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ABSTRACT
The existence of multi-valued load-solution mapping in general

non-convex problems poses a fundamental challenge to deep neural

network (DNN) schemes. A well-trained DNN in the existing super-

vised learning framework fails to learn the multi-valued mapping

accurately and generates inferior solutions. We propose augmented
learning as a methodological framework to tackle this challenge.We

focus on AC-OPF as an important example and develop DeepOPF-
AL to solve it. Themain idea is to train a DNN to learn a single-valued
mapping from an augmented input, i.e., (load, initial point), to the

solution generated by an iterative OPF solver with the load and ini-

tial point as intake. We then apply the learned augmented mapping

to solve AC-OPF problems much faster than conventional solvers.

Simulation results over IEEE test cases show that DeepOPF-AL
achieves noticeably better optimality and similar feasibility and

speedup performance as compared to a recent DNN scheme, with

the same DNN size yet larger training-data size. We believe the

augmented-learning approach will find applications in various prob-

lems with a multi-valued input-solution mapping.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Neural net-
works; • Hardware → Power and energy.
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1 INTRODUCTION
Optimal Power Flow (OPF) is a critical but challenging problem in

power systems. It aims to find an optimal generation dispatch to

meet loads while satisfying non-convex power flow equations and

operational constraints [3]. As uncertainty continues to increase

with the wider adoption of renewable sources, the need to close the

loop on a faster timescale intensifies. Future applications may have

to solve OPF faster than traditional methods can deliver. This moti-

vates research leverages supervised-learning based on historical or

simulated (load, optimal solution) data. Recent works [9, 20–22, 28]

indicate that deep neural networks (DNNs) could obtain desirable

solutions in a fraction of the time needed by a conventional solver.

AC-OPF can admit multiple global and local solutions for each

load input [17], resulting in a multi-valued load-solution map-

ping [11]. An increasing number of studies have demonstrated

that multiple solutions exist and are hard to exclude even under

normal conditions [2, 27]. Remarkably, due to the NP-hardness of

AC-OPF problems, it is computationally prohibitive to find all possi-

ble solutions and differentiate between them based on the objective

cost. Thus, it is essential to consider the information on global

and local solutions. The presence of the multi-valued load-solution

mapping poses a fundamental challenge to supervised-learning

schemes. As illustrated in Fig. 1, a well-trained DNN using the ex-

isting supervised-learning scheme [15] fails to learn the target map-

ping and generates inferior solutions. While recent works attempt

to tackle the challenge, the limitation is that they cannot ensure the

multi-valued mapping is well-learned. We present detailed discus-

sions of related works in Sec. 2. To date, applying machine learning

to solve AC-OPF (as well as the general optimization problems)

with multiple solutions for the same input remains largely open.

In this paper, we propose augmented learning as amethodological

framework to tackle multi-valued-mapping challenge in supervised

learning. We focus on AC-OPF and develop DeepOPF-AL to solve

it. Our idea is to embed the multi-valued input-solution mapping

into a single-valued mapping by augmenting the input with ex-

tra parameters. Specifically, DeepOPF-AL trains a DNN to learn

the mapping from (load, initial point) to the unique OPF solution

generated by the primal-dual interior-point method with the load

and initial point as intake. Simulation results on IEEE test cases

show thatDeepOPF-AL achieves better AC-OPF optimality and sim-

ilar feasibility and speedup performance, as compared to a recent

scheme [14], with the same DNN size yet larger training-data size.

The results also verify the robust performance of DeepOPF-AL.
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2 RELATEDWORK
Machine learning has been employed for solving optimization prob-

lems with hard constraints [8, 31] like AC-OPF. Some works utilize

DNN to facilitate conventional methods by identifying active con-

straints upon a load input [5, 6, 18, 23, 29] or directly predict solu-

tions by learning the load-solution mapping [4, 7, 9, 12, 16, 19, 21,

22, 24, 26, 28, 30, 31]. Nevertheless, existing DNN-based methods

explicitly or implicitly assume the target mapping is single-valued.

By the universal approximation theorem, NN could well approxi-

mate such a mapping. However, the obliviousness to multi-valued

mapping could lead to inferior performances of existing supervised-

learning schemes. See an illustrating example in Sec. 3.

