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Abstract—There is an unprecedented trend that content providers
(CPs) are building their own content delivery networks (CDNs) to provide
a variety of content services to their users. By exploiting powerful CP-
level information in content distribution, these CP-built CDNs open up
a whole new design space and are changing the content delivery
landscape. In this paper, we adopt a measurement-based approach
to understanding why, how, and how much CP-level intelligences can
help content delivery. We first present a measurement study of the CDN
built by Tencent, a largest content provider based in China. We observe
new characteristics and trends in content delivery which pose great
challenges to the conventional content delivery paradigm and motivate
the proposal of CPCDN, a CDN powered by CP-aware information. We
then reveal the benefits obtained by exploiting two indispensable CP-
level intelligences, namely context intelligence and user intelligence, in
content delivery. Inspired by the insights learnt from the measurement
studies, we systematically explore the design space of CPCDN and
present the novel architecture and algorithms to address the new
content delivery challenges arisen. Our results not only demonstrate
the potential of CPCDN in pushing content delivery performance to the
next level, but also identify new research problems calling for further
investigation.

1 INTRODUCTION

There has been a great trend that large multimedia
content providers (CPs) are building and customizing
their own content delivery networks to provide con-
tent services to their users (throughout this paper, we
denote the term CPCDN, a CDN powered by CP-level
intelligences, as our approach for content providers to
optimize content delivery, and use CDN to represent a
conventional content delivery network). Though having
the potential to improve the quality of content delivery
for a variety of content providers, the delivery strategies
in such CPCDNs have not been thoroughly studied. In
this paper, we focus on the design space allowed by
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CPCDN, and present representative delivery strategies
that can improve the content delivery quality.

Today’s internet has witnessed a rapid emergence
of customized CDNs, e.g., YouTube has long had its
Google Global Cache for video delivery. Netflix delivers
streaming data by directly collaborating with Internet
Service Providers (ISPs) using its own content delivery
framework — OpenConnect [26]. Facebook is boost-
ing its edge network in the Open Computing Project
[13]. Tencent, one of the largest online content service
providers [3], is delivering over 70% of its traffic using
its own CDN. Based on the elastic storage and network
resources provided by edge cloud service providers like
Amazon CloudFront [12], even small Internet content
providers can customize their own CDNs [11]. The move
to CPCDN is driven by the following new characteristics
and trends in content delivery, which pose great chal-
lenges to conventional content delivery paradigm.

First, it is becoming popular for content providers to
“produce” contents in a realtime manner for different
customized contexts, e.g., images and videos are dynam-
ically processed for different user devices and network
conditions. Since such content production for different
contexts is carried out in an online and realtime manner,
conventional CDN is unsuitable of ensuring good user
experience, due to the inherent decoupling between
between CP and CDN. In contrast, knowing the exact
context under which contents are consumed, CPCDN is
able to exploit context intelligence capturing how contents
are dynamically processed and synthesized in different
contexts, to optimize the user experience and service
quality along content delivery.

Second, in the content eco-system, users are no longer
just consumers but have already become indispensable
participants in content generation and distribution [27].
The popular music video “Gangnam Style” as an ex-
ample: it was a user-generated video and became very
popular in 2012 and 2013, as a result of several influ-
ential celebrities sharing it on online social networks
such as Twitter [31]. Being oblivious to user participa-
tion, it is difficult, if not impossible, for conventional
CDNs to leverage the inherent user-content preference
pattern and user-user social influence to optimize user



experience and service quality. Leveraging the powerful
user intelligence capturing how contents are dynamically
shared and distributed among social-networked users,
CPCDN is able to improve both the content delivery
efficiency and user experience to the next level.

In this paper, to accompany the rapid move to
CPCDN, we apply a measurement-based approach to
understand why, how and how much CP-level intelligence
can help content delivery. In particular, our contributions
are summarized as follows.
▷ To investigate why CP-level intelligence can help

content delivery, we present measurement studies on
popular services of Tencent, a representative content
provider, whose CPCDN was serving over 2 Tbps traffic
of contents from all its services at peak hours in 2013.
New characteristics in its content delivery are observed
as follows. (1) Delivery context. We observe that contents
are no longer delivered individually, instead, they are
synthesized into various contexts. (2) Crowd pattern. Ac-
cording to our measurement study, there are patterns
about how users consume contents. In particular, there
exist inherent patterns that particular clusters of users
will be interested in particular groups of contents. (3)
Social influence. Our measurement study also shows that
certain social behaviors (e.g., sharing and resharing)
among online social-network users have great impact on
whether contents will become popular, and if so, among
which group of users.
▷ To understand how CP-level intelligence can help

content delivery and to extract its potential, we system-
atically explore the design space of CPCDN and present
the architecture and algorithms to address the new chal-
lenges arisen, using both the context intelligence and
user intelligence. (1) Exploiting the fact that contents
have diverse importance under different contexts, we
propose to prioritize the content delivery according to
the context-aware content importance, by opportunisti-
cally selecting peer servers and queuing the requests. (2)
Based on the crowd patterns, we proactively replicate
contents according to the interest groups so that users
can fetch the contents they are interested in from nearby
CPCDN servers. (3) Based on the social influence of con-
tent distribution, we design a new popularity inference
strategy using the social relationship and social activity
of users, so as to guide the bandwidth reservation for
contents becoming increasingly popular due to social
influence.
▷ To reveal how much CP-level intelligence can im-

prove the content delivery, we carry out measurement-
based studies and extensive empirical evaluation using
real-world traces to confirm the benefits of CPCDN in
improving content delivery efficiency and user expe-
rience, as compared to conventional content delivery
paradigms.

