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ABSTRACT
Microgrids represent an emerging paradigm of future electric
power systems that can utilize both distributed and central-
ized generations. Two recent trends in microgrids are the
integration of local renewable energy sources (such as wind
farms) and the use of co-generation (i.e., to supply both
electricity and heat). However, these trends also bring un-
precedented challenges to the design of intelligent control
strategies for microgrids. Traditional generation schedul-
ing paradigms rely on perfect prediction of future electricity
supply and demand. They are no longer applicable to micro-
grids with unpredictable renewable energy supply and with
co-generation (that needs to consider both electricity and
heat demand). In this paper, we study online algorithms
for the microgrid generation scheduling problem with inter-
mittent renewable energy sources and co-generation, with
the goal of maximizing the cost-savings with local genera-
tion. Based on the insights from the structure of the offline
optimal solution, we propose a class of competitive online al-
gorithms, called CHASE (Competitive Heuristic Algorithm
for Scheduling Energy-generation), that track the offline op-
timal in an online fashion. Under typical settings, we show
that CHASE achieves the best competitive ratio among all
deterministic online algorithms, and the ratio is no larger
than a small constant 3. We also extend our algorithms to
intelligently leverage on limited prediction of the future, such
as near-term demand or wind forecast. By extensive empir-
ical evaluations using real-world traces, we show that our
proposed algorithms can achieve near offline-optimal perfor-
mance. In a representative scenario, CHASE leads to around
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20% cost reduction with no future look-ahead, and the cost
reduction increases with the future look-ahead window.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques; Design studies; F.1.2 [Modes of Computation]:
Online computation; I.2.8 [Problem Solving, Control
Methods, and Search]: Scheduling

General Terms
Algorithms, Performance

Keywords
Microgrids; Online Algorithm; Energy Generation Schedul-
ing; Combined Heat and Power Generation

1. INTRODUCTION
Microgrid is a distributed electric power system that can

autonomously co-ordinate local generations and demands in
a dynamic manner [23]. Illustrated in Fig. 1, modern micro-
grids often consist of distributed renewable energy genera-
tions (e.g., wind farms) and co-generation technology (e.g.,
supplying both electricity and heat locally). Microgrids can
operate in either grid-connected mode or islanded mode.
There have been worldwide deployments of pilot microgrids,
such as the US, Japan, Greece and Germany [7].
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Figure 1: An illustration of a typical microgrid.

Microgrids are more robust and cost-effective than tra-
ditional approach of centralized grids. They represent an



emerging paradigm of future electric power systems [30] that
address the following two critical challenges.

Power Reliability. Providing reliable and quality power
is critical both socially and economically. In the US alone,
while the electric power system is 99.97% reliable, each year
the economic loss due to power outages is at least $150
billion [33]. However, enhancing power reliability across a
large-scale power grid is very challenging [12]. With local
generation, microgrids can supply energy locally as needed,
effectively alleviating the negative effects of power outages.

Integration with Renewable Energy. The growing envi-
ronmental awareness and government directives lead to the
increasing penetration of renewable energy. For example,
the US aims at 20% wind energy penetration by 2030 to
“de-carbonize” the power system. Denmark targets at 50%
wind generation by 2025. However, incorporating a signif-
icant portion of intermittent renewable energy poses great
challenges to grid stability, which requires a new thinking of
how the grid should operate [40]. In traditional centralized
grids, the actual locations of conventional energy genera-
tion, renewable energy generation (e.g., wind farms), and
energy consumption are usually distant from each other.
Thus, the need to coordinate conventional energy genera-
tion and consumption based on the instantaneous variations
of renewable energy generation leads to challenging stabil-
ity problems. In contrast, in microgrids renewable energy
is generated and consumed in the local distributed network.
Thus, the uncertainty of renewable energy is absorbed lo-
cally, minimizing its negative impact on the stability of the
central transmission networks.

Furthermore, microgrids bring significant economic bene-
fits, especially with the augmentation of combined heat and
power (CHP) generation technology. In traditional grids, a
substantial amount of residual energy after electricity gener-
ation is often wasted. In contrast, in microgrids this residual
energy can be used to supply heat domestically. By simul-
taneously satisfying electricity and heat demand using CHP
generators, microgrids can often be much more economical
than using external electricity supply and separate heat sup-
ply [18].

However, to realize the maximum benefits of microgrids,
intelligent scheduling of both local generation and demand
must be established. Dynamic demand scheduling in re-
sponse to supply condition, also called demand response [33,
11], is one of the useful approaches. But, demand response
alone may be insufficient to compensate the highly volatile
fluctuations of wind generation. Hence, intelligent genera-
tion scheduling, which orchestrates both local and external
generations to satisfy the time-varying energy demand, is in-
dispensable for the viability of microgrids. Such generation-
side scheduling must simultaneously meet two goals. (1) To
maintain grid stability, the aggregate supply from CHP gen-
eration, renewable energy generation, the centralized grid,
and a separate heating system must meet the aggregate elec-
tricity and heat demand. (We do not consider the option of
using energy storage in the paper, e.g., to charge at low-
price periods and to discharge at high-price periods. This is
because for the typical size of microgrids, e.g., a college cam-
pus, energy storage systems with comparable sizes are very
expensive and not widely available.) (2) It is highly desir-
able that the microgrid can coordinate local generation and
external energy procurement to minimize the overall cost of
meeting the energy demand.

We note that a related generation scheduling problem has
been extensively studied for the traditional grids, involving
both Unit Commitment [34] and Economic Dispatch [14],
which we will review in Sec. 6 as related work. In a typical
power plant, the generators are often subject to several oper-
ational constraints. For example, steam turbines have a slow
ramp-up speed. In order to perform generation scheduling,
the utility company usually needs to forecast the demand
first. Based on this forecast, the utility company then solves
an offline problem to schedule different types of generation
sources in order to minimize cost subject to the operational
constraints.

Unfortunately, this classical strategy does not work well
for the microgrids due to the following unique challenges in-
troduced by the renewal energy sources and co-generation.
The first challenge is that microgrids powered by intermit-
tent renewable energy generations will face a significant un-
certainty in energy supply. Because of its smaller scale,
abrupt changes in local weather condition may have a dra-
matic impact that cannot be amortized as in the wider na-
tional scale. In Fig. 2a, we examine one-week traces of elec-
tricity demand for a college in San Francisco [1] and power
output of a nearby wind station [4]. We observe that al-
though the electricity demand has a relative regular pattern
for prediction, the net electricity demand inherits a large de-
gree of variability from the wind generation, casting a chal-
lenge for accurate prediction.
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Figure 2: Electricity demand, heat demand and wind generation
in a week. In (a), the net demand is computed by subtracting
the wind generation from the electricity demand.

Secondly, co-generation brings a new dimension of un-
certainty in scheduling decisions. Observed from Fig. 2b,
the heat demand exhibits a different stochastic pattern that
adds difficulty to the prediction of overall energy demand.

Due to the above additional variability, traditional energy
generation scheduling based on offline optimization assum-
ing accurate prediction of future supplies and demands can-
not be applied to the microgrid scenarios. On the other
hand, there are also new opportunities. In microgrids there
are usually only 1-2 types of small reciprocate generators
from tens of kilowatts to several megawatts. These genera-
tors are typically gas or diesel powered and can be fired up
with large ramping-up/down level in the order of minutes.
For example, a diesel-based engine can be powered up in 1-5
minutes and has a maximum ramp up/down rate of 40% of
its capacity per minute [41]. The “fast responding”nature of
these local generators opens up opportunities to increase the
frequency of generator on/off scheduling that substantially
changes the design space for energy generation scheduling.

Because of these unique challenges and opportunities, it
remains an open question of how to design effective strate-
gies for scheduling energy generation for microgrids.

