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ABSTRACT
Despite the extensive studies on end-user participation in distri-

bution networks, incorporating grid operational constraints and

the incentive/dynamic pricing in demand response (DR) is still a

challenging and open problem. To fill this gap, we propose a novel

three-stage game framework to enable the DR among the utility

company, distribution system operator (DSO), and prosumers. In

Stage I, utility determines the incentive price to DSO for social

welfare maximization. In Stage II, DSO decides the dynamic prices

to prosumers and respects grid operational constraints. In Stage

III, each prosumer adjusts the local generation and demand on its

behalf. We show that the DR game admits an equilibrium that max-

imizes social welfare and DSO/prosumers’ benefits while satisfying

operational constraints. We prove the uniqueness of the optimal

power supply of utility and the demand-generation adjustments and

derive the explicit form of optimal incentive/dynamic price-setting

at equilibrium. We further develop a robustness-enhanced design

against DSO/prosumers’ fault information and explore the impact of

renewable/uncontrollable load uncertainty. Meanwhile, we develop

an efficient distributed algorithm to help DR participants coop-

eratively reach equilibrium. Simulations show that the proposed

scheme improves social welfare by 20.1% and DSO/prosumers’ ben-

efit by 32.5% on IEEE 30/118-bus systems while respecting all grid

operational constraints.
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1 INTRODUCTION
The fast deployment of cloud computing and data centers has con-

tributed significantly to the internet of things applications in daily

life, e.g., transportation and power systems [53]. Though the pene-

tration of renewables helps to decarbonize the increasing energy

consumption of large-scale cloud service providers and other con-

sumers, the uncertain demand/supply imposes unprecedented chal-

lenges in the efficient operation of power systems [23, 35, 44, 52].

With the great advances in communication and control in smart

grid technologies, demand response (DR) has been proved as a

promising solution by actively involving users in the demand side

management for peaking load shaving [26] and elastic demands and

fluctuating generations matching [17]. DR allows the utility com-

pany to manage end-users’ energy consumption, either directly (via

remote load control) or indirectly (via pricing schemes), to improve

power system efficiency; see [11] for a comprehensive survey.

In this work, we consider the DR between the utility, the non-

profit organization named distribution systems operator (DSO) who

manages the distribution network, and the prosumers in the same

https://doi.org/10.1145/3575813.3595206
https://doi.org/10.1145/3575813.3595206
https://doi.org/10.1145/3575813.3595206


e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Tianyu Zhao, Min Zhou, Yanfang Mo, Jason Min Wang, Jun Luo, Xiang Pan, and Minghua Chen

Figure 1: Structure of demand response scheme.

network. Prosumers are precipitated from consumers with the capa-

bility of local generation, e.g., micro-grids and data centers. Viewing

the prominent role of game theory in smart grids [34], we model

their interactions as a three-stage game, which is in a hierarchical

structure such that utility offers incentive prices and in response,

DSO provides the dynamic prices to prosumers to guide them in

adjusting the demand and local generations while respecting the

network constraints; see Fig. 1 for an illustration. We remark that

the game-theoretical model is widely adopted in DR schemes. e.g.,

the two-stage Stackelberg model for energy consumers [20, 21, 24],

energy storage systems [17], and data centers [39]. Such paradigm

is known as the Price-based approach as discussed in Sec. 2.

Although extensive studies have been conducted on developing

different DR schemes, there are still several challenges in designing

an optimal and feasible DR mechanism.

• First, it is crucial to incorporate the power network con-

straints into the design, e.g., the branch flow and demand-

generation limits and the power balance equations.

A major concern of existing approaches lies in ignoring the under-

lying power network operational constraints but only considering

the aggregate load-supply balance [20, 27, 32], which could lead

the obtained DR solutions infeasible and violate the system con-

straints severely, e.g., over 94% maximum violation of branch flow

constraints in simulation in Sec. 7.

• Second, the DR (game) interactions between utility, DSO, and

prosumers have not been fully investigated. For example,

existing workmainly studies the DR either between DSO and

prosumers or requires the utility directly control the energy

consumption/generation in distribution network [21, 34, 51].

• Third, it is non-trivial to analyze the DR game equilib-

rium and obtain the optimal incentive/dynamic price-setting

schemes, i.e., equilibrium and the corresponding pricing

schemes are expected to be robust and maximize social wel-

fare so that the system regulator can advocate DR with le-

gitimate support.

Incorporating the system operational constraints and the three-

stage game model render the analysis of the DR scheme challenging

due to the lack of closed-form optimal decisions. However, the DR

equilibrium properties and the corresponding optimal price-setting

have not been fully explored in existing work, e.g., [21, 30, 45, 51].

In this work, we carry out a comprehensive study to tackle these

challenges and make the following contributions.

▷After modeling power network and DSO/prosumer’s behaviors

in Sec. 3, we develop a price-based DR framework between utility,

DSO, and prosumers as a three-stage game considering system op-

erational constraints in Sec. 4. We show the existence and efficiency

of the equilibrium, i.e., social welfare at equilibrium is the same as

the maximum one under coordinated setting. The uniqueness of

optimal power supply and demand/local generation adjustments is

also proved. We show that instead of solving the non-convex multi-

level DR game problem, one can solve the convex social welfare

maximization to derive the identical equilibrium DR solution.

▷ In Sec. 5.2, based on the understanding of reacting to electricity
market marginal price and network locational marginal price, we

present the closed-form optimal incentive/dynamic price-setting

schemes to guarantee the efficient equilibrium. To our best knowl-

edge, it is the first comprehensive pricing result considering power

network operational constraints in the three-stage DR game model.

Furthermore, in Sec. 5.3, we present a robustness-enhanced design

to the scheme. That is, any fault information from DSO/prosumers

will not change the optimal incentive/dynamic prices, and DR still

maximizes social welfare. We further analyze the impact of renew-

able/uncontrollable load uncertainty. It is shown that the fluctuation

of renewables/uncontrollable loads will poison network efficiency

and DSO and prosumers’ benefits.

▷ To further meet the privacy preservation requirement in

scheme implementation, in Sec. 6, we explore an efficient and com-

putationally tractable distributed algorithm to determine the equi-

librium. Based on the projected gradient descent method, we decou-

ple the optimization variables of utility and DSO/prosumers and

allow them to solve the concerned program concurrently, which is

guaranteed to converge to the equilibrium set point.

Simulation results in Sec. 7 show that the proposed DR scheme

increases social welfare by 20.1% and DSO/prosumers’ benefit by

32.5% on IEEE Case30/118-bus systems. In addition, DR solutions

respect all constraints, which surpasses the scheme ignoring net-

work constraints causing >94.0% maximum violations. For fluency,

all proofs are presented in the appendix.

2 RELATEDWORK
Generally, there are two orthogonal categories of residential DR
programs differentiated by their coordination approaches.

(i) Direct load control (DLC): The DLC approaches implemented

by utility are usually contract-based, in which consumers allow

the utility to adjust the energy usage of the household appliances

remotely [34]. The rewards to consumers participating in DLC pro-

grams for load shedding can be pre-set [40] or event-orientated [2].

An online task scheduling algorithm to control data centers for DR

is proposed in [37]. In [18], demand response and battery storage

are jointly optimized from the utility standpoint. Utilities may also

design new electricity products to directly elicit load flexibility [25].

Meanwhile, system operational constraints can be incorporated [51]

into DLC-based DR schemes.

(ii) Price-based approaches: In contrast, price-based approaches
allow utility to indirectly control consumers’ loads by providing

incentive prices for desired load shifting goals and thus achieve bet-

ter privacy preservation. These approaches include various pricing

schemes, e.g., real-time, time-of-use, and critical peak pricing [3]
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based on different criteria. Several game-theoretical frameworks

based on the Stackelberg game [21, 45], mean-field game [10], and

others [13] are developed. Works [21, 30, 45, 51] examine the power

network constraints in DR, though most existing results ignore

such operational limits. In [21], the DR between utility and con-

sumers is explored but requires utility to access full power network

details and ignores local generations and dynamic electricity mar-

ket prices. The incentive/dynamic price-setting schemes among

utility, DSO, and prosumers are also not fully investigated. In [6], a

gradient-based approach is proposed to model the energy consump-

tion response to electricity prices based on historical prices and

response data. [43] proposed an online price-based control method

for DR, which can achieve a provable competitive ratio for peak

demand under future load uncertainty. Study [30] presents the DR

incorporating the distribution locational marginal price and PV

uncertainty. In [7, 8, 46, 53], the authors show that data centers can

be applied for DR via auction mechanism and pricing approaches.

Besides these two categories, there is also a line of works fo-

cusing on the energy trading/sharing between prosumers in the

same region [9, 19, 42] to lower their costs. For example, a direct

energy trading framework among prosumers based on the Nash

bargaining is provided in [19]. These works indicate the potential

of energy trading/sharing among prosumers in DR but ignore the

game-theoretical interactions with DSO and utility.

However, these works have not fully addressed the challenges

discussed in Sec. 1, i.e., obtaining the DR equilibrium and the op-

timal pricing schemes considering power network constraints. In

this paper, we study the DR between utility, DSO, and prosumers

based on the three-stage model as the Price-based approach and

tackle these challenges. Our work differs from existing literature

in that we include power network constraints into the design to

guarantee the scheme’s feasibility and practicability and fully in-

vestigate the equilibrium existence and efficiency under the novel

three-stage game-theoretical model. Furthermore, we derive the

closed-form optimal incentive/dynamic price-setting schemes, a

robustness-enhanced design under the fault-ridden setting, and

an efficient distributed algorithm while respecting all system con-

straints. The impact of renewable//uncontrollable load uncertainty

is also investigated.

3 SYSTEM MODEL
In this section, we present themodel of the utility company andDSO

with prosumers deployed in a distribution network. Key symbols

are summarized in Table 1.

3.1 Distribution Network Model
We consider the distribution power network as illustrated in Fig. 1

in which prosumers are interconnected. The DSO is located in the

slack bus through which the energy can be traded with the utility.

The power network constraints are

𝑧D-U +
∑︁
𝑖∈N

𝑥𝐷𝑖 +
∑︁
𝑖∈N

𝑟𝑖 =
∑︁
𝑖∈N

𝐷𝑖 +
∑︁
𝑖∈N

𝑈𝑖 , (1)

− L ≤ PTDF · (x𝐷 + r − D − U) ≤ L. (2)

(1) is the power balance equation. (2) are the branch flow limits.

Here x𝐷 ∈ R𝐵−1,D ∈ R𝐵−1
and 𝑥𝐷

𝑖
= 𝐷𝑖 = 0 if 𝑖 ∉ N . The Power

Table 1: Key notations

Notation Definition
B/N Set of buses/prosumers, 𝐵 ≜ |B|, 𝑁 ≜ |N |
M Set of generators of utility,𝑀 ≜ |M|
𝑃
buy Per unit purchasing price from utility.

𝑃
sell

Per unit selling-back price to utility (feed-in tariff)

𝑧D-U/𝑧U-G Power from utility to DSO/grid to utility

𝑧D-U
max

/𝑧D-U
min

Upper/lower bound of 𝑧D-U

𝑎𝐷
𝑖
, 𝑏𝐷

𝑖
Generation cost function coefficients of prosumer 𝑖

𝑎𝑈
𝑖
, 𝑏𝑈

𝑖
Generation cost function coefficients of utility

𝑥𝐷
𝑖
/𝑥𝑈

𝑗 Local energy generation of prosumer 𝑖/utility

𝐷𝑖/𝑈𝑖 Controllable/Uncontrollable load of prosumer 𝑖

𝑟𝑖/𝑒𝑖 Prosumer 𝑖′𝑠 renewable generation/𝑒𝑖 = 𝑟𝑖 −𝑈𝑖

�̄�𝑖/𝐷𝑖 Upper/lower bound of 𝐷𝑖

𝑝𝑖/𝐷Ad

𝑖
Generation/demand adjustment of prosumer 𝑖

E, L Set of branches and the transmission limits, 𝐸 ≜ |E |
𝑥𝐷
𝑖
/𝑥𝐷

𝑖
Upper/lower bound of 𝑥𝐷

𝑖

Note: we use | · | to denote the size of a set.