The rest of the paper is organized as follows. We
present the motivation and framework of CPCDN in
Sec. 2. We present measurement studies to guide the
design of strategies in CPCDN in Sec. 3. We present the

design space of CPCDN in Sec. 4. We use measurement
and simulation-based experiments to evaluate the per-
formance of a CPCDN in Sec. 5. We survey related works
in Sec. 6. Finally we conclude the paper in Sec. 7.

2 MOTIVATION AND FRAMEWORK

In this section, we present the change of today’s content
delivery motivating content providers to build their own
CPCDNs and the framework of a CPCDN, where content
context and user information can be utilized for more
intelligent content delivery.

2.1 Changes in Today’s Content Delivery

In traditional content delivery, after being produced by
the content provider, contents are delivered directly to a
group of users via a CDN, which serves as a connectivity
“pipe” oblivious to the context and user activity under
which contents are consumed, since users are merely
receivers at the end of the content flow — there is no
feedback information from users to the CDN.

In contrast, in today’s content consumption flow as
illustrated in Fig. 1, users generate contents [8], provide
specification to content providers to synthesize contents
into the right contexts [27], and affect how the contents
are consumed among users [30]. For example, on Face-
book, a user’s homepage contains contents generated by
different people (e.g., her friends), and is synthesized
according to the user’s social connections, and contexts
(e.g., accessing device, time, and geo-location). These
changes have challenged the conventional content de-
livery paradigm. Specifically, we present how today’s
content delivery is affected by delivery contexts and
users as follows:
C-1 Content delivery is context-aware: After produced

by the content provider or a user, a content (e.g., an
image upload by a user) will be synthesized (e.g.,
composed in a webpage) with other related contents
(e.g., blogs) to be finally provided to a user in a
given context. Our measurement studies will show
that it becomes a norm rather than an exception,
that contents are synthesized differently in different
contexts.

C-2 Content delivery is user-aware: Rather than the
passive receivers of the contents, today, users be-
come important content producers [8] and propaga-
tors [9]. User activity and social propagation have
greatly changed how contents are consumed by peo-
ple [34] — users are involved in the content delivery
from content generation to content distribution.

The idea of CPCDN can significantly improve con-
ventional CDNs for context-aware and social content
delivery. If CDNs can collect information about users
and contexts from CPs, they will be able to carry out the
strategies proposed in this paper for improving content
delivery as well. However, such incorporation is some-
times inadequate since the user and context information



is usually protected by CPs. Thus, in this paper, we only
focus on a CPCDN framework that CP and CDN are
closely coupled, in which user and context information
can be used in a realtime manner.

2.2 CPCDN Framework
Since most of the context and user information is only
available to the content providers in the content flow,
it is clear that CP can develop intelligent strategies out
of the big amount of data to guide content delivery.
Being aware of i) how contents are generated and ag-
gregated, ii) how they are processed and synthesized in
different contexts, and iii) how they propagate among
social-networked users, the CPCDN is able to utilize
the context intelligence and user intelligence to not only
optimize the under-layer content delivery strategies, but
also improve the understanding of upper-layer content
characteristics, as illustrated in Fig. 1.

However, in a CPCDN design, we still need to address
the new challenges arisen as follows: (1) How to define
the delivery contexts and make use of them; (2) How
to measure the impact of users on content delivery,
and utilize information from online social networks to
improve content delivery. In particular, we have to tackle
to following research problems to realize CPCDN in a
large-scale and dynamically-evolving system:

• Mining the content delivery contexts, e.g., identify-
ing a content item’s importance based on how it is
requested by users;

• Improving content delivery based on the crowd
patterns from users’ actions on contents;

• Using the social influence for better
social/socialized content delivery.

To address these problems, we propose CPCDN delivery
strategies based on context and user intelligences. On
one hand, we design the content replication and the
user request schedule strategies by knowing the impor-
tance of contents when they are delivered in different
contexts; on the other hand, we let the CPCDN predict
the popularity of contents that are shared among social-
networked users, for better network resource allocation.

An objective of this paper is to show that there are
indeed potential benefits in exploiting CP-level intel-
ligence in content delivery. Next, we will present our
measurement studies shedding insights on potential of
a CPCDN.

3 A TRACE-DRIVEN MEASUREMENT STUDY
OF CPCDN
In this section, to establish a concrete understanding on
the motivations behind the current move to CPCDN,
we present a large-scale measurement study on popular
services of one of the largest Chinese content providers,
Tencent, which provides popular online content services
including web services, online social network services,
and online video streaming.

3.1 Representative Content Services

We have used the following representative content ser-
vices to perform measurement studies of a CPCDN.

WWW service: Since invented over 20 years ago,
the great success of WWW has made web objects the
dominant form of content delivery, and it is becoming
a new trend that webpages are dynamically generated
[6], i.e., the same content component (component for
short) can be composed into different webpages, while a
webpage contains up to hundreds of multimedia compo-
nents. These components are dynamically organized and
delivered in different contexts, e.g., the webpage under
the same URL composes different components when it
is accessed by different users at different times.

Online social network service: The online social net-
work service has been increasingly popular in recent
years [17]. In an online social network, contents are
generated by users and propagate through the social
connections [20]. It has changed content delivery in a
sense that social relationship and user behavior will
influence which contents will be viewed by which users.

Online video streaming: The traffic of online video
services still dominates the Internet bandwidth. HTTP-
based streaming (e.g., DASH) that takes full advantage
of the CDN deployment, has emerged as a promising
approach to provide high quality-of-experience to Inter-
net users. In such video streaming, videos are served as
“chunks” by CDNs. How to effectively handle context-
and social-aware video content delivery is a challenge to
today’s CDNs.

