supervised learning approach.

Noticeably, DeepOPF-NGT differs from DC3 [32] in
several key aspects. First, DeepOPF-NGT achieves much
faster training speeds compared to DC3. While DC3 learns the
“load-generation” mapping and solves power flow equations
to reconstruct the remaining variables (a similar approach
was presented in [16]), DeepOPF-NGT learns the “load-

1 This workshop does not publish proceedings, and submissions are non-archival.
Submission to this workshop does not preclude future publication.

2 The work in [33] only presents results in the IEEE 30-bus system which is
much smaller than the 300/1354-bus systems considered in this study.

voltage” mapping and reconstructs the remaining variables
through simple matrix operations. Second, the training process
of DeepOPF-NGT is simpler. In DC3, the gradient of the
loss function is implicit, and computing the inverse of the
Jacobian matrix can be time-consuming and prone to numerical
issues (as discussed in Section VI-B). In contrast, DeepOPF-
NGT explicitly computes the gradient of the loss function and
only requires the computation of the Jacobian matrix. Third,
DC3 employs fixed coefficients for different terms in the loss
function, whereas DeepOPF-NGT devises an adaptive learning
rate algorithm to address gradient pathologies [37]. Moreover,
in contrast to DC3 which was evaluated on a 57-bus system,
DeepOPF-NGT has been validated on larger power systems,
i.e., IEEE 118/300/1354-bus systems. Fourth, we prove for
the first time in the literature that the unsupervised learning
method can guarantee learning a legitimate mapping under
certain conditions. Fifth, we extend DeepOPF-NGT to a semi-
supervised learning approach.

Furthermore, we have noted recent studies on unsupervised
learning methods in [31], [34], [35]. However, the approach
presented in [31] does not strictly adhere to the definition of
unsupervised learning, as it still requires a large training dataset
containing feasible solutions. Besides, it approximates the
solution feasibility using DNNs, which can introduce potential
inaccuracies. Similar to [32] and [33], the approaches developed
in [34], [35] utilize a loss function consisting of the objective
and constraint violation penalties. However, these methods have
limited speedup for solving power flow equations and do not
consider the unbalanced gradient pathologies that are known to
deteriorate the performance of unsupervised learning. Addition-
ally, the approach in [35] needs to solve dual problems at each
training iteration and has only been validated for scenarios with
10% load variations, whereas our proposed DeepOPF-NGT
does not require solving optimization problems and has been
validated in scenarios with over 40% load variations.

Distinct from the supervised and unsupervised learning
approaches that primarily address single-step problems within
certain scenarios, reinforcement learning aims to tackle multi-
step problems in an uncertain and dynamic environment.
Similar to unsupervised learning, it operates independently
of ground truths. In reinforcement learning, an agent learns to
make sequential decisions to maximize long-term rewards by
interacting with the environment. The agent receives feedback
from the environment depending on its previous states and
learns through the trial and error technique. The study in [23]
devises a reward function consisting of total generation costs
and constraint violation penalties. To handle constraints, the
studies in [22], [24] employ Lagrange multipliers to update
the weights of penalties adaptively [22], [24]. However, since
we focus on the single-step standard AC-OPF problem, the
reinforcement learning approach is unsuitable for this study.

III. PROBLEM FORMULATION

A. AC Optimal Power Flow Model

The AC-OPF problem aims to minimize the generation cost
while satisfying physical and operational constraints, such as
power balance, generator capacity, transmission line limits,
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voltage limits, renewable energy generation, the control of
transformers and shunt compensators, etc. Without loss of
generality, we consider the basic setting, i.e., the standard AC-
OPF model. This simplified model is commonly used in the
literature such as [40] and can be formulated as follows:

min
∑

i∈NG
Ci(Pgi), (1a)

s.t. Pij = GijV
2
i − ViVj(Bijsinθij +Gijcosθij),∀(i, j) ∈ E ,

(1b)

Qij = −BijV 2
i − ViVj(Gijsinθij −Bijcosθij),∀(i, j) ∈ E ,

(1c)

Pi =
∑

(i,j)∈E
Pij , Qi =

∑
(i,j)∈E

Qij , ∀i ∈ N ,
(1d)

Pi = Pgi − Pdi, Qi = Qgi −Qdi, ∀i ∈ N , (1e)

P gi ≤ Pgi ≤ P gi, Qgi ≤ Qgi ≤ Qgi, ∀i ∈ N , (1f)

V i ≤ Vi ≤ V i, ∀i ∈ N , (1g)

θij ≤ θij ≤ θij , ∀(i, j) ∈ E , (1h)

P 2
ij +Q2

ij ≤ S
2

ij , ∀(i, j) ∈ E , (1i)

where N is the set of all buses which consist of generation
buses (collected in the set NG) and load buses (collected in
the set NL); E denote the set of branches; the branch from
bus i to bus j is denoted as (i, j); gij and bij are conductance
and susceptance of the branch (i, j), respectively; (Pi, Qi) are
the net active and reactive power injections, (Pgi, Qgi) are
the active and reactive power generations, (Pdi, Qdi) are the
active and reactive loads, (Vi, θi) are the voltage magnitude
and angle, at bus i; θij := θi − θj is the angle difference, and
(Pij , Qij) are the active and reactive branch power flows, at
branch (i, j). The given upper and lower bounds of a variable x
are represented by x and x, respectively. This model minimizes
the generation cost in (1a) subject to physical and operational
constraints in (1b)-(1i). The branch power flows are given by
(1b)-(1c). Kirchhoff’s circuit laws are ensured by (1d). The
net power injections are given by (1e). Inequalities (1f)-(1i)
impose the operational limits for power generations, voltage
magnitudes and angles, and branch power flows.

