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Abstract—The device-to-device load balancing (D2D-LB)
paradigm has been advocated in recent small-cell architecture
design for cellular networks. The idea is to exploit inter-cell
D2D communication and dynamically relay traffic of a busy cell
to adjacent under-utilized cells to improve spectrum temporal
efficiency, addressing a fundamental drawback of small-cell
architecture. Technical challenges of D2D-LB have been studied
in previous works. The potential of D2D-LB, however, cannot be
fully realized without providing proper incentive mechanism for
device participation. In this paper, we address this economical
challenge using an online procurement auction framework. In
our design, multiple sellers (devices) submit bids to participate in
D2D-LB and the auctioneer (cellular service provider) evaluates
all the bids and decides to purchase a subset of them to
fulfill load balancing requirement with the minimum social
cost. Different from similar auction design studies for cellular
offloading, battery limit of relaying devices imposes a time-
coupled capacity constraint that turns the underlying problem
into a challenging multi-slot one. Furthermore, as the input to
the problem are revealed in a slot-by-slot fashion, calling for
online algorithm design for the multi-slot auction problem. We
first tackle the single-slot version of the problem, show that
it is NP-hard, and design a polynomial-time offline algorithm
with a small approximation ratio. Building upon the single-slot
results, we design an online algorithm for the multi-slot problem
with sound competitive ratio. Our auction algorithm design
ensures that truthful bidding is a dominant strategy for devices.
Extensive experiments using real-world traces demonstrate that
our proposed solution achieves near offline-optimum and reduces
the cost by 45% compared to an alternative heuristic.

Index Terms—Cellular networks, device-to-device load bal-
ancing, online algorithm design, approximation and competitive
analysis, procurement auction design, truthful analysis.

I. INTRODUCTION

CELLULAR traffic has witnessed an exploding growth
due to advances in smartphones and content-rich appli-

cations. Global cellular traffic reached 7.8 exabytes per month
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in 2015, and is expected to reach about 76 exabytes per month
by 2020, with a 57% annual growth rate [4]. Given the scarcity
of radio spectrum for cellular communication, it has been a
major challenge for cellular service providers (CSP) to serve
the fast-growing traffic demand.

There are mainly two lines of efforts to tackle this challenge.
The first is to offload cellular traffic to the other spectrum
ranges such as WiFi or the recent 60GHz wireless band [29].
The second is to adopt a small-cell architecture [6], [17] and
improve spectrum spatial efficiency by reducing the size of
cells. This approach, however, suffers from low spectrum tem-
poral efficiency. In particular, (small) cells serving a limited
number of users commonly observe large temporal fluctuation
in overall traffic. As CSP usually provisions spectrum to a cell
according to its traffic peak, large temporal fluctuation in traffic
volumes inevitably leads to low spectrum temporal efficiency.
A case study [14] reported that average cell-capacity utilization
is only 25% for a major CSP in a metropolitan district.

Device-to-Device Load Balancing. In inband D2D com-
munication [16], mobile users directly communicate together
using cellular spectrum. Exploiting D2D communication to
balance the load between adjacent base stations, termed as
Device-to-device load balancing (D2D-LB), has been advo-
cated in the recent studies [14], [24] to improve spectrum
temporal efficiency. The idea is motivated by the observation
that traffics of adjacent cells might be uncorrelated, thereby
their peaks occur at different time epochs and are asyn-
chronous. In Fig. 1(b), an example of single-day traffics of
two adjacent base stations demonstrates that their peaks are
asynchronous. In Fig. 1(a), we further report the statistical
correlation coefficients [9] of base stations using cell-traffic
traces of 194 base stations from Smartone [3], a major CSP
in Hong Kong. The results show that correlation coefficient
of more than 50% of adjacent BSs is below 0.2, which is
similar to the example shown in Fig. 1(b) (see Appendix A
for details). Putting together above observations along with
further measurements in [14], [24], we envision ample room
for reducing the peak traffic by doing D2D-LB. Note that smart
user association [32] can also be applied to balance cell-level
traffic. This approach is complimentary to D2D-LB since it is
more applicable on large timescale, whereas D2D-LB is more
applicable on small timescale. We discuss the details in Sec. II.

The idea of D2D-LB is to shift a portion of the traffic of
busy cells to adjacent underutilized cells using inter-cell D2D
communication, as shown in Fig. 2. In particular, in this simple
example, while BS1 is heavy-loaded, its adjacent base station
BS2 is idle. By implementing D2D-LB, user u1 transmits its
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Fig. 1. The empirical CDF of Pearson correlation coefficients [9] of traffics
of adjacent BSs is shown in Fig. 1(a). Fig. 1(b) shows traffics in a single day
of a sampled pair of adjacent BSs. See Appendix A for detailed explanations.

BS1 BS2

u1

u2

Fig. 2. BS1 is heavy-loaded and BS2 is idle. In D2D-LB, instead of directly
transmitting data of user u1 to BS1 (dotted line), the data is load-balanced
to BS2 via device u2 using the spectrum of idle cell BS2 (solid lines).

traffic to device u2 and then the traffic is forwarded to BS2.
Both transmissions are done using the idle spectrum of BS2.

By implementing D2D-LB, the peak traffic of the busy cell
is reduced, the free resources of the idle cells are utilized,
thereby improving network-wide spectrum temporal efficiency.
As a notable result, a measurement in [14] shows that D2D-
LB can reduce the peak traffic of individual cells by up to
35%, which yields substantial saving of the precious spectrum
resource. Note that D2D-LB and data offloading may read
similar as they both shift cellular traffic around. They are,
however, substantially different, which we discuss in Sec. II.

Two key challenges stand on the way towards capitalizing
the spectrum-saving benefit of D2D-LB. The first is the tech-
nical challenge studied in the previous research [14], [24]. The
second is the economic challenge. According to [2]: “another
perhaps bigger challenge is making people comfortable with
the idea of their personal device being recruited to help out
their service provider. People may ask themselves, why would
I spend my battery to relay your traffic?” In other words,
battery-limited devices must have incentives to contribute in
D2D-LB by sharing their resources. A trivial plan is to adopt
fixed-payment policy. Despite its apparent simplicity, this
policy fails to adapt to device-dependent parameters. As such,
it is incompetent to accommodate diverse device willingness-
to-participate and to minimize the cost of CSP.

A conceivable design is to employ a reverse or procurement
auction mechanism, in which multiple sellers (devices) submit
bids to a single auctioneer (CSP) to provide a service (partic-
ipate in D2D-LB). Then, the auctioneer evaluates all the bids
and decides to purchase a subset of bids (to use their resources
for D2D-LB) such that its load balancing target is achieved
and social cost (defined in Definition 1) is minimized.

Theoretical Challenges and Approaches. Due to device
battery capacity constraint, the D2D-LB auction problem turns
out to be an online combinatorial auction one that is uniquely
challenging and different from existing auction studies for
data offloading in cellular networks (e.g., [15], [27], [39],
see Table I for differences). The three key challenges and our
approaches toward tackling them are as follows.

First, the D2D-LB auction problem is an online problem
mainly because of the battery capacity constraint of devices.
While the battery lifetime is on timescale of several hours,
the inputs to the problem, including the bids’ information
and load-balancing requirement change on timescales that
are much smaller (minutes, say). Consequently, tackling the
problem emphasizes an online solution design, in which the

problem is a multi-slot one whose inputs arrive online. Our
general approach is first to decouple the problem into multiple
single-slot problems such that their objectives are intelligently
modified to capture the time-coupled structure of the problem.

Second, the D2D-LB problem even for single-slot setting
is an NP-hard combinatorial problem. Our approach is to
design an approximation algorithm by leveraging a primal-dual
approximation framework for solving a certain type of integer
problems [11]. The original primal-dual framework [11] is
designed for problems with just covering constraints. However,
our D2D-LB problem encounters both packing and covering
constraints and it is known that problems with mixed covering
and packing constraints are more challenging [30].

Third, the ultimate auction design must be dominant strategy
incentive compatible [26] so that bidding according to true
willingness is a dominant strategy for sellers (devices). By
leveraging the celebrated Myerson result [25], we establish
the truthfulness of our designed auction.