3.2 Measurement Setup

We conduct a trace-driven measurement study of content
delivery for the above content services in Tencent, which
has deployed tens of thousands of servers spanning
major ISPs in China including China Telecom, China
Unicom and China Mobile, and several overseas ISPs.
In 2012, Tencent CPCDN serves over 70% of the whole
company’s content delivery traffic. Our measurement
studies are based on a set of different types of traces
provided by Tencent, covering Sec. 3.1.

▷ To study the context awareness in content delivery
(i.e., C-1 in Sec. 2), we use traces from WWW services in
Tencent. In particular, we collected traces from Tencent’s
portal website [3], which provides webpages with a
variety of multimedia contents updated frequently. Our
traces contain the structures of these webpages (i.e.,
how a webpage is composed with different components)
at different times. Besides, to show that knowing the
delivery context can improve content delivery strategies,
we have also collected records of over 3.39 billion TCP
connections from peering servers located at 55 regions in
May 2013. These TCP connections were established for
users to download contents with sizes varying from tens
of bytes to 4.8 GB. Each of the trace items contains the
following information: the timestamp indicating when a
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Fig. 1. CPCDN powered by intelligences mined from the new content flow.

TCP connection was established, the client IP, the num-
ber of downloaded bytes and the connection duration.
▷ To study the user awareness in content delivery

(i.e., C-2 in Sec. 2), we have obtained traces from Ten-
cent Weibo [2], a Twitter-like microblogging system in
China. Some of the microblogs record how contents
(e.g., videos) are shared between users, which can be
used to study how users affect content delivery. We
obtained Weibo traces containing the microblog items,
including ID, name, IP address of the publisher, time
stamp when the microblog is posted, IDs of the parent
and root microbloggers if it is a re-post, and content of
the microblog.

Next, we present the observations made.

3.3 Dynamic Delivery Context

It is of importance to provide swift webpage viewing
experience to users, which is mainly determined by
the delay between the time a user requests a webpage
and the time the webpage is successfully rendered by
the user’s browser [37]. A large fraction of webpages
today contain hundreds of components (including not
only basic HTML codes, but also multimedia objects like
images), which take a lot of time to download. In January
2013, the webpage of Tencent portal website contained
over 140 components, whose size varied from 29 bytes
to 168 KB, with an average size of 13.8 KB. Content
providers dynamically compose dynamic components
into a highly customized context, e.g., the webpages
of Tencent portal are dynamically generated for indi-
viduals according to their device, preference, time and
geo-location information. Semantic information, timeli-
ness, interconnections and other impact factors can be
considered to infer the content importance for specific
application scenarios like general webpages, social net-
works, and online video streaming networks, e.g., the
text information can be used to infer if the component is
related to what the user has requested. It is challenging

for traditional CDNs to deliver components efficiently,
without knowing their importance to user experience in
different contexts.

3.3.1 Heterogeneous Component Importance
We study the importance of components in different con-
texts. In our study, The context is inferred from a content
component’s size and position in webpages — a simple
yet efficient context inference. An importance level of
a component c in webpage w is calculated as follows
I(c, w) = z(c, w)×t(c, w), where z(c, w) is the normalized
size of component c in webpage w, and t(c, w) is the
normalized height of the component c in webpage w, as
illustrated in Fig. 2(a). The intuition of the importance
level is that a component has a larger importance level
if it is more visually important to the content provider
and viewer. Though our approach is not limited to this
definition, we present observations made based on this
simple calculation. In our measurement, we have made
the following observations of component importance:
(1) Components in the same webpage have different
importance levels. Only a few of them have a very large
importance level, and their delivery performance deter-
mines the quality of experience for the webpage viewer.
(2) The same component has different importance levels
when it is composed in different webpages. It is clear
that the same component has distinct importance level
in different webpages, meaning that its delivery has a
dynamic priority for different contexts.

3.3.2 Potential of Component Prioritization
Since components are timely generated, CPCDN which
knows the delivery contexts can improve the content
delivery by prioritize the content delivery of different
components. The prioritization of components enables
the CPCDN to allow users to be redirected to download
important contents from fast peering servers.

Based on our TCP traces of the Tencent CDN peering
servers, we are able to measure the time for a user to
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download different components in webpages. In Fig. 3,
the two curves are the render time (i.e., the delivery time
of the first 30% components in position), and the delivery
time of the top 30% components that are downloaded
faster than others, respectively. We observe that the page
render time is 2 − 10 times larger than the download
time of the top 30% components in the page. The reason
is that the browser fails to render a page due to the
absence of some components un-downloaded (e.g., the
framework HTML, the CSS style file, and critical multi-
media contents). This observation indicates that we can
reduce the page render time by strategically prioritizing
the delivery of important contents.

In a CDN system, servers are deployed at different
geographic locations and in different ISPs. As a result,
the network performance of different servers can be
different. Table 1 illustrates the average download speed
(Kbps) experienced by the same group of users, when
they downloaded from 7 CDN sites in Tencent CPCDN
in one day. We observe that the average download speed
varies from 250 Kbps to over 500 Kbps when users
download from servers deployed in different sites. The
observation indicates that the performance of peering
servers is heterogeneous to a user — when a content
is downloaded from different servers, the delivery delay
varies significantly.

We further demonstrate users’ preference of different

TABLE 1
Average download speed of peering servers deployed in

different regions and ISPs on May 4, 2013 (Kbps).