1.1 Our Contributions
In this paper, we formulate a general problem of energy

generation scheduling for microgrids. Since both the future



demands and future renewable energy generation are diffi-
cult to predict, we use competitive analysis and study online
algorithms that can perform provably well under arbitrarily
time-varying (and even adversarial) future trajectories of de-
mand and renewable energy generation. Towards this end,
we design a class of simple and effective strategies for energy
generation scheduling named CHASE (in short for Competi-
tive Heuristic Algorithm for Scheduling Energy-generation).
Compared to traditional prediction-based and offline opti-
mization approaches, our online solution has the following
salient benefits. First, CHASE gives an absolute performance
guarantee without the knowledge of supply and demand be-
haviors. This minimizes the impact of inaccurate modeling
and the need for expensive data gathering, and hence im-
proves robustness in microgrid operations. Second, CHASE
works without any assumption on gas/electricity prices and
policy regulations. This provides the grid operators flexi-
bility for operations and policy design without affecting the
energy generation strategies for microgrids.

We summarize the key contributions as follows:

1. In Sec. 3.1.1, we devise an offline optimal algorithm for
a generic formulation of the energy generation schedul-
ing problem that models most microgrid scenarios with
intermittent energy sources and fast-responding gas-
/diesel-based CHP generators. Note that the offline
problem is challenging by itself because it is a mixed in-
teger problem and the objective function values across
different slots are correlated via the startup cost. We
first reveal an elegant structure of the single-generator
problem and exploit it to construct the optimal offline
solution. The structural insights are further general-
ized in Sec. 3.3 to the case with N homogeneous gen-
erators. The optimal offline solution employs a simple
load-dispatching strategy where each generator sepa-
rately solves a partial scheduling problem.

2. In Secs. 3.1.2-3.3, we build upon the structural insights
from the offline solution to design CHASE, a determin-
istic online algorithm for scheduling energy generations
in microgrids. We name our algorithm CHASE be-
cause it tracks the offline optimal solution in an online
fashion. We show that CHASE achieves a competi-
tive ratio of min (3− 2α, 1/α) ≤ 3. In other words,
no matter how the demand, renewable energy gener-
ation and grid price vary, the cost of CHASE without
any future information is guaranteed to be no greater
than min (3− 2α, 1/α) times the offline optimal as-
suming complete future information. Here the con-
stant α = (co + cm/L)/(Pmax + η · cg) ∈ (0, 1] captures
the maximum price discrepancy between using local
generation and external sources to supply energy. We
also prove that the above competitive ratio is the best
possible for any deterministic online algorithm.

3. The above competitive ratio is attained without any
future information of demand and supply. In Sec. 3.2,
we then extend CHASE to intelligently leverage limited
look-ahead information, such as near-term demand or
wind forecast, to further improve its performance. In
particular, CHASE achieves an improved competitive
ratio of min (3− 2 · g(α,ω), 1/α) when it can look into
a future window of size ω. Here, the function g(α, ω) ∈
[α, 1] captures the benefit of looking-ahead and mono-
tonically increases from α to 1 as ω increases. Hence,

the larger the look-ahead window, the better the per-
formance. In Sec. 4, we also extend CHASE to the
case where generators are governed by several addi-
tional operational constraints (e.g., ramping up/down
rates and minimum on/off periods), and derive an up-
per bound for the corresponding competitive ratio.

4. In Sec. 5, by extensive evaluations using real-world
traces, we show that our algorithm CHASE can achieve
satisfactory empirical performance and is robust to
look-ahead error. In particular, a small look-ahead
window is sufficient to achieve near offline-optimal per-
formance. Our offline (resp., online) algorithm achieves
a cost reduction of 22% (resp., 17%) with CHP tech-
nology. The cost reduction is computed in comparison
with the baseline cost achieved by using only the wind
generation, the central grid, and a separate heating
system. The substantial cost reductions show the eco-
nomic benefit of microgrids in addition to its potential
in improving energy reliability. Furthermore, interest-
ingly, deploying a partial local generation capacity that
provides 50% of the peak local demands can achieve
90% of the cost reduction. This provides strong moti-
vation for microgrids to deploy at least a partial local
generation capability to save costs.

Due to space limitations, all proofs are in our technical re-
port [27].

2. PROBLEM FORMULATION

Notation Definition
T The total number of intervals (unit: min)
N The total number of local generators
β The startup cost of local generator ($)
cm The sunk cost per interval of running local

generator ($)
co The incremental operational cost per interval of

running local generator to output an additional
unit of power ($/Watt)

cg The price per unit of heat obtained externally
using natural gas ($/Watt)

Ton The minimum on-time of generator, once it is
turned on

Toff The minimum off-time of generator, once it is
turned off

Rup The maximum ramping-up rate (Watt/min)
Rdw The maximum ramping-down rate (Watt/min)
L The maximum power output of generator (Watt)
η The heat recovery efficiency of co-generation
a(t) The net power demand (Watt)
h(t) The space heating demand (Watt)
p(t) The spot price per unit of power obtained from

the electricity grid (Pmin ≤ p(t) ≤ Pmax)
($/Watt)

σ(t) The joint input at time t: σ(t) � (a(t), h(t), p(t))
yn(t) The on/off status of the i-th local generator (on

as “1” and off as “0”), 1 ≤ n ≤ N
un(t) The power output level when the i-th generator is

on (Watt), 1 ≤ n ≤ N
s(t) The heat level obtained externally by natural gas

(Watt)
v(t) The power level obtained from electricity grid

(Watt)

Note: we use bold symbols to denote vectors, e.g., a � (a(t))Tt=1 .

Brackets indicate the units.

Table 1: Key notations.

We consider a typical scenario where a microgrid orches-
trates different energy generation sources to minimize cost



for satisfying both local electricity and heat demands simul-
taneously, while meeting operational constraints of electric
power system. We will formulate a microgrid cost mini-
mization problem (MCMP) that incorporates intermittent
energy demands, time-varying electricity prices, local gener-
ation capabilities and co-generation.

We define the notations in Table 1. We also define the
acronyms for our problems and algorithms in Table 2.

Acronym Meaning
MCMP Microgrid Cost Minimization Problem
fMCMP MCMP for fast-responding generators
fMCMPs fMCMP with single fast-responding generator
SP A simplified version of fMCMPs

CHASEs The baseline version of CHASE for fMCMPs

CHASEs+ CHASE for fMCMPs

CHASE
lk(ω)
s The baseline version of CHASE for fMCMPs

with look-ahead

CHASE
lk(ω)
s+ CHASE for fMCMPs with look-ahead

CHASElk(ω) CHASE for fMCMP with look-ahead

CHASE
lk(ω)
gen CHASE for MCMP with look-ahead

Table 2: Acronyms for problems and algorithms.

2.1 Model
Intermittent Energy Demands: We consider arbitrary

renewable energy supply (e.g., wind farms). Let the net de-
mand (i.e., the residual electricity demand not balanced by
wind generation) at time t be a(t). Note that we do not rely
on any specific stochastic model of a(t).

External Power from Electricity Grid: The micro-
grid can obtain external electricity supply from the central
grid for unbalanced electricity demand in an on-demand
manner. We let the spot price at time t from electricity
grid be p(t). We assume that Pmin ≤ p(t) ≤ Pmax. Again,
we do not rely on any specific stochastic model on p(t).

Local Generators: The microgrid has N units of homo-
geneous local generators, each having an maximum power
output capacity L. Based on a common generator model [21],
we denote β as the startup cost of turning on a generator.
Startup cost β typically involves the heating up cost (in
order to produce high pressure gas or steam to drive the en-
gine) and the time-amortized additional maintenance costs
resulted from each startup (e.g., fatigue and possible per-
manent damage resulted by stresses during startups)1. We
denote cm as the sunk cost of maintaining a generator in
its active state per unit time, and co as the operational cost
per unit time for an active generator to output an additional
unit of energy. Furthermore, a more realistic model of gen-
erators considers advanced operational constraints:

1. Minimum On/Off Periods: If one generator has been
committed (resp., uncommitted) at time t, it must re-
main committed (resp., uncommitted) until time t +
Ton (resp., t+ Toff ).