Summary of Contributions and Paper Organization. In
Sec. IV, we formulate the D2D-LB auction problem and show
it is NP-hard problem. In Sec. V, we propose a polynomial-
time approximation algorithm for the single-slot problem. Our
algorithm is a primal-dual greedy one, which chooses a set of
“minimum-cost” bids to fulfill the D2D-LB target. We prove
that the approximation ratio of the algorithm is 2φ, where
φ ≥ 1 is a parameter capturing variations of the submitted
bids. In addition, we demonstrate that our proposed algorithm
guarantees truthfulness of the auction. In Sec. VI, we address
the first challenge above and propose an online algorithm
for the multi-slot problem based on the single-slot solution.
We show the competitive ratio of our online algorithm is
upper bounded by 2φη/(η − 1), where η ≥ 1 is a param-
eter determined by device limitation and bidding structure.
In Sec. VII, we discuss several practical issues regarding
real implementation of our proposed auction framework. In
particular, we discuss about the overheads of information
exchange and the approaches toward addressing interference in
D2D-LB communication. In Sec. VIII, by experiments based
on real-world traces, we show that our algorithm achieves
near offline-optimal performance. In particular, the empirical
ratio between the cost of our online solution and the offline
optimal is no more than 1.44. Experimental results also show
that our online solution achieves a cost saving of 66% and
45% as compared to two alternative heuristics, respectively.
Finally, Sec. II reviews related literature. The system model is
introduced in Sec. III, and Sec. IX concludes the paper.
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TABLE I
SUMMARY AND COMPARISON OF THE PREVIOUS AND THE CURRENT AUCTION DESIGN WORKS

Reference Scenario Underlying
optimization problem

Competitive?
(For online
solution)

Consider battery
capacity of relaying
device??

Truthful
-ness???

Dong et al. [15] WiFi offloading Offline linear/convex NA NA X
Iosifidis et al. [19] WiFi offloading Offline convex NA NA X
Paris et al. [27] WiFi offloading Offline combinatorial NA NA X
Zhang et al. [34] WiFi offloading Online linear X NA X
Zhu et al. [38] D2D content sharing Offline combinatorial NA 7 X
Li et al. [23] D2D resource sharing Offline linear NA 7 X

This work D2D load balancing Online combinatorial X X X
(?) requires to solve a multi-slot problem with multi-slot capacity constraint in online fashion, (??) important for auction design

II. RELATED WORK

The Previous Research on D2D-LB. In the recent studies
[13], [14], [24], the idea of D2D-LB has been advocated and
several technical challenges have been addressed. In [24],
Liu et al. focus on the examining the technical feasibility
and practical algorithm design in three-tier LTE-Advanced
networks. In [14], Deng et al. characterize the maximum
benefits of D2D-LB in terms of peak reduction. In [13], a
D2D resource allocation strategy in a three-tier heterogeneous
network is presented. To the author’s knowledge, there is no
prior work to address the economic aspects of D2D-LB.

D2D-LB vs. Smart User Association. As mentioned in the
introduction, smart user association [32] can also be applied
to balance cell-level traffic. We note that D2D-LB and smart
user association are complementary schemes in the sense that
the CSP can simultaneously use smart user association on
large timescale and D2D-LB on small timescale. Smart user
association schemes normally operate on large timescale to
avoid large overhead incurred by frequently associating a user
from one BS to another BS [5], [32]; thus it is not designed for
balancing traffic across BSs on small timescale. In contrast,
D2D-LB is among adjacent devices, consumes limited power,
incurs no interference, and has limited impact to the global
configuration of the cellular network. These features make
D2D-LB more suitable for load balancing on small timescale.

D2D-LB vs. Data Offloading; Technical Differences. Data
offloading [21], mainly using WiFi infrastructure, is another
popular approach to handle the exploding mobile data traffic.
However, data offloading and D2D-LB are technically differ-
ent schemes; while data offloading aims to exploit outband
spectrum, D2D-LB targets to increase inband cellular temporal
spectrum efficiency. Furthermore in D2D-LB, the CSP can
ubiquitously control everything, including both D2D and user-
to-BS transmissions. However, data offloading usually out-
sources relaying a portion of traffic to a third-party entity, that
imposes unpleasant unreliability for transmissions. Therefore,
D2D-LB can ensure better QoS than data offloading.

D2D-LB vs. Data Offloading; Auction Design Differ-
ences. The most related auction design studies are [15],
[19], [27], [34] in WiFi mobile offloading and [23], [38]
in D2D content or resource sharing scenarios. In Table I,
the summary and the comparison of these works and our
work are listed. Note that in our scenario, limited battery
capacity of mobile devices imposes a time-coupled capacity

constraint to the auction problem (see Sec. IV for details).
This turns the problem into a multi-slot one that spans across
the time dimension. However, the inputs to the problem are
subject to timely change due to the mobility of devices and
unpredictability of total traffic. Thereby, the input to the multi-
slot problem arrives in online fashion, and hence, a realistic
D2D-LB auction must be online. Despite elegant results, most
of the previous research either in WiFi or D2D offloading
scenarios [15], [19], [23], [27], [38] have focused on single-
slot (offline) design spaces and ignore the temporal correlation
in underlying problem. Even though in a recent study [34] the
authors tackle an online problem, there is no device capacity
constraint and it is not a combinatorial problem.

Moreover, D2D-LB is a combinatorial auction in which
combinatorial nature is due to 0/1-decision on purchasing
a subset of the bids. This turns the problem into an NP-
hard integer linear program (for proof see Theorem 1). In
contrast, the auction problems in [15], [19], [23], [34] are
conventional auctions (i.e., the underlying problems are either
linear or convex) that are generally more tractable. Even
though the problem in [27] is combinatorial, it considers a
single-slot problem (thereby it fails to capture time-coupled
constraints) and there is no performance guarantee for the
heuristic solutions. In summary, D2D-LB enforces the auction
to be an online combinatorial one, while none the previous
work simultaneously tackle this type of auction problem.

Online Competitive Algorithms Design vs. Other Simi-
lar Solution Approaches. In addition to studies in offload-
ing scenarios, several other papers have studied incentive
mechanisms for different device-to-device scenarios in either
cellular or other networks following stochastic optimization
approaches [20], [22]. There is a fundamental technical differ-
ence between the solution approach in this paper and the above
studies. Our approach is known as competitive analysis [10],
in which neither the exact values nor the distribution of the
future input is known in advance. In contrast, in [20], [22],
the solutions rely on specific stochastic modeling of the input.

As in competitive analysis there is no assumptions on the
stochastic modeling of future input, the online algorithm tries
to compete against an adversarial input. Hence, the competitive
algorithm might be conservative and not always can provide
satisfactory results in practical scenarios. On the other hand,
stochastic optimization approaches rely on the distribution of
the input sequence. However, learning the potentially time-
varying distribution in real inputs can be a formidable task.
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TABLE II
SUMMARY OF NOTATIONS

Notation Description
U The set of devices, (U , |U|)
T The set of time slots, (T , |T |)
L The set of cellular users, (L , |L|)
S The set of adjacent BSs, (S , |S|)

atu,l
The amount of traffic of user l that device u can
relay at t

btu,l Cost of atu,l
Dt The net D2D-LB traffic demand at time t
Mt
l The total traffic demand of user l at slot t

Cu The total relaying capacity of device u
Cts The total relaying capacity of BS s at time t

xtu,l
Optimization variable, 1: device u’s bid on user l
and time t is successful; 0: otherwise

ytu,l
Optimization variable, the amount of traffic of user
l that is relayed by device u at time t

III. THE D2D LOAD BALANCING AUCTION MODEL

Consider a heavy-loaded cellular base station and multiple
devices in its coverage that are willing to participate in D2D-
LB. A reverse auction is initiated by the CSP by soliciting the
bids from the devices. Then, a subset of the bids is chosen so
as to fulfill the D2D-LB target with the minimum overall cost.
The key notations used in this paper are listed in Table II.

The system runs in a time-slotted manner in a time horizon
of T slots. The length of each slot t and the time horizon
T are system design parameters. A conceivable value for T
might be in order of a couple of hours that is comparable to
battery life of mobile devices. In this way, the devices can
plan for their D2D quota (see Eq. (1)) based on the remaining
battery capacity. The length of each slot is much shorter (e.g.,
5-15 minutes) to capture the dynamics in devices’ mobility
and traffic fluctuations. We assume that CSP only knows the
input to the problem for the current slot, say, 5 minutes.
Beyond that, the inputs are unknown and we do not have any
assumptions on the stochastic modeling of the future input. In
addition, we assume that the wireless channel is time-varying
and frequency-selective, but unchanged and flat during each
slot. In this way, the input at each slot from the devices, the
cellular users, and adjacent base stations are assumed to be
constant. Note that, inputs across slots can take arbitrary values
and in practice are revealed in a slot-by-slot fashion.

Devices, users, and idle base stations. Let U , (U , |U|)
be the set of devices that are available to participate in D2D-
LB. Let us denote by L, (L , |L|) as the set of cellular users.
In this paper, we distinguish between device and user. By
device we mean the bidder who participates in D2D-LB by
forwarding the traffic that is generated by the users. Logically,
the sets of devices and users are disjoint. Define S, (S , |S|)
as the set of idle base stations that are adjacent to the main
BS (BS2 in Fig. 2, say). We assume each device u ∈ U is
paired to exactly one BS s ∈ S, perhaps the one with the
best link quality. Denote U(s) ⊆ U as the set of devices that
are paired to BS s. The total amount of traffic that device u
over time horizon T can load-balance is limited to its quota
Cu which is set by the user based on different preferences

such as remaining battery of the device [2]. Further, let M t
l

be the net traffic demand of user l at slot t, that could be either
uplink or downlink traffic demand. Finally, let Cts be the total
D2D-LB capacity of adjacent BS s. This value represents the
amount of traffic that base station s is able to forward at slot
t and could be obtained by subtracting the amount of traffic
that is required to fulfill its own traffic from total capacity. In
this way, a dedicated amount of spectrum resources is devoted
to D2D-LB and there would be no interference between D2D
links and device-to-BS links in the adjacent base station. Note
that we assume that the spectrum resources of adjacent BSs
are orthogonal and there is no interference between them.
Furthermore, let Dt be the net D2D-LB demand of the main
BS at time t, which is obtained by subtracting the threshold
capacity of the cell from the total demand, i.e., the BS requires
to load balance Dt Mb of its total demand to the adjacent
under-utilized cells by leveraging the available devices.