For ZIBs, equations (1b)-(1e) can be expressed in Cartesian
coordinates as below:∑

j∈N
(Gijej −Bijfj) = 0, ∀i ∈ NZ , (2a)∑

j∈N
(Gijfj +Bijej) = 0, ∀i ∈ NZ , (2b)

where ej = Vj cos θj and fj = Vj sin θj , and NZ is the set of
ZIBs regarded as internal buses in Kron reduction. By equation
(2), we can remove the ZIBs from the AC-OPF model in (1).

DeepOPF-NGT is a general unsupervised learning approach
that can be extended to more complex AC-OPF models with
renewable energy sources, discrete control variables, topological
changes, and contingencies by integrating the related constraints
and objectives into the formulation (1). Furthermore, our
framework is capable of seamlessly incorporating reinforcement
learning techniques. This is achieved by introducing time-
coupling constraints - like ramp-rate constraints for generators
- into the AC-OPF model. Subsequently, the loss function

Bus 1 Bus 2
!!" + #$!"

%#, '# (#, )#
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Fig. 1. An illustrating two-bus system: (Pg , Qg) are active and reactive
power generations, (Pd, Qd) are active and reactive loads, and (Vg , θg) and
(Vd, θd) are voltages of generation and load buses, respectively.

Fig. 2. Load-solution mappings in an illustrating two-bus system.

delineated in Section IV-A is utilized as the action value or
reward function.

B. Multiple Mappings for the AC-OPF Problem

The AC-OPF problem in (1) may have multiple local
or global optima due to its non-convex nature. Existing
OPF solvers such as IPOPT may provide different local or
global optimal solutions when starting from different initial
points, resulting in mixed samples from different load-solution
mappings. To illustrate this, we consider a two-bus system with
one generation bus and one load bus (see Fig. 1) and use the
IPOPT solver to generate 1000 training samples and 500 test
samples with different load inputs. The method in [41] is used
to find multiple global/ local solutions. For each load input,
we generate 2000 different initial points within the bounds of
each variable using uniform sampling and solve the AC-OPF
problem in (1) starting from each initial point. The branch
resistance is set to a small value such that the generation costs
of different solutions are almost the same.

Fig. 2 displays the test samples, showcasing the mapping
between loads and voltage magnitudes. There are two solutions
with almost the same costs for each load input, forming two
legitimate load-solution mappings, i.e., target mappings 1 and
2 marked by blue and red dots, respectively. When using
the supervised learning approach, samples generated by the
IPOPT solver may come from both target mappings, resulting
in learning neither of the mappings. However, it is in principle
not a concern for the unsupervised learning that does not
require ground truths to operate.

We compared DeepOPF-NGT with the supervised learning
approach DeepOPF-V [6] in learning the load-solution mapping
using the aforementioned dataset. Due to space limitations, we
only show the predicted load bus voltage magnitude in Fig. 2.
The mappings learned by DeepOPF-NGT and DeepOPF-V
are marked by green circles and black dots, respectively. The
mapping learned by DeepOPF-NGT aligns almost perfectly
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with target mapping 2 (which has slightly smaller costs than
target mapping 1), satisfying all constraints and 99.85% active
loads. Whereas, the mapping learned by DeepOPF-V is located
between the two target mappings, satisfying all constraints
but only 98.8% active loads. This example suggests that the
unsupervised learning approach outperforms the supervised
learning approach in the regression task with multiple load-
solution correspondences for each load input.

IV. DEEPOPF-NGT: AN UNSUPERVISED LEARNING
APPROACH WITHOUT GROUND TRUTH

A. Schematic of DeepOPF-NGT

The schematic of the proposed DeepOPF-NGT is shown in
Fig. 3. The DNN-based model is composed of fully connected
layers, with a rectified linear unit (ReLU) activation function
on each hidden layer and a sigmoid activation function on
the output layer. It aims to learn the mapping between load
configurations (Pd,Qd) and nonzero-injection bus voltages
(Vα,θα), where Pd and Qd are vectors of active and reactive
loads, respectively, and Vα and θα are vectors of voltage
magnitudes and angles, respectively. Using the well-trained
DNNs, the predicted voltage magnitudes V̂α and voltage angles
θ̂α can be obtained instantly with (Pd,Qd) as the input. Next,
the ZIB voltages (V̂β, θ̂β) are calculated by linear equation
(2). Following that, based on the predicted voltages (V̂ , θ̂) and
loads (Pd,Qd), we can easily compute the left-hand side of
equations (1e). Then, the remaining solution variables (P̂g, Q̂g)
and the auxiliary variables (P̂d, Q̂d) are directly calculated by
(1e) using the obtained left-hand side values without solving
non-linear power flow equations. Specifically, for each bus i:
1) if there are only generators or loads, its predicted active
and reactive generations (i.e., P̂gi and Q̂gi) or predicted active
and reactive loads (i.e., P̂di and Q̂di) are obtained directly; 2)
if there are both generators and loads, P̂di and Q̂di are set to
the given loads Pdi and Qdi, respectively, and then P̂gi and
Q̂gi are directly calculated from (1e). The objective function
is calculated by (1a) after obtaining P̂g . The post-processing
method in [6] is used to improve the feasibility of the predicted
solution. A PV bus will be switched to a PQ bus if the reactive
power generation constraint is violated.

The loss function is designed as

L = kobjLobj + Lcons + kdLd, (3)

where kobj and kd are positive constants, Lobj is the objective
in (1a), Lcons is designed to find feasible solutions satisfying
the constraints in (1f)-(1i), and Ld is designed to satisfy
demanded loads. Kirchhoff’s circuit laws in (1d) are satisfied
automatically, since the net power injections can always be
calculated with the predicted bus voltages. Specifically, Lcons
is the penalty for constraint violations during training as below:

Lcons = kgLg + kSlLSl + kθlLθl + kzLz, (4)

where kg , kSl , kθl and kz are positive constants; Lg , LSl , Lθl
and Lz are penalties for the violations of generation, branch
flow, branch angle and ZIB voltage magnitude constraints

Load
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Fig. 3. Schematic of DeepOPF-NGT.

during training, respectively, i.e.,

Lg =
∑

i∈NG
[max

(
P̂gi − P gi, 0

)2
+ max

(
P gi − P̂gi, 0

)2
+ max

(
Q̂gi −Qgi, 0

)2
+ max

(
Q
gi
− Q̂gi, 0

)2
], (5)

LSl =
∑

(i,j)∈E
[max

(
Ŝij − Sij , 0

)2
], (6)

Lθl =
∑

(i,j)∈E
[max

(
θ̂ij − θij , 0

)2
+ max

(
θij − θ̂ij , 0

)2
],

(7)

Lz =
∑

i∈NZ
[max

(
V̂i − V i, 0

)2
+ max

(
V i − V̂i, 0

)2
].