2. Ramping-up/down Rates: The incremental power out-

1It is commonly understood that power generators incur
startup costs and hence the generator on/off scheduling
problem is inherently a dynamic programming problem.
However, the detailed data of generator startup costs are
often not revealed to the public. According to [13] and the
references therein, startup costs of gas generators vary from
several hundreds to thousands of US dollars. Startup costs
at such level are comparable to running generators at their
full capacities for several hours.

put in two consecutive time intervals is limited by the
ramping-up and ramping-down constraints.

Most microgrids today employ generators powered by gas
turbines or diesel engines. These generators are“fast-responding”
in the sense that they can be powered up in several min-
utes, and have small minimum on/off periods as well as large
ramping-up/down rates. Meanwhile, there are also genera-
tors based on steam engine, and are “slow-responding” with
non-negligible Ton, Toff , and small ramping-up/down rates.

Co-generation and Heat Demand: The local CHP
generators can simultaneously generate electricity and use-
ful heat. Let the heat recovery efficiency for co-generation
be η, i.e., for each unit of electricity generated, η unit of
useful heat can be supplied for free. Alternatively, with-
out co-generation, heating can be generated separately us-
ing external natural gas, which costs cg per unit time. Thus,
ηcg is the saving due to using co-generation to supply heat,
provided that there is sufficient heat demand. We assume
co ≥ η · cg . In other words, it is cheaper to generate heat
by natural gas than purely by generators (if not considering
the benefit of co-generation). Note that a system with no
co-generation can be viewed as a special case of our model
by setting η = 0. Let the heat demand at time t be h(t).

To keep the problem interesting, we assume that co+
cm
L
<

Pmax + η · cg . This assumption ensures that the minimum
co-generation energy cost is cheaper than the maximum ex-
ternal energy price. If this was not the case, it would have
been optimal to always obtain power and heat externally
and separately.

2.2 Problem Definition
We divide a finite time horizon into T discrete time slots,

each is assumed to have a unit length without loss of gener-
ality. The microgrid operational cost in [1, T ] is given by

Cost(y, u, v, s) �
∑T

t=1

{
p(t) · v(t) + cg · s(t)+ (1)∑N

n=1

[
co · un(t) + cm · yn(t) + β[yn(t)− yn(t− 1)]+

]}
,

which includes the cost of grid electricity, the cost of the
external gas, and the operating and switching cost of local
CHP generators in the entire horizon [1, T ]. Throughout this
paper, we set the initial condition yn(0) = 0, 1 ≤ n ≤ N .

We formally define the MCMP as a mixed integer pro-
gramming problem, given electricity demand a, heat demand
h, and grid electricity price p as time-varying inputs:

min
y,u,v,s

Cost(y, u, v, s) (2a)

s.t. 0 ≤ un(t) ≤ L · yn(t), (2b)∑N
n=1un(t) + v(t) ≥ a(t), (2c)

η ·∑N
n=1un(t) + s(t) ≥ h(t), (2d)

un(t)− un(t− 1) ≤ Rup, (2e)

un(t− 1) − un(t) ≤ Rdw, (2f)

yn(τ ) ≥ 1{yn(t)>yn(t−1)}, t+1 ≤ τ ≤ t+Ton-1, (2g)

yn(τ ) ≤ 1-1{yn(t)<yn(t−1)}, t+1 ≤ τ ≤ t+Toff -1,(2h)

var yn(t) ∈ {0, 1}, un(t), v(t), s(t) ∈ R
+
0 , n ∈ [1, N ], t ∈ [1, T ],

where 1{·} is the indicator function and R
+
0 represents the

set of non-negative numbers. The constraints are similar to
those in the power system literature and capture the op-
erational constraints of generators. Specifically, constraint



(2b) captures the constraint of maximal output of the lo-
cal generator. Constraints (2c)-(2d) ensure that the de-
mands of electricity and heat can be satisfied, respectively.
Constraints (2e)-(2f) capture the constraints of maximum
ramping-up/down rates. Constraints (2g)-(2h) capture the
minimum on/off period constraints (note that they can also
be expressed in linear but hard-to-interpret forms).

3. FAST-RESPONDINGGENERATORCASE
This section considers the fast-responding generator sce-

nario. Most CHP generators employed in microgrids are
based on gas or diesel. These generators can be fired up
in several minutes and have high ramping-up/down rates.
Thus at the timescale of energy generation (usually tens of
minutes), they can be considered as having no minimum
on/off periods and ramping-up/down rate constraints. That
is, Ton = 0, Toff = 0, Rup = ∞, Rdw = ∞. We remark that
this model captures most microgrid scenarios today. We will
extend the algorithm developed for this responsive generator
scenario to the general generator scenario in Sec. 4.

To proceed, we first study a simple case where there is one
unit of generator. We then extend the results to N units of
homogenous generators in Sec. 3.3.

3.1 Single Generator Case
We first study a basic problem that considers a single

generator. Thus, we can drop the subscript n (the index of
the generator) when there is no source of confusion:

fMCMPs : min
y,u,v,s

Cost(y, u, v, s) (3a)

s.t. 0 ≤ u(t) ≤ L · y(t), (3b)

u(t) + v(t) ≥ a(t), (3c)

η · u(t) + s(t) ≥ h(t), (3d)

var y(t) ∈ {0, 1}, u(t), v(t), s(t) ∈ R
+
0 , t ∈ [1, T ].

Note that even this simpler problem is challenging to solve.
First, even to obtain an offline solution (assuming complete
knowledge of future information), we must solve a mixed in-
teger optimization problem. Further, the objective function
values across different slots are correlated via the startup
cost β[y(t) − y(t − 1)]+, and thus cannot be decomposed.
Finally, to obtain an online solution we do not even know
the future.

Remark: Readers familiar with online server scheduling
in data centers [25, 28] may see some similarity between
our problem and those in [25, 28], i.e., all are dealing with
the scheduling difficulty introduced by the switching cost.
Despite such similarity, however, the inherent structures of
these problems are significantly different. First, there is only
one category of demand (i.e., workload to be satisfied by the
servers) in online server scheduling problems. In contrast,
there are two categories of demands (i.e., electricity and heat
demands) in our problem. Further, because of co-generation,
they can not be considered separately. Second, there is only
one category of supply (i.e., server service capability) in
online server scheduling problem, and thus the demand must
be satisfied by this single supply. However, in our problem,
there are three different supplies, including local generation,
electricity grid power and external heat supply. Therefore,
the design space in our problem is larger and it requires us to
orchestrate three different supplies, instead of single supply,
to satisfy the demands.

Next, we introduce the following lemma to simplify the
structure of the problem. Note that if (y(t))Tt=1 are given,
the startup cost is determined. Thus, the problem in (3a)-
(3d) reduces to a linear programming and can be solved
independently in each time slot.

Lemma 1. Given (y(t))Tt=1 and the input (σ(t))Tt=1 , the

solutions (u(t), v(t), s(t))Tt=1 that minimize Cost(y, u, v, s) are
given by:

u(t)=

⎧⎪⎪⎨
⎪⎪⎩
0, if p(t) + η · cg ≤ co
min

{
h(t)
η
, a(t), L · y(t)

}
, if p(t) < co < p(t)+η · cg

min
{
a(t), L · y(t)

}
, if co ≤ p(t)

(4)
and

v(t) = [a(t)− u(t)]+ , s(t) = [h(t)− η · u(t)]+ . (5)

We note in each time slot t, the above u(t), v(t) and s(t) are
computed using only y(t) and σ(t) in the same time slot.