Properties of the bids. At the beginning of slot t, device
u submits multiple bids each of which consists a pair of
(atu,l, b

t
u,l), where atu,l is the amount of traffic demand of user

l (in Mb, say) that device u would like to load-balance at slot
t, and btu,l is the cost of forwarding atu,l. An important issue
is that the D2D cost of forwarding traffic (i.e., btu,l) varies for
different devices based on the quality of D2D links. Indeed,
the better the link quality, the lower the D2D cost. Because of
different link qualities between the devices and the users, the
bids are submitted separately per users. We remark that most
of these different device-dependent cost considerations are not
revealed to the CSP. Hence, this is another motivation for
exploiting reverse auction in this work. Computing the bidding
cost depends on device specifications (hardware, battery, etc.)
and user preferences. In this paper, we assume that bidding
cost is the input and the approaches on how to calculate its
value is beyond the scope of this study. Finally, we assume
that there is a “pre-auction phase” and a “post-auction phase”,
in which the inputs to the problem are preprocessed and the
result of the auction realizes. We refer to Sec. VII for details.

IV. THE D2D LOAD BALANCING AUCTION PROBLEM

In a nutshell of the reverse auction, with the objective of
minimizing social cost, a subset of submitted bids should be
chosen such that Dt Mb of total traffic is fulfilled by the
selected devices, and at the same time, the capacity constraints
of adjacent BSs and devices are respected.

A. Optimization Variables

The optimization variables of the problem are as follows:
(i) a binary variable xtu,l, associated to each bid, xtu,l = 1
indicates a successful bid, and xtu,l = 0 otherwise; and (ii)
a real variable ytu,l for each bid, where ytu,l is the amount
of traffic of user l that is load balanced by device u at slot
t, indeed 0 ≤ ytu,l ≤ xtu,la

t
u,l. More specifically, after solving

the auction problem, ytu,l = 0 for the pair of devices and users
who are not selected to participate in D2D load balancing. On
the other hand, ytu,l ≤ atu,l for the selected devices.
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It is worth noting that the first binary variable turns the
underlying problem into a combinatorial one that are gener-
ally more challenging to tackle as compared to conventional
auctions in either linear or convex forms [15], [19], [34].

B. Constraints of the Problem

Device capacity (quota) constraint. The aggregated D2D
forwarding traffic of device u over the time horizon T is
limited by its long-term quota Cu, i.e.,∑

t∈T

∑
l∈L

ytu,l ≤ Cu, ∀u ∈ U . (1)

Device quota constraint mainly depends on the battery
capacity of the devices. The relationship between battery
capacity and quota constraint could be calculated by energy
profiling tools that estimate the battery usage of data trans-
mission under different network conditions, link qualities, and
device and battery specifications [18], [28].

Recall that the timescale of quota constraint is comparable
to the battery lifetime, i.e., in order of a couple of hours. On the
other hand, the D2D-LB auction decisions must be in order
of minutes, because of (i) dynamics in traffic of main and
adjacent base stations and (ii) dynamics in bid characteristics
of devices due to their mobility. In this way, the overall
problem is a time-coupled one with temporal variations in the
input. From the perspective of problem formulation, this is
the main differences of this work as compared to the similar
auction studies, e.g., [15], [19], [27].

Device limit constraint. Due to hardware limitations of
devices, we assume that each device can transmit the traffic
of only one user at any given slot, even though each device can
submit multiple bids each of which associated to a particular
user. In this way, the number of winning bids of each device
u at slot t must be less than or equal to 1, i.e.,∑

l∈L

xtu,l ≤ 1, ∀u ∈ U , t ∈ T . (2)

User demand constraint. Total D2D forwarding traffic in
user l must be less that the total traffic generated M t

l , i.e.,∑
u∈U

ytu,l ≤M t
l , ∀t ∈ T , l ∈ L. (3)

Adjacent BS capacity constraint. This constraint enforces
that total D2D forwarding traffic using the capacity of BS s
at slot t cannot exceed its capacity Cts, i.e.,∑

u∈U(s)

∑
l∈L

ytu,l ≤ Cts, ∀s ∈ S, t ∈ T . (4)

In this way, the D2D transmission is limited to the available
capacity (that could be translated to the available spectrum) of
each base station. In other words, if there is a vacant spectrum,
an interference-free D2D link could be established, otherwise,
the above constraint prevent to transmit using D2D links.

D2D traffic covering constraint. This constraint ensures
that the aggregate solicited traffic by devices covers the D2D
requirement Dt, i.e.,∑

l∈L

∑
u∈U

ytu,l ≥ Dt, ∀t ∈ T . (5)

We note that Dt is calculated at the beginning of each slot with
feasibility taken into account [14]. This constraint links our
incentive mechanism design to the actual traffic to be balanced
by D2D communication. In our solution design in Sec. V-B,
it is the key to re-express this covering constraint into an
equivalent expression shown in the following proposition.

Proposition 1. Constraint (5) could be strengthened by the
following constraint:∑

(u,l)∈B\At

ytu,l(At) ≥ D(At), ∀At ⊆ B, t ∈ T , (6)

where B = {(u, l)|u ∈ U , l ∈ L} is the set of all bids, At ⊆ B
is a subset of the bids, such that total D2D traffic de-
mand that can be satisfied by At is less than total D2D-
LB demand at slot t, i.e.,

∑
(u,l)∈At ytu,l < Dt. In ad-

dition, D(At) is the residual demand of bid set At and
is defined as follows: D(At) = Dt −

∑
(u,l)∈At ytu,l. Finally,

ytu,l(At) = min{ytu,l, D(At)}.

The intuition behind formulating constraint (6) is as follows.
In Proposition 1, the residual demand D(At) means that even
if all of the bids in the set At are chosen, the auctioneer must
choose some more bids from B\At such that the residual D2D
traffic demand D(At) is satisfied. It turns out this scenario
with new residual demand as the covering constraint could
be considered as another D2D auction scenario where the
bids are restricted to set B\At, instead, with D(At) as the
value of covering constraint. However, in the new scenario the
value of original amount for some bids might be greater than
the residual demand D(At). This is addressed by introducing
ytu,l(At) in Proposition 1. In Lemma 1, we express how this
reformulation can be incorporated to reduce the integrality gap
of the corresponding underlying problem, leading to an elegant
structure to design primal-dual approximation algorithm.

Causality constraints. Finally, by defining
atu,l(At) = min{atu,l, D(At)}, we have the following
causality constraints

0 ≤ ytu,l ≤ atu,lxtu,l, ∀u ∈ U , l ∈ L, t ∈ T , (7)

0 ≤ ytu,l(At) ≤ atu,l(At)xtu,l, ∀u, l, t,At ⊆ B, (8)

where constraint (7) ensures that the if device u is selected
to forward the traffic of user l at slot t, i.e., xtu,l = 1, its
forwarding amount ytu,l is below the bidding amount atu,l.
Otherwise, i.e., xtu,l = 0, it forces ytu,l to be 0. Similarly,
the constraint (8) represents the same concept using the set
notation introduced in Proposition 1.

C. The D2D-LB Auction Problem

With the goal of minimizing social cost (defined in Defini-
tion 1), we formulate the D2D-LB auction problem (D2DAuc).

Definition 1. (Social welfare and social cost) Under truth-
ful bidding (see Sec. V-D), the social welfare in a D2D-
LB auction is the aggregate utility of the CSP, i.e.,
−
∑
t∈T

∑
l∈L
∑
u∈U z

t
u,lx

t
u,l, where ztu,l is the payment to

device u in user l at slot t, and the aggregate utility of bidding
devices, i.e.,

∑
t∈T

∑
l∈L
∑
u∈U

(
ztu,l − btu,l

)
xtu,l. Payments
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between the CSP and devices cancel themselves, and the social
welfare is equal to −

∑
t∈T

∑
l∈L
∑
u∈U b

t
u,lx

t
u,l. Maximizing

the social welfare is equivalent to minimizing the social cost,
i.e., total system cost, which in turn is equivalent to minimize∑
t∈T

∑
l∈L
∑
u∈U b

t
u,lx

t
u,l under truthful bidding.