(8)

Here, Ŝij =
√
P̂ 2
ij + Q̂2

ij , and (P̂ij , Q̂ij) are branch active and

reactive power flows derived from predicted voltages (V̂ , θ̂).
The term Ld penalizes the deviations between the demanded
loads (Pd,Qd) and the predicted loads (P̂d, Q̂d) as below:

Ld =
∑

i∈NL/NZ

[
(P̂di − Pdi)2 + (Q̂di −Qdi)2

]
. (9)

The coupling of different loss terms by voltage magnitudes
and angles gives rise to a competitive dynamic throughout
the training process. To dynamically balance the gradient
contributions from different loss terms in (3) in DNN training,
we design an adaptive learning rate algorithm in Section IV-B.

As discussed in [6], there could be mismatches between
the demanded and satisfied loads due to prediction errors.
Unsatisfied loads are also inevitable in conventional methods.
Considering power losses in transmission lines, inexact system
parameters, etc., a small load-generation imbalance ratio
(around 1%) is acceptable [42].

B. Neural Network Training of DeepOPF-NGT
The DNN model of DeepOPF-NGT is trained by minimiz-

ing the loss function L in (3). A simple and viable approach is
to apply the gradient descent algorithm. Denote the DNN pa-
rameters as φ, and the mapping from the input x = (Pd,Qd)

T

to the output y = (V̂α, θ̂α)
T as y = ξ(x,φ). Then, we can

obtain P̂g(ξ(x,φ)), Q̂g(ξ(x,φ)), P̂d(ξ(x,φ)), Q̂d(ξ(x,φ)),
Ŝl(ξ(x,φ)) and θ̂l(ξ(x,φ)), where Ŝl = (Ŝij ,∀(i, j) ∈ E)
and θ̂l = (θ̂ij ,∀(i, j) ∈ E). Besides, denote z = (V̂β, θ̂β)

T .
We reformulate the loss function in (3) as below:

L = kobjLobj +
∑Nc

i=1
kiLi, (10)

where Li is the loss term for the i-th constraint in (1e)-(1i),
ki is the corresponding coefficient, Nc is the total number
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Algorithm 1: Training of DeepOPF-NGT
Input : DNN model with initial parameters φ0, other

initial parameters η0, kobj , k0g , k0Sl , k
0
θl

, k0z
and k0d, training dataset D = {x1, ...,xn}.

Output : Trained DNN model with parameters φ.
1 for t = 1 to T do
2 Shuffle the training dataset D.
3 for each batch B ⊂ D do
4 for i = 1 to m do
5 yi ← ξ̂(xi,φt−1)
6 end
7 Compute zero-injection bus voltages z by (2).
8 Compute Lobj and {Li, i = 1, 2, ..., Nc}.
9 Update kti by (12) and calculate L.

10 φt ← φt−1 − ηt∇φt−1
L

11 end
12 t← t+ 1
13 end

of constraints. The parameters φ are updated according to
φt+1 = φt − ηt∇φtL, where ηt is a positive step size at the
t-th epoch of training, and the gradient ∇φL is obtained by
using the chain rule as below:

∇φL = ∇yL · ∇φy (11)

= (kobj∇yLobj +∇y
∑Nc

i=1
kiLi) · ∇φy

+ (kobj∇zLobj +∇z
∑Nc

i=1
kiLi) · ∇yz · ∇φy.

All terms in ∇yL can be derived from (1)-(9). For faster
convergence, we employ the mini-batch stochastic gradient
descent algorithm to update the DNN parameters based on a
subset of the training data rather than the entire dataset [43].

The key challenge of training DeepOPF-NGT lies in
gradient pathologies mainly caused by the gradient imbalance
between different loss terms in (3), a common issue when
applying gradient decent method [37]. The dominant loss term
may bias the DNN training towards neglecting the contribution
of others. To address this issue, we develop an adaptive learning
rate algorithm based on the learning rate annealing algorithm
developed in [37]. Different from [37], we directly balance
different loss terms and add upper bounds (fine-tuned manually)
to their coefficients to prevent gradient explosion, which helps
jump out of local optima and speed up convergence for DNN
training. For each training epoch t > 1, given a fixed coefficient
kobj , the coefficient kti is updated as follows:

kti = min(kobjLobj/Li, ki), (12)

where ki is the upper bounds of kti . The coefficient kti is
calculated per constraint by summing up the terms Lobj and
Li over all training samples in each mini-batch. Then, we
developed Algorithm 1 for the training of DeepOPF-NGT.
Fig. 4 presents the flowchart of the proposed DeepOPF-NGT.

C. Discussion

This study employs the widely used mini-batch gradient
descent algorithm to search for optimal parameters of DNNs.

Train the DNN model using Algorithm 1

Input loads into the well-trained DNN model to
obtain predicted nonzero-injection bus voltages

Calculate zero-injection bus voltages by (2)

Calculate the remaining variables by (1e)

Check the feasibility of the solution by (1f)-(1i) 

Constraint violation?

Revise bus voltages by post-processing method

Calculate the remaining variables by (1e)

Output the solution

No

Yes

Model
training

Solution
prediction

Solution
revision

Generate training dataset, set hyper-parameters,
and initialize the DNN model

Fig. 4. Flowchart illustrating the training and application of DeepOPF-NGT.