The result of Lemma 1 can be interpreted as follows. If
the grid price is very high (i.e., higher than co), then it
is always more economical to use local generation as much
as possible, without even considering heating. However, if
the grid price is between co and co − η · cg , local electricity
generation alone is not economical. Rather, it is the benefit
of supplying heat through co-generation that makes local
generation more economical. Hence, the amount of local
generation must consider the heat demand h(t). Finally,
when the grid price is very low (i.e., lower than co − η · cg),
it is always more cost-effective not to use local generation.

As a consequence of Lemma 1, the problem fMCMPs

can be simplified to the following problem SP, where we
only need to consider the decision of turning on (y(t) = 1)
or off (y(t) = 0) the generator.

SP :min
y

Cost(y)

var y(t) ∈ {0, 1}, t ∈ [1, T ],

where

Cost(y) �
∑T

t=1

(
ψ
(
σ(t), y(t)

)
+ β · [y(t)− y(t− 1)]+

)
,

ψ
(
σ(t), y(t)

)
� cou(t) + p(t)v(t) + cgs(t) + cmy(t) and

(u(t), v(t), s(t)) are defined according to Lemma 1.

3.1.1 Offline Optimal Solution
We first study the offline setting, where the input (σ(t))Tt=1

is given ahead of time. We will reveal an elegant structure of
the optimal solution. Then, in Section 3.1.2 we will exploit
this structure to design an efficient online algorithm.

The problem SP can be solved by the classical dynamic
programming approach. We refer interested readers to our
technical report [27] for details. However, the solution pro-
vided by dynamic programming does not seem to bring sig-
nificant insights for developing online algorithms. Therefore,
in what follows we study the offline optimal solution from
another angle, which directly reveals its structure.

Define

δ(t) � ψ
(
σ(t), 0

)
− ψ

(
σ(t), 1

)
. (6)

δ(t) can be interpreted as the one-slot cost difference be-
tween using or not using local generation. Intuitively, if



δ(t) > 0 (resp. δ(t) < 0), it will be desirable to turn on
(resp. off) the generator. However, due to the startup cost,
we should not turn on and off the generator too frequently.
Instead, we should evaluate whether the cumulative gain or
loss in the future can offset the startup cost. This intuition
motivates us to define the following cumulative cost differ-
ence Δ(t). We set the initial value as Δ(0) = −β and define
Δ(t) inductively:

Δ(t) � min
{
0,max{−β,Δ(t− 1) + δ(t)}

}
. (7)

Note that Δ(t) is only within the range [−β, 0]. Otherwise,
the minimum cap (−β) and maximum cap (0) will apply
to retain Δ(t) within [−β, 0]. An important feature of Δ(t)
useful later in online algorithm design is that it can be com-
puted given the past and current input σ(τ ), 1 ≤ τ ≤ t.

Next, we construct critical segments according to Δ(t),
and then classify segments by types. Each type of segments
captures similar episodes of demands. As shown later in
Theorem 1, it suffices to solve the cost minimization problem
over every segment and combine their solutions to obtain an
offline optimal solution for the overall problem SP.

Definition 1. We divide all time intervals in [1, T ] into
disjoint parts called critical segments:

[1, T c
1 ], [T

c
1 + 1, T c

2 ], [T
c
2 + 1, T c

3 ], ..., [T
c
k + 1, T ]

The critical segments are characterized by a set of critical
points: T c

1 < T c
2 < ... < T c

k . We define each critical point T c
i

along with an auxiliary point T̃ c
i , such that the pair (T c

i , T̃
c
i )

satisfies the following conditions:

• (Boundary): Either
(
Δ(T c

i ) = 0 and Δ(T̃ c
i ) = −β

)
or

(
Δ(T c

i ) = −β and Δ(T̃ c
i ) = 0

)
.

• (Interior): −β < Δ(τ ) < 0 for all T c
i < τ < T̃ c

i .

In other words, each pair of (T c
i , T̃

c
i ) corresponds to an inter-

val where �(t) goes from -β to 0 or 0 to -β, without reach-
ing the two extreme values inside the interval. For example,
(T c

1 , T̃
c
1 ) and (T c

2 , T̃
c
2 ) in Fig. 3 are two such pairs, while the

corresponding critical segments are (T c
1 , T

c
2 ) and (T c

2 , T
c
3 ). It

is straightforward to see that all (T c
i , T̃

c
i ) are uniquely de-

fined, thus critical segments are well-defined. See Fig. 3 for
an example.

Once the time horizon [1, T ] is divided into critical segments,
we can now characterize the optimal solution.

Definition 2. We classify the type of a critical segment by:

• type-start (also call type-0): [1, T c
1 ]

• type-1: [T c
i +1, T c

i+1], if Δ(T c
i ) = −β and Δ(T c

i+1) = 0

• type-2: [T c
i +1, T c

i+1], if Δ(T c
i ) = 0 and Δ(T c

i+1) = −β

• type-end (also call type-3): [T c
k + 1, T ]

We define the cost with regard to a segment i by:

Costsg-i(y)�
Tc
i+1∑

t=Tc
i +1

ψ
(
σ(t), y(t)

)
+

Tc
i+1+1∑

t=Tc
i +1

β · [y(t)− y(t− 1)]+

Arrivals of demands

type-start type-1              type-2     type-1  type-end 
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Figure 3: An example of Δ(t), yOFA, yCHASEs and y
CHASE

lk(ω)
s

.

In the top two rows, we have a(t) ∈ {0, 1}, h(t) ∈ {0, η}. The
price p(t) is chosen as a constant in (co − η · cg, co). In the next
row, we compute Δ(t) according to a(t) and h(t). For ease of
exposition, in this example we set the parameters so that Δ(t)
increases if and only if a(t) = 1 and h(t) = η. The solutions
yOFA, yCHASEs and y

CHASE
lk(ω)
s

at the bottom rows are obtained

accordingly to (8), Algorithms 1 and 3, respectively.

and define a subproblem for critical segment i by:

SPsg-i(yl
i, y

r
i ) : min Costsg-i(y)

s.t. y(T c
i ) = yl

i, y(T
c
i+1 + 1) = yr

i ,

var y(t) ∈ {0, 1}, t ∈ [T c
i + 1, T c

i+1].

Note that due to the startup cost across segment bound-
aries, in general Cost(y) �= ∑

Costsg-i(y). In other words,
we should not expect that putting together the solutions to
each segment will lead to an overall optimal offline solution.
However, the following lemma shows an important struc-
ture property that one optimal solution of SPsg−i(yli, y

r
i )

is independent of boundary conditions (yli, y
r
i ) although the

optimal value depends on boundary conditions.

Lemma 2. (yOFA(t))
Tc
i+1

t=Tc
i
+1 in (8) is an optimal solution

for SPsg-i(yl
i, y

r
i ), despite any boundary conditions (yl

i, y
r
i ).

This lemma can be intuitively explained by Fig. 3. In type-1
critical segment, Δ(t) has an increment of β, which means
that setting y(t) = 1 over the entire segment provides at
least a benefit of β, compared to keeping y(t) = 0. Such ben-
efit compensates the possible startup cost β if the boundary
conditions are not aligned with y(t) = 1. Therefore, regard-
less of the boundary conditions, we should set y(t) = 1 on
type-1 critical segment. Other types of critical segments can
be explained similarly.

We then use this lemma to show the following main result
on the structure of the offline optimal solution.

Theorem 1. An optimal solution for SP is given by

yOFA(t) �
{
0, if t ∈ [T c

i + 1, T c
i+1] is type-start/-2/-end,

1, if t ∈ [T c
i + 1, T c

i+1] is type-1.