Transfer Distribution Factors [48] matrix PTDF ∈ R𝐸×(𝐵−1)
de-

pends on the power network topology. We remark that the above

direct current power flow formulation is widely adopted in litera-

ture [38, 49]. For simplicity, we use 𝑒𝑖 = 𝑟𝑖 −𝑈𝑖 to denote the net

uncontrollable power injection at node 𝑖 .

3.2 DSO and Prosumer’s Model
Prosumers interconnected in the distribution power network are

modeled to be managed by DSO.
1
We assume that each prosumer

𝑖 ∈ N is equipped with the distributed generator.
2
The goal of DSO,

who is the central operator to coordinate the energy trading with

utility, distributed power generation, and energy consumption of

all prosumers, is to maximize total social welfare while satisfying

all power network operational constraints.

3.2.1 Energy Trading with Utility. Note that 𝑧D-U is the energy

traded with the utility. 𝑃
buy

and 𝑃
sell

($/MWh) denote the purchas-

ing price and the selling-back price with utility,
3
Here 𝑃

buy
and

𝑃
sell

are commonly contractual set and are modelled to be invariant

w.r.t. the traded quantity. Due to the physical or contractual limits,

we have

𝑧D-U
min

≤ 𝑧D-U ≤ 𝑧D-U
max

. (3)

Therefore, DSO’s cost to utility is given as:

𝐶𝑢 (𝑧D-U) = 𝑃
buy

· max(𝑧D-U, 0) + 𝑃
sell

· min(𝑧D-U, 0) . (4)

In practice, 𝑃
buy

≥ 𝑃
sell

to make the feed-in tariff feasible [22].

1
Here we consider each prosumer is located in a single bus, which can be extended

such that a prosumer corresponds to multiple buses.

2
In the short-term time scale, renewable generations and uncontrollable loads can be

predicted reasonably well and we assume 𝑟𝑖 , 𝑖 ∈ N have zero marginal cost [41]. For

simplicity, we first consider fixed renewable/uncontrollable injections. The impact of

renewable/uncontrollable load uncertainty is further studied in Sec. 5.4.

3
DSO can sell its surplus energy when total local generation exceeds total demand,

especially considering renewables. 𝑃sell is known as the feed-in tariff.
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3.2.2 Local Generation Cost and Benefit Function. Prosumers are

assumed to be equipped with local generators. Note that the local

generation 𝑥𝐷
𝑖

of prosumer 𝑖 is bounded:

𝑥𝐷𝑖 ≤ 𝑥𝐷𝑖 ≤ 𝑥𝐷𝑖 , 𝑖 ∈ N . (5)

The generation cost function is usuallymodeled to be strictly convex

subdifferentiable, e.g., the quadratic functions in [31]:

𝐶𝐷
𝑔,𝑖 (𝑥

𝐷
𝑖 ) = 𝑎𝐷𝑖 · 𝑥𝐷𝑖

2 + 𝑏𝐷𝑖 · 𝑥𝐷𝑖 , 𝑖 ∈ N , (6)

where𝑎𝐷
𝑖
and𝑏𝐷

𝑖
are the positive generation coefficients.We further

model the benefit of prosumers to consume energy. Recall that 𝐷𝑖

is its demand, which is bounded:

0 ≤ 𝐷𝑖 ≤ 𝐷𝑖 ≤ �̄�𝑖 , 𝑖 ∈ N . (7)

Prosumer 𝑖′𝑠 benefit function 𝐵𝑖 is modeled to be strictly concave

and differentiable. A common choice of 𝐵𝑖 is logarithmic function

with preference coefficients 𝑘𝑖 > 0, 𝛿𝑖 ≥ 1:

𝐵𝑖 (𝐷𝑖 ) = 𝑘𝑖 ln(𝛿𝑖 + 𝐷𝑖 ) + 𝑘𝑢𝑖 ln(𝛿𝑢𝑖 +𝑈𝑖 ), 𝑖 ∈ N . (8)

The first and second term in (8) denotes the benefit of controllable

and uncontrollable load respectively. Note that if 𝛿𝑖 (resp 𝛿𝑢𝑖 ) < 1

or 𝑘 (resp 𝑘𝑢
𝑖
) < 0, 𝐵𝑖 (𝐷𝑖 ) can be negative, which is not realistic in

practice. The logarithmic function (8) is widely applied to model

prosumer’s economic behavior [4, 14] and has been validated in

different DR schemes [14, 15, 24]. We remark that our analysis

holds for general strictly concave subdifferentiable 𝐵𝑖 (𝐷𝑖 ). For pro-
sumers without local generation (resp demand), one can simply

set (𝑥𝐷
𝑖
, 𝑥𝐷

𝑖
, 𝑎𝐷

𝑖
, 𝑏𝐷

𝑖
) = 0 (resp (𝐷𝑖 , �̄�𝑖 , 𝑘𝑖 ) = 0, 𝛿𝑖 = 1) to make the

formulation consistent.

3.2.3 Total Benefit of DSO and Local Optimization. The total bene-
fit of DSO is the aggregate net benefit of all prosumers:

𝐵𝐷
total

=
∑︁
𝑖∈N

(𝐵𝑖 (𝐷𝑖 ) −𝐶𝐷
𝑔,𝑖 (𝑥

𝐷
𝑖 )) −𝐶𝑢 (𝑧D-U). (9)

Before involving in DR, DSO focuses on the following local benefit

maximization considering all power network constraints:

P0: DSO’s Optimization without Demand Response

max 𝐵𝐷
total

(𝑧D-U, x𝐷 ,D)
s.t. (1) − (3), (5), (7),

var. 𝑧D-U, x𝐷 ,D.

Let (𝑧D-U∗ , x𝐷∗,D∗) denote the optimum of P0. The following

lemma shows that the optimal supply from utility and local genera-

tion and demand can be uniquely determined before DR in P0.

Lemma 1. P0 is convex and admits a unique optimal solution.

3.2.4 Dynamic Pricing to Each Prosumer. In practice, DSO may not

be able to directly control the energy consumption and local gen-

eration of prosumers. In this work, we model the dynamic pricing
from DSO to coordinate prosumers’ behaviors. Here we consider

two factors: the unit price of electricity consumption 𝑃
𝑑𝑝

𝑖
, and the

distribution network access fee of prosumer 𝑖 denoted by 𝑘𝑖 . We

remark that the implemented price signal (𝑃𝑑𝑝
𝑖

, 𝑘𝑖 ) to each pro-

sumer represents the actual price of electricity consumption or is

just a control signal to coordinate users’ decisions. Therefore, each

prosumer 𝑖 chooses the optimal power profile (𝐷𝑖 , 𝑥
𝐷
𝑖
) to maximize

its individual net benefit, i.e., benefit minus payment:

P0-sub: Prosumer’s optimal energy decision before DR

max

𝐷𝑖 ,𝑥
𝐷
𝑖

𝐵𝑝𝑟𝑜,𝑖 = 𝐵𝑖 (𝐷𝑖 ) −𝐶𝐷
𝑔,𝑖 (𝑥

𝐷
𝑖 ) − 𝑃

𝑑𝑝

𝑖
· (𝐷𝑖 − 𝑥𝐷𝑖 − 𝑒𝑖 ) − 𝑘𝑖

s.t. (5), (7).

Here 𝑃
𝑑𝑝

𝑖
· (𝐷𝑖 −𝑥𝐷𝑖 −𝑒𝑖 ) +𝑘𝑖 are the payment to DSO, which can be

positive/negative, representing the monetary paid to/received from

DSO for energy consumption and generation. Here the value of 𝑘𝑖

is not related to the choice of (𝐷𝑖 , 𝑥
𝐷
𝑖
). In practice, the dynamic

pricing scheme is expected to have the following properties:

• Social welfare maximization: the induced decisions of pro-

sumers (xD,D) should maximize the total benefit 𝐵𝐷
total

and

respect the distribution network constraints;

• DSO’s revenue maximization: given prices (𝑃𝑑𝑝
𝑖

, 𝑘𝑖 ), the in-
dividual decisions from prosumers should maximize DSO’S

total revenue, i.e., same as the coordinated solution of

max

𝑧D-U,x𝐷 ,D

∑︁
𝑖∈N

(𝑃𝑑𝑝
𝑖

· (𝐷𝑖 − 𝑥𝐷𝑖 − 𝑒𝑖 ) + 𝑘𝑖 ) −𝐶𝑢 (𝑧D-U)

s.t. (1) − (3), (5), (7).

• Budget balance: the total payments received by DSO from

prosumers should be no more than the payment to utility,

i.e.,

∑
𝑖∈N (𝑃𝑑𝑝

𝑖
· (𝐷𝑖 − 𝑥𝐷

𝑖
− 𝑒𝑖 ) + 𝑘𝑖 ) ≤ 𝐶𝑢 (𝑧D-U).

The above three conditions represent the validity of the dynamic

pricing scheme in implementation. We have the following result:

Lemma 2. The dynamic pricing scheme satisfies the above three
conditions if for each 𝑖 ∈ N , (𝑃𝑑𝑝

𝑖
, 𝑘𝑖 ) is set as

𝑃
𝑑𝑝

𝑖
= −[0 −

𝐸∑︁
𝑙=1

(𝜖𝑙,0𝑎 (𝑙,𝑖 ) − 𝜖𝑙,0𝑎
(𝑙,𝑖 ) ), (10)

𝑘𝑖 =
𝑃I
∑

𝑗≠𝑖 𝐷
net∗
𝑗,0

−∑
𝑗≠𝑖 𝑃

𝑑𝑝

𝑗
𝐷net∗
𝑗,0

𝑁 − 1

. (11)

Here 𝑃I = 𝑃buy if 𝑧D-U∗ ≥ 0 and 𝑃I = 𝑃sell if 𝑧D-U∗ < 0. The net
demand 𝐷net∗

𝑖,0
= 𝐷∗

𝑖
− 𝑥𝐷∗

𝑖
− 𝑒𝑖 . (𝑥𝐷∗

𝑖
, 𝐷∗

𝑖
, 𝑧D-U∗ =

∑
𝑖∈N 𝐷net∗

𝑖,0
)

and ([0, 𝜖𝑙,0, 𝜖𝑙,0) are the optimal solutions and the corresponding
Lagrangian dual variables of the KKT conditions for P0 as discussed
in Appendix B.1 respectively.

We remark that the unit price 𝑃
𝑑𝑝

𝑖
to prosumers can be inter-

preted as the Locational Marginal Price at each node of the power

system giving network constraints and objective, which represents

the network operation/congestion conditions [38]. 𝑘𝑖 , 𝑖 ∈ N are de-

signed to maintain the budget balance of DSO. In Sec. 5.2, we further

show the optimal dynamic pricing considering the incentive pricing
from utility in the DR program. After determining the dynamic

pricing to each prosumer, DSO then passes the optimum 𝑧D-U∗ , i.e.,

the aggregated net load, to utility for further DR implementation.

4 OPTIMAL THREE-STAGE DR GAME
In this section, we propose a novel DR scheme based on the three-

stage game-theoretical model. After receiving DSO’s pre-DR solu-

tion of P0, in Stage I, utility determines the optimal power supply
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Figure 2: Structure of the proposed demand response scheme

and provides the incentive price to induce DSO/prosumers’ load

adjustments. In Stage II, given the incentive price, DSO provides

the dynamic prices to prosumers to coordinate their DR decisions

while respecting network constraints. Finally, in Stage III, given

DSO’s dynamic pricing, each prosumer chooses its individual op-

timal decision; see Fig. 2 for illustration. Utility is assumed to be

regulated such that it aims to maximize social welfare instead of its

profit by selling power when designing strategy [20]. Next, we use

backward induction to derive their optimal strategies and the DR

equilibrium.

4.1 Stage III: Prosumers’ Optimal DR Decision
In DR, after receiving DSO’s dynamic pricing, each prosumer de-

termines the optimal local generation and demand adjustment. The

generation adjustment 𝑝𝑖 is bounded:

𝑝
𝑖
≤ 𝑝𝑖 ≤ 𝑝𝑖 , 𝑖 ∈ N , (12)

where 𝑝𝑖 and 𝑝
𝑖
are the upper and lower bound of 𝑝𝑖 separately.

