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DeepOPF-FT: One Deep Neural Network for
Multiple AC-OPF Problems with Flexible Topology

Min Zhou, Minghua Chen, Fellow, IEEE, and Steven H. Low, Fellow, IEEE

Abstract—We propose DeepOPF-FT as an embedded train-
ing approach to design one deep neural network (DNN) for
solving multiple AC-OPF problems with flexible topology and
line admittances, addressing a critical limitation of learning-
based OPF schemes. The idea is to embed the discrete topology
representation into the continuous admittance space and train
a DNN to learn the mapping from (load, admittance) to the
corresponding OPF solution. We then employ the trained DNN to
solve AC-OPF problems over any power network with the same
bus, generation, and line capacity configurations but different
topology and/or line admittances. Simulation results over IEEE
9-/57- bus and a synthetic 2000-bus test cases demonstrate the
effectiveness of our design and highlight the training efficiency
improvement of DeepOPF-FT over training one DNN for every
combination of power network topology and line admittances.

Index Terms—Optimal power flow; deep neural network

I. INTRODUCTION

Recently, there has been growing interest in employing
machine learning, in particular deep neural network (DNN),
to directly solve the optimal power flow (OPF) problems, in
a fraction of the time solved by iterative solvers. The idea is
to leverage the approximation capability of DNN to learn the
load-solution mapping of the OPF problem [1]. Then one can
feed load to the DNN to instantly obtain a solution. To date, a
number of studies have shown that DNNs can generate quality
solutions for various OPF formulations with a few orders of
magnitude speedup as compared to iterative solvers [1]–[12].

A key limitation of existing DNN methods is that the
trained DNN is only applicable for solving OPF problems
over a specific system topology and line admittance. When
the topology or admittances change, one needs to retrain the
DNN to learn a new load-solution mapping. Retraining DNNs
in real-time [9], [13], or pre-training multiple DNNs offline for
all possible combinations of topology and admittances, incurs
significant computational and data complexity and may not be
practical.

In this paper, we propose DeepOPF-FT as an embedded
training approach to train one DNN for solving multiple
AC-OPF problems with flexible topology and admittances,
without retraining. We embed discrete topology representation
in continuous admittances and train a DNN to learn the
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mapping from (load, admittance) to the AC-OPF solution.
Simulation results over modified IEEE 9-/57- bus and synthetic
2000-bus test cases show that DeepOPF-FT generates AC-
OPF solutions with up to 0.92% optimality loss and at least
95% feasibility rate, over power networks with the same
bus, generator, and line capacity configurations but different
topology and/or admittance. Our results also highlight the
training efficiency of DeepOPF-FT over employing one DNN
for every combination of topology and line admittance. To the
best of our knowledge, DeepOPF-FT is the first work that
trains one DNN for solving multiple AC-OPF problems with
flexible topology and admittance, without retraining.

II. THE AC-OPF PROBLEM AND TOPOLOGY EMBEDDING

The standard AC-OPF problem is formulated as
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B and L represent the sets of buses and branches, respectively.
gij and bij are the conductance and susceptance of line (i, j),
respectively. pgi , qgi , pdi and qdi are the active and reactive power
generation, active and reactive load at bus i, respectively.
vi and θi denote the voltage magnitude and angle at bus
i, respectively. x and x denote the upper and lower bound
of variable x, respectively. sij is the branch flow limit of
line (i, j). Constraints (5)-(6) define active and reactive line
flows and (7)-(8) ensure power flow balance at every bus.
The generation limits are given by (2). Voltage magnitude and
phase angle constraints are specified in (3)-(4). The branch
flow limit is enforced by (9). The objective in (1) is to
minimize the total quadratic active power generation cost.

For the above AC-OPF formulation, we assume some or all
of transmission lines have switches and can be switched on or
off based on operation conditions or on contingency. Switching
a line (i, j) with given capacity on (resp. off) is equivalent to
adjusting the corresponding bij and gij from zero to non-zero
values (resp. from non-zero values to zero). Thus, the topology,
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Fig. 1. Schematic of DeepOPF-FT. A DNN is used to learn the mapping
from (pd, qd, b, g) to (v, θ). The remaining variables, i.e., (pg , qg), are
computed by using the power flow equations.

i.e., whether lines (with pre-specified capacities) are on or off,
can be embedded in the values of line admittances.