(8)

Theorem 1 can be interpreted as follows. Consider for ex-
ample a type-1 critical segment in Fig. 3 that starts from



T c
1 . Since Δ(t) increases from −β after T c

1 , it implies that
δ(t) > 0, and thus we are interested in turning on the gen-
erator. The difficulty, however, is that immediately after T c

1

we do not know whether the future gain by turning on the
generator will offset the startup cost. On the other hand,
once Δ(t) reaches 0, it means that the cumulative gain in

the interval [T c
1 , T̃

c
1 ] will be no less than the startup cost.

Hence, we can safely turn on the generator at T c
1 . Similarly,

for each type-2 segment we can turn off the generator at the
beginning of the segment. (We note that our offline solution
turns on/off the generator at the beginning of each segment
because all future information is assumed to be known.)

The optimal solution is easy to compute. More impor-
tantly, the insights help us design the online algorithms.

3.1.2 Our Proposed Online Algorithm CHASE

Denote an online algorithm for SP by A. We define the
competitive ratio of A by:

CR(A) � max
σ

Cost(yA)

Cost(yOFA)
(9)

Recall the structure of optimal solution yOFA: once the
process is entering type-1 (resp., type-2) critical segment,
we should set y(t) = 1 (resp., y(t) = 0). However, the diffi-
culty lies in determining the beginnings of type-1 and type-2
critical segments without future information. Fortunately,
as illustrated in Fig. 3, it is certain that the process is in
a type-1 critical segment when Δ(t) reaches 0 for the first
time after hitting −β. This observation motivates us to use
the algorithm CHASEs, which is given in Algorithm 1. If
−β < Δ(t) < 0, CHASEs maintains y(t) = y(t−1) (since we
do not know whether a new segment has started yet.) How-
ever, when Δ = 0 (resp. Δ(t) = −β), we know for sure that
we are inside a new type-1 (resp. type-2) segment. Hence,
CHASEs sets y(t) = 1 (resp. y(t) = 0). Intuitively, the be-
havior of CHASEs is to track the offline optimal in an online
manner: we change the decision only after we are certain
that the offline optimal decision is changed.

Algorithm 1 CHASEs[t, σ(t), y(t− 1)]

1: find Δ(t)
2: if Δ(t) = −β then
3: y(t)← 0
4: else if Δ(t) = 0 then
5: y(t)← 1
6: else
7: y(t)← y(t − 1)
8: end if
9: set u(t), v(t), and s(t) according to (4) and (5)
10: return (y(t), u(t), v(t), s(t))

Even though CHASEs is a simple algorithm, it has a strong
performance guarantee, as given by the following theorem.

Theorem 2. The competitive ratio of CHASEs satisfies

CR(CHASEs) ≤ 3− 2α < 3, (10)

where

α � (co + cm/L)/(Pmax + η · cg) ∈ (0, 1] (11)

captures the maximum price discrepancy between using lo-
cal generation and external sources to supply energy.

Remark: (i) The intuition that CHASEs is competitive
can be explained by studying its worst case input shown

type-1 type-2      

OFAy

SCHASEy

β−

0

(t)Δ

lk( )CHASEs
y ω

ω ω

Figure 4: The worst case input of CHASEs, and the correspond-
ing yCHASEs , yCHASElk(ω)

s
and the offline optimal solution yOFA.

in Fig. 4. The demands and prices are chosen in a way
such that in interval [T c

0 , T
c
1 ] Δ(t) increases from −β to 0,

and in interval [T c
1 , T

c
2 ] Δ(t) decreases from 0 to −β. We

see that in the worst case, yCHASEs never matches yOFA. But
even in this worst case, CHASEs pays only 2β more than the
offline solution yOFA on [T c

0 , T
c
2 ], while yOFA pays at least a

startup cost β at time T c
0 . Hence, the ratio of the online cost

over the offline cost cannot be too bad. (ii) Theorem 2 says
that CHASEs is more competitive when α is large than it is
small. This can be explained intuitively as follows. Large
α implies small economic advantage of using local genera-
tion over external sources to supply energy. Consequently,
the offline solution tends to use local generation less. It
turns out CHASEs will also use less local generation2 and is
competitive to offline solution. Meanwhile, when α is small,
CHASEs starts to use local generation. However, using local
generation incurs high risk since we have to pay the startup
cost to turn on the generator without knowing whether there
are sufficient demands to serve in the future. Lacking future
knowledge leads to a large performance discrepancy between
CHASEs and the offline optimal solution, making CHASEs

less competitive.
The result in Theorem 2 is strong in the sense that CR(CHASEs)

is always upper-bounded by a small constant 3, regardless
of system parameters. This is contrast to large parameter-
dependent competitive ratios that one can achieve by us-
ing generic approach, e.g., the metrical task system frame-
work [8], to design online algorithms. Furthermore, we show
that CHASEs achieves close to the best possible competitive
ratio for deterministic algorithms as follow.

Theorem 3. Let ε > 0 be the slot length under the discrete-
time setting we consider in this paper. The competitive ra-
tio for any deterministic online algorithm A for SP is lower
bounded by

CR(A) ≥ min(3− 2α− o(ε), 1/α), (12)

where o(ε) vanishes to zero as ε goes to zero and the discrete-
time setting approaches the continuous-time setting.

Note that there is still a gap between the competitive ra-
tios in (10) and (12). The difference is due to the term
1/α = (Pmax + η · cg)/(co + cm/L). This term can be in-
terpreted as the competitive ratio of a naive strategy that
always uses external power supply and separate heat sup-
ply. Intuitively, if this 1/α term is smaller than 3 − 2α, we

2CHASEs will turn on the local generator when Δ(t) in-
creases to 0. The larger the α is, the slower Δ(t) increases,
and the less likely CHASEs will use the local generator.



should simply use this naive strategy. This observation mo-
tivates us to develop an improved version of CHASEs, called
CHASEs+, which is presented in Algorithm 2. Corollary 1
shows that CHASEs+ closes the above gap and achieves the
asymptotic optimal competitive ratio. Note that whether or
not the 1/α term is smaller can be completely determined
by the system parameters.

Algorithm 2 CHASEs+[t, σ(t), y(t− 1)]

1: if 1/α ≤ 3− 2α then
2: y(t)← 0, u(t)← 0, v(t)← a(t), s(t)← h(t)
3: return (y(t), u(t), v(t), s(t))
4: else
5: return CHASEs[t, σ(t), y(t − 1)]
6: end if

Corollary 1. CHASEs+ achieves the asymptotic optimal
competitive ratio of any deterministic online algorithm, as

CR(CHASEs+) ≤ min(3− 2α, 1/α). (13)

Remark: At the beginning of Sec. 3.1, we have discussed
the structural differences of online server scheduling prob-
lems [25, 28] and ours. In what follows, we summarize the
solution differences among these problems. Note that we
share similar intuitions with [28], both make switching deci-
sions when the penalty cost equals the switching cost. The
significant difference, however, is when to reset the penalty
counting. In [28], the penalty counting is reset when the
demand arrives. In contrast, in our solution, we need to re-
set the penalty counting only when Δ(t), given in the non-
trivial form in (7), touches 0 or −β. This particular way
of resetting penalty counting is critical for establishing the
optimality of our proposed solution. Meanwhile, to compare
with [25], the approach in [25] does not explicitly count the
penalty. Furthermore, the online server scheduling problem
in [25] is formulated as a convex problem, while our problem
is a mixed integer problem. Thus, there is no known method
to apply the approach in [25] to our problem.