Therefore, the generation cost after such output adjustment is

𝐶𝐷
𝑔,𝑖 (𝑝𝑖 ) = 𝐶𝐷

𝑔,𝑖 (𝑥
𝐷∗
𝑖 + 𝑝𝑖 ), 𝑖 ∈ N . (13)

Similarly, the demand adjustment 𝐷Ad

𝑖
is bounded:

4

𝐷Ad

𝑖 ≤ 𝐷Ad

𝑖 ≤ �̄�Ad

𝑖 , 𝑖 ∈ N , (14)

and the benefit function is given as:

�̃�𝑖 (𝐷Ad

𝑖 ) = 𝐵𝑖 (𝐷∗
𝑖 − 𝐷Ad

𝑖 ), 𝑖 ∈ N . (15)

Positive 𝑝𝑖 and 𝐷Ad

𝑖
means that prosumer 𝑖 will increase its local

generation and decrease its energy usage, resulting the decrease in

net demand. Similarly, negative 𝑝𝑖 and 𝐷
Ad

𝑖
indicates the increase

of net demand. Therefore, prosumer 𝑖 optimizes:

DR-sub: Prosumer’s optimal energy decision after DR

max

𝑝𝑖 ,𝐷
Ad

𝑖

𝐵DR𝑝𝑟𝑜,𝑖 = �̃�𝑖 (𝐷Ad

𝑖 ) −𝐶𝐷
𝑔,𝑖 (𝑝𝑖 ) − 𝑃

𝑑𝑝

𝑖
· 𝐷net

𝑖 − 𝑘𝑖

s.t. (12), (14), 𝐷net

𝑖 = 𝐷∗
𝑖 − 𝐷Ad

𝑖 − 𝑥𝐷∗
𝑖 − 𝑝𝑖 − 𝑒𝑖 .

4𝑝𝑖 and 𝑝
𝑖
can be set as 𝑥𝐷

𝑖
−𝑥𝐷∗

𝑖
and 𝑥𝐷

𝑖
−𝑥𝐷∗

𝑖
. �̄�Ad

𝑖
and𝐷Ad

𝑖
can be set as𝐷∗

𝑖 −𝐷𝑖

and 𝐷∗
𝑖 − �̄�𝑖 . 𝑝𝑖 = 0 and 𝐷Ad

𝑖
= 0 if 𝑖 ∉ N.

Here (𝑃𝑑𝑝
𝑖

, 𝑘𝑖 ) can be different from the one in P0-sub for different

objectives of DSO. Lemma 3 shows that a larger unit price 𝑃
𝑑𝑝

𝑖
will

incur a larger load and local generation adjustment.

Lemma 3. DR-sub is convex and admits the unique optimal
(𝐷Ad∗

𝑖
, 𝑝∗

𝑖
). In addition, for any 𝑃

𝑑𝑝,1

𝑖
≥ 𝑃

𝑑𝑝,2

𝑖
, the corresponding

optimal 𝑝∗
𝑖
|
𝑃
𝑑𝑝,1

𝑖

≥ 𝑝∗
𝑖
|
𝑃
𝑑𝑝,2

𝑖

and 𝐷Ad∗
𝑖

|
𝑃
𝑑𝑝,1

𝑖

≥ 𝐷Ad∗
𝑖

|
𝑃
𝑑𝑝,2

𝑖

.

4.2 Stage II: DSO’s Dynamic Pricing
The DSO serves as the intermediary between utility and prosumers

to 1) maintain the distribution network stability as each prosumer’s

decision does not consider the network constraints, 2) maximize

total regional welfare, 3) maximize its own revenue. In particular,

the induced prosumers’ DR adjustments should be feasible and

satisfy (3) and the following constraints:

𝑧D-U +
∑︁
𝑖∈N

(𝑥𝐷∗
𝑖 + 𝑝𝑖 + 𝐷𝐴𝑑

𝑖 ) +
∑︁
𝑖∈N

𝑒𝑖 =
∑︁
𝑖∈N

𝐷∗
𝑖 , (16)

− L ≤ PTDF · (x𝐷∗ + e + p − D∗ + DAd) ≤ L. (17)

After such adjustments, DSO receives a reward from the utility

for decreasing/increasing the aggregated energy usage:

𝑅(𝑧D-U) = 𝑃
de

· max(𝑧D-U∗ − 𝑧D-U, 0)

+ 𝑃in · max(𝑧D-U − 𝑧D-U∗ , 0). (18)

(𝑃
de
, 𝑃in) are the incentive prices provided by utility, where 𝑃de > 0

(resp 𝑃in > 0) indicates utility would like the DSO to decrease

(resp increase) the energy usage. Here 𝑧D-U∗ − 𝑧D-U =
∑
𝑖∈N (𝑝𝑖 +

𝐷Ad

𝑖
) representing the aggregated load decrease in the network.

In practice, utility will only provide one positive incentive price,

i.e., 𝑃
de
𝑃in = 0.

5
Therefore, the total benefit of DSO in the DR is

given as:

�̃�𝐷
total

=
∑︁
𝑖∈N

(�̃�𝑖 (𝐷Ad

𝑖 ) −𝐶𝐷
𝑔,𝑖 (𝑝𝑖 )) −𝐶𝑢 (𝑧D-U) + 𝑅(𝑧D-U),

and DSO solves the following optimization problem:

P1: DSO’s Dynamic Pricing Setting Optimization

max �̃�𝐷
total

(𝑧D-U, p,DAd)

s.t. (3), (16), (17), (𝑝𝑖 , 𝐷Ad

𝑖 ) = argDR-sub| (𝑃𝑑𝑝

𝑖
,𝑘𝑖 )

, 𝑖 ∈ N

var. 𝑧D-U, 𝑃
𝑑𝑝

𝑖
, 𝑘𝑖 , 𝑖 ∈ N .

In P1, DSO determines the optimal dynamic prices (𝑃𝑑𝑝
𝑖

, 𝑘𝑖 ) to
prosumers to induce their energy consumption/generation deci-

sions. We remark that the solution of P1 represents 1) the opti-

mal prosumers’ energy profile and 2) DSO’s optimal pricing to

maximize its benefit, which is the Stackelbergy equilibrium in the

DSO-Prosumers game.

4.3 Stage I: Utility’s Incentive Price Offering and
Energy Supply Optimization

The output of utility’s generator 𝑥𝑈
𝑗
is bounded:

𝑥𝑈𝑗 ≤ 𝑥𝑈𝑗 ≤ 𝑥𝑈𝑗 , 𝑗 ∈ M . (19)

5
Note that (𝑃de, 𝑃in ) are the reward-based incentive prices for DR while (𝑃buy, 𝑃sell )
are the contract-based flat prices for energy purchasing/selling.
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The associated cost function𝐶𝑈
𝑔,𝑗

(𝑥𝑈
𝑗
) is also modeled to be strictly

convex subdifferentiable as (6), e.g., quadratic:
6

𝐶𝑈
𝑔,𝑗 (𝑥

𝑈
𝑗 ) = 𝑎𝑈𝑗 · 𝑥𝑈𝑗

2 + 𝑏𝑈𝑗 · 𝑥𝑈𝑗 , 𝑗 ∈ M . (20)

As discussed before, the utility company is regulated such that

it aims to maximize the social welfare defined as

𝐵
social

=
∑︁
𝑖∈N

(�̃�𝑖 (𝐷Ad

𝑖 ) −𝐶𝐷
𝑔,𝑖 (𝑝𝑖 )) − 𝑓 (𝑧U-G) −

∑︁
𝑗∈M

𝐶𝑈
𝑔,𝑗 (𝑥

𝑈
𝑗 ),

where 𝑓 (𝑧U-G) is the cost function of utility purchasing power from

the power market (main grid) to maintain power balance:

𝑧U-G +
∑︁
𝑗∈M

𝑥𝑈𝑗 +
∑︁
𝑖∈N

(𝑥𝐷∗
𝑖 + 𝑝𝑖 + 𝐷Ad

𝑖 + 𝑒𝑖 ) =
∑︁
𝑖∈N

𝐷∗
𝑖 . (21)

𝑓 (𝑧U-G) can be commonly modeled to be convex and quadratic

or piece-wise linear [36, 50]. In this work, we model 𝑓 (𝑧U-G) to
be subdifferentiable convex. Utility then focuses on the following

multi-stage game optimization (Stage I):

P2: Utility’s Incentive Price Offering and Power Supply

max 𝐵
social

(𝑧U-G, x𝑈 , 𝑃
de
, 𝑃in, p,DAd)

s.t. (19), (21), (p,DAd) = argP1| (𝑃de,𝑃in ) ,
𝑃
de

≥ 0, 𝑃in ≥ 0, 𝑃
de
𝑃in = 0, (22)

var. 𝑧U-G, x𝑈 , 𝑃
de
, 𝑃in .

In P2, utility determines the optimal incentive prices (𝑃∗
de
, 𝑃∗

in
) to

DSO and its power generation/trading with grid (𝑧U-G∗, x𝑈 ∗) to
maximize social welfare using the price-based approach. We remark

that the solution of P2 constitutes the equilibrium of the DR game.

Note that both P1 and P2 are non-convex multi-level optimiza-

tions that are challenging to solve. In Sec. 5, we show that solving

P1 and P2 is equivalent to solving a convex social welfare maxi-

mization to derive the identical equilibrium optimal power supply

and load adjustments (𝑧U-G∗, x𝑈 ∗, p∗,DAd∗) and propose an optimal

incentive/dynamic price-setting scheme to obtain the equilibrium

(𝑃∗
de
, 𝑃∗

in
) and (𝑃𝑑𝑝∗

𝑖
, 𝑘∗

𝑖
, 𝑖 ∈ N); see Def. 1 for formal definition.

4.4 DR under Coordinated Setting: Overall
Energy Consumption Coordination

To further study the social efficiency of the proposed DR scheme, we

consider the following two overall energy coordination problems

for the centralized optimal decisions of utility and DSO respectively:

4.4.1 Utility’s overall coordination problem.
P3-U: Social Welfare Maximization Optimization

max 𝐵
social

(𝑧U-G, x𝑈 , p,DAd)
s.t. (12), (14), (17), (19), (21),

𝑧D-U
min

≤ 𝑧U-G +
∑︁
𝑗∈M

𝑥𝑈𝑗 ≤ 𝑧D-U
max

, (23)

var. 𝑧U-G, x𝑈 , p,DAd .

(23) is the energy trading limit between DSO and utility reformu-

lated from (3) and (21). We have the following lemma.

6
Our results holds for general convex subdifferentiable𝐶𝑈

𝑔,𝑗
(𝑥𝑈

𝑗
) . For ease of analysis,

we focus on the strictly convex𝐶𝑈
𝑔,𝑗

(𝑥𝑈
𝑗
) first.

Lemma 4. P3-U is convex and admits a unique optimal solution.

Remarks: P3-U denotes the optimal decisions of utility under

the centralized case that it has full access to the power network. Let

(𝑧U-G∗, x𝑈 ∗, p∗,DAd∗) denote the optimum of P3-U. The optimal

solution of P3-U may not be identical to that under the game-

theoretical setting of P2, except for the case that the part optimal

solution of P3-U (p∗,DAd∗) happens to be the solution DR-sub
for each prosumer under some (𝑃𝑑𝑝

𝑗
, 𝑘𝑖 ) and optimal to P1 and

(𝑧U-G∗, x𝑈 ∗) is optimal to P2 under some (𝑃
de
, 𝑃in). The difference

in the optimal values between P3-U and P2 interprets the loss of

efficiency as the price-based mechanism may not guarantee the

global optimality of the objective. Nevertheless, in Sec. 5, we show

that the equilibrium (solution of P2) does not incur efficiency loss.

4.4.2 DSO’s coordination problem.
P3-D: Distribution Network Benefit Maximization

max �̃�𝐷
total

(𝑧D-U, p,DAd)
s.t. (3), (12), (14), (16), (17),

var. 𝑧D-U, p,DAd .

The following lemma shows the property of P3-D.