Several common issues of DNN training may exist. First,
although this algorithm can escape local minima to reach a
good minimum, it is unable to guarantee a global optimum. As
a result, the obtained parameters of DNNs may be suboptimal,
and different mappings may be obtained in different runs.
Hence, the predicted AC-OPF solutions may be suboptimal.
However, existing AC-OPF solvers can only provide suboptimal
solutions as well. To date, finding globally optimal solutions
for AC-OPF problems under general settings remains an
open problem. To avoid getting stuck in local optima, we
develop an adaptive learning algorithm. Second, the sharp
minima issue may prevent DNNs from generalizing well
with the testing dataset. Several metaheuristic algorithms have
been proposed to alleviate this issue and can be applied to
improve the generalization capability of DeepOPF-NGT [44].
Despite these limitations that exist for most machine learning
approaches, DeepOPF-NGT does not require ground truths
compared with existing supervised learning methods and has
the potential to find better solutions than conventional solvers.

Regarding the scalability of DeepOPF-NGT, on one hand,
since there are a considerable number of ZIBs in power systems,
using Kron reduction can reduce the number of prediction
variables significantly. For instance, the IEEE 300-bus system
has 67 ZIBs. On the other hand, the scalability can be further
improved by developing a distributed training algorithm, which
will be our future work. It involves partitioning the predicted
variables into multiple groups and employing a deep neural
network model to predict each group. During the training
process, models associated with interdependent variables will
engage in the exchange of predicted variables, enabling the
calculation of their respective loss functions. This approach
holds the potential to substantially reduce the neural network
size, resulting in expedited training times.

V. PERFORMANCE ANALYSIS AND EXTENSION OF
DEEPOPF-NGT

A. Learning a Legitimate Mapping

In this subsection, we explore sufficient conditions for
learning a legitimate mapping (see Definiton 3) by the proposed
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unsupervised learning approach DeepOPF-NGT. We start
by formalizing the notions. We consider a standard AC-
OPF problem and assume there are M continuous target
load-solution mappings [5]. Each target mapping is denoted
as ξi : x → y, i = 1, 2, ...,M , where x ∈ R2NL and
y ∈ R2(N−NZ) are the input (loads) and the output (ground
truths of nonzero-injection bus voltages), respectively, and N ,
NL and NZ are cardinalities of N , NL and NZ , respectively.
The set of all target mappings is denoted as ξ. For instance,
target mapping 1 (denoted as ξ1) and target mapping 2 (denoted
as ξ2) in Fig. 2 form the set ξ = {ξ1, ξ2}. The mapping from
y to the loss function L is represented by ψ : y → L. It
is known from (3) that ψ(y) is a scalar. The feasible sets
(in the optimization sense) of x, y are denoted as X and Y ,
respectively. The mapping learned by DNNs is denoted as
ξnn. In the compact set X , ξi is Lipschitz continuous except
for a set of Lebesgue measure zero [5], and ξnn is Lipschitz
continuous over X [16].

Regarding ψ, we make the following assumption:
• A1: ψ(y) is Lipschitz continuous, i.e., there exists a con-

stant Lψ > 0 such that |ψ(yi)−ψ(yj)| ≤ Lψ‖yi−yj‖2
for any yi,yj ∈ Y .

Assumption A1 requires ψ to be smooth. The rationale behind
A1 is that the power generation and load change continuously
with bus voltage magnitudes and angles according to equations
(1b)-(1e). As a result, the loss function L also changes
continuously with bus voltages y.

Before proceeding, we provide the following definitions for
our analysis. First, we define whether two target mappings ξi
and ξj can be distinguished based on their distances.

Definition 1. For a given ε > 0 and a compact set X , we say
two mappings ξi and ξj are ε-similar to each other in X if
‖ξi(x)− ξj(x)‖2 ≤ ε for all x ∈ X .

Note that “ε-similar” means “not ε-distinguishable”. In AC-
OPF problems, we observed that in some subsets of X , there
exists ε > 0 such that ξi and ξj are ε-distinguishable, while in
other subsets of X , we can not find ε > 0 such that ξi and ξj
can be distinguished. Thus, we further define the ε-similar set.

Definition 2. For a given ε > 0 and two mappings ξi, ξj ∈ ξ
in a compact set X , the ε-similar set X εij ⊆ X is the set where
ξi and ξj are ε-similar to each other.

Based on the above, we define the legitimate mapping as
follows.

Definition 3. For a given δ > 0 and a compact set X , ξnn is
a legitimate mapping, if there exists one and only one target
mapping ξi ∈ ξ such that |ψ(ξnn(x))− ψ(ξi(x))| ≤ δ for all
x ∈ X .

Fig. 5 presents an example of the legitimate mapping,
where ξ1 (marked by blue curve) and ξ2 (marked by orange
curve) are two different target mappings. In the orange dash
area, |ψ(ξnn,1(x)) − ψ(ξ1(x))| ≤ δ; In the blue dash area,
|ψ(ξnn,2(x))−ψ(ξ2(x))| ≤ δ. By Definition 3, ξnn,1 (marked
by green curve) and ξnn,2 (marked by red curve) are legitimate
mappings, while ξnn,3 (marked by brown curve) and ξnn,4
(marked by purple curve) are not legitimate mappings.
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Fig. 5. An example of a single-input single-output mapping.

Then, we derive sufficient conditions for DNNs to learn a
legitimate mapping in Theorem 1.

Theorem 1. Suppose A1 holds and X is compact. ξnn is a
legitimate mapping if there exists ε > 0 and δ > 0 such that
C1–C3 are satisfied:

C1: ∀x ∈ X\X εij , ∀ξi, ξj ∈ ξ, ‖ξi(x)− ξj(x)‖2 ≥ ε.
C2: ∀x ∈ X , ∃ξi ∈ ξ, |ψ(ξnn(x))− ψ(ξi(x))| ≤ δ.
C3: δ < εLψ

2 .