Beijing Zhejiang Guangdong Shaanxi
Telecom 366.8 281.4 338.7 249.4
Unicom 512.2 – 462.8 –
Mobile – 491.8 – –
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Fig. 5. Comparison of average download speeds of users
downloading from different peering servers (May 4, 2013).

peering servers. Based on the TCP traces of the peering
servers, we compare the download speeds of about 150
users who downloaded from different peering servers
in the same 10 minutes on May 4, 2013. In Fig. 5,
each sample is the average download speed of a user
downloading from a peering server deployed in Shang-
hai, versus the average download speed of the same
user downloading from a peering server in Shenzhen,
both in the same ISP. We observe that for over 79% of
the users, their download speeds differ over 2 times
when they download from servers located at different
regions, indicating that users have different preferences
of peering servers.

In summary, we observe that web content delivery
has the following characteristics that suggest a context-
aware design: (1) Components are delivered in dynamic
contexts, and have different importance to users when
composed in different contexts; (2) Users have differ-
ent preference of peering servers in a CDN, i.e., they
download at different speeds from different servers; (3)
Since components are timely composed into different
contexts, CPCDN which knows the context information
and controls user redirection is able to proactively pri-
oritize component delivery. We will present the detailed
design in Sec. 4.

3.4 Delivery Influenced by Users

Conventional content delivery is also oblivious to the
impact of social propagation of contents, i.e., how down-
loads are driven by users’ resharing contents in the
online social network. Content delivery can be highly
influenced by the social relationship (e.g., friending in
Facebook, following in Twitter, etc.) and social behavior
(e.g., sharing, commenting, etc.) [10]. Using such social



information from the online social network can fun-
damentally improve the delivery for social/socialized
contents.

3.4.1 Crowd Pattern

Conventional CDN serves contents in a passive way,
i.e., no historical information is used by the CDN when
serving a content request. This is not efficient for to-
day’s content delivery, where users show predictable
preference of contents. In today’s content delivery, there
exists interest patterns between a group of users and a
cluster of contents, i.e., the crowd pattern. To illustrate
the crowd pattern and its potential benefit in content
delivery, we perform a case study on how users share
videos in Tencent Weibo, in November 2011. We sum-
marize the user-content activity information into a matrix
(referred to as a user-content matrix in this paper) — an
entry 1 (resp., 0) indicates that the corresponding content
is (resp., is not) shared by the user. We have applied a
co-clustering algorithm [15] to the matrix formed by 500
users randomly selected and the contents these users
shared. The co-clustering results are illustrated in Fig. 4.
Each yellow/light sample indicates that a content has
been shared by a particular user. We observe that there
are several user-content “clusters”, where users in the
same user cluster tend to request the contents in the
corresponding content cluster. This observation suggests
that users can be clustered into groups with similar
interests. Furthermore, the black/dark samples are the
shares issued by the same 500 users in 1 day, a week
later after the co-clustering in the first round. We observe
that most of the new samples are scattered in the ranges
of the clusters based on the previous user-content co-
clustering.

It is clear that there exists crowd patterns in today’s
content sharing. Knowing users’ activities to contents,
CPCDN is able to predict users’ preference by mining
these activities for efficient content replication.

3.4.2 Characteristics of Social Propagation

Next, we present the characteristics of social propaga-
tion, and that such characteristics are affecting content
delivery.
▷ The life span of social contents is affected by user

behaviors. Fig. 6 illustrates the life span of contents
shared on Tencent Weibo. Each sample in this figure
represents the number of reshares of a content versus
the time lag between when the content is published
(on Tencent Weibo) and when the content is reshared.
We observe that most of the reshares are issued in
early hours after a video is published, indicating that
the newly published/shared contents are the ones that
attract most of the users. The reason is that in today’s on-
line sharing paradigm, contents are not directly exposed
to users to browse, instead, they reach users through
social connections, who are more likely to pay attention
to the most recent information [9].
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▷ Change of popularity distribution of social contents.
Fig. 7 illustrates how a content will attract people when
it is shared by different users. In this experiment, the
same video can be shared by different people to the
online social network from time to time. Each sample
in this figure represents the number of people who are
attracted to reshare versus the index of the user who
initially shares the content. We observe that when the
same content is shared by different users, the number of
receivers varies significantly.

As a matter of fact, it is no longer easy to perceive
the content popularity in the traditional CDN paradigm,
e.g., when the CDN notices that a content is becoming
popular, it replicates the content to more peering servers.
The effectiveness of the traditional strategy is based on
the assumption that the popularity pattern of a content
lasts for a relatively long time. However, this assumption
is no longer true — the life span of contents is short and
the popularity is dynamically affected by people in the
online social network.

3.4.3 Social Popularity
Next, we present that it is possible to use the social
influence (e.g., how many viewers can be attracted when
a user shares a particular content in the online social
network) to learn the social content popularity.

▷ Influence and social connections. We first study the
correlation between a user’s social influence and her
social connections. Fig. 8 illustrates the number of all
reshares attracted by a user versus the number of her
followers. We observe that there is a general trend that a
user with more followers is able to attract more reshares,
when sampling the users with a follower number larger
than 50, which is a typical number for average users in
a social-network system [18].

▷ Global influence vs. local influence. The global in-
fluence (i.e., the number of both direct and indirect
followers/friends that are attracted to join a particular
content propagation) can be inferred from their local
influence (i.e., the number of only the direct follow-
ers/friends attracted by a social propagation). Fig. 9
illustrates the global influence versus the local influence
of 1, 226 influential users randomly selected from the
Weibo traces. Each sample in this figure represents the
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global influence of a user versus the local influence of the
user. We observe a relatively strong correlation between
the two influences, indicating a local influence can well
estimate the global influence of a content.