Lemma 5. P3-D admits a unique optimal solution. In addition,

• for any 𝑃1

de ≥ 𝑃2

de ≥ 0, 𝑃in = 0, the corresponding optimal∑
𝑖∈N (𝑝∗

𝑖
+ 𝐷Ad∗

𝑖
) |𝑃1

de
≥ ∑

𝑖∈N (𝑝∗
𝑖
+ 𝐷Ad∗

𝑖
) |𝑃2

de
≥ 0;

• for any 𝑃1

in ≥ 𝑃2

in ≥ 0, 𝑃de = 0, the corresponding optimal∑
𝑖∈N (𝑝∗

𝑖
+ 𝐷Ad∗

𝑖
) |𝑃1

in
≤ ∑

𝑖∈N (𝑝∗
𝑖
+ 𝐷Ad∗

𝑖
) |𝑃2

in
≤ 0.

Furthermore, DSO’s maximum benefit after DR, i.e., the optimal ob-
jective of P3-D, is non-decreasing w.r.t. 𝑃de and 𝑃in.

Remarks:P3-D represents the coordinated scenario of prosumers

as the optimal centralized operation for DSO given (𝑃
de
, 𝑃in). Note

that P3-D is non-convex due to the non-concave �̃�𝐷
total

as the piece-

wise linear function (18) is convex. Nevertheless, Lemma 5 states

that given any incentive price (𝑃
de
, 𝑃in), the (centralized) unique

power supply from utility and generation/demand adjustments can

be determined by DSO. It also suggests that a larger incentive price

𝑃
de

(resp 𝑃in) encourages DSO to decrease (resp increase) net load

more significantly for a larger benefit. As proved in Appendix C.2,

solving P3-D is equivalent to solving a convexified reformulation

of it, with which the uniqueness of solution can also be understood.

5 DR GAME EQUILIBRIUM ANALYSIS
In this section, we show the existence and efficiency of the

three-stage DR equilibrium and prove the uniqueness of the op-

timal power supply and DR adjustments. We provide utility’s

optimal incentive price-setting considering DSO’s response and

DSO’s dynamic price-setting considering each prosumer’s DR de-

cision. We further propose a robustness-enhanced design against

DSO/prosumers’ fault information and investigate the impact of

renewable and uncontrollable load uncertainty.
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5.1 Existence and Efficiency of the Equilibrium
We first provide the formal game-theoretical definition of the three-

stage game and equilibrium in the following.
7

• Players: Utility (Stage I), DSO (Stage II), Prosumers (Stage III).
8

• Strategy: Utility chooses (𝑧U-G, x𝑈 , 𝑃
de
, 𝑃in), DSO determines

(𝑧D-U, 𝑃𝑑𝑝
𝑖

, 𝑘𝑖 , 𝑖 ∈ N), and prosumers determines (p,DAd).9
• Payoff function: Utility maximizes 𝐵

social
in P2, DSO maximizes

�̃�𝐷
total

in P1, and prosumers maximize 𝐵DR
𝑝𝑟𝑜,𝑖

in DR-sub.
The corresponding three-stage game equilibrium is defined as:

Definition 1. Utility’s strategy (𝑧U-G∗, x𝑈 ∗, 𝑃∗de, 𝑃
∗
in), DSO’s

strategy (𝑧D-U∗, 𝑃𝑑𝑝∗
𝑖

, 𝑘∗
𝑖
, 𝑖 ∈ N), and prosumers’ responses

(p∗,DAd∗) are in the equilibrium if (p∗,DAd∗) is optimal to each
DR-Sub, (𝑧D-U∗, 𝑃𝑑𝑝∗

𝑖
, 𝑘∗

𝑖
, 𝑖 ∈ N) is optimal to P1, and any other

utility’s strategy (𝑧U-G, x𝑈 , 𝑃de, 𝑃in) feasible to (19),(21), (22) will not
decrease the objective in P2 compared with that of the equilibrium.

Definition 1 states that all the players choose the optimal deci-

sions given the other’s strategy at the equilibrium. The following

theorem shows the property of the DR equilibrium.

Theorem 1. There exists an equilibrium (𝑧U-G∗, x𝑈 ∗, 𝑃∗de, 𝑃
∗
in),

(𝑧D-U∗, 𝑃𝑑𝑝∗
𝑖

, 𝑘∗
𝑖
, 𝑖 ∈ N), and (p∗,DAd∗). In addition, any equilib-

rium is efficient, i.e., (𝑧D-U∗, p∗,DAd∗) is the unique optimum to P3-D
and (𝑧U-G∗, x𝑈 ∗, p∗,DAd∗) is the unique optimum to P3-U.

Remarks: Theorem 1 shows the existence and efficiency of the

DR game equilibrium. It states that the social welfare at the equilib-

rium (optimal value of P1 and P2) is the same as the one under the

coordinated setting (optimal value of P3-D and P3-U). It is worth
noticing that such an equilibrium may not be unique. For example,

if the equilibrium response (p∗,DAd∗) under some incentive price

𝑃
de

> 0 are at their upper bounds, increasing (resp decreasing)

the value of 𝑃
de

(resp 𝑃
𝑑𝑝

𝑖
) will hence not influence the choice of

(p∗,DAd∗) from Lemma 5, indicating the non-uniqueness of the

equilibrium in the choice of optimal incentive/dynamic prices. Nev-

ertheless, as the equilibrium is always efficient, the optimal DR so-

lution of power supply and load adjustments (𝑧U-G∗, x𝑈 ∗, p∗,DAd∗)
is unique from Lemma 4. In addition, Theorem 1 indicates that with-

out directly solving the non-convex three-level game optimization

P2, we can solve the convex P3-U instead to derive the unique

optimal equilibrium DR decision that maximizes social welfare.

5.2 Equilibrium Incentive and Dynamic Pricing
5.2.1 Stage I: Incentive Price Offering of Utility. We further investi-

gate the optimal incentive prices with which the optimal solutions

of P1 and P2 maximize social welfare as shown in Theorem 2.

Theorem 2. The optimum of P1 (p̂, D̂Ad) and the corresponding
optimum (𝑧U-G, x̂𝑈 ) of P2 are identical to the optimum of P3-U
(𝑧U-G∗, x𝑈 ∗, p∗,DAd∗) and P3-D if the incentive prices are set as:
7
In case the utility and DSO are the same entity, the three-level stage game degenerates

to the two-stage game. We remark that the desired equilibrium between utility/DSO

and prosumers still exists by setting the optimal dynamic prices as Theorem 3 in

Sec. 5.2

8
The analysis holds for multiple utilities/DSOs and the equilibrium for each network

can be obtained separately. We first focus on a single utility/DSO.

9
Utility will only provide (𝑃de, 𝑃in ) to DSO and the corresponding optimal (𝑧U-G, x𝑈 )
is obtained by solving P2 with fixed (p,DAd ) = argP1 | (𝑃

de
,𝑃
in
) .

• If 𝑓 ′ (𝑧U-G∗) > 𝑃buy, we can set 𝑃∗in = 0 and

𝑃∗de =


𝑓 ′ (𝑧U-G∗) − 𝑃sell, if 𝑧D-U∗ < 0;

𝑓 ′ (𝑧U-G∗) − 𝑃buy, if 𝑧D-U∗ > 0;

𝑓 ′ (𝑧U-G∗) − 𝑃s-b, if 𝑧D-U∗ = 0,

(24)

for any 𝑃s-b ∈ [𝑃sell, 𝑃buy].
• If 𝑓 ′ (𝑧U-G∗) < 𝑃sell, we can set 𝑃∗de = 0 and

𝑃∗in =


𝑃sell − 𝑓 ′ (𝑧U-G∗), if 𝑧D-U∗ < 0;

𝑃buy − 𝑓 ′ (𝑧U-G∗), if 𝑧D-U∗ > 0;

𝑃s-b − 𝑓 ′ (𝑧U-G∗), if 𝑧D-U∗ = 0.

(25)

for any 𝑃s-b ∈ [𝑃sell, 𝑃buy].
• If 𝑃sell ≤ 𝑓 ′ (𝑧U-G∗) ≤ 𝑃buy, we can set{

𝑃∗de = 𝑓 ′ (𝑧U-G∗) − 𝑃sell, 𝑃
∗
in = 0, if 𝑧D-U∗ < 0;

𝑃∗in = 𝑃buy − 𝑓 ′ (𝑧U-G∗), 𝑃∗de = 0, if 𝑧D-U∗ > 0.
(26)

If 𝑧D-U∗ = 0, suppose 𝑓 ′ (𝑧U-G∗) = 𝑃∗s-b ∈ [𝑃sell, 𝑃buy], set{
𝑃∗de = 𝑓 ′ (𝑧U-G∗) − 𝑃s-b, 𝑃

∗
in = 0; or

𝑃∗in = 𝑃s-b − 𝑓 ′ (𝑧U-G∗), 𝑃∗de = 0,
(27)

for any 𝑃s-b ∈ [𝑃sell, 𝑃∗s-b] or 𝑃s-b ∈ [𝑃∗s-b, 𝑃buy].
Here 𝑓 ′ (𝑧U-G∗) ∈ 𝜕𝑓 (𝑧U-G∗) is a subderivative of 𝑓 at 𝑧U-G∗ that
satisfies the KKT condition of P3-U.

Remarks: Here 𝑧D-U∗ =
∑
𝑖∈N 𝐷∗

𝑖
−∑

𝑖∈N (𝑥𝐷∗
𝑖

+ 𝑝∗
𝑖
+ 𝐷Ad*

𝑖
) is

calculated from (16). Theorem 2 provides the closed-form optimal

incentive price-setting scheme to achieve the efficient equilibrium.

It indicates that when utility is confronted with high (resp low)

marginal price in the electricity market, i.e., larger (resp smaller)

𝑓 ′ (𝑧U-G∗), utility will encourage the DSO to decrease (resp increase)

the energy usage with 𝑃
de

> 0 (resp 𝑃in > 0) respectively. It also

suggests that the larger/smaller the marginal price, the larger opti-

mal incentive price 𝑃
de
/𝑃in. Therefore, the incentive price can be

seen as the price signal passing from utility to DSO. It indicates the

fluctuation of the marginal energy cost from the external grid and

the unit monetary reward to DSO for the improvement in social

welfare.

5.2.2 Stage II: Dynamic Pricing of DSO. In this subsection, we fur-

ther provide the optimal dynamic prices of DSO to each prosumer.

Theorem 3. The optimum of DR-sub (p̂, D̂Ad) and the corre-
sponding 𝑧D-U are practical, i.e., (𝑧D-U, p̂, D̂Ad) is

• feasible to (3), (12),(14),(16), (17) and identical to the opti-
mum in P3-U and P3-D and maximizes utility’s social welfare
𝐵social and DSO’s benefit �̃�𝐷total;

• maximizing DSO’s revenue, i.e., is the maximizer of

max

𝑧D-U,p,DAd

∑︁
𝑖∈N

(𝑃𝑑𝑝
𝑖

· 𝐷net
𝑖 + 𝑘𝑖 ) −𝐶𝑢 (𝑧D-U) + 𝑅(𝑧D-U)

s.t. (3), (12), (14), (16), (17),

𝐷net
𝑖 = 𝐷∗

𝑖 − 𝐷Ad
𝑖 − 𝑥𝐷∗

𝑖 − 𝑝𝑖 − 𝑒𝑖 . (28)

• budget balance: the total payments received by DSO from pro-
sumers is nomore than the payment to utility, i.e.,

∑
𝑖∈N (𝑃𝑑𝑝∗

𝑖
·

𝐷net∗
𝑖

+ 𝑘∗
𝑖
) ≤ 𝐶𝑢 (𝑧D-U∗) − 𝑅(𝑧D-U∗),
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if the dynamic pricing for each prosumer 𝑖 ∈ N is set as:

𝑃
𝑑𝑝

𝑖
= −[ −

𝐸∑︁
𝑙=1

(𝜖𝑙𝑎 (𝑙,𝑖 ) − 𝜖𝑙𝑎
(𝑙,𝑖 ) ), (29)

𝑘𝑖 =

∑
𝑗≠𝑖

(
𝑃I𝐷

net∗
𝑗

+ (𝑃∗in − 𝑃∗de) · (𝐷
Ad∗
𝑗

+ 𝑝∗
𝑗
) − 𝑃

𝑑𝑝

𝑗
𝐷net∗
𝑗

)
𝑁 − 1

.