Recently, there have been several works to tackle the challenge

of learning a multi-valued mapping. The method in [15] properly

selects one solution for each load input as the ground truth by

solving a challenging bi-level optimization problem. However, the

exact optimal solution is computationally prohibitive due to the

NP-hardness, and thus there is no guarantee to learn the multi-

valued load-solution mapping. The other is applying unsupervised

learning to train DNN without ground-truths [8, 13]. However,

without ground truths, it cannot preserve the target load-solution

relationship, and the trained DNN could generate inferior solutions.

In this paper, we propose augmented learning framework as a

simple but effective methodology to tackle the multi-valued input-

solution mapping challenge. We develop DeepOPF-AL to learn a

uniquemapping from an augmented load input to the corresponding
solution from a deterministic iterative solver for solving AC-OPF.

Note that DeepOPF-AL is different from the approach in [1] in

that it directly outputs the solution in one pass, while the latter is

an iterative scheme that replaces the update function in Newton’s

method with a DNN. DeepOPF-AL is similar in spirit to the method

in an independent work [25] on learning the multi-valued input-

solution mapping. The method in [25] develops a DNN scheme

for solving power control problems in wireless communication by

learning the input-solution mapping generated by a deterministic

iterative solver using a fixed initial point for all inputs.DeepOPF-AL
generalizes the method in [25] by learning the mapping from (load,

initial point) to the solution generated by a deterministic iterative

solver by augmenting the load with changeable initial points that
could preserve the multi-valued load-solution relationship.

3 REVIEW OF AC-OPF
The standard AC-OPF problem is formulated as

min

∑
𝑖∈N 𝐶𝑖 (𝑃𝐺𝑖 ) (1)

s.t.
∑

(𝑖, 𝑗) ∈E Re

{
𝑉𝑖

(
𝑉 ∗
𝑖 −𝑉 ∗

𝑗

)
𝑦∗𝑖 𝑗

}
= 𝑃𝐺𝑖 − 𝑃𝐷𝑖 , 𝑖 ∈ N , (2)∑

(𝑖, 𝑗) ∈E Im

{
𝑉𝑖

(
𝑉 ∗
𝑖 −𝑉 ∗

𝑗

)
𝑦∗𝑖 𝑗

}
= 𝑄𝐺𝑖 −𝑄𝐷𝑖 , 𝑖 ∈ N , (3)

𝑃min

𝐺𝑖 ≤ 𝑃𝐺𝑖 ≤ 𝑃max

𝐺𝑖 , 𝑖 ∈ N , (4)

𝑄min

𝐺𝑖 ≤ 𝑄𝐺𝑖 ≤ 𝑄max

𝐺𝑖
, 𝑖 ∈ N , (5)

𝑉min

𝑖 ≤ |𝑉𝑖 | ≤ 𝑉max

𝑖 , 𝑖 ∈ N , (6)

|𝑉𝑖
(
𝑉 ∗
𝑖 −𝑉 ∗

𝑗

)
𝑦∗𝑖 𝑗 | ≤ 𝑆max

𝑖 𝑗 , (𝑖, 𝑗) ∈ E, (7)

var. 𝑃𝐺𝑖 , 𝑄𝐺𝑖 ,𝑉𝑖 , 𝑖 ∈ N .

(a) (b)

Figure 1: (a) A 2-bus power network with |𝑉1 | = 0.9 p.u., 𝜃1 = 0, 𝑟 = 0

p.u., 𝑥 = 0.25 p.u., and 𝑃𝐷 = 343 MW. (b) The AC-OPF problem in
(1)-(6) over the 2-bus network has a multi-valued mapping from the
load 𝑄𝐷 to |𝑉 ∗

2
| in the optimal solution. A well-trained DNN with

two hidden-layer (300 neurons on each hidden layer), and with 100
uniformly-sampled (𝑄𝐷 , |𝑉 ∗

2
|) pairs and ℓ2 distance as the loss func-

tion fails to learn the target mapping. The average relative differ-
ence between the ground-truth and prediction is 3%.