3.2 Look-ahead Setting
We consider the setting where the online algorithm can

predict a small window ω of the immediate future. Note
that ω = 0 returns to the case treated in Section 3.1.2,
when there is no future information at all. Consider again a
type-1 segment [T c

1 , T
c
2 ] in Fig. 3. Recall that, when there is

no future information, the CHASEs algorithm will wait until
T̃ c
1 , i.e., when Δ(t) reaches 0, to be certain that the offline

solution must turn on the generator. Hence, the CHASEs al-
gorithm will not turn on the generator until this time. Now
assume that the online algorithm has the information about
the immediate future in a time window of length ω. By the
time T̃ c

1 − w, the online algorithm has already known that
Δ(t) will reach 0 at time T̃ c

1 . Hence, the online algorithm

can safely turn on the generator at time T̃ c
1 −w. As a result,

the corresponding loss of performance compared to the of-
fline optimal solution is also reduced. Specifically, even for
the worst-case input in Fig. 4, there will be some overlap (of
length ω) between yCHASEs and yOFA in each segment. Hence,
the competitive ratio should also improve with future infor-

mation. This idea leads to the online algorithm CHASE
lk(ω)
s ,

which is presented in Algorithm 3.
We can show the following improved competitive ratio

when limited future information is available.

Algorithm 3 CHASE
lk(ω)
s [t, (σ(τ ))t+w

τ=t , y(t− 1)]

1: find (Δ(τ ))t+w
τ=t

2: set τ ′ ← min
{
τ = t, ..., t+w | Δ(τ ) = 0 or = −β}

3: if Δ(τ ′) = −β then
4: y(t)← 0
5: else if Δ(τ ′) = 0 then
6: y(t)← 1
7: else
8: y(t)← y(t− 1)
9: end if
10: set u(t), v(t), and s(t) according to (4) and (5)
11: return (y(t), u(t), v(t), s(t))

Theorem 4. The competitive ratio of CHASE
lk(ω)
s satisfies

CR
(
CHASElk(ω)

s

)
≤ 3− 2 · g (α, ω) , (14)

where ω ≥ 0 is the look-ahead window size, α ∈ (0, 1] is
defined in (11), and

g(α,ω) = α+
(1− α)

1 + β (Lco + cm/(1− α)) / (ω(Lco + cm)cm)
.

(15)
captures the benefit of looking-ahead and monotonically in-
creases from α to 1 as ω increases. In particular,

CR(CHASE
lk(0)
s ) = CR(CHASEs).

We replace CHASEs by CHASE
lk(ω)
s in CHASEs+ and obtain

an improved algorithm for the look-ahead setting, named

CHASE
lk(ω)
s+ . Fig. 5 shows the competitive ratio of CHASE

lk(ω)
s+

as a function of α and ω.

0
0.5

1 0
10

20

1
2
3

ωαC
R

( C
H

A
SE

lk
(w

)
s+

)

Figure 5: The competitive ratio of CHASE
lk(ω)
s+ as a function of

α and ω.

3.3 Multiple Generator Case
Now we consider the general case with N units of homoge-

neous generators, each having an maximum power capacity
L, startup cost β, sunk cost cm and per unit operational
cost co. We define a generalized version of problem:

fMCMP : min
y,u,v,s

Cost(y, u, v, s)

s.t. Constraints (2b), (2c), and (2d)

var yn(t) ∈ {0, 1}, un(t), v(t), s(t) ∈ R
+
0 ,

Next, we will construct both offline and online solutions to
fMCMP in a divide-and-conquer fashion. We will first par-
tition the demands into sub-demands for each generator, and
then optimize the local generation separately for each sub-
demand. Note that the key is to correctly partition the
demand so that the combined solution is still optimal. Our
strategy below essentially slices the demand (as a function
of t) into multiple layers from the bottom up (see Fig. 6).
Each layer has at most L units of electricity demand and



(a) An example of (aly−n). (b) An example of (hly−n).

Figure 6: An example of (aly−n) and (hly−n). In this exam-
ple, N = 2. We obtain 3 layers of electricity and heat demands,
respectively.

η · L units of heat demand. The intuition here is that the
layers at the bottom exhibit the least frequent variations of
demand. Hence, by assigning each of the layers at the bot-
tom to a dedicated generator, these generators will incur the
least amount of switching, which helps to reduce the startup
cost.

More specifically, given (a(t), h(t)), we slice them into N+
1 layers:

aly-1(t) =min{L, a(t)}, hly-1(t) = min{η · L, h(t)} (16a)

aly-n(t) =min{L, a(t)-∑n−1
r=1 a

ly-r(t)}, n ∈ [2, N ] (16b)

hly-n(t) =min{η · L, h(t)-∑n−1
r=1h

ly-r(t)}, n ∈ [2, N ] (16c)

atop(t) =min{L, a(t)−∑N
r=1a

ly-r(t)} (16d)

htop(t) =min{η · L, h(t)−∑N
r=1h

ly-r(t)} (16e)

It is easy to see that electricity demand satisfies aly-n(t) ≤ L
and heat demand satisfies hly-n(t) ≤ η · L. Thus, each layer
of sub-demand can be served by a single local generator if
needed. Note that (atop, htop) can only be satisfied from
external supplies, because they exceed the capacity of local
generation.

Based on this decomposition of demand, we then decom-
pose the fMCMP problem intoN sub-problems fMCMPly-n

s

(1 ≤ n ≤ N), each of which is an fMCMPs problem with
input (aly-n, hly-n, p). We then apply the offline and on-
line algorithms developed earlier to solve each sub-problem
fMCMPly-n

s (1 ≤ n ≤ N) separately. By combining the so-
lutions to these sub-problems, we obtain offline and online
solutions to fMCMP. For the offline solution, the follow-
ing theorem states that such a divide-and-conquer approach
results in no optimality loss.

Theorem 5. Suppose (yn, un, vn, sn) is an optimal offline
solution for each fMCMPly-n

s (1 ≤ n ≤ N). Then
((y∗n, u

∗
n)

N
n=1, v

∗, s∗) defined as follows is an optimal offline
solution for fMCMP:

y∗n(t) = yn(t), v∗(t) = atop(t) +
∑N

n=1 vn(t)

u∗
n(t) = un(t), s∗(t) = htop(t) +

∑N
n=1 sn(t)

(17)

For the online solution, we also apply such a divide-and-
conquer approach by using (i) a central demand dispatch-
ing module that slices and dispatches demands to individ-
ual generators according to (16a)-(16e), and (ii) an online
generation scheduling module sitting on each generator n
(1 ≤ n ≤ N) independently solving their own fMCMPly-n

s

sub-problem using the online algorithm CHASE
lk(ω)
s+ .

The overall online algorithm, named CHASElk(ω), is sim-
ple to implement without the need to coordinate the control
among multiple local generators. Since the offline (resp. on-
line) cost of fMCMP is the sum of the offline (resp. online)
costs of fMCMPly-n

s (1 ≤ n ≤ N), it is not difficult to

establish the competitive ratio of CHASElk(ω) as follows.

Theorem 6. The competitive ratio of CHASElk(ω) satisfies

CR(CHASElk(ω)) ≤ min(3− 2 · g(α, ω), 1/α), (18)

where α ∈ (0, 1] is defined in (11) and g(α,ω) ∈ [α, 1] is
defined in (15).

4. SLOW-RESPONDINGGENERATORCASE
We next consider the slow-responding generator case, with

the generators having non-negligible constraints on the mini-
mum on/off periods and the ramp-up/down speeds. For this
slow-responding version of MCMP, its offline optimal solu-
tion is harder to characterize than fMCMP due to the ad-
ditional challenges introduced by the cross-slot constraints
(2e)-(2h).