(30)

Here 𝑃I = 𝑃buy if 𝑧D-U∗ ≥ 0 and 𝑃I = 𝑃sell if 𝑧D-U∗ < 0. The net
demand 𝐷net∗

𝑖
= 𝐷∗

𝑖
− 𝐷Ad∗

𝑖
− 𝑥𝐷∗

𝑖
− 𝑝∗

𝑖
− 𝑒𝑖 . (𝑝∗𝑖 , 𝐷

Ad∗
𝑖

, 𝑧D-U∗ =∑
𝑖∈N 𝐷net∗

𝑖
) and ([, 𝜖𝑙 , 𝜖𝑙 ) are the optimal solutions and the corre-

sponding Lagrangian dual variables of the KKT conditions for P3-U
or P3-D as discussed in Appendix C respectively.

Theorem 3 provides the closed-form dynamic price-setting for

each prosumer. Under such a setting, given any (𝑃
de
, 𝑃in), DSO’s

objective, i.e., the regional aggregated benefit, is maximized and

prosumers’ actions at the DSO-prosumers game-theoretical setting

are the same as the optimal ones under the coordinated setting.

Here 𝑃
𝑑𝑝

𝑖
can be interpreted as the Locational Marginal Price as

discussed in Sec. 3.2.4. Together with Theorem 1, we summarize

that the equilibrium load adjustment (prosumers’ DR decision cor-

responding to the Stage III problem in DR-sub) can be obtained by

the optimum (p∗,DAd∗) of P3-U. The utility’s optimal equilibrium

incentive price-setting scheme is then given by Theorem 2 and

DSO’s dynamic price-setting scheme can be determined by Theo-

rem 3, which is the solution of Stage I utility’s problem in P1 and

Stage II DSO’s problem in P2. Therefore, the three-stage multi-level

equilibrium can be recovered and reached directly by solving a

convex problem P3-U. The problem structure and decomposition

are given in Fig. 3.

As seen from Theorem 2 and Theorem 3, the equilibrium of the

DR game depends on the optimal solution and the corresponding

dual variables of P3-U, in which the different levels of restrictive-

ness of constraints will influence the corresponding equilibrium

outcome. We have the following corollary stating the continuity of

the optimal DR decisions w.r.t. the problem parameters.

Corollary 4. The equilibrium DR decision (𝑧U-G∗, x𝑈 ∗, 𝑧D-U∗,
p∗,DAd∗) is continuous w.r.t. the uncontrollable (r,U) and the con-
straints limits (L, x̄𝐷 , x𝐷 , D̄,D, x̄𝑈 , x𝑈 , 𝑧D-U

min
, 𝑧D-U

max
).

The continuity of (𝑧U-G∗, x𝑈 ∗, 𝑧D-U∗, p∗,DAd∗) comes from the

uniqueness of the optimal solution of P3-D/P3-U [5, 29] while may

not smooth.
10

Due to the non-uniqueness of the optimal dual vari-

ables in Theorem 3 and the price-setting scheme in Theorem 2, the

optimal (𝑃∗
de
, 𝑃∗

in
, 𝑃

𝑑𝑝∗
𝑖

, 𝑘∗
𝑖
, 𝑖 ∈ N) may not be continuous. We leave

the analysis of the dis-continuous/unsmooth of the DR equilibrium

under general AC-PF constraints for future work.

5.3 Robustness-Enhanced Equilibrium
We further provide a robustness-enhanced design based on the

existing scheme against false information from DSO and prosumers.

We first have the following observation. Profile (x𝐷∗ + p∗,D∗ −
10
The smoothness of the optimum depends on the choice of the objective function,

e.g., piece-wise linear if the objective is quadratic [12]. The optimum may not smooth

for the general convex objective function.

Figure 3: Structure of the problem decomposition to derive
the DR equilibrium.

DAd∗, 𝑧U-G∗, x𝑈 ∗) is the overall optimal energy consumption and

generation in the power network based on the game-theoretical

setting. Note that (12),(14),(17) is identical to (5),(7),(2) by treating

(x𝐷∗+p,D∗−DAd) as global variables, indicating that the optimum

(x𝐷∗ +p∗,D∗ −DAd∗, 𝑧U-G∗, x𝑈 ∗) is irrelevant to the specific choice
of (x𝐷∗,D∗, 𝑧D-U∗). In addition, the optimal incentive price-setting

in Theorem 2 and dynamic price-setting in Theorem 3 are only

related to (𝑧U-G∗, 𝑥𝑈 ∗)11 and the dual variables. This implies that

even the DSO/prosumers report the false (𝑧D-U∗ =
∑
𝑖∈N (𝐷∗

𝑖
− 𝑥∗

𝑖
−

𝑒𝑖 )), by solving P3-U, the utility (resp DSO) can still get the correct
incentive (resp dynamic) prices to its follower. Based on the above

observation, we modify DSO’s reward function in (18) as

𝑅(𝑧D-U) = 𝑃
de

· (𝑧D-U∗ − 𝑧D-U) + 𝑃in · (𝑧D-U − 𝑧D-U∗ ). (31)

In the above DR reward design, if utility provides a (𝑃
de

> 0, 𝑃in =

0) (resp (𝑃
de

= 0, 𝑃in > 0)) and DSO’s net load adjustment (𝑧D-U∗ −
𝑧D-U) < 0 (resp (𝑧D-U∗ −𝑧D-U) > 0) under its (false) report, DSO will

be penalized. Recall that if DSO reports the truthful 𝑧D-U∗ , its reward

will always be non-negative according to Lemma 5 as its optimal net

adjustment is non-negative (resp non-positive) given 𝑃
de

> 0 (resp

𝑃in > 0). In addition, though DSO may exploit additional benefits

by reporting less/more net load than real load, e.g., reporting more

load and utility provides a 𝑃
de

> 0, its worst case benefit can be

decreased if utility provides a 𝑃in > 0 (resp 𝑃
de

> 0) while it reports

more (resp less) net demand. We have the following theorem.

Theorem 5. Any equilibrium with (31) is robust to DSO and
prosumers’ pre-DR reported (𝑧D-U∗ , x𝐷∗,D∗). That is, the optimal in-
centive and dynamic prices (𝑃∗de, 𝑃

∗
in) and (𝑃𝑑𝑝∗

𝑖
, 𝑘∗

𝑖
, 𝑖 ∈ N) and the

optimal energy profile (x𝐷∗ + p∗,D∗ − DAd∗, 𝑧U-G∗, x𝑈 ∗) that maxi-
mize social welfare are irreverent to (𝑧D-U∗ , x𝐷∗,D∗). In addition, DSO
will always report truthfully to maximize its worst-case benefit under
arbitrary prices 𝑓 ′.

Remark: Theorem 5 shows the desirable robustness property

of the equilibrium. It indicates that whatever (fault information)

(𝑧D-U∗ , x𝐷∗,D∗) DSO/prosumers reported to utility/DSO, the result-

ing power network energy consumption, generation, and energy

trading are optimal such that social welfare is still maximized and

the corresponding incentive/dynamic prices under such a fault-

ridden setting are the same as the optimal ones. Furthermore, to

maximize the worst-case benefit under arbitrary grid prices 𝑓 ′,

11𝑧D-U∗ = 𝑧U-G∗ +∑
𝑗 ∈M 𝑥𝑈 ∗

𝑗
from (16) and (21).
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DSO will always report the truthful 𝑧D-U∗ =
∑
𝑖∈N (𝐷∗

𝑖
− 𝑥∗

𝑖
− 𝑒𝑖 ).

In addition, given the equilibrium dynamic pricing in Theorem 3,

prosumers will always choose the optimal equilibrium DR decision

otherwise they will suffer lower benefits. We leave the design of

strictly enforcing prosumers’ behaviors in following the agreement

and investigating the impact of imprecise modeling mistakes for

future work.

5.4 Impact of Renewable and Uncontrollable
Load Uncertainty

In practice, local renewable generations can be non-dispatchable

due to their intermittent and unpredictable nature. Uncontrol-

lable loads can also present uncertainty in appliances’ daliy us-

age. In this subsection, we further explore the impact of renew-

able/uncontrollable load uncertainty on the objectives of prosumers,

DSO, and utility. Assume the net uncontrollable power injection

𝑒𝑖 , 𝑖 ∈ N follows a distribution within a certain range. We use vari-

ance 𝜎2

𝑖
to represent its fluctuation and uncertainty. We have the

following results.

Theorem 6. The larger renewable uncertainty will not cause more
benefits. In particular,

• utility’s expected benefit (social welfare) on 𝐵social is not in-
creasing w.r.t. 𝜎2

𝑖
, 𝑖 ∈ N ;

• given (𝑃de, 𝑃in) and assume the reward function is given as (31),
DSO’s expected benefits on 𝐵𝐷total and �̃�

𝐷
total are not increasing

w.r.t. 𝜎2

𝑖
, 𝑖 ∈ N ;

• for each 𝑖 ∈ N , given (𝑃𝑑𝑝
𝑖

, 𝑘𝑖 ), prosumer 𝑖′𝑠 expected benefit
on 𝐵pro,𝑖 and 𝐵DRpro,𝑖 is not increasing w.r.t. 𝜎

2

𝑖
, 𝑖 ∈ N .

Theorem 6 states that a larger uncertainty on 𝑒𝑖 will decrease the

DR participants’ benefits. As a result, they will have the incentive to

increase the renewable/uncontrollable load prediction accuracy for

larger expected benefits. See Fig. 10 for an illustration. In addition, if

𝑟𝑖 and𝑈𝑖 are non-negatively correlated, the increase of the variance

of 𝑟𝑖 and𝑈𝑖 will lead a larger 𝜎𝑖 , introducing the lower benefits.

6 DISTRIBUTED ALGORITHM
Based on the observation from Theorem 1 to Theorem 3, we develop

an efficient distributed algorithm to solve P3-U cooperatively by

utility and DSO/prosumers. The algorithm demonstrates the inter-

actions among DR participants when the proposed DR scheme is

employed in real-world smart grid systems. Consider the following

reformulated P3-R of P3-U by substituting equality (21) as follows:

P3-R: Reformulated Social Welfare Maximization

max − 𝑓 (
∑︁
𝑖∈N

𝐷∗
𝑖 −

∑︁
𝑗∈M

𝑥𝑈𝑗 −
∑︁
𝑖∈N

(𝑥𝐷∗
𝑖 + 𝑝𝑖 + 𝐷𝐴𝑑

𝑖 + 𝑒𝑖 ))

+
∑︁
𝑖∈N

(�̃�𝑖 (𝐷Ad

𝑖 ) −𝐶𝐷
𝑔,𝑖 (𝑝𝑖 )) −

∑︁
𝑗∈M

𝐶𝑈
𝑔,𝑗 (𝑥

𝑈
𝑗 ), (32)

s.t. (12), (14), (17), (19),

𝑧D-U
min

≤
∑︁
𝑖∈N

𝐷∗
𝑖 −

∑︁
𝑖∈N

(𝑥𝐷∗
𝑖 + 𝑝𝑖 + 𝐷𝐴𝑑

𝑖 + 𝑒𝑖 ) ≤ 𝑧D-U
max

, (33)

var. x𝑈 , p,DAd .

Algorithm 1 Distributed Projected Gradient Descent Method

1: Input: Step sizes 𝑡𝑢 , 𝑡𝑑 , initial ((x𝑈 )0, (p)0, (DAd)0), initial
(𝑓 ′)0

, P0 net load

∑
𝑖 (𝐷∗

𝑖
− 𝑥𝐷∗

𝑖
− 𝑒𝑖 ), tolerance 𝜒 , 𝑘 = 0

2: Output: Optimal solution of P3-R
3: repeat
4: Utility updates (x𝑈 )𝑘+1

via (34)

5: DSO/prosumers updates ((p)𝑘+1, (DAd)𝑘+1) via (35)
6: DSO passes

∑
𝑖 ((𝑝)𝑘+1

𝑖
+ (𝐷Ad)𝑘+1

𝑖
) to utility

7: Utility updates (𝑓 ′)𝑘+1
and pass it to DSO

8: 𝑘 = 𝑘 + 1

9: until | | (x𝑈 )𝑘+1 − (x𝑈 )𝑘 | | ≤ 𝜒 , and

| | ( (p)𝑘+1, (DAd)𝑘+1) − ((p)𝑘 , (DAd)𝑘 ) | | ≤ 𝜒

10: return (x𝑈 ∗, p∗,DAd∗) B ((x𝑈 )𝑘+1, (p)𝑘+1, (DAd)𝑘+1)

(33) is the energy trading limit between DSO and utility reformu-

lated from (3) and (21). Note that the variables of utility (x𝑈 ) and

DSO/Prosumers (p,DAd
) are separable in terms of the constraints in

P3-R. We hence apply the Projected Gradient Descent Method [28]

to solve P3-R in a distributed manner. In each iteration, utility

updates its generation x𝑈 and DSO updates the local generation

and demand adjustments (p,DAd
):
12

• Utility updates x𝑈 :
(𝑥𝑈

𝑗
)𝑘+1 = (𝑥𝑈

𝑗
)𝑘 + 𝑡𝑢

(
(𝑓 ′)𝑘 −

𝑑𝐶𝑈
𝑔,𝑗

𝑑 (𝑥𝑈
𝑗
)𝑘

)
,

(x𝑈 )𝑘+1 = 𝜋𝐶1
[(x̃𝑈 )𝑘+1] .