Re{𝑧}, Im{𝑧}, 𝑧∗, and |𝑧 | denote the real part, the imaginary part,

the conjugate, and the magnitude of a complex variable 𝑧, respec-

tively. N and E denote the set of buses and the set of branches,

respectively. 𝑃𝐺𝑖 (resp. 𝑄𝐺𝑖 ) and 𝑃𝐷𝑖 (resp. 𝑄𝐷𝑖 ) denote the active

(resp. reactive) power generation and active (resp. reactive) load

on bus 𝑖 , respectively. 𝑉𝑖 represents complex voltage, including the

magnitude |𝑉𝑖 | and the phase angle 𝜃𝑖 , on bus 𝑖 .𝑦𝑖 𝑗 and 𝑆max

𝑖 𝑗
denote

the admittance and the branch flow limit of the branch (𝑖, 𝑗) ∈ E,
respectively. Equations (2) and (3) represent power-flow balance

equations. Constraints (4) and (5) represent the active and reactive

generation limits. Constraints (6) and (7) represent the voltage mag-

nitude and the branch flows limits. The objective is to minimize the

total cost of active power generation, where 𝐶𝑖 (·) is the quadratic
cost function of the generator at bus 𝑖 . We set 𝐶𝑖 (𝑃𝐺𝑖 ) = 0 and

𝑃min

𝐺𝑖
= 𝑃max

𝐺𝑖
= 𝑄min

𝐺𝑖
= 𝑄max

𝐺𝑖
= 0 if bus 𝑖 has no generator.

As mentioned in Sec. 1, AC-OPF problems may admit multiple

(global and local) optimal solutions for a load input, resulting in

multi-valued load-solution mapping. Let us consider the concrete 2-

bus system shown in Fig. 1. Specifically, the power network contains

a generator at bus-1 and a load input at bus-2. Suppose we fix

|𝑉1 | = 0.9 p.u., 𝜃1 = 0, 𝑟 = 0 p.u., 𝑥 = 0.25 p.u., and 𝑃𝐷 = 343

MW. We then depict the relationship between the 𝑄𝐷 and the |𝑉2 |
by solving the AC-OPF problem in (1)-(6) with 𝑄𝐷 as the varying

load input. The multi-valued load-solution (𝑄𝐷 to |𝑉 ∗
2
|) mapping is

illustrated on Fig. 1. As observed, the existing supervised-learning

approach fails to learn the target mapping. The reason is that the

uniformly-sampled “mixed” data pairs (i.e., the data come from both

upper and lower parts of the mapping (in blue) for different load

inputs at the same time), making trained DNN generate solutions

that lie in the middle to achieve minimum ℓ2 distance.

4 DEEPOPF-AL: AUGMENTED LEARNING
FOR SOLVING AC-OPF

The schematic of the developed DeepOPF-AL is shown in Fig. 2.

Following a particular augmented-learning design, DeepOPF-AL
trains a DNN to learn the mapping from (load, initial point) to

the unique AC-OPF solution generated by the primal-dual interior
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Figure 2: Illustration of the DeepOPF-AL approach.

point methodwith the load and initial point as intake. The following

proposition inspires our design of DeepOPF-AL.

Proposition 1. LetX∗ be the solution generated by a deterministic
iterative solver with the given initial point X0 and load input D.
Then, the mapping from (X0,D) to the corresponding final solution,
described as X∗ (X0,D) = 𝜓∗ (X0,D) is single-valued.

Proposition 1 indicates the augmented mapping fully incorpo-

rates the multi-valued relationship between the load input and

generated solutions. This observation motivates us to train a DNN

to approximate the augmented mapping𝜓∗ (·). Such a design avoids
obtaining training data with a mixture of multiple solutions and

preserves the multi-valued load-solution relationship.

As shown in Fig. 2, DeepOPF-AL trains a DNN to predict the bus

voltages and reconstructs the bus injections, i.e., RHS values of (2)-

(3), and finally the generations, all by simple scalar calculation. Such

a predict-and-reconstruct framework [14, 21, 22] guarantees the

power-flow equality constraints and reduces the number of vari-

ables to predict. Lastly, DeepOPF-AL employs the post-processing

process in [14] to help keep the obtained solution within the box

constraints in (4)-(6). Existing works [14, 20, 28] have demonstrated

the feed-forward network’s desirable performance in solving AC-

OPF problems due to its universal mapping approximation capa-

bility, simplicity and scalability. Thus, we apply the multi-layer

feed-forward neural network structure to build the DNN model.