Next, we will design one DNN to solve multiple AC-OPF
problems over power networks with the same bus, genera-
tor, and line capacity configuration, but different topology
and/or line admittances. Such a flexible topology setting can
model the situation with time-varying line admittances or line
switching-based contingency or network reconfiguration [14].

III. DEEPOPF-FT: EMBEDDED TRAINING FOR SOLVING
AC-OPF PROBLEMS WITH FLEXIBLE TOPOLOGY

The schematic of DeepOPF-FT is shown in Fig. 1. It em-
beds the discrete topology representation into the continuous
admittance and employs a DNN to learn the mapping from
(load, admittance) to bus voltages in the AC-OPF solution. We
adopt the multi-layer feed-forward DNN structure, in which
the ReLU activation function is used in the hidden layers.
The loss function is the total mean squared error between
DNN prediction and the ground truth. DeepOPF-FT uses
the trained DNN to first obtain bus voltages, i.e., v and θ,
and then reconstruct the remaining variables, i.e., (pg , qg), by
simple computation using the power flow equations. Such a
predict-and-reconstruct mechanism [1] guarantees in-network
power flow equality constraints and reduces the number of
variables to be predicted by DNN. Finally, we apply the post-
processing technique in [1] to further improve the feasibility
of the obtained solutions.

Discussion: (i) Solving AC-OPF problems with flexible
topology and admittance is challenging for learning-based
methods. While it is possible for system operators to train
one DNN per power network, the sampling complexity can be
extraordinarily high, as we observe in Sec. IV. Another pos-
sible approach is discrete training, which learns the mapping
from (discrete topology, load) to the corresponding OPF solu-
tions. However, as discrete training learns a discrete mapping
from (discrete topology, load) to OPF solutions, it requires
significantly more data to train the DNN, and even so the
obtained DNN may not generalize well, as we observe in Sec.
IV. Further, discrete training does not consider the setting with
flexible (continuous) admittance. In our simulation, we use
discrete training as a baseline for comparison. (ii) Due to
the prediction error of voltages, there could be mismatches
between power injection and load demand in buses. We
note that injection-demand mismatches are also inevitable
in iterative solvers [1]. System operators can use distributed
controllable energy sources, such as electric batteries, to fully
satisfy the load.

TABLE I
PARAMETER SETTINGS AND DATA SPLIT.

# Bus DNN
structure

Batch
size

Training
epoch

Learning
rate

# Training/test
data

57 278/1024/512/256 128 5350 1e-4 50K/50K
9 42/1024/512/256 256 2650 1e-4 100K/125K

2000 4060/2048/2048/2048 512 4500 1e-5 50K/12.5K

TABLE II
PERFORMANCE COMPARISON OVER THE MODIFIED IEEE 57-BUS SYSTEM.

Metric DeepOPF-FT DIS-V1 DIS-V2 DIS-V1 DIS-V2
(50,000) (50,000) (50,000) (150,000) (150,000)

ηopt (%) 0.14 -4.29 -1.31 -4.79 1.07
ηv /ηθ (%) - - - - -
ηpg (%) 95.0 94.3 93.3 97.0 96.1
ηqg (%) 96.0 92.4 95.6 96.3 94.0
ηsl (%) >99.9 >99.9 >99.9 >99.9 >99.9
ηpd (%) 97.2 92.7 95.2 95.8 95.8
ηqd (%) 94.3 87.5 91.2 93.0 91.6
ηsp ×129 ×130 ×132 ×130 ×130

IV. NUMERICAL EXPERIMENTS

We test DeepOPF-FT over small 9-bus, medium 57-bus,
and large 2000-bus systems; see the configurations and our
codes in [15]. We conduct simulations using a quad-core
(i7-3770@3.40G Hz) CPU workstation with 16GB RAM.
Table I gives the DNN structure, training parameters, and
training/testing dataset sizes. We follow a common approach
for DNN training and performance evaluation: (i) randomly
sample from the load region to construct data points with
labels/ground-truths, (ii) split the data into the training set and
testing set, (iii) use the training set to train the DNN, and (iv)
use the testing set to evaluate its performance.