(34)

• DSO/Prosumers update p,DAd
:

(𝑝𝑖 )𝑘+1 = (𝑝𝑖 )𝑘 + 𝑡𝑑

(
(𝑓 ′)𝑘 −

𝑑�̃�𝐷
𝑔,𝑖

𝑑 (𝑝𝑖 )𝑘

)
,

(�̃�Ad

𝑖
)𝑘+1 = (𝐷Ad

𝑖
)𝑘 + 𝑡𝑑

(
(𝑓 ′)𝑘 + 𝑑�̃�𝑖

𝑑 (𝐷Ad

𝑖
)𝑘

)
,[

(p)𝑘+1, (DAd)𝑘+1

]
= 𝜋𝐶2

[
(p̃)𝑘+1, (D̃Ad)𝑘+1

]
.

(35)

Here 𝑘 is the iteration number, and 𝑡𝑢 , 𝑡𝑑 are the step sizes.

𝜋𝐶1
and 𝜋𝐶2

denote the projection operations onto sets 𝐶1 =

{x𝑈 |(19) holds} and𝐶2 = {p,DAd |(12), (14), (17), (33) hold}. For con-
vex optimizations with the unique optimal solution, the projected

gradient descent method will converge to the unique optimum for

sufficiently small step sizes 𝑡𝑢 and 𝑡𝑑 [16, 28].

Details of the implementation are given in Algorithm 1. In each

iteration, utility and DSO/prosumers update their decision vari-

ables x𝑈 and (p,DAd) locally (Line 4-5) since sets 𝐶1 and 𝐶2 only

depend on their own decision variables. DSO then passes the aggre-

gate updated net adjustment

∑
𝑖∈N ((𝑝)𝑘+1

𝑖
+ (𝐷Ad)𝑘+1

𝑖
) to utility

through the communication network (Line 6) to further calculate

the gradient of 𝑓 or to verify whether the stopping criterion is

reached (Line 10). The updated 𝑓 ′ is then sent back to DSO by utility

(Line 7). We remark that in practice, utility (resp DSO) do not need

to get the specific value of each (x𝐷∗,D∗) from P0 and (p,DAd)
(resp x𝑈 ) at each iteration. Accessing only

∑
𝑖∈N (𝐷∗

𝑖
− 𝑥𝐷∗

𝑖
) and∑

𝑖∈N ((𝑝)𝑘+1

𝑖
+ (𝐷Ad)𝑘+1

𝑖
) would provide the efficient and robust

equilibrium from Algorithm 1 for better privacy preservation. We

12
We consider differentiable 𝑓 ,𝐶𝐷

𝑔,𝑖
,𝐶𝐷

𝑔,𝑖
here.
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(a) DSO in Case30. (b) DSO in Case118. (c) Utility in Case30. (d) Utility in Case118.

Figure 4: DSO’s demand response and utility’s net demand adjustment in Case30 and Case118

Figure 5: CAISO prices and optimal incentive prices.

Figure 6: Maximum violation due to ignoring the operational
constraints.

remark that in addition to the designed distributed projected gra-

dient decent algorithm between utility and DSO to solve P3-U,
there exist other distributed algorithms, e.g., primal-dual algorithm

and alternative direction method of multipliers (ADMM) algorithm,

to further include the participation of prosumers, which can also

reach the desired equilibrium of the DR game cooperatively.

In conclusion, as shown in Fig. 2, after DSO solves P0 to derive

the pre-DR decision (𝑧D-U∗ , x𝐷∗,D∗), the optimal equilibrium so-

lution is obtained by solving P3-R in a distributed manner. The

optimal incentive price is further derived by Theorem 2. In addition,

DSO can further obtain the optimal dual variables of P3-D/P3-U
with the optimal solution through a set of linear KKT conditions

system. The optimal dynamic price to each prosumer can then be

determined from Theorem 3.
13

Together with theP3-R solution, the

efficient and robust DR game equilibrium can hence be constructed.

7 PERFORMANCE EVALUATION
In this section, we provide numerical evaluations on the proposed

DR scheme considering different numbers of prosumers intercon-

nected in the IEEE 30/118-bus test systems [1]. Each prosumer

13
Given the incentive and dynamic prices, DSO and prosumers will always choose the

equilibrium solution as their best responses as shown in Theorem 2 and Theorem 3.

(a) DSO’s benefit. (b) Social welfare.

Figure 7: Improvements for DSO and social welfare in Case30.

(a) DSO’s benefit. (b) Social welfare.

Figure 8: Improvements for DSO and social welfare in
Case118.

can be equipped with its local generator, and the node where the

utility is located is seen as the slack bus. We use the time of use

(ToU) purchasing price in California Independent System Operator

(CAISO) [36] as the per-unit cost for utility purchasing power from

the grid as shown in Fig. 5. The buying price of DSO (𝑃
buy

) is set
as the 24 hour average of the CAISO prices and 𝑃

sell
= 0.5 × 𝑃

buy

to make it consistent with (4) [19].

7.1 Improvement of the Proposed DR Scheme
As shown in Fig. 5, utility will provide 𝑃

de
> 0, 𝑃in = 0 in peak

hours, e.g., from 14.p.m-23.p.m, and 𝑃
de

= 0, 𝑃in > 0 in valley hours

according to the incentive price-setting scheme in Theorem 2. It

indicates that utility prefers to decrease (resp increase) the imported

energy from the external grid by inducing DSO and prosumers to

decrease (resp increase) energy usage when the wholesale grid

price is high (resp low) to maximize the network social welfare.

Fig. 4 shows the adjusted demands and the net energy trading of

DSO and utility in 24 hours. We observe that in peak hours, the net

demand is decreased significantly with the larger incentive prices

𝑃
de

> 0 provided, e.g., 116.5% of DSO and 226.4% of utility in Case30

and 159.3% and 855.6% in Case118, resulting in the net exports from
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Table 2: Performance improvement of the proposed DR
scheme.

Metric Case30 (%) Case118 (%)

Social welfare

peak hour 17.6 20.1

average 2.6 3.9

DSO’s benefit

peak hour 26.6 32.5

average 4.6 6.5

Constraints violation

consider limits 0 0

ignore limits 25.8 94.0

(a) Case30. (b) Case118.

Figure 9: Convergence of the projected gradient descent al-
gorithm with 𝜒 = 10

−6.

DSO to utility and from utility to grid to exploit the high reward

and wholesale marginal prices. Similarly, when the grid price is

low in valley hours, they will increase energy usage and decrease

local generations to exploit the cheap external grid power with the

positive 𝑃in > 0 provided for larger benefits.

The social welfare improvement is measured as the difference

between the optimal objective of P3-U and the objective of P2with
(p = 0,DAd = 0), indicating the absence of DR. As seen in Fig. 7

and Fig. 8, the social welfare is significantly improved, especially in

peak hours by up to 17.6% and 2.6% on average in Case30 and 20.1%

and 3.9% in Case118. Meanwhile, the increase of DSO’s benefit is

up to 26.6% and 4.6% on average in Case30 and 32.5% and 6.5% in

Case118. The results are listed in Table 2.

Next, we present the necessity of considering power network

constraints in Fig. 6. It is shown that without considering the oper-

ational constraints, the resulting DR solution could cause severe

violations and hence lead the design infeasible, e.g., 25.8% and 94.0%

maximum violation in Case30 and Case118 respectively.
14

We further present the convergence of the developed projection-

based distributed algorithm to solve P3-R in Fig. 9. Results demon-

strate the effectiveness of Algorithm 1 with the solution conver-

gence in 28/239 iterations for Case30/Case118.

7.2 Renewable Uncertainty Evaluation
In this subsection, we further present the simulation results on

the impact of renewable uncertainty. Fig. 10 demonstrates that

the expected social welfare and DSO’s benefit are decreasing w.r.t.

the increase of net uncontrollable power injection variance. In our

simulation, we consider the renewable capacities at the generation

loads with capacities of 20% to the corresponding node generation

limits. We model the renewable uncertainty as the truncated normal

14
The maximum constraint violation is measured as the largest percentage violation

over the limit among all constraints in the power network.

(a) Case30. (b) Case118.

Figure 10: The expected benefits decrease with the increasing
renewable uncertainty.

distributions between 0 and 40% of local generation limit with the

variance increases from 0 to 100. We observe that the network social

welfare decreases from 610.7 to 610.0 for Case30 and from 4753.0 to

4740.4 for Case118, which coincides with Theorem 6. Similar trends

hold for DSO’s benefit as shown in Fig. 10.

8 CONCLUSION AND FUTURE DIRECTIONS
We develop a novel demand response mechanism between utility,

DSO, and prosumers based on the three-stage multi-level game

model considering power system operational constraints. In DR,

utility offers incentive prices to DSO and in response, DSO provides

dynamic prices to prosumers to guide them in determining load ad-

justments. We show (i) the DR game admits an efficient equilibrium

that maximizes social welfare and DSO/prosumers’ benefits while

respecting all system constraints and (ii) the uniqueness of optimal

utility’s power supply and prosumers’ demand/generation adjust-

ments. (iii) We provide the optimal incentive/dynamic price-setting

schemes to achieve the equilibrium, (iv) a robustness-enhanced de-

sign against DSO’s fault information, (v) and investigate the impact

of renewable/uncontrollable loads uncertainty. (vi) We further de-

velop an efficient distributed algorithm to help utility andDSO reach

the equilibrium jointly. Simulation results show the superior perfor-

mance of the proposed scheme in improving social welfare by 20.1%

and DSO’s benefit by 32.5% while respecting all system constraints.

Note that the projection problems need to be solved repeatedly

in the design. Our preliminary results show that applying Deep

Learning techniques can achieve desirable convergence speedups to

tackle the load/renewable uncertainty challenges, which we leave

for future work. Another compelling future direction is to apply the

proposed DR scheme to the more comprehensive full AC-PF setting

with time-coupling energy storage systems, which incorporates

the non-convex line transfer loss and the voltage constraints in the

power network.
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A PROOF OF LEMMA 1, LEMMA 5, AND
LEMMA 4

A.1 Proof of Lemma 1
Note that P0’s objective is strictly concave w.r.t. (𝑥𝐷

𝑖
, 𝐷𝑖 ) and piece-

wise linear concave w.r.t. 𝑧D-U. Suppose P0 has two different op-

timums (𝑧D-U, x̂𝐷 , D̂) and (𝑧D-U, x̃𝐷 , D̃) with the same objective

value. If (x̂𝐷 , D̂) ≠ (x̃𝐷 , D̃), we can construct a feasible point

(𝑧D-U∗ , x𝐷∗,D∗) = 𝛼 · (𝑧D-U, x̂𝐷 , D̂)+(1−𝛼) · (𝑧D-U, x̃𝐷 , D̃) as the con-
straints are all linear such that the objective is strictly larger than

the optimal one ∀𝛼 ∈ (0, 1), which creates contradiction. There-

fore, we have (x̂𝐷 , D̂) = (x̃𝐷 , D̃) and from (1) 𝑧D-U = 𝑧D-U. This

completes the proof.