We refer to Appendices A and B for details. We also remark that

augmented learning is a methodological framework that does not

specify NN structures or training processes. Therefore, any other

NN structures or training process could be used in DeepOPF-AL.

4.1 Discussions
Solving AC-OPF problems with a multi-valued load-solution map-

ping is challenging for DNN schemes. As compared to the exist-

ing method [15], DeepOPF-AL guarantees that the DNN learns a

single-valuedmapping by using a simple uniformly-sample strategy

without the need to solve the bi-level problem. In application, for

each test load input, one can run DeepOPF-AL several times with

different initial points and output the least-cost solution, without

the need to differentiate between global or local solutions.
1

DeepOPF-AL also excels in the following aspects: (i) It can learn

the augmented mapping of any deterministic iterative algorithm.

We choose to learn that of the popular primal-dual interior point

method, which is observed to return good-quality OPF solutions in

practice. (ii) For the set of inputs (load, initial point) for which the

primal-dual interior point method fails to converge, DeepOPF-AL
can still generate solutions with decent optimality performance,

1
One could also output the OPF solution by other criteria, like the stability of the

solution, the distance from the grid’s current state, and robustness of the solution.

(a) (b)

Figure 3: Comparisons of the target augmented mapping and DNN-
learned mapping for the 2-bus case. ( |𝑉0 | is the initial point of |𝑉2 |).
(a) Target augmented mapping. (b) DNN-learned augmented map-
ping. The average relative prediction error is 0.05%, which is smaller
than 3% as reported in Fig. 1.

which is shown in Sec. 5. This indicates better practicability of DNN

schemes over iterative solvers, in addition to speedup. Nevertheless,

DeepOPF-AL learns a single-valued higher-dimensional augmented

mapping but requires a larger DNN and more training data than

learning a single-valued load-solution mapping.

5 NUMERICAL EXPERIMENTS
5.1 Setup
We conduct simulations in CentOS 7.6with a quad-core (i7-3770@3.40G

Hz) CPU and 16GBRAM.We compare the performance of DeepOPF-
AL and a recent scheme DeepOPF-V [14] that first learns the map-

ping between loads and voltages of all buses, and then computes

the bus generations, on the 2-bus (as illustrated in Fig. 3) and IEEE

39-/300-bus systems. Three test cases correspond to three represen-

tative scenarios: the 2-bus system has a multi-valued load-solution

mapping, the modified IEEE 39-bus case has a multi-valued load-

solution mapping, and the IEEE 300-bus case has a single-valued

load-solution mapping (a special case of multi-valued mapping).

For detailed training setting, please refer to Appendix B. In the

simulation, for each test load, we run DeepOPF-AL with randomly-

sampled initial points to generate solutions and output the least-

cost one. We evaluate the performance with the following metrics:

(i) Optimality loss: 𝜂𝑜𝑝𝑡 measures the relative optimality differ-

ence between the objective values obtained by DeepOPF-AL and

MIPS. Closer to zero is better. (ii) Running time and speedup:
𝑡𝑚𝑖𝑝𝑠 and 𝑡𝑑𝑛𝑛 represent the average running times of the MIPS

solver and the DNN schemes. 𝜂𝑠𝑝𝑒𝑒𝑑 measures the corresponding

average speedup ratios. Higher is better. (iii) Constraint satisfac-
tion: 𝜂𝑃𝐺 , 𝜂𝑄𝐺

, and 𝜂𝑆𝑙 measure the average constraint satisfaction

percentages for active/reactive generation and branch flow limit,

respectively. Higher is better. (iv) Load satisfaction: 𝜂𝑃𝐷 and 𝜂𝑄𝐷

measure the average load-serving mismatch percentage of active

and reactive loads, respectively. Closer to 0 is better.

5.2 Performance Evaluation
5.2.1 2-bus system. We visualize the target augmented mapping

and DNN-learned augmented mapping for the 2-bus example in

Fig. 3, respectively. Fig. 3 verifies that DeepOPF-AL ensures that the
DNN learns the single-valued augmentedmappingwell. Meanwhile,

the visualization (as shown in Fig 3(b) demonstrates the significant

improvements in the solution quality as compared to the existing

DNN schemes (as shown in Fig. 1).
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Table 1: Simulation results for the modified IEEE 39-bus system.