To summarize, how social contents are downloaded
can be highly affected by how contents are shared by
people and propagating in the online social network.
In our study, we observe that information from a social
network can be used to improve the content delivery in
the CPCDN design.

4 USING CONTEXT AND USER INFORMATION
FOR CONTENT DELIVERY IN CPCDN
To further investigate the advantage of a CPCDN design,
in this section, we present how the CPCDN paradigm
can improve the content delivery, with a few content
delivery examples using design principles summarized
from our measurements.

4.1 Context-Aware Request Schedule
In this subsection, we present the server redirection and
request queuing strategies based on the content context.

4.1.1 Request Schedule based on Component Impor-
tance
According to our measurement studies, contents have
heterogeneous importance when they are delivered in
different context. In the context of web content delivery,
an importance index vp(c) can be defined to represent
the important level of content c when it is composed in
webpage p (context). We assume that the size, position
available to the CPCDN can be used for the calculation of
vp(c). A component with a larger vp(c) will be considered
more important than a component with a smaller vp(c).
Notice that different types of semantic information can
be used to infer the content importance for different
applications.

4.1.2 Context-Aware Bottleneck Set
A CPCDN has the content and user information (e.g.,
content composition and user profile), and can monitor
the network information (i.e., the delay and bandwidth

between peering servers and users), making context-
aware content delivery possible. CPCDN allows users
to simultaneously download all the components in the
webpages, and determines the priority of different con-
tent components based on the following information:
(1) CP information. We assume a user u is requesting a
webpage containing a set of content components G =
{c1, c2, . . . , cn}, where ci is the ith content component in
this webpage; (2) CDN information. Let E(c) denote the
set of servers that have replicated content c, i.e., servers
in E(c) are the peering servers of content c.

A bottleneck component set which contains the com-
ponents most likely to affect the user experience is used
for the prioritization. Based on our measurement study,
we construct the bottleneck content component set D
according to the content importance index, as follows:

1) Let D = {};
2) Add critical components from G to D, including the

framework HTML, JS and CSS, etc.;
3) Add contents with an importance index vp(c) ≥

θ, where θ is a parameter to select the critical
components. θ is dynamically changed according
to the composition of the webpages, and in our
experiments, θ is selected to include the content
components on the first screen of the web pages.

Requests for contents in D are then the critical ones to
be delivered to users requesting a particular webpage.

4.1.3 Strategies of Server Redirection and Requesting
Queuing

Being aware of the bottleneck contents requested by
different users, the CPCDN is able to strategically sched-
ule these requests. Our design of the context-aware
schedule includes the following strategies: (1) the server
redirection and (2) the request queuing.

▷ Server redirection is the strategy to choose a peering
server to respond to a user’s request when there are
multiple candidate servers. In a traditional CDN, peering
servers are selected without considering the context in
which the contents are delivered, e.g., the GSLB (Global
Server Load Balance [19]) which is typically used to redi-
rect user requests, only considers the load balance of the
servers. As a result, requests for contents with different
importance levels are served using the same approach.
In a CPCDN paradigm, by inferring the importance of
the content components, users’ preference of different
servers, and the servers’ load (Sec. 3), we can strategi-
cally assign “fast” servers to respond to the requests for
bottleneck contents in D (recall that a content c is served
by multiple candidate servers in E(c)), and let the “slow”
servers serve requests for less important contents.

▷ Request queuing is the other strategy used to de-
termine which requests are served first at a particular
peering server. In our design, a CPCDN peering server
always prioritizes the critical requests in D over the other
requests in G − D received. To let the queuing strategy
also perform in a fair manner, the prioritization only



adjusts the queue in the same timeslot — QT (referred
to as a timeslot queue), which is the priority queue where
requests received in timeslot T are stored, and the global
request queue at the peering server is the sequence of
multiple timeslot queues. Since the requests are only
prioritized within a timeslot queue, the requests in G−D
can be finally served within a given time threshold
determined by the timeslot length. Assume the original
expected waiting time for a request to be served is x0,
then the waiting time for bottleneck components then
can be reduce by (1−σ)x0

K , where K is the number of
timeslot queues maintained by the peering server, and
σ is the expected fraction of bottleneck contents. The
rationale is that a bottleneck content can be prioritized
over other contents within the same timeslot queue. The
system can choose K to tradeoff effectiveness of deliv-
ering bottleneck components and fairness of delivering
other contents.

4.2 Crowd-Based Content Replication

Next, we present our replication design in CPCDN,
using the intelligence of crowd patterns. In particular,
we perform content replication across peering servers
based on the user group preference derived from the co-
clustering.

4.2.1 User-Content Relevance based on Co-clustering

According to the observed crowd patterns, the key to
predict a user’s preference is to infer the preference of
her user group. In particular, users or contents that are
clustered into the same group share similar properties
[16]. Based on the user-content matrix M generated
using the historical request records, we co-cluster users
and contents. Using the x- and y-indices of user activities
in the user-content matrix in Sec. 3.4.1 as their 2D
locations, we can calculated the Euclid distance between
these activities. We use a distance threshold to identify
which cluster a user-content activity belongs to, i.e., an
activity belongs to a cluster if the distance between the
activity and the center of the cluster (an output of the
co-clustering algorithm) is smaller than the threshold.
This threshold can be determined by a content provider
according to its content services/types, or automatically
learnt from classification algorithms. Let U denote a set
of the corresponding users clustered and C denote the set
of contents clustered in the same group. In our design,
we use a cluster number that Tencent uses in its social
network service for the number of types of celebrities
[7].