In the slow-responding setting, local generators cannot
be turned on and off immediately when demand changes.
Rather, if a generator is turned on (resp., off) at time t, it
must remain on for at least Ton (resp., Toff) time . Further,
the changes of un(t) − un(t − 1) must be bounded by Rup

and −Rdown.
A simple heuristic is to first compute solutions based on

CHASElk(ω), and then modify the solutions to respect the

above constraints. We name this heuristic CHASE
lk(ω)
gen and

present it in Algorithm 4. For simplicity, Algorithm 4 is
a single-generator version, which can be easily extended to
the multiple-generator scenario by following the divide-and-
conquer approach elaborated in Sec. 3.3.

Algorithm 4 CHASE
lk(ω)
gen [t, (σ(τ))t+ω

τ=1, y(t − 1)]

1:
(
ys(t), us(t), vs(t), ss(t)

) ← CHASE
lk(ω)
s

[
t,
(
σ
(
τ
))t+w

τ=1
, y

(
t-1

)]

2: if y(τ1) ≤ 1− 1{ys(t)>y(t−1)}, ∀τ1 ∈ [max(1, t− Toff ), t− 1]

and y(τ2) ≥ 1{ys(t)<y(t−1)}, ∀τ2 ∈ [max(1, t − Ton), t − 1]
then

3: y(t)← ys(t)
4: else
5: y(t)← y(t − 1)
6: end if
7: if us(t) > u(t − 1) then
8: u(t)← u(t− 1) + min

(
Rup, us(t) − u(t− 1)

)

9: else
10: u(t)← u(t − 1) −min

(
Rdw, u(t− 1)− us(t)

)

11: end if
12: v(t) ← [

a(t) − u(t)
]+

13: s(t)← [
h(t)− η · u(t)]+

14: return
(
y(t), u(t), v(t), s(t)

)

We now explain Algorithm 4 and its competitive ratio. At

each time slot t, we obtain the solution of CHASE
lk(ω)
s , in-

cluding ys(t), us(t), vs(t), ss(t), as a reference solution (Line
1). Then in Line 2-6, we modify the reference solution’s
ys(t) to our actual solution y(t), to respect the constraints
of minimum on/off periods. More specifically, we follow the
reference solution’s ys(t) (i.e., y(t) = ys(t)) if and only if
it respects the minimum on/off periods constraints (Line 2-
3). Otherwise, we let our actual solution’s y(t) equal our
previous slot’s solution (y(t) = y(t − 1)) (Line 4-5). Simi-
larly, we modify the reference solution’s us(t) to our actual
solution’s u(t), to respect the constraints on ramp-up/down
speeds (Line 7-11). At last, in our actual solution, we use
(v(t), s(t)) to compensate the supply and satisfy the de-
mands (Line 12-13). In summary, our actual solution is
designed to be aligned with the reference solution as much
as possible. We derive an upper bound on the competitive

ratio of CHASE
lk(ω)
gen as follows.



Theorem 7. The competitive ratio of CHASE
lk(ω)
gen is upper

bounded by (3 − 2g(α, ω)) · max
(
r1, r2

)
, where g(α, ω) is

defined in (15) and

r1 =1 +max

{(
Pmax + cg · η − c0

)
Lc0 + cm

max
{
0,
(
L− Rup

)}
co
cm

max
{
0,
(
L− Rdw

)}}
,

and r2 =
β + cm · Ton

β
+
L
(
Pmax + cg · η

)
β

(Ton + Toff) .

We note that when Ton = Toff = 0, Rup = Rdw = ∞,
the above upper bound matches that of CHASElk(ω) in The-
orem 6 (specifically the first term inside the min function).

5. EMPIRICAL EVALUATIONS
We evaluate the performance of our algorithms based on

evaluations using real-world traces. Our objectives are three-
fold: (i) evaluating the potential benefits of CHP and the
ability of our algorithms to unleash such potential, (ii) cor-
roborating the empirical performance of our online algo-
rithms under various realistic settings, and (iii) understand-
ing how much local generation to invest to achieve substan-
tial economic benefit.

5.1 Parameters and Settings
Demand Trace: We obtain the demand traces from Cal-

ifornia Commercial End-Use Survey (CEUS) [1]. We focus
on a college in San Francisco, which consumes about 154
GWh electricity and 5.1 × 106 therms gas per year. The
traces contain hourly electricity and heat demands of the
college for year 2002. The heat demands for a typical week
in summer and spring are shown in Fig. 7. They display reg-
ular daily patterns in peak and off-peak hours, and typical
weekday and weekend variations.

Wind Power Trace: We obtain the wind power traces
from [4]. We employ power output data for the typical
weeks in summer and spring with a resolution of 1 hour
of an offshore wind farm right outside San Francisco with
an installed capacity of 12MW. The net electricity demand,
which is computed by subtracting the wind generation from
electricity demand is shown in Fig. 7. The highly fluctu-
ating and unpredictable nature of wind generation makes it
difficult for the conventional prediction-based energy gener-
ation scheduling solutions to work effectively.

Electricity and Natural Gas Prices: The electricity
and natural gas price data are from PG&E [5] and are shown
in Table 3. Besides, the grid electricity prices for a typical
week in summer and winter are shown in Fig. 7. Both the
electricity demand and the price show strong diurnal prop-
erties: in the daytime, the demand and price are relatively
high; at nights, both are low. This suggests the feasibility of
reducing the microgrid operating cost by generating cheaper
energy locally to serve the demand during the daytime when
both the demand and electricity price are high.

Generator Model: We adopt generators with specifi-
cations the same as the one in [6]. The full output of a
single generator is L = 3MW . The incremental cost per
unit time to generate an additional unit of energy co is set
to be 0.051/KWh, which is calculated according to the nat-
ural gas price and the generator efficiency. We set the heat
recovery efficiency of co-generation η to be 1.8 according to

[6]. We also set the unit-time generator running cost to be
cm = 110$/h, which includes the amortized capital cost and
maintenance cost according to a similar setting from [36].
We set the startup cost β equivalent to running the genera-
tor at its full capacity for about 5 hrs at its own operating
cost which gives β = 1400$. In addition, we assume for each
generator Ton = Toff = 3h and Rup = Rdw = 1MW/h, un-
less mentioned otherwise. For electricity demand trace we
use, the peak demand is 30MW. Thus, we assume there are
10 such CHP generators so as to fully satisfy the demand.

Local Heating System: We assume an on-demand heat-
ing system with capacity sufficiently large to satisfy all the
heat demand by itself and without on-off cost or ramp limit.
The efficiency of a heating system is set to 0.8 according to
[2], and consequently we can compute the unit heat genera-
tion cost to be cg = 0.0179$/KWh.

Cost Benchmark: We use the cost incurred by using
only external electricity, heating and wind energy (without
CHP generators) as a benchmark. We evaluate the cost
reduction due to our algorithms.

Comparisons of Algorithms: We compare three algo-
rithms in our simulations. (1) our online algorithm CHASE;
(2) the Receding Horizon Control (RHC) algorithm; and (3)
the OFFLINE optimal algorithm we introduce in Sec. 4. RHC
is a heuristic algorithm commonly used in the control liter-
ature [22]. In RHC, an estimate of the near future (e.g.,
in a window of length w) is used to compute a tentative
control trajectory that minimizes the cost over this time-
window. However, only the first step of this trajectory is
implemented. In the next time slot, the window of future
estimates shifts forward by 1 slot. Then, another control
trajectory is computed based on the new future informa-
tion, and again only the first step is implemented. This
process then continues. We note that because at each step
RHC does not consider any adversarial future dynamics be-
yond the time-window w, there is no guarantee that RHC
is competitive. For the OFFLINE algorithm, the inputs are
system parameters (such as β, cm and Ton), electricity de-
mand, heat demand, wind power output, gas price, and grid
electricity price. For online algorithms CHASE and RHC,
the input is the same as the OFFLINE except that at time
t, only the demands, wind power output, and prices in the
past and the look-ahead window (i.e., [1, t + w]) are avail-
able. The output for all three algorithms is the total cost
incurred during the time horizon [1, T ].
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Figure 7: Electricity net demand and heat demand for a typical
week in summer and winter. The net demand is computed by
subtracting the wind generation from the electricity demand. The
net electricity demand and the heat demand need to be satisfied
by using the local CHP generators, the electricity grid, and the
heating system.