Proof: See Appendix A.
In practice, for x ∈ X\X εij , C1 will be satisfied if the target

mappings are distinguishable, i.e., the deviation between the
zero-order derivatives of any two target mappings ξi, ξj ∈ ξ is
sufficiently large; for x ∈ X εij , ξi and ξj are too close to each
other to be distinguished. In C2, ψ(ξi(x)) only consists of
the objective, whereas ψ(ξnn(x)) consists of the objective and
penalties for constraint violations and unsatisfied loads. Thus,
C2 will be satisfied when the DNNs achieve good optimality
and feasibility performances. C3 implies that it is easier to learn
a legitimate mapping when target mappings are sufficiently
different from each other and the loss function is small.

To our knowledge, this is the first theoretical justification
of learning a legitimate mapping for non-convex optimization
problems (not restricted to OPF problems) by unsupervised
learning. It demonstrates the potential of the proposed unsuper-
vised learning approach in addressing the fundamental multiple
mapping issues in the supervised learning approach.

B. Extension to Semi-Supervised Learning Approach

Now we consider the situation where there are a few
samples with ground truths. Since the ground truth contains the
information of the test system, it can be leveraged to pre-train
the DNN model instead of learning from scratch. In the pre-
training process, the supervised learning approach is applied
with the loss function as below:

L′ = kvLv +
∑Nc

i=1
kiLi, (13)

where kv is a positive constant, and Lv is the prediction error
as below:

Lv =
∑

i∈N

(
||V̂i − Vi||22 + ||θ̂i − θi||22

)
. (14)

In this way, DeepOPF-NGT is extended to a semi-supervised
learning approach.

To fully utilize the ground truths, we propose Algorithm 2 to
pre-train the DNN model at each training epoch, where D and
D′ are datasets with and without ground truths, respectively,
and ∇φL′ is derived using the chain rule. In the ideal case,
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Algorithm 2: Training of extended DeepOPF-NGT
Input : DNN model with initial parameters φ0, other

initial parameters η0, kv , k0g , k0Sl , k
0
θl

, k0z , and
k0d, training datasets D = {x1, ...,xn} and
D′ = {(xn+1,yn+1), ..., (xn+n′ ,yn+n′)}.

Output : Trained DNN model with parameters φ.
1 for t = 1 to T do
2 Shuffle the training datasets D and D′.
3 Pre-training process with ground truths:
4 for each batch B′ ⊂ D′ do
5 for i = 1 to m do
6 yi ← ξ̂(xi,φt−1)
7 end
8 Compute zero-injection bus voltages z by (2).
9 Compute Lv and {Li, i = 1, 2, ..., Nc}.

10 Update kti by (12) and calculate L′.
11 φ′t ← φt−1 − ηt∇φt−1

L′
12 end

13 Training process without ground truths:
14 for each batch B ⊂ D do
15 for i = 1 to m do
16 yi ← ξ̂(xi,φ

′
t)

17 end
18 Compute zero-injection bus voltages z by (2).
19 Compute Lobj and {Li, i = 1, 2, ..., Nc}.
20 Update kti by (12) and calculate L.
21 φt ← φ′t − ηt∇φ′tL
22 end
23 t← t+ 1
24 end

the ground truths should come from the same load-solution
mapping. One possible method is to use a fixed initial point
when generating ground truths using a conventional OPF
solver3. Nevertheless, when the number of samples with ground
truths is substantially smaller than that without ground truths,
there may be little influence even if the ground truths are from
different mappings.

C. Discussion

Distinguishing between different load-solution mappings
remains a challenging open problem. Thus, it is also hard to
determine whether the learned mapping is a legitimate mapping
when the conditions in Theorem 1 are not satisfied. These
intriguing questions provide directions for future investigation
beyond the scope of this study. In this work, we apply
common metrics to evaluate the feasibility and optimality
of DeepOPF-NGT (see Section VI-A). While DeepOPF-
NGT may not guarantee learning a legitimate mapping due
to imperfect training, the well-trained model will still achieve
good performances as long as the training loss is small, as
verified in Section VI.

3 It does not guarantee that the samples are from the same mapping but aims to
avoid generating samples from multiple mappings. Given a fixed initial point,
the IPOPT solver will converge to a deterministic solution for each input [45].

VI. NUMERICAL EXPERIMENTS

This section presents the numerical tests conducted on
the modified IEEE 39/118/300-bus systems and the modified
1354-bus system to validate the proposed DeepOPF-NGT.
Section VI-A illustrates the experimental setup. Section VI-B
compares DeepOPF-NGT with state-of-the-art supervised
learning approaches. Section VI-C evaluates DeepOPF-NGT
against both supervised and unsupervised learning approaches
to assess its capability in addressing multiple mapping issues.
Section VI-D validates the scalability of DeepOPF-NGT.
Section VI-E verifies the efficiency of the proposed adaptive
learning rate algorithm. Section VI-F validates the effectiveness
of the extended DeepOPF-NGT.

A. Experimental Setup

1) Comparing methods: The following typical state-of-the-
art machine learning methods are considered for comparison:
• DeepOPF-V [6]: It learns the mapping between loads

and voltages of all buses. For a fair comparison, we add
penalties for constraint violations and load deviations to
the loss function in [6], i.e., using L′ in (13).

• DeepOPF-AC [5]: It learns the mapping between loads
and the optimal generation setpoints (i.e., active power
generation and voltage magnitude of generation buses)
and reconstructs the remaining variables by solving power
balance equations.

• EACOPF [46]: It predicts the generation setpoints using
a well-trained model that emulates an iterative solver and
reconstructs the remaining variables by solving power
balance equations. And it requires a large training dataset.

• DC3 [32]: It is an unsupervised learning approach. It first
predicts the optimal generation setpoints, then calculates
the remaining bus voltages using Newton’s method, and
finally obtains the remaining variables via power balance
equations.