Based on our co-clustering results, we define a user-
content relevance index euc which represents the pos-
sibility level for user u to request content c in the
future according to the clustering, which is calculated
as follows:

euc =

∑
i∈U Mic

∑
j∈C Muj

|U||C|
. (1)

A large euc indicates that user u is likely to request
content c according to the historical crowd patterns. The
rationale is that a large euc indicates that (1) the user
has already requested more contents in the same cluster
which content c belongs to, and (2) the content has
already been frequently requested by users in the same
group. Note that euc is not the exact probability for user
u to request c, but is the index for ranking the contents.

4.2.2 Replication based on User-Content Relevance
Based on the relevance information, the CPCDN is able
to proactively replicate contents to servers that are close
to the users. We calculate a regional replication vector
for content c based on the user locations, which can
be inferred from their profiles hosted by the CPCDN.
The regional replication vector is calculated as follows:
Vc = {vc1, vc2, . . . , vcR}, where vcr =

∑
u|r(u)=r euc (r(u)

denotes the region of user u). The CPCDN replicates a
content to a new region that will incur a high request
level. Based on the above knowledge, we design the
heuristic Algorithm 1 to perform the replication for
the newly published contents, which are the ones a
traditional CDN has no or little popularity information
to handle.

This algorithm is carried out periodically, so that a
content can be replicated to more and more regions, if
it keeps the popularity. In this algorithm, R is the set of
the candidate replications (each entry in R is a pair (c, r)
indicating content c is to be replicated to region r), A is
the set of all contents that are published in the recent
timeslot (a CPCDN is aware of all the newly published
contents). The matrix M is constructed by retrieving the
request records of users who have already requested
contents in A.

We push all the content-region pairs into the candidate
set R, and rank them according to the replication index
vcr — a larger vcr indicates that c should be replicated to
region r where more users are requesting it. The replica-
tion is iteratively performed until the server replication
load is exceeded.

4.3 Influence-Based Video Popularity Prediction
We present how CPCDN utilizes the user intelligence
in content delivery, with respect to the social influence.
Fig. 10 illustrates the general idea of utilizing the user in-
telligence for content delivery. After contents are shared
in the online social network among users, their popu-
larity can be predicted from the social relationship and
social activity. In particular, CPCDN is able to perform
bandwidth reservation for social contents that become
dramatically popular due to influential people sharing
them. Our design utilizes both the traditional popularity
and the social influential information for the content
popularity prediction in the social content delivery.

▷ Traditional content popularity. In our design, the
traditional content popularity (i.e., the popularity of a
content perceived in traditional platforms) is important



Algorithm 1 Crowd-pattern based replication.
1: procedure REPLICATION
2: Candidate replication set R = Φ
3: Co-cluster the user-content matrix M involving

the contents in A
4: Update the user-content relevance index euc us-

ing Eq. 1
5: for all c ∈ A do
6: Update Vc using the relevance index
7: Push all (c, r) into R
8: end for
9: Rank R in vcr’s descending order

10: for all (c, r) in the ranked R do
11: Content c is replicated at r
12: Update regional server load
13: break if servers are fully replicated
14: end for
15: end procedure

Content delivery Online social 

network

User mining:

(1) Social relationship

(2) Social activity

U U

U U

Prediction: 

Popularity distribution
Video

Image

Blogs

News

Fig. 10. Guiding social content delivery in CPCDN using
predicted popularity based on the user intelligence.

because the online contents can be distributed by not
only the new online social network, but also traditional
approaches (e.g., centralized content portal). As a result,
the number of requests still reflects the content’s intrinsic
popularity level.
▷ Social influential index. On the other hand, after a

content is distributed along the social connections. The
popularity of a content is highly affected by users. We
incorporate the social influence of users into our popu-
larity inference. Our measurement studies have shown
that when contents are provided to users in the online
social network, user influence can dramatically affect
the content popularity. According to our measurement
insights, we estimate the influence of users using the
knowledge of their social connections and their direct
influence level.

Social popularity index. In our design, we make the most
intuitive combination of the two aspects. We design a
social popularity index of a content c as follows:

x(c) = αp(c) + (1− α)
∑

u∈S(c)

(f(u)ρ(u)),

where p(c) is the traditional popularity of content c,
which is calculated as the number of recent viewers of
content c, f(u) is the follower number of user u, ρ(u)
is the average resharing ratio of user u, i.e., the average
fraction of followers that have shared the contents posted

by user u in the recent historical time window, and S(c)
is the set of users who have shared content c. A content
with a large x(c) is likely to attract more requests in the
near future.

The rationale is that a content with a large social
popularity index is either very popular in the recent time
window, or has been shared by many influential people.
In our experiments, α is learnt from the traces using the
collected social factors and the real content popularity in
a recent time window: α is assigned a larger value for
contents with a more “inherent popularity”, i.e., the cor-
relation between content popularity and social influence
is weak. In our experiments, we use the fraction of the
influenced users (i.e., users whose friends are already
resharers of a content) to represent the inference level of
a particular content.

5 MEASUREMENT-BASED PERFORMANCE
EVALUATION

In this section, we present the measurement-based eval-
uation of our intuitive designs in Sec. 4, using simulation
experiments, to demonstrate the potential of CPCDN.

5.1 Experiment Setup
CPCDN peering servers. In our simulation, 50 peering
servers are deployed at different sites (a region-ISP pair)
to serve the contents — the number of replicas of each
content is proportional to its popularity calculated as the
number of historical requests. In our experiments, we
randomly set the capacities of the servers at different
levels.