Under the assumption of truthful bidding, problem D2DAuc
is formulated as follows

D2DAuc : min
∑
t∈T

∑
l∈L

∑
u∈U

btu,lx
t
u,l (9a)

s.t. Constraints (1)-(4), (6)-(8) (9b)
vars. xtu,l ∈ {0, 1}, ytu,l ∈ R+. (9c)

D2DAuc is a mixed integer linear program that belongs to
capacitated covering problems1 [12].

Theorem 1. Problem D2DAuc is NP-hard.

As a consequence of Theorem 1, direct application of
the VCG mechanism [26] as a well-established auction that
ensures truthful bidding is computationally infeasible, since
it requires the optimal solution to the underlying problem.
An alternative way is to relax the integer constraints and
solve the corresponding relaxed LP. The following Lemma
characterizes the integrality gap of problem D2DAuc with
original formulation of covering constraint as in Eq. (5).

Lemma 1. The integrality gap of D2DAuc with original
covering constraint (5) is ≥ maxt∈T D

t.

Lemma 1 analytically motivates the re-expression of con-
straint (5) as Eq. (6). Observe that for problem D2DAuc with
Eq. (6) instead of Eq. (5), the given LP solution is no longer
feasible for the instance with bad integrality gap in the proof
of Lemma 1 (see [31, pp.179] for in-depth discussion).

Finally, note that constraints (2)-(8) are separable in time.
However, device quota constraint (1) is coupled over the time
horizon, thereby D2DAuc is coupled over time. On the other
hand, the problem data, such as the D2D-LB requirements
and bids’ information arrive online. Putting together, tackling
D2DAuc requires online solution design. What exacerbates
the problem is that even singles-slot problem (by neglecting
Constraint (1)) is still NP-hard (see the proof of Theorem 1).
In the next, we tackle the single-slot D2DAuc (named as
“sD2DAuc”) and devise a polynomial approximation algo-
rithm. Then, in Sec. VI, we leverage the single-slot algorithm
and devise an online algorithm for the general problem.

V. TRUTHFUL APPROXIMATION ALGORITHM DESIGN FOR
SINGLE-SLOT PROBLEM

Our auction algorithm design in this section (for single-slot
scenario) and in the next section (for online multi-slot sce-
nario) aims to achieve the following goals: (i) to be computa-
tionally efficient—the solution can scale with the problem size;
(ii) to promote truthful bidding—to prevent devices to game
the system and to simplify both the bidding strategy and the
auction design; (iii) to design an approximation algorithm for

1The problem of min
{
bx|Ax ≥ d, 0 ≤ x ≤ c, x ∈ Z+

}
, where b, A, d,

c are nonnegative, is a capacitated covering problem.

single-slot scenario—to guarantee sound performance against
the optimum; and (iv) to design competitive online algorithm
for online scenario—to achieve small loss as compared to the
single-slot scenario.

A. Formulating Single-Slot Problem

We first formulate single-slot problem sD2DAuc as:

sD2DAuc
min

∑
l∈L

∑
u∈U

cu,lxu,l (10a)

s.t.
∑
l∈L

xu,l ≤ 1, ∀u ∈ U , (10b)∑
u∈U

yu,l ≤Ml, ∀l ∈ L, (10c)∑
u∈U(s)

∑
l∈L

yu,l ≤ Cs, ∀s ∈ S, (10d)

∑
(u,l)∈B\A

yu,l(A) ≥ D(A),∀A ⊆ B, (10e)

0 ≤ yu,l ≤ au,lxu,l, ∀u, l, (10f)
0 ≤ yu,l(A) ≤ au,l(A)xu,l, ∀u, l,A, (10g)

vars. xu,l ∈ {0, 1}, yu,l ∈ R+,∀u ∈ U , l ∈ L.

As compared to problem D2DAuc, the device packing con-
straint is neglected in problem sD2DAuc and the superscript t
is dropped from the notations, since the problem is solved for
a specific t ∈ T . In addition, the cost bu,l is replaced by the
scaled cost cu,l according to the remaining D2D capacity of
device u (the rationale is mentioned in detail in Section VI).

In the next subsection, we propose a primal-dual greedy
approximation algorithm for solving problem sD2DAuc. The
algorithm iteratively updates both primal and dual variables
and the approximation analysis is based on duality property.
Thereby, in the following we formulate dual problem associ-
ated to LP relaxed version of sD2DAuc (i.e., xu,l ∈ [0, 1])

max
∑
A⊆B

γ(A)D(A)−
∑
u∈U

λu −
∑
l∈L

ζlM l −
∑
s∈S

µsCs

s.t.
∑

A⊆B:(u,l)/∈A

ρu,l(A)au,l(A) + au,lνu,l − λu ≤ cu,l,

∀u, l (11a)
γ(A)− ρu,l(A) ≤ 0,∀u, l,A, (11b)

ζl +
∑

s:u∈U(s)

µs + νu,l ≥ 0, ∀u, l, (11c)

vars. λu ≥ 0, ζl ≥ 0, µs ≥ 0,

γ(A) ≥ 0, ρu,l(A) ≥ 0, νu,l ≥ 0,

where dual variables λ, ζ, µ, γ, ν, and ρ correspond to
primal constraints (10b), (10c), (10d), (10e), (10f), and (10g),
respectively.

In Sec. V-B, we devise an approximation algorithm which
is inspired by a primal-dual framework that has been proposed
in [11] for capacitated covering problems. Then, in Sec. V-C,
a theoretical bound is achieved for the approximation ratio
of the proposed algorithm, and we investigate the truthfulness
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of the proposed solution in Sec. V-D. The vigilant readers
may notice that some similar designs are recently proposed for
auction design in demand response in co-location data centers
[33] and storage-assisted smart grids [36], [37], and resource
pooling in cloud storage systems [35]. However, in this work
we need to tackle further challenges initiated from packing
constraints (i.e., Eqs. (10d)-(10c)) unique to our problem.

B. Approximation Algorithm Design

The algorithm is demonstrated as Algorithm 1. In a nutshell
of our algorithm, through an iterative procedure and in a
greedy manner, the “minimum-cost” bids are chosen until
the selected bids can cover the D2D-LB demand D. More
specifically, in Initialization block, in Lines 2-6, both primal
and dual variables are initialized (note that we just mentioned
dual variables whose values are changed in the algorithm,
others are supposed to be initialized to zero and investigated
in Lemma 4). We specifically remark that the set I is the set
of the selected pairs (u, l),∀u, l, and by terminating the while
loop, the bids in the set I are chosen as the winning bids.

Algorithm 1: Single-Slot Algorithm, for t ∈ T
1 Initialization
2 Usel = ∅ // the set of selected devices
3 I = ∅ // the set of selected bids
4 xu,l = 0, yu,l = 0, ∀u, l// primal variable
5 γ(A) = 0,∀A ⊆ B // constraint (10e)
6 ĉu,l = cu,l,∀u, l// scaled cost variable

7 while Usel 6= U and D(I) > 0 do
8 ĉu,l = ĉu,l − γ(I)au,l(I), ∀u, l /∈ I
9 Ml(I) =

[
Ml −

∑
(u,l)∈I yu,l

]+
, ∀l ∈ L

10 Cs(I) =
[
Cs −

∑
(u,l)∈I:u∈U(s) yu,l

]+
, ∀s ∈ S

11 âu,l(I) = min{au,l(I),Ml(I), Cs(I)}
12 (u?, l?u) = argminu∈U\Usel,l

{
ĉu,l

âu,l(I)

}
13 γ(I) =

ĉu?,l?u
au?,l?u

(I)

14 xu?,l?u
= 1

15 yu?,l?u
= âu,l(I)

16 I = I ∪ (u?, l?u)
17 Usel = Usel ∪ u?
18 end

The second block is the while loop. The stop conditions
are two-fold. The first one prevents infinite loop. The second
condition is the one that terminates the loop when the selected
bids can cover the demand, i.e., constraint (10e) is satisfied.
In Line 8, we adjust the cost of the remaining bids based on
their effective traffic amount. Modification in Line 11 based
on the adjustments in Lines 9 and 10 is required to respect
constraints (10c) and (10d). As the result of this modification,
the unit costs of bids that require saturated users/adjacent BSs
approaches infinity, so they do not selected in the greedy
algorithm. Note that this modifications are not appeared in
the original framework [11] and it is unique to this work.
Then, in Line 12 the bid with the minimum ratio between
the scaled cost and the effective traffic amount (i.e., âu,l(I))
is chosen and this bid is added to the set of selected bids in
Lines 16-17. Moreover, the corresponding primal variables are

set in Lines 14-15. In Line 13, the dual variable is set such
that the dual constraint becomes tight for the selected bid.
Finally, it is straightforward to show that the time complexity
of Algorithm 1 is O(UL), which is polynomial.