More specifically, we sample load uniformly at random
in [80%, 120%] of its default value in training/test datasets.
In the training dataset, we sample admittances uniformly at
random in two regions covering the on/off status of lines:
(i) the region for off status where admittances are within [-
2%, 2%] of default admittances and (ii) the region for on
status where admittances are within [2%, 120%] of default
admittances, with probability 3.3% and 96.7%, respectively.
In the test dataset and baseline methods, we set two scenarios
for admittances: (i) fixed admittance where admittances are set
as defaults admittances and (ii) flexible admittance where ad-
mittances are sampled uniformly at random in [80%, 120%] of
default admittances to capture the slight admittance variation
in real power systems. We obtain the ground truths using the
primal-dual interior-point method in the MATPOWER Interior
Point Solver (MIPS) [16], which is able to generate close-to-
optimal solutions to AC-OPF [17]. Therefore, our DNN learns
the mapping from (load, admittance) to MIPS solutions. We
implement the DNN schemes using Pytorch, which is based on
Python. The reference solver MIPS is also based on Python.

We use the following metrics to evaluate the performance
of DeepOPF-FT and baselines: (i) Optimality loss: The
optimality loss ηopt evaluates the average relative difference of
the objective values obtained by DeepOPF-FT and the ground
truth. Closer to zero is better. (ii) Constraint satisfaction:
It measures the average percentage of inequality constraint
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Fig. 2. Topology variation in the IEEE 9-bus system.

TABLE III
PERFORMANCE COMPARISON IN THE MODIFIED IEEE 9-BUS SYSTEM.

Metric DeepOPF-FT DeepOPF-V for single topology
(FT, –) (FT, FA) (FT, –) (FT, FA) (–, –)

ηopt (%) 0.84 0.92 94.60 95.23 -0.95
ηv /ηθ (%) - - - - -
ηpg (%) > 99.9 >99.9 53.6 53.6 100
ηqg (%) > 99.9 100 97.8 97.8 > 99.9
ηsl (%) >99.9 >99.9 96.6 96.3 100
ηpd (%) 97.4 97.3 74.8 74.6 97.0
ηqd (%) 95.3 95.0 57.0 56.8 91.8
ηsp ×124 ×122 ×88 ×86 ×133

satisfaction, including the constraint satisfaction ratio of active
power generation (ηpg ), reactive power generation (ηqg ), volt-
age magnitude (ηv), phase angle difference (ηθ), and branch
flow limits (ηsl). Closer to 100 is better. (iii) Speedup: The
speedup factor ηsp is the average ratio between the running
time of MIPS and DeepOPF-FT. It measures the speedup
gain of DeepOPF-FT over MIPS. Higher is better. (iv)
Load satisfaction: The load satisfaction ratio is the average
percentage of the satisfied loads. The load satisfaction ratio
for active load and reactive load are denoted as ηpd and ηqd ,
respectively. Closer to 100 is better.

Performance on topology reconfiguration: We carry out
simulations over the modified 57-bus test system with 14 con-
figurable lines. Discrete training with fixed admittance (DIS-
V1) [10] and flexible admittance (DIS-V2) are baselines. For
fair comparison, when the admittances are in the region for off
status in DeepOPF-FT, we disconnect the corresponding line
in discrete training. Otherwise, we sampled the corresponding
admittances to be fixed in DIS-V1 and be flexible in DIS-
V2. The test data are based on the N-4/5/6 contingency (each
account for 1/3 of the data) with flexible admittances.

Table II shows that DeepOPF-FT achieves better perfor-
mance in optimality, feasibility, and load satisfaction than
DIS-V1 and DIS-V2 schemes. It also shows that the DIS-
V1 and DIS-V2 schemes need 3x the amount of training
data to achieve performance comparable to DeepOPF-FT,
highlighting its advantage in training efficiency.