User activity. 2, 000 users are selected from our traces,
and we randomly assign download speeds from the
TCP records to simulate their download speeds from the
peering servers. We use the records in the traces to gen-
erate our strategies, including the context-aware request
schedules, the crowd-based replication and the social
popularity prediction, assuming that such information
is available to a CPCDN. Users’ activities are driven by
the traces as well, which will be presented in detail in
the following experiments.

5.2 Performance of Context-Aware Request Sched-
ule
We measure how fast users can receive 1, 000 webpages
under the Tencent portal website, which share com-
mon content components including images, texts and
HTML/JS framework codes. We use the first-screen load
delay as a metric, which is the time a user spends on
receiving the content components to be displayed on the
first screen of the browser. Prior studies show that typical
web browsing behaviors demonstrate that it is common
for users to move across multiple webpages in one
browsing “session”, and the first-screen load delay has
a significant impact on the quality of experience in web
browsing. For instance, in 2009 Amazon demonstrated
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Fig. 11. Server load under different request schedule

that every 100 milliseconds of latency which occurred
on their website resulted in a 1% loss in sales, because
of impatient users leaving the webpages.

In our experiments, we set the window size to be
1024x768. We simulate 10 million webpage requests,
each of which randomly selects one among the 1, 000
webpages. Multiple connections are created to download
the components composed in a webpage simultaneously.

First, we evaluate server load balance improved by the
request scheduling. We compare our bottleneck-based
balancing with a best-effort scheme, where users are
always served by the best-bandwidth servers inferred
from historical information (e.g., the GLSB generally
gives the server list to users using the location informa-
tion). As illustrated in Fig. 11, each sample represents the
server load or server capacity versus the server index.
We observe that our CPCDN strategy can schedule
the requests to servers well according to their capacity
and loads, so that servers will not be overwhelmed by
the requests; while in the best-effort scheme, since the
schedule is based on static information, users can be
redirected to servers that are currently heavily loaded.

Next, we evaluate first-screen load delay reduced by
the context-aware server redirection. We compare it with
a load-based server redirection, where requests for con-
tents in a webpage are redirected to a server with the
lowest load currently. In our experiments, each webpage
contains 20 bottleneck content components, and the av-
erage number of replicas of a content component is 3.
The speed of users downloading contents from these
servers is set according to the TCP traces. We generate
10, 000 requests from among 2, 000 users (each user will
randomly select 5 webpages to request). As illustrated
in Fig. 12(a), each sample represents the first-screen load
delay versus the index of the request. We observe that
our server redirection strategy can significantly reduce
the first-screen load delay — for a large fraction of
the webpage views, the first-screen load delay can be
reduced by over 90%. The reason is that our strategy is
designed to match the importance of contents in different
contexts with the performance of peering servers to a
user.

We also compare our prioritization strategy imple-
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(b) Request queuing delay under dif-
ferent queue schemes.

Fig. 12. Evaluation of the context-aware server redirec-
tion and request queuing.

mented on the servers, with the conventional best-effort
scheme, where requests are only queued according to
their arrival time stamps. Fig. 12(b) illustrates the web-
page delivery time versus the index of the webpage
requests. We observe that our context-aware queuing
strategy based on the context information significantly
reduces the webpage delivery time, compared with the
best-effort strategy. An average of 50% reduction of the
queueing delay can be achieved by our prioritization,
indicating a large improvement that can be adopted by
the web server implementation.

5.3 Performance of Crowd-Based Replication
The user ID and content ID in the traces provided by
Tencent allow us to track which contents a user has re-
quested. Our evaluation is based on traces collected from
Tencent Weibo in 10 days — the full matrix recording
the user-content requests contains 2.1% of “1” entries. In
our experiments, by adjusting the number of days/hours
of traces for the matrix co-clustering, we are able to
generate different sparsities, e.g., choosing the records of
the most recent 1 day generates a matrix with a sparsity
0.2%.

We use the user requests on the last day as the ground
truth, and vary the length of the previous time slot
to change the sparsity of the matrix. Fig. 13 compares
the crowd-based replication with a popularity-based
scheme, in which contents are replicated only according
to their historical popularity. The metric is the local
download fraction, i.e., the fraction of users that can
download from servers located in their own regions. The
rationale is that if a user downloads from a local server,
a small delay and large bandwidth is expected. Each
sample in this figure represents the fraction of requests
served by the local servers versus the number of regions
each content can be replicated to. We observe that for
the typical social contents, their local download fraction
achieved by our crowd-based replication outperforms
the popularity-based approach by up to 50%, especially
when the contents are not fully replicated (i.e., replicated
at all the peering servers). The reason is that crowd
patterns reflect the potential users of contents that have
short popularity. In today’s content replications, only
the most popular content items can be fully-replicated
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the number of top popular-
ity social contents.

according to the administrators’ operations, indicating
that our design has a significant improvement to the
conventional content replication strategies for regular
contents.

5.4 Performance of Social Content Popularity Pre-
diction

Finally, we evaluate the influence-based content popu-
larity prediction. Our evaluation uses the dataset with
300, 000 videos shared by users in Tencent Weibo in 10
days. The traces are divided into 5 groups, each of which
contains the traces of 2 consecutive days — traces of the
first days are used as training dataset, and the traces of
the second days are used as ground truth. In particular,
we use how users reshare contents and their follower
numbers in the first day to calculate the content social
popularity index, according to our design in Sec. 4.3.
Contents are ranked in the social popularity index’s
descending order, and compared with the index of the
ground truth.