2) Performance evaluation: It is hard to visualize the high-
dimensional mapping learned by DNNs. To this end, we regard
the solution provided by the IPOPT solver as the benchmark
and apply the following metrics to evaluate the performance:
• Speedup Factor: It is the average ratio of the computation

time consumed by the IPOPT solver to solve the original
AC-OPF problem to the computation time tdnn consumed
by the DNN-based method. It is denoted as ηsp.

• Optimality Loss: It measures the average relative deviation
between the optimal objective found by the IPOPT solver
and that found by the DNN-based method.

• Constraint Satisfaction Ratio: It evaluates the feasibility
of the predicted solutions by the percentage of satisfied
bound constraints. The constraint satisfaction ratios of
active power generation, reactive power generation, bus
voltage, branch power flow and branch angle are denoted
by ηPg , ηQg , ηV , ηSl and ηθl , respectively.

• Load Satisfaction Ratio: It is defined as the percentage
of loads satisfied for the whole system. The active and
reactive load satisfaction ratios are denoted by ηP d and
ηQd , respectively.
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TABLE II
GENERAL PARAMETER SETTINGS FOR DNN MODELS.

System Approach Batch
size

Learning
rate Epoch Hidden

layers

39-bus
DeepOPF-NGT 50 1e-3 2500 256-256

DeepOPF-V 50 1e-3 12000 256-256
DC3 200 1e-3 1000 200-200

118-bus

DeepOPF-NGT 50 1e-3 3000 512-256
DeepOPF-V 50 1e-4 6000 512-256

DeepOPF-AC 32 1e-3 1000 256-128
EACOPF 200 1e-6 4000 800

300-bus

DeepOPF-NGT 50 1e-4 2500 512-512
DeepOPF-V 50 1e-3 6000 1024-768

DeepOPF-AC 32 1e-3 1000 512-256
EACOPF 200 1e-6 4000 800

3) Dataset generation: The training dataset contains only
a set of load scenarios for the unsupervised learning scheme
DeepOPF-NGT and DC3. For the benchmarking supervised
learning approaches, the training dataset consists of load
scenarios along with their corresponding ground truths which
are optimal solutions for AC-OPF problems generated by
the IPOPT solver. Note that alternative solvers can also be
employed. To investigate the impact of the mixed samples from
multiple mappings on the supervised learning approaches, we
generated two types of datasets. The first type was generated
by using the same default initial point for all load scenarios
(in the IEEE 118/300-bus systems), whereas the second type
was generated by using different initial points to find multiple
global/local solutions (in the IEEE 39-bus system) [41].

For the 118/300-bus systems, there are 600 training samples
for DeepOPF-NGT, 2000 training samples for DeepOPF-V
and DeepOPF-AC, and 100,000 training samples for EACOPF.
All methods have 2500 test samples. The dataset for the IEEE
39-bus system contains 2000 training samples and 500 test
samples. The second type of dataset for DeepOPF-NGT
includes a higher number of training samples due to more
binding constraints. See [41] for more details on finding
multiple local or global optimal solutions. All load scenarios
are generated by scaling the default load using the normalized
daily total load profile of Bonneville Power Administration on
02/08/2016 from 06:00 am to 12:00 pm [47], enabling us to
cover a wide range of load variations up to 42.3%. For the
modified 1354-bus system [48], the dataset has 600 training
samples and 200 test samples, with 5% load variations.

4) Hyperparameters of DNNs: The DNN-based models are
implemented using the PyTorch platform. The hyperparameters
are fine-tuned through trial and error (refer to Table II). Other
crucial hyperparameters are set as follows: kv = 100, k0g =
k0Sl = k0θl = k0d= k0z= 1. Most parameters are configured by
[5], [6], [37], [46] and fine-tuned as best as we could.

5) Runtime environment: The models are all trained on a
single GPU, while the experimental tests are run on a 64-bit
MacBook with 8-core CPU and 32GB RAM. To ensure the
reliability of the results, each experimental test was repeated
three times to calculate the average performance.

B. Comparison with Supervised Learning Approaches

DeepOPF-NGT is compared with three state-of-the-art
supervised learning approaches, i.e., DeepOPF-V [6], DeepOPF-
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Fig. 6. Results of DeepOPF-NGT in the modified IEEE 300-bus system.

AC [5] and EACOPF [46], in the modified IEEE 118-bus and
300-bus systems. DC3 is not compared due to numerical issues
caused by the inverse of the Jacobian matrix during training.
Note that the load variation is up to 42.3%, which is larger
than that (up to 10%) in [6]. Table III shows that DeepOPF-
NGT has comparable performance with the supervised learning
methods, but does not require ground truths for training.

Table III reveals that DeepOPF-NGT and DeepOPF-V
outperform DeepOPF-AC and EACOPF in terms of computa-
tional speed, with speedups of up to three orders of magnitude
compared to the IPOPT solver. That is because DeepOPF-AC
and EACOPF still need to solve the non-linear power balance
equations, while DeepOPF-NG and DeepOPF-V only require
simple matrix operations. Additionally, the optimality loss of
DeepOPF-NGT and DeepOPF-V are both less than 1.0%,
while that of DeepOPF-AC and EACOPF can be up to 3.6%
and 10.7% in the 118-bus system, respectively.

Concerning the feasibility of the solution, most inequality
constraints are satisfied in these four approaches. EACOPF has
the smallest ηP g that can be smaller than 98% in the 300-bus
system. Meanwhile, DeepOPF-NGT and DeepOPF-V can
ensure the satisfaction of voltage constraints, while DeepOPF-
AC and EACOPF cannot. The reason is that DeepOPF-NGT
and DeepOPF-V obtain bus voltages directly and thus can
keep them within limits, while DeepOPF-AC and EACOPF
reconstruct bus voltages by solving power flow equations
using predicted generation setpoints, and thus the voltage
constraints may be violated. Thus, DeepOPF-NGT and
DeepOPF-V always guarantee to obtain a solution since power
flow equations are satisfied automatically, while DeepOPF-AC
and EACOPF may have no solution due to prediction errors.
Both DeepOPF-NGT and DeepOPF-V exhibit acceptable load
satisfaction ratios, exceeding 99%. There is a slight violation
of the branch flow constraint in DeepOPF-NGT due to the
binding of one branch flow constraint.