A.2 Proof of Lemma 5
We prove Lemma 5 by contradiction. Consider P3-D with 𝑃

de
>

0, 𝑃in = 0, denote its optimal solution as (𝑧D-U, p̂, D̂Ad) and �̃�𝐷
total

=∑
𝑖∈N (�̃�𝑑 (𝐷Ad

𝑖
) −𝐶𝑔 (𝑝𝑖 )) −𝐶𝑢 (𝑧D-U) as 𝐵(𝑧D-U, p,DAd). Note that

(𝑧D-U∗ − 𝑧D-U) = ∑
𝑖∈N (𝑝𝑖 + �̂�𝐴𝑑

𝑖
). Suppose ∑𝑖∈N (𝑝𝑖 + �̂�𝐴𝑑

𝑖
) < 0,

we have

𝐵(𝑧D-U, p̂, D̂Ad) + 𝑃
de

· max(
∑︁
𝑖∈N

(𝑝𝑖 + �̂�𝐴𝑑
𝑖 ), 0) (36)

=𝐵(𝑧D-U, p̂, D̂Ad) < 𝐵(𝑧D-U = 𝑧D-U∗ , p = 0,DAd = 0). (37)

The last inequality holds as (𝑧D-U = 𝑧D-U∗ , p = 0,DAd = 0) is
unique optimal to P0 (Lemma 1). Hence, any (𝑧D-U, p̂, D̂Ad) with∑
𝑖∈N (𝑝𝑖 + �̂�𝐴𝑑

𝑖
) < 0 can not be optimal to P3-D.

As to the monotonicity, consider two prices 𝑃1

de
> 𝑃2

de
with

optimums (𝑧D-U, p̂, D̂Ad) and (𝑧D-U, p̃, D̃Ad) such that

∑
𝑖∈N (𝑝𝑖 +

�̃�Ad

𝑖
) ≥ 0 and

∑
𝑖∈N (𝑝𝑖 + �̂�Ad

𝑖
) ≥ 0, we have{

𝐵(𝑧D-U, p̂, D̂Ad) + 𝑃1

de
·∑𝑖∈N (𝑝𝑖 + �̂�𝐴𝑑

𝑖
)

≥ 𝐵(𝑧D-U, p̃, D̃Ad) + 𝑃1

de
·∑𝑖∈N (𝑝𝑖 + �̃�𝐴𝑑

𝑖
) .

(38)

{
𝐵(𝑧D-U, p̃, D̃Ad) + 𝑃2

de
·∑𝑖∈N (𝑝𝑖 + �̃�𝐴𝑑

𝑖
)

≥ 𝐵(𝑧D-U, p̂, D̂Ad) + 𝑃2

de
·∑𝑖∈N (𝑝𝑖 + �̂�𝐴𝑑

𝑖
) .

(39)

Combining (38) and (39) gives

∑
𝑖∈N (𝑝𝑖 + �̂�𝐴𝑑

𝑖
) ≥ ∑

𝑖∈N (𝑝𝑖 +
�̃�𝐴𝑑
𝑖

). Similar results hold for 𝑃
de

= 0, 𝑃in > 0. The monotonicity

of the optimal objective is self-evident.

As to the unique solution toP3-D, we know thatP3-D’s optimum

has

∑
𝑖∈N (𝑝𝑖 + �̂�𝐴𝑑

𝑖
) ≥ 0 (≤ 0) if 𝑃

de
> 0 (𝑃in > 0). As the objective

is strictly concave w.r.t. (p,DAd) and concave w.r.t. 𝑧D-U, one can

prove the uniqueness similar to Appendix A.1.

A.3 Proof of Lemma 4
We sketch the proof here. As the objective in P3-U is strictly

concave w.r.t. (x𝑈 , p,DAd) and 𝑓 is convex w.r.t. 𝑧U-G, similar to

Appendix A.1, we can prove that P3-U has a unique optimum

(x𝑈 , p∗,DAd∗) and the optimal 𝑧U-G∗ is obtained from (21).

B PROOF OF LEMMA 2 AND LEMMA 3
B.1 Proof of Lemma 2
Consider the KKT conditions of P0. Primal feasibility is (1)-(3), (5),

(7). Complementary slackness is constructed by the dual variables

and the associated inequality constraints. We define the following

dual variables for each constraint. [0 is the dual variable of (1).
¯Z0,Z

0

are the dual variables of the upper and lower bound constraints in

(3).
¯\𝑖,0, \𝑖,0 and 𝜏𝑖,0, 𝜏𝑖,0 are the dual variables of (5) and (7). 𝜖𝑙,0

and 𝜖𝑙,0 are the dual variables of the branch flow limits in (2). The

stationarity condition is:

• w.r.t. 𝑧D-U, 𝑥𝐷
𝑖

and 𝐷𝑖 , 𝑖 ∈ N :


𝜕[𝑃

buy
· max(𝑧D-U, 0) + 𝑃

sell
· min(𝑧D-U, 0)] + [0 + ¯Z0 − Z

0

∋ 0,

𝜕𝐶𝐷
𝑔,𝑖
(𝑥𝐷

𝑖
) + [0 +

∑𝐸
𝑙=1

(𝜖𝑙,0𝑎 (𝑙,𝑖 ) − 𝜖𝑙,0𝑎
(𝑙,𝑖 ) ) + ¯\𝑖,0 − \𝑖,0 ∋ 0,

−𝜕𝐵𝑖 (𝐷𝑖 ) − [0 −
∑𝐸
𝑙=1

(𝜖𝑙,0𝑎 (𝑙,𝑖 ) − 𝜖𝑙,0𝑎
(𝑙,𝑖 ) ) + 𝜏𝑖,0 − 𝜏𝑖,0 ∋ 0.

(40)

Consider the KKT conditions of P0-sub then. Primal feasibility

is (5), (7). Complementary slackness is constructed by the dual

variables and the associated inequality constraints. Let 𝜍𝑖,0, 𝜍
𝑖,0

and �̄�𝑖,0, 𝜘𝑖,0 be the dual variables of (5), and (7). The stationarity

condition is:

• w.r.t. 𝑥𝐷
𝑖

and 𝐷𝑖 , 𝑖 ∈ N :{
𝜕𝐶𝐷

𝑔,𝑖
(𝑥𝐷

𝑖
) − 𝑃

𝑑𝑝

𝑖
+ 𝜍𝑖,0 − 𝜍

𝑖,0
∋ 0,

−𝜕𝐵𝑖 (𝐷𝑖 ) + 𝑃
𝑑𝑝

𝑖
+ �̄�𝑖,0 − 𝜘𝑖,0 ∋ 0,

(41)

Note that if the dynamic pricing scheme is set as Lemma 2, one

can easily check that the optimal solution of P0 is also optimal

to P0-sub by setting (𝜍𝑖,0, 𝜍
𝑖,0
, �̄�𝑖,0, 𝜘𝑖,0) = ( ¯\𝑖,0, \𝑖,0, 𝜏𝑖,0, 𝜏𝑖,0), i.e.,

the solution of P0 satisfying the KKT conditions of P0-sub. To-
wards the second claim, one can see that the corresponding KKT

conditions of the concerned program is given as

• w.r.t. 𝑧D-U, 𝑥𝐷
𝑖

and 𝐷𝑖 , 𝑖 ∈ N :


𝜕[𝑃

buy
· max(𝑧D-U, 0) + 𝑃

sell
· min(𝑧D-U, 0)] + [′

0
+ ¯Z ′

0
− Z ′

0

∋ 0,

𝑃
𝑑𝑝

𝑖
+ [′

0
+∑𝐸

𝑙=1
(𝜖′
𝑙,0
𝑎 (𝑙,𝑖 ) − 𝜖′

𝑙,0
𝑎 (𝑙,𝑖 ) ) + ¯\ ′

𝑖,0
− \ ′𝑖,0 ∋ 0,

−𝑃𝑑𝑝
𝑖

− [′
0
−∑𝐸

𝑙=1
(𝜖′
𝑙,0
𝑎 (𝑙,𝑖 ) − 𝜖′

𝑙,0
𝑎 (𝑙,𝑖 ) ) + 𝜏 ′

𝑖,0
− 𝜏 ′

𝑖,0
∋ 0.

(42)

Therefore, we observe that the optimal solution of P0 and P0-sub
satisfies the above KKT conditions by setting ([′

0
, 𝜖′
𝑙,0
, 𝜖′

𝑙,0
, ¯Z ′

0
, Z ′

0

) =
([0, 𝜖𝑙,0, 𝜖𝑙,0,

¯Z0, Z
0

) and ( ¯\ ′
𝑖,0
, \ ′𝑖,0, 𝜏

′
𝑖,0
, 𝜏 ′

𝑖,0
) = 0. Therefore, DSO’s

revenue is maximized under the solution of P0-sub. The third

claim of budget balance condition is self-evident.
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B.2 Proof of Lemma 3
The convexity and the uniqueness of the solution of DR-sub are

from the strictly convex objective function w.r.t. (𝐷Ad

𝑖
, 𝑝𝑖 ) and the

linear constraints. Consider the KKT conditions of DR-sub

• w.r.t. 𝑝𝑖 and 𝐷
Ad

𝑖
, 𝑖 ∈ N :{

𝜕𝐶𝐷
𝑔,𝑖
(𝑝𝑖 ) − 𝑃

𝑑𝑝

𝑖
+ 𝜍𝑖 − 𝜍

𝑖
∋ 0,

−𝜕�̃�𝑖 (𝐷Ad

𝑖
) − 𝑃

𝑑𝑝

𝑖
+ �̄�𝑖 − 𝜘𝑖 ∋ 0.

(43)

For two different 𝑃
𝑑𝑝,1

𝑖
> 𝑃

𝑑𝑝,2

𝑖
, we must have

𝐶𝐷
𝑔,𝑖 (𝑝

1

𝑖 ) + 𝜍1

𝑖 − 𝜍1

𝑖
> 𝐶𝐷

𝑔,𝑖 (𝑝
2

𝑖 ) + 𝜍2

𝑖 − 𝜍2

𝑖
, (44)

−𝜕�̃�𝑖 (𝐷Ad,1
𝑖

) + �̄�1

𝑖 − 𝜘1

𝑖 > −𝜕�̃�𝑖 (𝐷Ad,2
𝑖

) + �̄�2

𝑖 − 𝜘2

𝑖 . (45)

Since 𝐶𝐷
𝑔,𝑖

is a strictly convex and increasing function and 𝜕�̃�𝑖 is a

strictly concave and decreasing function, it is straightforward to

obtain 𝑝1

𝑖
≥ 𝑝2

𝑖
and 𝐷

Ad,1
𝑖

≥ 𝐷
Ad,2
𝑖

. Here we use the superscript to

denote the optimal decision variable 𝑝∗
𝑖
and 𝐷Ad∗

𝑖
under different

prices in Lemma 3 respectively.

C PROOF OF THEOREM 1, THEOREM 2, AND
THEOREM 3

We proceed by investigating the Karush–Kuhn–Tucker (KKT) con-

ditions of P3-D and P3-U respectively. Such conditions are both

sufficient and necessary for convex optimizations with linear con-

straints (e.g., reformulated P3-D-R and P3-U) [20, 38].

C.1 KKT conditions for P3-U
Primal feasibility is (12),(14),(17),(19),(21),(23). Complementary

slackness is constructed by the dual variables and the associated

inequality constraints. We define the following dual variables for

each constraint. [ is the dual variable of (21).
¯Z ,Z and

¯\ 𝑗 , \ 𝑗 are

the dual variables of the upper and lower bound constraints in (23)

and (19). 𝜖𝑙 and 𝜖𝑙 are the dual variables of the branch flow limits

in (17). 𝛾𝑖 , 𝛾
𝑖
and 𝜏𝑖 , 𝜏𝑖 are the dual variables of (12) and (14). The

stationarity condition is:

• w.r.t. 𝑧U-G, 𝑥𝑈
𝑗
, 𝑗 ∈ M, 𝑝𝑖 and 𝐷

Ad

𝑖
, 𝑖 ∈ N :

𝜕𝑓 (𝑧U-G) + [ + ¯Z − Z ∋ 0,

𝜕𝐶𝑈
𝑔,𝑗

(𝑥𝑈
𝑗
) + [ + ¯Z − Z + ¯\ 𝑗 − \ 𝑗 ∋ 0,

𝜕𝐶𝐷
𝑔,𝑖
(𝑝𝑖 ) + [ +∑𝐸

𝑙=1
(𝜖𝑙𝑎 (𝑙,𝑖 ) − 𝜖𝑙𝑎

(𝑙,𝑖 ) ) + 𝛾𝑖 − 𝛾
𝑖
∋ 0,

−𝜕�̃�𝑖 (𝐷Ad

𝑖
) + [ +∑𝐸

𝑙=1
(𝜖𝑙𝑎 (𝑙,𝑖 ) − 𝜖𝑙𝑎

(𝑙,𝑖 ) ) + 𝜏𝑖 − 𝜏𝑖 ∋ 0,

(46)

We use 𝑓 ′ to denote the subderivative such that 𝑓 ′ (𝑧U-G)+[+ ¯Z−Z =

0 and 𝑎 (𝑙,𝑖 ) is the (𝑙, 𝑖)-th element of PTDF.