C. Approximation Ratio Analysis

In this subsection, we analyze approximation ratio of Algo-
rithm 1. Our approach is to use the duality property to derive
a bound for approximation algorithm. In particular, let p and
d be the primal and dual values obtained by Algorithm 1,
respectively. Furthermore, let p? as the optimal value of
problem sD2DAuc. Indeed, p ≥ p?, and by duality property,
d ≤ p?. The target is to find an α so as to αd ≥ p, thereby,
p/p? ≤ p/d ≤ α, hence, Algorithm 1 is α-approximate.
Our analysis consists of three steps. First, Lemma 2 shows
that Algorithm 1 generates a feasible solution to problem
sD2DAuc. Second, Lemma 4 proves dual feasibility, and
finally, Theorem 2 provides approximation factor.

Lemma 2. Algorithm 1 terminates with a feasible solution for
primal problem sD2DAuc.

Before proceed to prove dual feasibility, we introduce the
following Lemma. Intuitively, the following Lemma mention
that constraint (11a) becomes tight for any selected bid (u, l) ∈
I by the end of Algorithm 1.

Lemma 3.
∑
A⊆S:(u,l)/∈A γ(A)au,l(A) = cu,l,∀(u, l) ∈ I.

The next step is to prove dual feasibility of the solution
computed by Algorithm 1. Even if the primal solution is
feasible during the execution, the dual is not necessarily so.
But, by an adjustment in dual variables the dual solution be-
comes feasible. The purpose of dual adjustments in Lemma 4
is to make the dual solution feasible through scaling by a
carefully chosen factor. Such posterior dual scaling is known
as dual fitting in the primal-dual approximation literature, and
has proven effective in finding good approximation ratios in
algorithm design [30].

Lemma 4. The dual solution obtained by Algorithm 1 is
a feasible solution to dual problem of sD2DAuc by set-
ting/adjusting the dual variables as follows
• λu = 0;∀u ∈ U , constraint (10b),
• ζl = 0;∀l ∈ L, constraint (10c),
• µs = 0;∀s ∈ B, constraint (10d),
• νu,l = 0;∀u, l, constraint (10f),
• γ(I) = γI/φ, constraint (10e), where

φ = max
u,u′∈U,l,l′∈L

{
cu,l
cu′,l′

,
cu,lau′,l′

cu′,l′au,l

}
, (12)

• ρu,l(A) = γ(A); ∀u, l,A ⊆ S, constraint (10g).

Theorem 2. Algorithm 1 is an α-approximation algorithm,
where α = 2φ, where φ ≥ 1 is defined in Eq. (12).

Approximation ratio of Algorithm 1 is dependent on the
value of φ in Eq. (12) which is defined as the maximum ratio
between either the exact or the normalized cost values of any
two submitted bids. Note that in a scenario that user devices’
specification and connection qualities are more homogeneous
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and devices are almost equally willing to participate in D2D-
LB, then φ is expected to approaches 1 and the approximation
ratio in Theorem 2 approaches 2.

D. Truthfulness Analysis

In Sec. IV, we formulated the problem of D2D-LB auction
with truthful bidding assumption. In auction mechanism de-
sign, it is critical to promote truthful bidding, to ensure that
bidding true costs is a dominant strategy for devices. In this
way, devices are prevented from gaming the system, thereby
both bidding strategy and auction design are simplified. In the
previous algorithm design, we ignored truthful issues on how
to make sure that devices announce their true values of cost,
which is the goal of this section.

Definition 2. An auction is truthful if for every device u, truth-
telling of cost values is a dominant strategy, i.e., declaring the
true costs (btu,l) always maximizes a device’s utility, regardless
of how the other devices submit their bids.

Definition 3. An auction is individual rational if each device
obtains a non-negative utility by participating in the auction.

For the details, we refer to [26]. The following celebrated
result by Myerson [25] is the key in truthful analysis of reverse
auction mechanisms.

Lemma 5. [7], [25] A reverse auction is truthful if and only
if: (i) xu,l,∀u, l is monotonically non-increasing in costs cu,l,
i.e., ∀u ∈ U ,∀l ∈ L, if cu,l ≤ c′u,l, au,l = a′u,l, and x′u,l = 1,
then xu,l = 1. (ii) winners are paid threshold payments, i.e.,
Pu = bu,lxu,l +

∫∞
bu,l

xu,ldb.

Theorem 3. If at iteration τ , the auctioneer pays to the
selected device u? according to

Pu? = cu?,l?u
+ au?,l?u

(I(τ)) (γ(I(τ + 1))− γ(I(τ))), (13)

the auction results computed by Algorithm 1 is truthful.

Lemma 6. The payment based on Eq. (13) makes Algorithm 1
individually rational.

VI. THE ONLINE ALGORITHM DESIGN

In this section, we design an online algorithm for solving
multi-slot (online) D2DAuc. We briefly discuss the challenge
and our idea as follows. In the online setting at time slot t, only
the bids that are submitted at and before t are revealed and the
winning bids must be determined without knowing the future
bids. As mentioned in Sec. IV, D2DAuc is coupled over time
due to device quota constraint (1). If the submitted bid of a
device is successful in a particular slot, its residual D2D quota
decreases, thereby, its chance to participate in the incoming
rounds decreases because of insufficient remaining capacity.
Consequently, the BS may have to cover D2D demand from
expensive alternatives, whereas by scattering the winning bids
intelligently on temporal domain, the cost could be reduced.
Our idea is to scale up the cost of the devices based on
their residual capacities—the smaller the residual capacity, the
larger the scale up factor.

Algorithm 2: The Online Algorithm
1 Initialization
2 κtu = 0, ∀u ∈ U , t ∈ T

3 η = maxu∈U,l∈L,t∈T

{
Cu

at
u,l

}
4 foreach t ∈ T do
5 ctu,l = btu,l + atu,lκ

t−1
u , ∀u ∈ U , l ∈ L

6 I = the selected set obtained by executing Algorithm 1 and
adjusted costs ctu,l, ∀u ∈ U as the input.

7 κtu = κt−1
u , ∀u ∈ U

8 κtu = κt−1
u

(
1 +

atu,lu
αCu

)
+

btu,lu
αηCu

,∀u ∈ I

9 end

The detail of the algorithm is listed as Algorithm 2. Our
main goal in Algorithm 2 is to scale-up the original cost of
winner devices according to their remaining capacity. Toward
this, we first define variable κtu to be used to adjust the cost
of device u as the input to the single-slot Algorithm 1 at its
t-th execution. Indeed, κ0u = 0, since in the beginning the
remaining capacity of all the devices are Cu,∀u ∈ U . As
time goes ahead, the remaining capacity of winner devices
decreases, thereby as depicted in Line 8, κtu increases (the
rationale behind this specific increase is explained later). Then
the cost of the winner devices ((u, ?) ∈ I) is scaled up in the
next round according to Line 5. Remark that the cost of the
other devices remains intact (Line 7).

We now explain the increase in Line 8 in detail. The
variable κtu is scaled up (as compared to its previous value
κt−1u ) for any selected device u, such that the amount of
increase depends on its previous value, κt−1u (that captures
the aggregate scale up in the previous slots) and its current
slot characteristics, i.e., atu,lu and btu,lu . In addition, two
fixed parameters α (which is the approximation factor of
Algorithm 1) and η (defined in Line 3) are incorporated
to scale κtu. By the cost adjustment in Line 5, variable κtu
could be interpreted as the unit price of using residual D2D-
LB capacity of device u. As such, the increase in κtu at
each time slot can impact on the final result of the single-
slot Algorithm 1 because adjusted cost is the input to that
algorithm. In this way, if we set κtu to a large value, it makes
the Algorithm 1 too conservative in selecting the devices with
low residual capacity, which may result in wasting resource of
cost-effective devices at the end of time horizon. On the other
hand, if we set κtu to a small values, it comes at the risk of
consuming the capacity of cheap devices too early, which may
force the provider to purchase the bids of expensive devices
later on. Consequently, it is important to scale up κtu such
that the importance of residual capacity is taken into account
properly. We set the update equation for κtu as in Line 8,
which is the key in competitive analysis of Algorithm 2 and
also works well in experiments discussed in Sec. VIII.

The results in Lemmas 7-8 prove the primal and dual fea-
sibility of Algorithm 2 which are required as the competitive
analysis of the algorithm (Theorem 4).

Lemma 7. Algorithm 2 generates a feasible solution for
problem D2DAuc.
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Lemma 8. By setting κu = κTu , Algorithm 2 generates a
feasible solution for dual problem of problem D2DAuc, where
κu is the dual variable associated to constraint (1).

Theorem 4. The competitive ratio of Algorithm 2 is αη
η−1 ,

where α is the approximation factor of Algorithm 1 and η ≥ 1
is defined in Line 3 of Algorithm 2.

The competitive ratio depends on the value of η that is
defined as the maximum ratio between the device quota and
the submitted bid amounts of any device. In this way, when
η →∞, that is, the submitted amount in each time slot is much
smaller than total device quota (i.e., atu,l � Cu,∀u, l, t), then,
the competitive ratio approaches α, which means that (i) the
online loss is zero as compared to the single-slot algorithm,
and (ii) when φ → 1 (see Eq. (12) and the remark after
Theorem 2), the competitive ratio is 2.