Fig. 6 shows the comparison results of the predicted solutions
and their ground truths for DeepOPF-NGT in the 300-bus
system. Due to space limitations, we only present 10 samples
selected uniformly at random in the test dataset. It shows that
the predicted objective is close to its ground truth, despite the
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TABLE III
COMPARISON RESULTS IN THE MODIFIED IEEE 118-BUS AND 300-BUS SYSTEMS.

Metric IEEE 118-bus system IEEE 300-bus system
DeepOPF-NGT DeepOPF-V DeepOPF-AC EACOPF DeepOPF-NGT DeepOPF-V DeepOPF-AC EACOPF

ηopt(%) <1.0 <0.1 <3.6 <10.7 <0.1 <1.0 <0.6 <0.8
ηV (%) - - 99.2 94.5 - - 99.2 90.8
ηPg (%) 100.0 100.0 100.0 99.3 100.0 100.0 100.0 97.9
ηQg (%) 100.0 99.9 99.9 100.0 100.0 99.3 100.0 100.0
ηSl

(%) 99.6 100.0 100.0 99.5 99.9 100.0 100.0 99.9
ηθl (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ηPd

(%) 99.8 99.9 - - 99.8 92.3 - -
ηQd

(%) 99.9 100.0 - - 99.8 93.7 - -
tdnn(s) 1.9e-4 7.2e-4 1.3e-2 3.2e-2 2.4e-4 3.2e-4 2.0e-2 6.2e-2
ηsp ×3589 ×1995 ×50 ×21 ×7588 ×5731 ×95 ×30

TABLE IV
RESULTS OF DEEPOPF-NGT IN THE MODIFIED 1354-BUS SYSTEM.

ηopt ηV ηPg ηQg ηSl
ηθl ηPd

ηQd
tdnn ηsp

Batch
size

Learning
rate Epoch Hidden

layers
<1% - >99% >99% >99% 100% 99% 99% 4.8e-3s ×841 50 1e-4 3000 3072-3072

small deviations between the predicted power generations and
their ground truths in Fig. 6(b). Fig. 6(c) shows the predicted
and actual loads are nearly identical.

C. Performance in Handling Multiple Mappings
To verify the effectiveness of DeepOPF-NGT in addressing

the issue of multiple load-solution mappings, we compare it
with the supervised learning approach DeepOPF-V and the
unsupervised learning approach DC3 in the modified IEEE
39-bus system. DeepOPF-NGT and DeepOPF-V have the
same input (loads) and similar output (bus voltage magnitudes
and angles) but different loss functions. The dataset consists of
samples from multiple load-solution mappings with an average
of 30% difference in objectives. The numbers of the low-cost
and high-cost solutions are equal for each load input.

Table V indicates that both DeepOPF-NGT and DeepOPF-
V exhibit good performance in feasibility (i.e., all constraints
are satisfied) and computational speedup (i.e., up to three
orders of magnitude). Although DeepOPF-NGT has a little
larger optimality loss than DeepOPF-V, it surpasses DeepOPF-
V in terms of reactive load satisfaction ratio. As for DC3,
it satisfies all loads but violates voltage and reactive power
generation constraints. Besides, it has a much smaller compu-
tational speedup than DeepOPF-NGT and DeepOPF-V. Thus,
DeepOPF-NGT achieves the best performance when there are
multiple load-solution mappings embedded in the dataset.

D. Scalability of the Proposed DeepOPF-NGT
To validate the scalability of our proposed DeepOPF-NGT,

we conducted numerical tests in the modified 1354-bus systems.
As shown in Table IV, the optimality loss is less than 1%, the
constraint and load satisfaction ratios are all over 99%, and the
computational speedup is over ×800. These results indicate that
DeepOPF-NGT continues to exhibit good performance even
when applied to a larger system, and thus has good scalability.

TABLE V
COMPARISON RESULTS IN THE MODIFIED IEEE 39-BUS SYSTEM.

Metric DeepOPF-NGT DeepOPF-V DC3
ηopt(%) <5 <1 <10
ηV (%) - - 95
ηPg (%) 100 100 100
ηQg (%) 100 100 83
ηSl

(%) 100 100 99
ηθl (%) 100 100 100
ηPd

(%) >99 >99 -
ηQd

(%) >99 < 89 -
tdnn 1.4e-4 1.2e-4 2.4e-3
ηsp ×5415 ×6643 ×323

TABLE VI
COMPARISON RESULTS OF DIFFERENT LEARNING RATE ALGORITHMS IN

THE MODIFIED IEEE 118-BUS SYSTEM.

Method Proposed M1 M2
ηopt(%) < 1.0 < 3.3 −5.0
ηV (%) - - -
ηPg (%) 100.0 98.7 98.7
ηQg (%) 100.0 100.0 100.0
ηSl

(%) 99.6 99.5 99.5
ηθl (%) 100 100.0 100.0
ηPd

(%) 99.8 92.6 92.7
ηQd

(%) 99.9 96.7 96.6

E. Performance of Adaptive Learning Rate Algorithm

We compare the proposed adaptive learning rate algorithm
with the following two methods in the modified IEEE 118-bus
system to demonstrate its effectiveness:
• M1: Fixed coefficients for different terms in the loss

function, a common method in existing studies;
• M2: Learning rate annealing algorithm [37].
Table VI indicates that our proposed method outperforms the

other two methods, achieving less than 1.0% optimality loss
and more than 99% load satisfaction ratios. In contrast, M1 and
M2 exhibit low load satisfaction ratios, less than 95%. Since
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Fig. 7. Different terms of the loss function during training in the modified
IEEE 118-bus system.