Metric

Case39-V1 with Avg. Cost Diff. = 0.36% Case39-V2 with Avg. Cost Diff. = 30%

Balanced Dataset Unbalanced Dataset Balanced Dataset Unbalanced Dataset

DeepOPF-AL DeepOPF-V DeepOPF-AL DeepOPF-V DeepOPF-AL DeepOPF-V DeepOPF-AL DeepOPF-V
𝜂𝑜𝑝𝑡 (%) −0.77 1.33 −0.41 0.31 0.48 -8.56 0.66 -5.98

𝜂𝑷𝑮 (%)/𝜂𝑸𝑮 (%) 97.61/92.04 99.96/91.68 97.54/94.26 99.99/90.73 97.5/94.6 99.3/91.7 97.4/98.4 99.8/96.7

𝜂𝑺𝒍 (%) 100 100 100 100 100 100 100 100

𝜂𝑷𝑫 (%)/𝜂𝑸𝑫 (%) −0.42/8.06 1.41/19.65 −0.32/2.61 0.39/8.25 0.19/6.47 0.61/27.6 0.09/0.49 0.32/12.9

𝑡𝑚𝑖𝑝𝑠 (ms) 3366 3366 3317 3317 2808 2808 2676 2676

𝑡𝑑𝑛𝑛 (ms) 1.2 1.1 1.2 1.1 1.4 1.3 1.3 1.2

𝜂𝑠𝑝𝑒𝑒𝑑 ×2805 ×3060 ×2764 ×3015 ×2006 ×2160 ×2058 ×2230

Table 2: Simulation results for the IEEE 300-bus system.

Metric

Convergent Dataset Non-convergent Dataset

DeepOPF-AL DeepOPF-V DeepOPF-AL MIPS

𝜂𝑜𝑝𝑡 (%) 0.01 -0.01 −0.13 20.4

𝜂𝑷𝑮 (%) 100 100 99.9 23.2

𝜂𝑸𝑮 (%) 100 100 100 78.3

𝜂𝑺𝒍 (%) 100 100 100 80.7

𝜂𝑷𝑫 (%) 0.0 -0.01 −0.1 -73.4

𝜂𝑸𝑫 (%) 0.02 0.02 −0.02 -109.2

𝑡𝑚𝑖𝑝𝑠 (ms) 4245 4245 - -

𝑡𝑑𝑛𝑛(ms) 2.2 1.8 2.2 -

𝜂𝑠𝑝𝑒𝑒𝑑 ×1930 ×2358 - -

5.2.2 IEEE 39-bus system. We evaluate all DNN approaches on two

modified IEEE 39-bus systems, where the load inputs in Case39-
V1 and Case39-V2 have two solutions with on average 0.36% and

30% difference in objective values. The results are shown in Ta-

ble 1, and we have the following observations. First, DeepOPF-AL
achieves better performance in reactive generation constraint satis-

faction, reactive load satisfaction and optimality loss thanDeepOPF-
V (marked in bold in Table 1), while getting similar performance in

other metrics in both datasets. Second,DeepOPF-AL performs more

consistently than DeepOPF-V over the two datasets on each test

case. It demonstrates the effectiveness of our augmented-learning

approach. Third, the improvement of DeepOPF-AL on the perfor-

mance metrics is more significant for the case where a load input

has two solutions with larger cost differences. The empirical ex-

planation for this observation may be that larger cost differences

correspond to more distinct solutions (i.e., solutions with longer dis-

tances to each other). Consequently, DeepOPF-AL achieves better

performance, than DeepOPF-V.

5.2.3 IEEE 300-bus system. The results for the IEEE 300-bus system

in Table 2 show that DeepOPF-AL achieves a similar optimality gap,

feasibility, and speed-up performance, as compared to DeepOPF-V.
These results confirm that, for this setting with a single-valued load-

solution mapping, the (higher-dimensional) augmented mapping to

learn by DeepOPF-AL is degenerated and can be represented using

the same-size DNN as the (lower-dimensional) load-solution one

to learn by DeepOPF-V. Meanwhile, the augmented mapping still

requires more training data if one has no prior knowledge of its

degenerated dimension, as in this simulation.