Performance over arbitrary topology: We evaluate the per-
formance of DeepOPF-FT in solving AC-OPF problems over
arbitrary topology in the modified IEEE 9-bus1 test system. As

1We note that for AC-OPF problems over small-scale cases, even minor
changes in topology or admittances lead to notable differences in the solution,
making it challenging to train one DNN to work effectively over different
(topology, admittance) combinations. Focusing on small-scale test cases also
allows us to evaluate the performance of DeepOPF-FT over all possible
topologies with the same bus, generation, and line capacity configurations.

TABLE IV
PERFORMANCE COMPARISON IN THE 2000-BUS SYSTEM.

Metric DeepOPF-FT DeepOPF-V for single topology
N N-1 N N-1

ηopt (%) 0.02 0.11 0.28 0.27
ηv /ηθ (%) - - - -
ηpg (%) >99.9 >99.9 >99.9 >99.9
ηqg (%) 99.9 99.8 99.9 99.9
ηsl (%) >99.9 >99.9 >99.9 >99.9
ηpd (%) 98.9 98.8 99.4 99.4
ηqd (%) 95.9 95.5 96.1 96.1
ηsp ×7646 ×7743 ×16335 ×16083

shown in Fig. 2, all 15 lines incident on buses No. 4 – 9 can be
switched on/off. We select 19,647 out of the 32,768 possible
topologies that support the same load region.

The performance of DeepOPF-FT is evaluated over two
scenarios: (i) flexible topology but fixed admittances ((FT,
–)) and (ii) flexible topology and flexible admittances ((FT,
FA)). We also select 10 topologies randomly from the 19,647
topologies, train, and evaluate DeepOPF-V [1] for each
topology (represented by fixed topology and fixed admittance
((–, –))) as the baseline. Table III shows that DeepOPF-FT
achieves much better performance in optimality, feasibility
and load satisfaction over all possible testing topologies, as
compared to DeepOPF-V. This shows (i) DNN trained for
one topology does not work well over other topologies, and (ii)
the effectiveness of the embedded training design. DeepOPF-
V needs 3002 training data to achieve the shown performance
for a single topology. This suggests that 300×19647 training
data will be needed if we train one DeepOPF-V for every
possible topology with comparable performance.

Performance on a large-scale system: We carry out sim-
ulations over a 2000-bus test system to show the scalability
of DeepOPF-FT. We test the performance of DeepOPF-FT
in the default topology (N) and N-1 contingency (N-1). Table
IV shows (i) DeepOPF-FT achieves satisfactory performance
in optimality, feasibility and load satisfaction over the two
test scenarios, suggesting its scalibility to large test systems,
and (ii) DeepOPF-V achieves comparable performance to
DeepOPF-FT, indicating the insensitivity of OPF solutions
to N-1 contingency in the large 2000-bus test system. We
also observe that DeepOPF-FT achieves lower speedup than
DeepOPF-V, as DeepOPF-FT employs a larger DNN for
learning a higher dimensional mapping in its design.

V. CONCLUDING REMARK

To our best knowledge, DeepOPF-FT is the first that trains
one DNN for solving multiple AC-OPF problems under the
same bus, generator, and line capacity configuration, but with
different topology and line admittances. Simulation results
show that it achieves better optimality, feasibility, and load
satisfaction performance than training one DNN for every
combination of topology and admittance.

We discuss the limitations of this study and future directions
in the following. (i) As compared to training one DNN over

2We note that setting the training size to be 300 is reasonable to DNN-based
AC-OPF solvers for small-scale systems [6].
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a specific power network and line admittance, DeepOPF-
FT may require a larger DNN size for learning the higher
dimensional (load, admittance) to solution mapping. (ii) This
study focuses on solving the standard AC-OPF problem. It
is an interesting direction to extend the approach to AC-
OPF problems considering emerging technologies, e.g., energy
storage, demand response, topology optimization, and active
management of renewable resources. Such extensions would
require tackling a set of different challenges beyond the scope
of this letter paper. (iii) Like almost all similar methods, it
would be ideal, but difficult and largely open, to provide for-
mal guarantee on DNN’s performance after training. It is also
an interesting direction to explore unsupervised learning and
reinforcement learning for solving single-period and multi-
period OPF problems; see [5], [18], [19] for some recent
studies along the line with given topology/admittance.
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