C.2 KKT conditions for P3-D
We first show that solving P3-D is equivalent to solving a refor-

mulated version of it, called P3-D-R, by replacing (18) with (31)

in the objective. Though P3-D is not convex, P3-D-R is convex

with the unique optimum as its objective is (strictly) concave w.r.t.

p,DAd
, and 𝑧D-U. Let (𝑧D-U, p̂, D̂Ad) be the optimum to P3-D-R

under some 𝑃
de

> 0. We have

𝐵(𝑧D-U, p̂, D̂Ad) + 𝑃
de

·
∑︁
𝑖∈N

(𝑝𝑖 + �̂�𝐴𝑑
𝑖 )

≥𝐵(𝑧D-U = 𝑧D-U∗ , p = 0,DAd = 0) .
(47)

In addition, considering 𝑃
de

= 0, we have

𝐵(𝑧D-U = 𝑧D-U∗ , p = 0,DAd = 0) ≥ 𝐵(𝑧D-U, p̂, D̂Ad). (48)

Combining (47) and (48) gives

∑
𝑖∈N (𝑝𝑖 + �̂�Ad

𝑖
) ≥ 0. Similar results

hold for 𝑃in > 0. Hence, the optimum of P3-D-R is also optimal to

P3-D and vice versa, implying their equivalence.

We hence investigate the KKT conditions for P3-D-R. We use∑
𝑖∈N 𝐷∗

𝑖
−𝑧D-U−∑𝑖∈N 𝑥𝐷∗

𝑖
to represent

∑
𝑖∈N (𝑝𝑖+𝐷Ad

𝑖
) from (16).

Primal feasibility is (3),(12),(14),(16),(17). Complementary slackness

is constructed by the dual variables and the associated inequality

constraints. We define the following dual variables for each con-

straint. ` is the dual variable of (16). ¯̂ and ^ are the dual variables

of the upper and lower bound constraints of (3). 𝛼𝑙 and 𝛼𝑙 are the

dual variables for the branch flow limits in (17).
¯_𝑖 , _𝑖 and

¯𝛽𝑖 , 𝛽
𝑖
are

the dual variables for (12) and (14). Stationarity condition is:

• w.r.t. 𝑧D-U, 𝑝𝑖 and 𝐷
Ad

𝑖
,𝑖 ∈ N :

0 ∈ 𝜕[𝑃
buy

· max(𝑧D-U, 0) + 𝑃
sell

· min(𝑧D-U, 0)]

+` + ¯̂ − ^ +
{

𝑃
de
, if 𝑃

de
≥ 0, 𝑃in = 0;

−𝑃in, if 𝑃in ≥ 0, 𝑃
de

= 0,

𝜕𝐶𝐷
𝑔,𝑖
(𝑝𝑖 ) + ` +∑𝐸

𝑙=1
(𝛼𝑙𝑎 (𝑙,𝑖 ) − 𝛼𝑙𝑎

(𝑙,𝑖 ) ) + ¯_𝑖 − _𝑖 ∋ 0,

−𝜕�̃�𝑖 (𝐷Ad

𝑖
) + ` +∑𝐸

𝑙=1
(𝛼𝑙𝑎 (𝑙,𝑖 ) − 𝛼𝑙𝑎

(𝑙,𝑖 ) ) + ¯𝛽𝑖 − 𝛽
𝑖
∋ 0.

(49)

P3-D-R’s objective is not continuous differentiable in 𝑧D-U. The

above (46) and (49) are KKT conditions in (sub)gradients [33], which

are sufficient and necessary for convex optimizations. Note that the

first term in (49) has 𝑃
de
/𝑃in as we use

∑
𝑖∈N (𝐷∗

𝑖
− 𝑥𝐷∗

𝑖
) − 𝑧D-U to

represent

∑
𝑖∈N (𝑝𝑖 + 𝐷Ad

𝑖
) in (31).

C.3 KKT conditions for DR-sub
Primal feasibility is (12), (14). Complementary slackness is con-

structed by the dual variables and the associated inequality con-

straints. Let 𝜍𝑖 , 𝜍
𝑖
and �̄�𝑖 , 𝜘𝑖 be the dual variables of (12) and (14).

The stationarity condition is:

• w.r.t. 𝑝𝑖 and 𝐷
Ad

𝑖
, 𝑖 ∈ N :{

𝜕𝐶𝐷
𝑔,𝑖
(𝑝𝑖 ) − 𝑃

𝑑𝑝

𝑖
+ 𝜍𝑖 − 𝜍

𝑖
∋ 0,

−𝜕�̃�𝑖 (𝐷Ad

𝑖
) − 𝑃

𝑑𝑝

𝑖
+ �̄�𝑖 − 𝜘𝑖 ∋ 0.

(50)

Observations:. Let (𝑧U-G∗, x𝑈 ∗, p∗,DAd*) be the unique optimum

of P3-U and ([∗, ¯Z ∗, Z ∗, ¯\∗
𝑗
, \∗𝑗 , 𝜖

∗
𝑙
, 𝜖∗

𝑙
, 𝛾∗
𝑖
, 𝛾∗

𝑖
, 𝜏∗
𝑖
, 𝜏∗

𝑖
) be its dual vari-

ables. Let (`∗, ¯̂
∗, ^∗, 𝛼∗

𝑙
, 𝛼∗

𝑙
, ¯_∗

𝑖
, _∗𝑖 ,

¯𝛽∗
𝑖
, 𝛽∗

𝑖
) be P3-D-R’s optimal dual

variables. Let (𝜍∗
𝑖
, 𝜍∗

𝑖
, �̄�∗

𝑖
, 𝜘∗

𝑖
) be DR-sub’s optimal dual variables.

Note that the optimal dual variables may not be unique.

Consider a specific case that 𝑧D-U∗ > 0 for better understanding,

i.e., DSO imports energy from utility at P3-U’s optimum. Therefore,

if 𝑓 ′ (𝑧U-G∗) > 𝑃
buy

, by setting 𝑃
de

= 𝑓 ′ (𝑧U-G∗) − 𝑃
buy

, 𝑃in = 0,

the part primal optimum of P3-U (p∗,DAd*) satisfy the KKT con-

ditions for P3-D-R by setting (`∗, ¯̂
∗, ^∗, 𝛼∗

𝑙
, 𝛼∗

𝑙
, ¯_∗

𝑖
, _∗𝑖 ,

¯𝛽∗
𝑖
, 𝛽∗

𝑖
) =

([∗, ¯Z ∗, Z ∗, 𝜖∗
𝑙
, 𝜖∗

𝑙
, 𝛾∗
𝑖
, 𝛾∗

𝑖
, 𝜏∗
𝑖
, 𝜏∗

𝑖
). From (16), the optimal 𝑧D-U∗ can be
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uniquely recovered. Since conditions (49) are sufficient and neces-

sary for P3-D-R, the optimal (p∗,DAd*) of P3-U is also optimal

and unique to P3-D-R. Consider the KKT conditions of DR-sub
then, if 𝑃

𝑑𝑝

𝑖
is set as Theorem 3, one can easily see that the part

primal optimum of P3-U (p∗,DAd*) satisfy the KKT conditions

for DR-sub, implying the equilibrium efficiency. The second and

third claims can also be proved by the similar argument procedures

in Lemma 2. In summary, for different scenarios in Theorem 2,

the DR game has an efficient equilibrium that maximizes social

welfare with the designed incentive price-setting scheme between

utility and DSO, and the dynamic price-setting scheme between

DSO and prosumers. In addition, we remark that the result hold

for general convex subdifferentiable 𝐶𝑈
𝑔,𝑗

, which still guarantees

the unique (p∗,DAd*) and hence maintain the efficient equilibrium.

This completes the proof of Theorem 1, Theorem 2, and Theorem 3.

D PROOF OF THEOREM 5 AND THEOREM 6
D.1 Proof of Theorem 5
We sketch proof here. The unique optimal (x𝐷∗ + p∗,D∗ −
DAd∗, 𝑧U-G∗, x𝑈 ∗) and the optimal incentive price are discussed

in Sec. 5.3. For DSO’s optimal strategy with false report, un-

der (31), its KKT conditions are identical to P3-D-R’s. Hence, P3-
U’s optimum is also optimal to DSO, implying the equilibrium

efficiency and robustness under such a fault-ridden setting. In

addition, suppose DSO reports a false (x̂𝐷 , D̂) ≠ (x𝐷∗,D∗) and∑
𝑖 (�̂�𝑖 − 𝑥𝐷

𝑖
) > ∑

𝑖 (𝐷∗
𝑖
− 𝑥𝐷∗

𝑖
), i.e., more reported net load, though

DSO may benefit with 𝑃
de

> 0, it will suffer in the worst-case if a

𝑃in > 0 is given. Similar result holds if less load is reported while 𝑃
de

is provided. Hence, reporting truthfully maximizes DSO/prosumers’

worst-case benefit.

D.2 Proof of Theorem 6
We first prove that the optimal objectives

(𝐵∗
social

, �̃�𝐷∗
total

, 𝐵𝐷∗
total

, 𝐵∗
pro,𝑖

, 𝐵𝐷𝑅∗
pro,𝑖

) of (P2,P1,P0,P0-sub,DR-
sub) are concave functions of each 𝑒𝑖 , 𝑖 ∈ N . Let us consider the

optimal 𝐵∗
social

for example. From Theorem 1, we know that the

optimal objective of P2 is the same as the convex optimization

P3-U. Therefore, it is sufficient to consider P3-U for analysis.

Let 𝐵∗
social

(e1) and 𝐵∗
social

(e2) are the optimal objectives of P3-U
under two different e1 and e2, where e is a vector that has elements

of 𝑒𝑖 , 𝑖 ∈ N . Let x1 and x2 be the corresponding optimal decision

variables. For any value _ ∈ (0, 1) and ê = _ · e1 + (1 − _) · e2, we

have

𝐵∗
social

(ê) ≥ 𝐵
social

(ê, _ · x1 + (1 − _) · x2) (51)

≥ _ · 𝐵
social

(e1, x1) + (1 − _) · 𝐵
social

(e2, x2), (52)

where the first inequality comes from that _ · x1 + (1 − _) · x2

is feasible to optimization P3-U and therefore, the objective at

_ · x1 + (1 − _) · x2 provides the lower bound to P3-U. The second
inequality is from the concavity of the function 𝐵

social
. Therefore,

we conclude that the optimal 𝐵∗
social

is concave w.r.t. e. Similar

results hold for (𝐵∗
pro,𝑖

, 𝐵𝐷𝑅∗
pro,𝑖

, 𝐵𝐷∗
total

, �̃�𝐷∗
total

). For the expectation of

concave function to mean-preserving spread variables e𝑎 and e𝑏

with variance 𝜎2

𝑎 ≥ 𝜎2

𝑏
, it is direct from [38, 47] that

E[𝐵
social

(e𝑎)] ≤ E[𝐵
social

(e𝑏 )] . (53)

The concavity of the other optimal objective functions (�̃�𝐷∗
total

, 𝐵𝐷∗
total

,

𝐵∗
pro,𝑖

, 𝐵𝐷𝑅∗
pro,𝑖

) can be proved by the similar argument, e.g., �̃�𝐷∗
total

is

concave as the equivalent optimal objective of program P3-D is

concave. This concludes the proof of Theorem 6.
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