Overall, the simulation results on the 2-bus, modified IEEE 39-

bus, and IEEE 300-bus systems show the promising performance of

DeepOPF-AL. The results indicate that DeepOPF-AL can achieve

desirable performance, regardless of whether or not the AC-OPF

problems have a multi-valued load-solution mapping. As compared,

the existing DNN scheme (i.e.,DeepOPF-V) only works well in the

case with a single-valued load-solution mapping. Meanwhile, as dis-

cussed in Sec. 1, recent work [15] requires solving a bi-level in data

generation procedure to learn the multi-valued load-solution map-

ping, in which the optimal solution is computationally prohibitive.

In addition, the trained DNN fails to learn the target multi-valued

mapping accurately and generates inferior solutions. In contrast,

DeepOPF-AL trains DNN with a simple uniformly-sampling data-

generation procedure without the need to solve the challenging

bi-level problem. We remark that it is difficult to determine the type

(single-valued or multi-valued) of load-solution mapping. Thus,

DeepOPF-AL is more applicable in practice due to its convenience

in data generation and no requirement for prior knowledge of the

target multi-valued mapping.

5.3 Robustness of DeepOPF-AL
We test the robustness of DeepOPF-AL on IEEE 300-bus using the

test load inputs, where we randomly sample initial points for each

load for which the MIPS solver fails to converge. We observe that

DeepOPF-AL still attains decent performance (marked in bold in

Table 2), while the non-convergent solutions by the MIPS solver

suffer from significant performance degradation. The explanation

for this observation is that DeepOPF-AL could directly generate

solutions upon the given load input and initial points, regardless

of whether or not MIPS convergences with the given input and is

likely to generalize well to the unseen input region. This implies

that DeepOPF-AL, while trained with data generated by the MIPS

solver, achieves a more robust performance than the MIPS solver.

6 CONCLUDING REMARK
We propose augmented learning as a methodological framework to

solve the general optimization problems with multi-valued map-

pings. We develop DeepOPF-AL as the first augmented-learning-

based approach and apply it to solve AC-OPF problems with a

multi-valued mapping. Simulation results show that it achieves a

better optimality gap (< 0.7%) and similar feasibility and speedup

(up to three orders of magnitude faster than the conventional solver)

performances compared to a recent DNN scheme, yet with a larger

training-data size. A future direction is to improve augmented-

learning designs for better training efficiency and extend it to other

problems in supervised learning with multi-valued input-solution

mappings. It is also an interesting direction to extend the augmented

learning approach to other DNN architectures (e.g., convolutional

neural networks and graph neural networks).
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A DNN ARCHITECTURE AND TRAINING
Recall that DeepOPF-AL adopts the prediction-and-reconstruction

framework [14]. It trains DNN to predict the bus voltages and

reconstructs the bus injections, i.e., RHS values of (2)-(3), and finally

the generations, all by simple scalar calculation. Such a predict-

and-reconstruct framework [14, 21, 22] guarantees the power flow

equality constraints and reduces the number of variables to predict.

Lastly, DeepOPF-AL employs the post-processing process in [14]

to help keep the obtained solution within the box constraints in (4)-

(6). To enforce the feasibility of predicted variables, we associate

with the predicted variable a one-to-one corresponding scaling

factor [21] by

𝑥𝑑𝑛𝑛 = 𝑠𝑑𝑛𝑛 ·
(
𝑥max − 𝑥min

)
+ 𝑥min, (8)

where 𝑠𝑑𝑛𝑛 is the scaling factor. The DNN predicts 𝑠𝑑𝑛𝑛 and com-

pute 𝑥𝑑𝑛𝑛 by (8). We apply the Sigmoid function [10] as the acti-

vation function of the output layer to ensure the predicted scaling

factor within (0, 1). We build a DNN model using the multi-layer

feed-forward neural network structure:

s0 = [D,X0], (9)

s𝑖 = 𝜎 (𝑊𝑖s𝑖−1 + b𝑖 ) ,∀ 𝑖 = 1, ..., 𝐿, (10)

s𝑑𝑛𝑛 = 𝜎 ′ (𝑊𝐿+1s𝐿 + b𝐿+1) . (11)

In our design, the input load (D) and initial points for the primal

variables (X0) forms DNN’s input s0. s𝑖 is the output vector of the 𝑖-
th hidden layer, depending on weights𝑊𝑖 , biases b𝑖 and the (𝑖−1)-th
layer’s output s𝑖−1.𝑊𝑖 and b𝑖 are adjustable DNN’s parameters. 𝐿 is

the number of hidden layers. 𝜎 (·) and 𝜎 ′(·) are ReLU and Sigmoid

activation functions, respectively.