VII. DISCUSSION

A. Pre-processing and Post-processing Phases of the Auction

There is a pre-auction phase in our model in which the in-
formation required for the auction must be exchanged between
the bidders (participant devices) and the auctioneer (CSP).
First, the input parameters of our model such as M t

l , C
t
s, and

Dt are calculated at the beginning of each slot, by taking
into account the feasibility of supporting demand Dt by
D2D-LB subject to device limitations and the required peak-
traffic reduction. This can be done by adapting the D2D-LB
scheme in [14]; we skip the details and focus on incentive
mechanism design. Then, the BS announces the information
of neighborhood cellular users to the bidders. This information
is required for the devices to announce their bids. Finally, the
bidders announce their bid information including the bidding
cost and amount per each cellular user, separately. These steps
are considered as the pre-auction phase in our model.

In the post-auction phase, at each slot t, the selected devices
by the auction are scheduled by the CSP to relay D2D-LB
requirement to the adjacent cells. Several engineering issues,
such as authentication methods, seamless load-balancing of
traffic of existing sessions, and setting up D2D links, can
be addressed by adapting the techniques described in [8],
[15]. In summary, similar to any other approach that relies
on D2D communication, an information exchange is required
between the devices and the base station. We refer to [8],
[16] and references therein for the possible approaches for the
information exchange and the signaling overhead.

B. Interference in D2D-LB

Generally speaking, D2D communication can be established
using either cellular licensed spectrum, termed as inband
D2D, or unlicensed spectrum, termed as outband D2D (e.g.,
through WiFi direct or Bluetooth) [8]. The inband D2D is
further divided into underlay inband D2D and overlay inband
D2D [8]. In underlay inband the spectrum is shared with the
BS that may lead to interference. In overlay inband, a portion

of licensed cellular spectrum is dedicated to D2D, thereby
there is no interference between D2D links and the BS.

Our advocated idea in D2D-LB falls into the category of
overlay inband D2D. More specifically, D2D-LB dynamically
uses the vacant spectrum resources of adjacent idle BS to
forward the traffic of a heavy-loaded BS. Hence, D2D trans-
mission in D2D-LB is in the category of a dynamic dedicated
overlay inband D2D, since it uses the licensed spectrum of
adjacent cells. The interference problem in D2D-LB, however,
must be investigated in both heavy-loaded BS and also in
the adjacent BS whose vacant spectrum is used to forward
the traffic. First, interference problem in heavy-loaded BS
is automatically resolved because D2D-LB uses the vacant
spectrum of adjacent BS which has no overlap with the
spectrum of the main heavy-loaded BS. More specifically,
the spectrum of adjacent base stations do not overlap, hence,
there is no interference between adjacent cells. Second, the
interference between D2D communication and the adjacent
idle base station is also captured in our model by introducing
D2D-LB capacity constraint in Eq. (4).

VIII. SIMULATION RESULTS

A. Overview of Traces and Parameter Settings

We use traffic traces from Smartone [3], a major cellular
provider in a Hong Kong. More specifically, we use the traces
of total traffic of 374 cells covering an area of 22 KM2 of
a metropolitan district to estimate total D2D traffic demand
(Dt) and adjacent cell D2D-LB capacity (Cts). The length of
each slot is set to 15 minutes and time horizon T is set to 8
hours for online scenario. Based on the measurement results in
[14], we assume that at each slot 25% of total traffic demand
have to be load-balanced through D2D-LB, on average, i.e,
Dt = 2.5± 0.5 Gb. We assume 4 adjacent under-utilized cells
in neighborhood (S = 4). The number of bidding devices is
[50, 150] per base station and varies in different runs and the
devices are randomly assigned to exactly 1 adjacent BS. This
number of users are reasonable for around 5 cells (including
the main cell and the other adjacent cells) in highly crowded
district. The amounts of bids are generated uniformly over
[50, 150] Mb, and the cost values are generated uniformly over
[$0.5, $1.5], which is comparable to the common service plan
tariffs for the CSP (e.g., $10/Gb). Finally, the number of users
are in order of devices and each devices announces on average
5 bids based on the possible pairs of device-user.

Gurobi MILP solver [1] is used to calculate the offline
optimal solution and hence the performance of our proposed
algorithms is evaluated as compared to the optimal. In ad-
dition, in Sec. VIII-D, we compare the performance of our
algorithm to two heuristics. Finally, each data point of the
figures belongs to the average values (statistical values for
boxplots) of 100 runs with 95% confidence interval, where
each run is a different randomly generated scenario.

B. The Effect of the Number of Devices

Purpose. This set of experiments is devoted to compare
the proposed algorithms to the optimum and to investigate the
effect of the number of D2D devices (submitted bids) in final
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Fig. 3. The effect of number of devices on total cost

50 75 100 125 150
Number of devices

1

1.05

1.1

1.15

Em
pi

ric
al

 c
os

t r
at

io

(a) Single-slot scenario

50 75 100 125 150
Number of devices

1

1.1

1.2

1.3

1.4

Em
pi

ric
al

 c
os

t r
at

io

(b) Online scenario

Fig. 4. The effect of number of devices on empirical cost ratio

cost. Figs. 3, 4, and 5 depict total cost, empirical cost ratio
(cost of approximation algorithms over the offline optimum),
and the percentage of winners, for different numbers of
devices, for both single-slot and multi-slot scenarios.
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Fig. 5. The effect of number of devices on the % of winners

Observations. We report four notable observations. First,
results in Fig. 3(a) for single-slot scenario, and Fig. 3(b) for
online scenario depict that total cost obtained by Algorithms 1
and 2 are slightly higher than the optimal cost (on average
≈ ×1.03 and ≈ ×1.07 of the optimum for the single-slot and
online scenario, respectively). These results signify that the
proposed approximation algorithms can approach the optimal
cost much better than those bounds obtained by theoretical
results (i.e., competitive ratio of 2 in the case that φ → 1
and η → ∞, see Theorem 4). Second, results in Fig. 3 show
that when the number of D2D devices increases, total cost
decreases. This is reasonable since the auctioneer have higher
freedom to choose the more cost-effective bids as the number
of devices grows. Indeed, our approximation results depict the
same behavior. Third, the results in Fig. 4 show that cost ratios
are close to 1 and also as the number of devices increases the
empirical ratio for both cases decreases. Note that the worst
ratio obtained is 1.44 that is happened in online case when
the number of devices is 50. However, as number of devices
grows to 100 this ratio is at most 1.08. Fourth, we demonstrate

100 200 300 400 500
D2D device capacity

145

150

155

160

165

170

175

To
ta

l c
os

t

Cost-Optimal
Cost-Approximate

(a) Total cost

100 200 300 400 500
D2D device capacity

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pe
rc

en
ta

ge
 o

f w
in

ne
rs

Optimal
Approximate

(b) Percentage of winners

Fig. 6. The effect of capacity of devices

the percentage of winner devices in Figs. 5. The behavior is
rationale since the probability of winning is reduced when the
number of bidders increases.

C. The Effect of the Capacity of Devices

Purpose. In this experiment we investigate the effect of the
capacity of devices in total cost and percentage of winners
obtained by our online algorithm. Recall that our modeling
captures the limitation of the battery of devices by introducing
device quota constraint (1). In this experiment, we change
the capacity of devices from 100 to 500 Mb and execute our
algorithm and the optimal offline solution.

Observations. The result in Fig. 6(a) shows that, as the
capacity of devices increases, total cost decreases. The reason
is that with the increase in the capacity of devices, each
winning device can contribute more in load balancing, thereby,
the total cost is decreased. On the other hand, Fig. 6(b) shows
that for both offline optimal solution and our online algorithm,
as device capacity increases, the percentage of winners also
increases. This is also reasonable since with the increase in
the capacity, more devices can participate in auction design
during the time horizon, thereby more devices can potentially
be chosen during different slots.

D. Comparison with Alternative Solutions

Purpose. In this experiment, we focus on the single-slot
setting and compare the performance of Algorithm 1 with
two baseline algorithms: simple greedy algorithm and random
algorithm. In the simple greedy heuristic, the devices are
picked based on their original cost values in ascending order
until the D2D requirement is fulfilled. In the random algo-
rithm, we randomly select devices one-by-one to participate
in D2D-LB until we have enough devices to serve the load
balancing demand. We intentionally choose random algorithm
to demonstrate that without proper cost minimizing algorithm,
the cost of the CSP could be very large.

Observations. We summarize the comparison in Table III,
where the cost column is total cost of all the three algorithms
and the ratio column is the ratio of total cost of different
algorithms to the optimum. Again, we observe that our ap-
proximation algorithm (Algorithm 1) is near-optimal (with
average cost ratio of 1.1), outperforming both the simple
greedy algorithm (with average cost ratio of 1.72) and the
random algorithm (with average cost ratio of 3.4). The reason
is as follows. The simple greedy algorithm only takes the bid
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TABLE III
RESULTS OF THE COMPARISON SCENARIO

Number of Devices
100 150 200

Cost Ratio Cost Ratio Cost Ratio
Algorithm 1 32.77 1.13 29.38 1.12 28.55 1.07

Simple greedy 51.73 1.70 44.90 1.76 41.78 1.71
Random 95.24 3.10 96.69 3.81 97.5 3.30

cost into account, but is oblivious to the other information,
including the biding amount, D2D traffic demand distribution,
and adjacent BSs’ capacity. Even worse, the random algorithm
is oblivious to all information.