TABLE VII
EXTENDED DEEPOPF-NGT IN THE MODIFIED IEEE 300-BUS SYSTEM.

Nlabel 0 50 150 250
ηopt(%) < 0.3 < 0.2 < 0.1 < 0.1
ηV (%) - - - -
ηPg (%) 99.1 99.4 99.7 99.8
ηQg (%) 99.9 100.0 100.0 100.0
ηSl

(%) 100.0 100.0 100.0 100.0
ηθl (%) 100.0 100.0 100.0 100.0
ηPd

(%) 99.4 99.5 99.6 99.8
ηQd

(%) 98.8 99.2 99.4 99.7

the loss function is updated dynamically during training, using
fixed coefficients in M1 may lead to dominant loss terms, which
can cause unbalanced back-propagated gradients and bias the
training towards ignoring the contributions of small loss terms
[37]. Regarding M2, it may have exploding gradients due to
unbounded coefficients for different loss terms. As shown in
Fig. 7, our proposed method has more balanced loss terms
than the other methods at the early stage of training. As the
training goes on, only when the constraint violations and load
deviations are minor and the coefficients kg , kSl ,kθl reach their
upper bounds, there will be unbalanced loss terms. This result
indicates that it is important to balance different loss terms at
the early stage of training.

F. Performance of Extended DeepOPF-NGT
To explore how ground truths can improve the performance

of DeepOPF-NGT, we compare DeepOPF-NGT with its
extended version in the modified IEEE 300-bus system. We
only use 300 training samples without ground truths and Nlabel
samples with ground truths generated by the IPOPT solver
using a fixed initial point. When the number of training samples
decreases from 600 to 300, the performance of DeepOPF-
NGT becomes worse. The results in Table III and Table VII
show that ηPg and ηQd decrease from 100.0% and 99.9% to
99.1% and 98.8%, respectively. However, all performances tend
to be improved as Nlabel increases (see Table VII), showing an
obvious tendency that the ground truth can effectively improve
DeepOPF-NGT. Notably, the optimality loss is negative,
which can be attributed to the fact that some loads are not

fully satisfied, resulting in less power generation. Additionally,
DeepOPF-NGT attempts to find the solution with the smallest
objective during the training, so it may find a better solution
than the IPOPT solver which may give a locally optimal
solution.

VII. CONCLUSION

We propose an unsupervised learning approach called
DeepOPF-NGT for solving AC-OPF problems efficiently
without ground truths. It directly learns a legitimate load-
solution mapping under the guidance of a properly designed
loss function consisting of the objective and penalties for
constraint violations and dissatisfied loads of the AC-OPF
problem. Kron reduction is used to improve the scalability and
feasibility. An adaptive learning rate algorithm is devised to
handle unbalanced gradient pathologies. We have also derived
the first condition (to our best knowledge) for unsupervised
learning to learn a legitimate mapping. The results on the
modified 118-bus and 300-bus systems verify that DeepOPF-
NGT has comparable performance with the state-of-the-art
supervised learning approaches. It provides feasible solutions
with minor optimality loss (less than 1.0%) and a decent
computational speedup (up to three orders of magnitude faster
than the IPOPT solver). While in the modified IEEE 39-bus
system with multiple load-solution mappings embedded in
the dataset, DeepOPF-NGT achieves better performance than
existing supervised and unsupervised learning methods. The
results in the modified 1354-bus system further validate its
scalability. The effectiveness of the adaptive learning rate
method has also been verified. Moreover, the results indicate
that a few ground truths can help enhance DeepOPF-NGT.

An interesting future direction is to design a neural network
architecture to balance the interplay between different terms in
the loss function and explore more efficient training algorithms.
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APPENDIX

A. Proof of Theorem 1
Assume ξnn is not a legitimate mapping. We will show by

contradiction that this assumption violates C1–C3 in Theorem 1.
For x ∈ X εij , we do not differentiate the target mappings
because they are too close to each other. Condition C2 ensures
that ξnn has good optimality and feasibility performances. Thus,
we will focus on the remaining region x ∈ X\X εij .

Assume there exists x ∈ X\X εij such that ξnn consists
of two target mappings ξi, ξj ∈ ξ. By assumption A1,
∀x ∈ X , |ψ(ξnn(x)) − ψ(ξi(x))| ≤ Lψ‖ξnn(x) − ξi(x)‖2,
and |ψ(ξnn(x)) − ψ(ξj(x))| ≤ Lψ‖ξnn(x) − ξj(x)‖2. Con-
dition C2 requires that |ψ(ξnn(x)) − ψ(ξi(x))| ≤ δ and
|ψ(ξnn(x)) − ψ(ξj(x))| ≤ δ. To ensure that C2 is satisfied,
we should have Lψ‖ξnn(x)− ξi(x)‖2 ≤ δ, and Lψ‖ξnn(x)−
ξj(x)‖2 ≤ δ, resulting in ‖ξnn(x) − ξi(x)‖2 ≤ δ/Lψ and
‖ξnn(x)− ξj(x)‖2 ≤ δ/Lψ . Then, we have

‖ξnn(x)− ξi(x)‖2 + ‖ξnn(x)− ξj(x)‖2 ≤ 2δ/Lψ (15)
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Since ‖ξi(x) − ξj(x)‖2 = ‖ξi(x) − ξnn(x) + ξnn(x) −
ξj(x)‖2 ≤ ‖ξi(x)− ξnn(x)‖2 + ‖ξnn(x)− ξj(x)‖2, we have
the following inequation by C1:

‖ξi(x)− ξnn(x)‖2 + ‖ξnn(x)− ξj(x)‖2 ≥ ε (16)

According to (15)–(16), we obtain δ ≥ εLψ/2 which contra-
dicts C3. Thus, the assumption does not hold, and ξnn is a
legitimate mapping.
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