We compare our ranking strategy with a popularity-
based scheme, in which contents are ranked only ac-
cording to their traditional popularity (i.e., number of
views) in the previous timeslot. We calculate the fraction
of overlapped contents between the true rank and the
predicted ranks by both strategies as the performance
metric — a larger fraction indicates more accurate pre-
diction. In Fig. 14, each sample represents the fraction
of overlapped contents versus the number of the most
popular contents. We observe that our ranking based
on the social influence works much better than the
popularity-based scheme, especially for the popular con-
tents. An improvement of 3 times can be achieved when
the number of the most popular contents is around 100,
indicating that our prediction can detect flash crowds of
social contents, which can be common in online social
networks [32].

6 RELATED WORK

6.1 Traditional Content Delivery

Originally, content delivery networks were proposed
to address the problem that Internet service quality

perceived by customers were largely unpredictable and
unsatisfactory when contents are only placed at one
original server. By caching the contents to edge peering
points, users can download from servers that are close
to them, achieving a better download experience with
small propagation delay and large bandwidth [14]. Ager
et al. [4] have studied the content hosting in such edge
content delivery infrastructures.

There are a lot of CDNs for a content provider to
choose to deliver its contents. The dilemma of selecting
one between the multiple CDN providers is that they
have different strengths and weaknesses [1], e.g., they
have deployed servers at different geographical regions,
covering different user groups [28]. A practice today’s
content providers use is to employ multi-CDN [25] (i.e.,
multiple traditional CDNs) or hybrid-CDN [38] (i.e.,
peer-assisted CDN) to deliver their contents — users are
redirected to different CDNs according to a set of rules.
This however has not solved the fundamental problem,
i.e., how can the CP-level information that is increasingly
changing the content delivery be used by the delivery
systems?

Today, contents are dynamically generated [21], so-
cially propagating among social-networked users, and
increasingly attracting popularity in the content eco-
system [8]. It is challenging for a traditional CDN to
provide good service without considering the content
context and user influence in a one-size-fits-all manner.

6.2 New Trends in Content Delivery

First, content delivery can be highly dynamic and per-
sonal. Li et al. [24] have observed that in the video
content delivery, multiple versions of videos have to be
generated for users with different devices to receive the
video contents. Brewington et al. [6] have studied the
webpages and observe that the contents in webpages
are highly dynamical. The context in content delivery
includes not only the contents themselves, but also the
client, server and network requirements [22]. Verbert et
al. [33] have surveyed the adaptive content recommen-
dation according to the user context including where the
content context. In our study, we are focused on the
context information that is particularly owned by the
content provider.

Second, online social network has greatly changed the
content delivery, e.g., the distribution of social contents is
shifted from a “central-edge” manner to an “edge-edge”
manner. Bakshy et al. [5] have studied the social influence
of people in the online social network, and observed that
users can be very influential in the online social network.
Li et al. [23] study the content sharing in the online
social network, and observed the skewed popularity
distribution of contents and the power-law activity of
users. Pujol et al. [29] have designed a social partition
and replication middle-ware where users’ friends’ data
can be co-located in the same server. In our previous
studies [36], [35], we investigated the possibility to infer



users’ preference of contents according to their social
profiles and behaviors, and the way to allocate network
resource at edge CDN servers using social predictions
based on information collected from social networks. In
a CPCDN, the social relationship and social activities of
users allow the new design space to explore how the
make use of the user intelligence for content delivery.

Related works have been studying the content de-
livery and CP-level intelligence in a separate way, i.e.,
content delivery network is optimizing the delivery for
individual contents and individual users requests, with-
out using the upper-layer information including context
and user intelligence. In our study, we are focused on
the CPCDN design space where the upper information
and intelligence can be utilized in content replication,
request scheduling and bandwidth reservation.

7 CONCLUDING REMARKS

CPCDN is based on the idea that CP-level intelligence
can improve the performance of content delivery. Our
measurement studies illustrate the benefits of exploiting
two indispensable intelligences in content delivery: con-
text intelligence and user intelligence. By systematically
exploring the CPCDN design space, we design architec-
ture and algorithms to extract the maximum potential
of CPCDN. In particular, we use the context intelligence
to schedule the component delivery according to their
diverse importance under different contexts, we utilize
the user-content crowd pattern to replicate contents close
to users of potential interests, and furthermore we lever-
age the user-user influence to provision resources for
social contents that are likely to attract flash crowds.
Our measurement-based evaluations demonstrate the
effectiveness of our CPCDN design — as compared
to the conventional CDN approaches as follows: the
webpage load delay is reduced by context-aware request
schedule, the local download improvement is achieved
when the crowd patterns are considered in content repli-
cation; and a significant improvement is achieved in the
prediction of popular social contents that attract flash
crowds. Our results demonstrate the potential of CPCDN
in enhancing content delivery performance for today’s
online services.

ACKNOWLEDGMENT
This work is supported in part by the National Basic Research Program
of China (973) under Grant No. 2011CB302206, the National Natural
Science Foundation of China under Grant No. 61210008, 61272231 and
61402247, SZSTI under Grant No. JCYJ20140417115840259, the research
fund of Tsinghua-Tencent Joint Laboratory for Internet Innovation
Technology, Beijing Key Laboratory of Networked Multimedia, and
the University Grants Committee of the Hong Kong Special Adminis-
trative Region, China (General Research Fund Project No. 14201014).

REFERENCES

[1] CDN Expert Online. http://cdnexpertonline.com/node/45.
[2] Tencent Weibo. http://t.qq.com/.
[3] Tencent Portal Website. http://www.qq.com.
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