IX. CONCLUSIONS

This paper studied an important, yet open, challenge on how
to incentivize devices to participate in D2D-LB paradigm. The
underlying problem is formulated following a multi-slot online
procurement auction framework. The objective is to minimize
social cost while satisfying the D2D-LB requirement. We
showed the formulated problem is NP-hard and standard LP
relaxation approach may give arbitrarily bad performance.
We then proposed an approximation algorithm and an online
algorithm that work together to solve the problem in polyno-
mial time with decent performance guarantee. Our algorithm
design also ensures truthfulness of the auction, which is a
highly desired feature in auction design. Observations on
extensive trace-driven simulations demonstrated that our pro-
posed approximation algorithms achieve near offline-optimal
performance. As future work, we plan to extend our results to
joint problem of scheduling and bid winner determination.
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APPENDIX

A. The Details of the Statistical Study of the Motivation of
D2D Load Balancing

In this Appendix, we explain the details of the measurement
whose result is depicted in Fig. 1. We first overview our data
traces. The dataset contains the traffic data of 30 days of 194
BSs covering an area of 22km2. The coverage area (cell radius)
of each base stations is 500m. Thus, BS i and BS j are adjacent
if their distance is no greater than 500m.

The goal is to evaluate the correlation of the traffic pattern
of the adjacent base stations, by computing their (Pearson)
correlation coefficients [9]. For each BS i ∈ [1, 194] and
each day d ∈ [1, 30], we calculate the correlation coefficient
of the traffic of BS i in day d, denoted as R(i, d), which
means that the traffic of any adjacent base station of BS
i and that of BS i has a correlation coefficient at least
R(i, d). In Fig. 1(a), the empirical cumulative distribution
function (CDF) of all per-BS per-day correlation coefficients,
i.e., {R(i, d) : i ∈ [1, 194], d ∈ [1, 30]}, is shown. The
result demonstrates that more than 50% of adjacent BSs has
correlation coefficients that are less than 0.2, and also the
overall average correlation coefficient is only 0.18. That is, the
traffic between adjacent BSs has a relatively low correlation
and thus we have ample room to reduce the peak traffic by load
balancing among the base stations. To see more concretely
what kind of traffic pattern will have a correlation coefficient
0.18, we show the traffic of a sampled pair of adjacent BSs in
Fig. 1(b). It can be seen that the peak traffic of BS1 and BS2
occur at different epochs, suggesting that indeed the traffic
from the congested cell could be shifted to the less-congested
cell to reduce the peak traffic.

B. Proof of Theorem 1

Proof. The proof is done by considering T = 1, L = 1, S = 1,
which turns the problem into the minimum knapsack problem,
which is an original NP-hard problem [31].

C. Proof of Lemma 1

Proof. Consider T = 1, L = 1, S = 1, D1 = D, and two
devices where C1 = D−1, C2 = D, b1 = 0, b2 = 1. The only
feasible integral solution is to choose device 2 with total cost
1. However, solution x1 = 1, x2 = 1/D is feasible for LP
relaxation and total cost is 1/D. Hence, the integrality gap is
at least 1/(1/D) = D, where D could be maxt∈T dt.

D. Proof of Lemma 2

Proof. To prove, we show that (i) the integer constraint is
respected. This is straightforward, since the values of xu,l are
initialized to be 0, and in Line 14, the corresponding bid of the
selected device is set to be 1, thereby, the integer constraint is
never violated. (ii) Constraint (10b) is respected. This is true,
since by selecting a device, this device is added to the set Usel

in Line 17, and in the next loop, the next bid is selected among
the set of the other devices, i.e., u ∈ U\Usel. (iii) We highlight
that Constraints (10c) and (10d) are respected by adjustments
in Lines 9 and 10. By this adjustments the unit cost the bids

corresponded to the saturated users and adjacent base stations
approaches to infinity. (iv) Constraint (10e) is satisfied. By the
termination of the while loop, we either have Usel = U , which
means that the problem is infeasible2, or, the second condition
is violated, i.e., D(I) ≤ 0, that implies that the bids including
the set I cover the total D2D traffic demand D. (v) Constraints
(8) are automatically satisfied by the setting in Line 15. (i)-(v)
prove the primal feasibility of problem sD2DAuc.

E. Proof of Lemma 3

Proof. At τ th iteration of the loop, we get

ĉu,l(τ) = ĉu,l(τ − 1)− γ(I(τ − 1))au,l(I(τ − 1))

= ĉu,l(τ − 2)− γ(I(τ − 2))au,l(I(τ − 2))

− γ(I(τ − 1))au,l(I(τ − 1)) = . . .

Then, by the above recursive equations, we get

cu,l = ĉu,l(1) =
τ∑
i=1

γ(I(i))au,l(I(i)) (14)

where the first equality is the consequence of Line 6. On the
other hand, we have∑
A⊆S:(u,l)/∈A

γ(A)au,l(A) =

τ∑
i=1

γ(I(i))au,l(I(i)),∀(u, l) ∈ I,

where τ is the iteration that the bid (u, l) ∈ I is added to set
I. This is true, since the initial values of γ(A) is set to be 0 in
Line 5 and just dual variables associated to the previous bids
are changed in the previous iterations. Finally, by Eq. (14) and
Eq. (15), we have∑

A⊆S:(u,l)/∈A

γ(A)au,l(A) = cu,l,∀(u, l) ∈ I, (15)

which proves the Lemma.

F. Proof of Lemma 4

Proof. Indeed by the following settings Constraints (11b) and
(11c) are satisfied. To proceed dual feasibility, it suffices
to show that Constraint (11a) is satisfied. This would be
straightforward for (u, l) ∈ I, by multiplying the left-hand
side of Eq. (15) by φ ≥ 1, so we get

1

φ

∑
(u,l)∈S\A

ρu,l(A)au,l(A) ≤ cu,l,∀(u, l) ∈ I,

Constraint (11a) should be satisfied by the other bids, i.e.,
∀(u, l) /∈ I. In this case, we define

φ = max

{
au,l(A)cu′,l′

au′,l′(A)cu,l

}
. (16)

Then, we get
1

φ

au,l(A)

cu,l
≤ au′,l′(A)

cu′,l′
.

2This case in not probable in real scenarios, where usually is auction
scenarios the aggregate amount of bids covered by devices is significantly
higher than the covering constraint.
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We can further apply the above inequality for any (u, l) /∈ I
and (u′, l′) ∈ I as follows

1

φ

∑
A⊆S:(u,l)/∈A

ρu,l(A)
au,l(A)

cu,l
≤

∑
A⊆S:(u′,l′)/∈A

au′,l′(A)

cu′,l′
= 1,

so, we get

1

φ

∑
A⊆S:(u,l)/∈A

ρu,l(A)au,l(A) ≤ cu,l, ∀(u, l) /∈ I.

The definition of φ in Eq. (16) is dependent of set A.
But, recall that atu,l(A) = min{0, atu,l, L(At),M t

l (At)}. By
checking all the possible combinations, we get

au,l(A)

au′,l′(A)
= max

{
1,

au,l
au′,l′

}
,

so, we have

φ = max
u,u′∈U,l,l′∈L

{
cu,l
cu′,l′

,
cu,lau′,l′

cu′,l′au,l

}
.

G. Proof of Theorem 2

Proof. First, the primal value obtained by Algorithm 1 is as
follows:

p =
∑
l∈L

∑
u∈U

cu,lxu,l =
∑

(u,l)∈I

cu,l.

By Lemma 3, we get

p =
∑

(u,l)∈I

∑
A⊆S:(u,l)/∈A

γ(A)au,l(A)

=
∑
A⊆S

γ(A)
∑

(u,l)∈I:(u,l)/∈A

alu,k(A)

≤
∑
A⊆S

γ(A)
[ ∑
(u,l)∈I(τ−1)

au,l

−
∑

(u,l)∈A

au,l + au′,l′(A)
]
, (17)

where I(τ − 1) is the set of selected bids where the last bid
(u′, l′) is excluded, i.e., I(τ − 1) = I\(u′, l′). By definition,
DI(τ−1) = D −

∑
(u,l)∈I(τ−1) au,l > 0, consequently,∑

(u,l)∈I(τ−1) au,l < D, hence,

p ≤
∑
A⊆S

γ(A)
[
D −

∑
(u,l)∈A

au,l + au′,l′(A)
]

≤
∑
A⊆S

γA
[
D(A) + au′,l′(A)

]
, (18)

By definition au′,l′(A) = min{0, au′,l′ , D(A)} ≤ D(A), then

p ≤
∑
A⊆S

γA2D(A). (19)

After dual fitting phase in Lemma 4, we get d =
1
φ

∑
A⊆S γ

AD(A). Then, p ≤ 2φd.