During training, we design the loss function for each instance

as the mean square error between the generated solution and the

ground truth (the generated AC-OPF solution). The training process

aims to minimize the average loss of the training dataset by tuning

the DNN’s parameters𝑊𝑖 and b𝑖 :

min

𝑊𝑖 ,b𝑖 ,𝑖=1,...,𝐿

1

card (T )
∑
𝑘∈T



s𝑑𝑛𝑛,𝑘 − s𝑔𝑡,𝑘


2
2
, (12)

where T is the training data-set, s𝑑𝑛𝑛,𝑘 and s𝑔𝑡,𝑘 are the prediction

and ground-truth for the 𝑘-th instance, respectively. We apply the

Adam algorithm to update the DNN’s parameters.
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B DETAILS OF TRAINING SETTINGS FOR
DEEPOPF-AL ON DIFFERENT TEST
SYSTEMS

B.1 2-bus system
We randomly generated 100 initial points for each input (100 load

inputs in total) and feed them with the loads into the Matpower

Interior Point Solver (MIPS) solver [32], which implements the

primal-dual interior point method, to obtain reference AC-OPF

solutions. We train the DNN with the same hidden layers and

widths given in Sec. 3, i.e., 2 hidden layers with 300 neurons on

each hidden layer. We set the batch size, maximum epoch, and

learning rate to be 64, 4000, and 1e-4, respectively.

B.2 39-bus system
We adopt two modified IEEE 39-bus systems [2]:

• Case39-V1: The modifications include: (i) scaling the ac-

tive/reactive power generation bounds by 4, applying ±5%
voltage bounds and linear objective coefficients.

• Case39-V2: The modification applies ±5% voltage bounds.

For the evaluation of IEEE 39-bus systems, we generate a realistic

load on each bus by multiplying the default value by an interpolated

demand curve based on 11-hour California’s net load in Jul. – Sept.

2021, with a time granularity of 30 seconds, thus 2,760 load instances

per day. For each load, we randomly generate initial points and

feed them together with the loads into the MIPS solver [32] to

obtain reference AC-OPF solutions. For each test case, we design

two datasets: a balanced dataset (with 75,562 and 89,972 data points

for Case39-V1 and Case39-V2, respectively; for each load, the ratio

between the numbers of the low-cost solutions and the high-cost

solutions is 1:1) and an unbalanced dataset (with 41,123 and 52,384

data points for Case39-V1 and Case39-V2, respectively; for each
load, the ratio between the numbers of the low-cost solutions and

the high-cost solutions are 9:1). We split each dataset using the

“80/20” strategy to obtain the training and test sets. We build DNN

models consisting of 3 hidden layers with 1024/768/512 neurons

for the modified 39-bus system. We set the batch size, maximum

epoch, and learning rate to 128, 4000, and 1e-4, respectively.

B.3 300-bus system
For the evaluation of IEEE 300-bus systems, we generate a realistic

load in the same way as the 39-bus system. The training set for

DeepOPF-V contains 2,760 (load, solution) data pairs. The train-

ing set for DeepOPF-AL has 110,400 ((load, initial point), solution)

data points, where we randomly sample 40 initial points for each

load. We build DNN models consisting of 4 hidden layers with

1024/768/512/256 neurons for the 300-bus system. We set the batch

size, maximum epoch, and learning rate to 128, 4000, and 1e-4,

respectively. We evaluate the performance of DeepOPF-AL and

DeepOPF-V using the same-size DNN and same hyper-parameters,

following the “80/20” training/testing splitting rule.

B.4 Robustness of DeepOPF-AL
We test the robustness of DeepOPF-AL on IEEE 300-bus using the

2760 test load inputs. Specifically, the test set has 55,200 (load, initial

point) data points, where we randomly sample 20 initial points for

each load for which the MIPS solver fails to converge.
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