H. Proof of Theorem 3

Proof. Based on the result of Lemma 5, the proof is two-fold.
First, we begin to prove that the auction result is monotone,
i.e., ∀u ∈ U ,∀l ∈ L, if au,l = a′u,l, cu,l ≤ c′u,l, and x′u,l = 1,
then xu,l = 1. Since au,l = a′u,l, in Line 11 of Algorithm 1,
we have âu,l(I) = â′u,l(I). This is true because two bids are
for the same device and the same user, hence after adjustment
both amount values are the same. In addition, at beginning in
Line 7 of Algorithm 1, we have ĉu,l = cu,l − γIau,l(I), the
second term is equal for both bids, hence since cu,l ≤ c′u,l,

then ĉu,l ≤ ĉ′u,l, and ĉu,l

âu,l(I) ≤
ĉ′u,l

â′u,l(I)
. So, if in iteration τ

of Algorithm 1 the bid with cost c′u,l is selected, for sure,
bid with cost cu,l was chosen earlier in the previous iterations
based on Line 12.

Second, we prove that the winners are paid threshold
payment. Based on Algorithm 1, let the bid (u′, l′u) =

arg minu∈U\Usel(τ+1),l

{
ĉu,l

âu,l(I(τ+1))

}
as the threshold bid for

the selected bid (u?, l?u), i.e., (u′, l′u) is the bid that would
be selected at iteration τ + 1 when we exclude the current
selected bid (u?, l?u) at iteration τ . Based on the results in
[25], it suffices to pay device u? such that to make its
normalized unit costs to be equal to the next device u′, i.e.,

ĉu?,l?u

au?,l?u
(I(τ)) =

ĉu′,l′u
au′,l′u

(I(τ+1)) . In this way, at iteration τ we
have

ĉu?,l?u
= au?,l?u

(I(τ))γ(I(τ + 1)).

On the other hand, we have

Pu? = γ(I(τ + 1))au?,l?u
(I(τ)) +

τ−1∑
i=1

γ(I(i))au?,l?u
(I(i)),

then, by substituting Eq. (14), we get

Pu? = cu?,l?u
+ au?,l?u

(I)(γ(I(τ + 1))− γ(I(τ))).

I. Proof of Lemma 7

Proof. Algorithm 1 calculates a feasible solution that satisfies
the integer constraint and Constraints (2), (3), (4), and (6).
Constraint (1) is also satisfied since we know that each device
at the beginning of each time slot cannot submit a bid more
than its residual quota, therefore Algorithm 2 respects all
the constraints of problem D2DAuc and generates a feasible
primal solution.

J. Proof of Lemma 8

Proof. First, we begin the proof by constructing the dual
problem. By defining dual variables exactly the same as those
defined in dual problem of problem sD2DAuc and introducing
dual variable κ associated to constraint (1), the dual problem
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is formulated as

max
∑
A⊆S

γ(A)D(A)−
∑
u∈U

λu −
∑
l∈L

ζlM l

−
∑
s∈S

µsCs −
∑
u∈U

κuCu

s.t.
∑

A⊆S:(u,l)/∈A

ρu,l(A)au,l(A) + au,lνu,l

−λu − κu ≤ bu,l,∀u, l (20a)
γ(A)− ρu,l(A) ≤ 0,∀u, l,A, (20b)

ζl +
∑

s:u∈U(s)

µs + νu,l ≥ 0, ∀u, l, (20c)

vars. λu ≥ 0, κu ≥ 0, ζl ≥ 0, µs ≥ 0,

γ(A) ≥ 0, ρu,l(A) ≥ 0, νu,l ≥ 0.

Algorithm 1 generates a feasible dual solution that satisfies
Constraint (11a), hence we have∑

A⊆S:(u,l)/∈A γ(At)atu,l(At)− λtu ≤ ctu,l
≤ btu,l + atu,lκ

t−1
u ≤ btu,l + atu,lκ

T
u

Indeed, by νu = κTu Constraint (20a) is satisfied.

K. Proof of Theorem 4

Proof. Lemmas 7-8 signify that the solution calculated by
Algorithm 2 is feasible. Hence, we proceed to prove compet-
itiveness. Let define ∆pt = pt − pt−1 and ∆dt = dt − dt−1,
where pt and dt is the objective value of problems D2DAuc
and its dual problem calculated by Algorithm 2.

∆pt =
∑
u∈I

btu,lu =
∑
u∈I

(
ctu,lu − a

t
u,luκ

t−1
u

)
= p−

∑
u∈I

atu,luκ
t−1
u

= p−
∑
u∈I

[
αCu(κtu − κt−1u )−

btu,lu
η

]

≤ αd−
∑
u∈I

[
αCu(κtu − κt−1u )−

btu,lu
η

]

≤ α

(
d−

∑
u∈I

αCu(κtu − κt−1u )

)
− ∆pt

η
.

From the objective of dual problem we have ∆Dt = d −∑
u∈I αCu(κtu − κt−1u ), hence

∆pt ≤ α∆dt − ∆pt

η
≤ αη

η − 1
∆dt. (21)

As a consequence of Eq. (21), we have pT ≤ αη
η−1d

T , hence
Algorithm 2 is an αη

η−1 -approximation algorithm. Problem
D2DAuc is the multi-slot problem and the approximation ratio
achieved in Theorem 4 is the ratio of online Algorithm 2
against optimal offline solution obtained by problem D2DAuc.
In this way, αη

η−1 is the competitive ratio of online Algo-
rithm 2.

Mohammad H. Hajiesmaili received his B.S. de-
gree from Department of Computer Engineering at
Sharif University of Technology, Tehran, Iran in
2007. He received his M.Sc. and Ph.D. degrees
from the Electrical and Computer Engineering De-
partment at the University of Tehran, Iran, in 2009
and 2014, respectively. He was a researcher at the
School of Computer Science, Institute for Research
in Fundamental Sciences (IPM), Tehran, Iran, from
2008 to 2013, and a research assistant in the Institute
of Network Coding, the Chinese University of Hong

Kong, from 2013 to 2014. He is currently a postdoctoral researcher at the
Department of Information Engineering, the Chinese University of Hong
Kong. His research interests include optimization, algorithm, and mechanism
design in energy systems, electricity market, transportation networks, and
multimedia networks.

Lei Deng received his B.E. degree in 2012 from
the Department of Electronic Engineering, Shanghai
Jiao Tong University, Shanghai, China. He is cur-
rently pursuing his Ph.D. degree in the Department
of Information Engineering, Chinese University of
Hong Kong, Hong Kong, China. From May 2015 to
October 2015, he was a visiting scholar in School
of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, USA. His research
interests are real-time (delay-constrained) commu-
nications, energy efficient timely transportation, and

spectral-energy efficiency in wireless networks.

Minghua Chen (S04 M06 SM 13) received his
B.Eng. and M.S. degrees from the Dept. of Elec-
tronic Engineering at Tsinghua University in 1999
and 2001, respectively. He received his Ph.D. de-
gree from the Dept. of Electrical Engineering and
Computer Sciences at University of California at
Berkeley in 2006. He spent one year visiting Mi-
crosoft Research Redmond as a Postdoc Researcher.
He joined the Dept. of Information Engineering, the
Chinese University of Hong Kong in 2007, where
he is currently an Associate Professor. He is also

an Adjunct Associate Professor in Institute of Interdisciplinary Information
Sciences, Tsinghua University. He received the Eli Jury award from UC
Berkeley in 2007 (presented to a graduate student or recent alumnus for
outstanding achievement in the area of Systems, Communications, Control,
or Signal Processing) and The Chinese University of Hong Kong Young
Researcher Award in 2013. He also received several best paper awards,
including the IEEE ICME Best Paper Award in 2009, the IEEE Transactions
on Multimedia Prize Paper Award in 2009, and the ACM Multimedia Best
Paper Award in 2012. He is currently an Associate Editor of the IEEE/ACM
Transactions on Networking. He serves as a TPC Co-Chair of ACM e-Energy
2016 and a General Chair of ACM e-Energy 2017. His current research
interests include energy systems (e.g., smart power grids and energy-efficient
data centers), energy-efficient transportation system, distributed optimization,
multimedia networking, wireless networking, network coding, and delay-
constrained network information flow.

Zongpeng Li received his B.E. degree in Computer
Science and Technology from Tsinghua University
in 1999, his M.S. degree in Computer Science from
University of Toronto in 2001, and his Ph.D. de-
gree in Electrical and Computer Engineering from
University of Toronto in 2005. Since 2005, he has
been with the University of Calgary, where he is
now Professor of Computer Science. In 2011-2012,
Zongpeng was a visitor at the Institute of Network
Coding, Chinese University of Hong Kong. His
research interests are in computer networks, network

coding, cloud computing, and energy networks.