5.2 Potential Benefits of CHP
Purpose: The experiments in this subsection aim to an-

swer two questions. First, what is the potential savings with
microgrids? Note that electricity, heat demand, wind sta-



Electricity Summer (May-Oct.) Winter (Nov.-Apr.)
$/kWh $/kWh

On-peak 0.232 N/A
Mid-peak 0.103 0.116
Off-peak 0.056 0.072

Natural Gas 0.419$/therm 0.486$/therm

Table 3: PG&E commercial tariffs and natural gas tariffs. In the
table, summer on-peak, mid-peak, and off-peak hours are week-
day 12-18, weekday 8-12, and the remaining hours, respectively.
Winter mid-peak and off-peak hours are weekday 8-22 and the re-
maining hours, respectively. The gas price is an average; monthly
prices vary slightly according to PG&E.

tion output as well as energy price all exhibit seasonal pat-
terns. As we can see from Figs. 7a and 7b, during summer
(similarly autumn) the electricity price is high, while dur-
ing winter (similarly spring) the heat demand is high. It is
then interesting to evaluate under what settings and inputs
the savings will be higher. Second, what is the difference
in cost-savings with and without the co-generation capabil-
ity? In particular, we conduct two sets of experiments to
evaluate the cost reductions of various algorithms. Both ex-
periments have the same default settings, except that the
first set of experiments (referred to as CHP) assumes the
CHP technology in the generators is enabled, and the sec-
ond set of experiments (referred to as NOCHP) assumes the
CHP technology is not available, in which case the heat de-
mand must be satisfied solely by the heating system. In all
experiments, the look-ahead window size is set to be w = 3
hours according to power system operation and wind gener-
ation forecast practice [3]. The cost reductions of different
algorithms are shown in Fig. 8a and 8b. The vertical axis
is the cost reduction as compared to the cost benchmark
presented in Sec. 5.1.

Observations: First, the whole-year cost reductions ob-
tained byOFFLINE are 21.8% and 11.3% for CHP and NOCHP
scenarios, respectively. This justifies the economic potential
of using local generation, especially when CHP technology is
enabled. Then, looking at the seasonal performance of OF-
FLINE, we observe that OFFLINE achieves much more cost
savings during summer and autumn than during spring and
winter. This is because the electricity price during sum-
mer and autumn is very high, thus we can benefit much
more from using the relatively-cheaper local generation as
compared to using grid energy only. Moreover, OFFLINE
achieves much more cost savings when CHP is enabled than
when it is not during spring and winter. This is because,
during spring and winter, the electricity price is relatively
low and the heat demand is high. Hence, just using local
generation to supply electricity is not economical. Rather,
local generation becomes more economical only if it can be
used to supply both electricity and heat together (i.e., with
CHP technology).

Second, CHASE performs consistently close to OFFLINE
across inputs from different seasons, even though the dif-
ferent settings have very different characteristics of demand
and supply. In contrast, the performance of RHC depends
heavily on the input characteristics. For example, RHC
achieves some cost reduction during summer and autumn
when CHP is enabled, but achieves 0 cost reduction in all
the other cases.

Ramifications: In summary, our experiments suggest
that exploiting local generation can save more cost when
the electricity price is high, and CHP technology is more
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Figure 8: Cost reductions for different seasons and the whole
year.
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function of look ahead window
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Figure 10: Cost reduction as a
function of local generation ca-
pacity.

critical for cost reduction when heat demand is high. Re-
gardless of the problem setting, it is important to adopt an
intelligent online algorithm (like CHASE) to schedule energy
generation, in order to realize the full benefit of microgrids.

5.3 Benefits of Looking-Ahead
Purpose: We compare the performances of CHASE to

RHC and OFFLINE for different sizes of the look-ahead win-
dow and show the results in Fig. 9. The vertical axis is the
cost reduction as compared to the cost benchmark in Sec.
5.1 and the horizontal axis is the size of lookahead window,
which varies from 0 to 20 hours.

Observations: We observe that the performance of our
online algorithm CHASE is already close to OFFLINE even
when no or little look-ahead information is available (e.g.,
w = 0, 1, and 2). In contrast, RHC performs poorly when the
look-ahead window is small. When w is large, both CHASE
and RHC perform very well and their performance are close
to OFFLINE when the look-ahead window w is larger than
15 hours.

An interesting observation is that it is more important to
perform intelligent energy generation scheduling when there
is no or little look-ahead information available. When there
are abundant look-ahead information available, both CHASE
and RHC achieve good performance and it is less critical to
carry out sophisticated algorithm design.

In Fig. 11a and 11b, we separately evaluate the ben-
efit of looking-ahead under the fast-responding and slow-
responding scenarios. We evaluate the empirical competi-
tive ratio between the cost of CHASE and OFFLINE, and
compare it with the theoretical competitive ratio accord-
ing to our analytical results. In the fast-responding sce-
nario (Fig. 11a), for each generator there are no minimum
on/off period and ramping-up/down constraints. Namely,
Ton = 0, Toff = 0, Rup = ∞, Rdw = ∞. In the slow-
responding scenario (Fig. 11b), we set Ton = Toff = 3h and
Rup = Rdw = 1MW/h. In both experiments, we observe
that the theoretical ratio decreases rapidly as look-ahead
window size increases. Further, the empirical ratio is already
close to one even when there is no look-ahead information.

5.4 Impacts of Look-ahead Error
Purpose: Previous experiments show that our algorithms

have better performance if a larger time-window of accurate
look-ahead input information is available. The input infor-
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Figure 11: Theoretical and empirical ratios for CHASE, as func-
tions of look-ahead window size ω. Note that the theoretical
competitive ratios (or their bounds) measure the worst-case per-
formance and are often much larger than the empirical ratios
observed in practice.
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Figure 12: Cost reduction as a function of the size prediction er-
ror (measured by the standard deviation of the prediction error as
a percentage of (a)installed capacity and (b)peak heat demand).

mation in the look-ahead window includes the wind station
power output, the electricity and heat demand, and the cen-
tral grid electricity price. In practice, these look-ahead infor-
mation can be obtained by applying sophisticated prediction
techniques based on the historical data. However, there are
always prediction errors. For example, while the day-ahead
electricity demand can be predicted within 2-3% range, the
wind power prediction in the next hours usually comes with
an error range of 20-50% [20]. Therefore, it is important to
evaluate the performance of the algorithms in the presence
of prediction error.

Observations: To achieve this goal, we evaluate CHASE
with look-ahead window size of 1 and 3 hours. According to
[20], the hour-level wind-power prediction-error in terms of
the percentage of the total installed capacity usually follows
Gaussian distribution. Thus, in the look-ahead window, a
zero-mean Gaussian prediction error is added to the amount
of wind power in each time-slot. We vary the standard de-
viation of the Gaussian prediction error from 0 to 120% of
the total installed capacity. Similarly, a zero-mean Gaus-
sian prediction error is added to the heat demand, and its
standard deviation also varies from 0 to 120% of the peak
demand. We note that in practice, prediction errors are of-
ten in the range of 20-50% for 3-hour prediction [20]. Thus,
by using a standard deviation up to 120%, we are essentially
stress-testing our proposed algorithms. We average 20 runs
for each algorithm and show the results in Figs. 12a and
12b. As we can see, both CHASE and RHC are fairly robust
to the prediction error and both are more sensitive to the
wind-power prediction error than to the heat-demand pre-
diction error. Besides, the impact of the prediction error is
relatively small when the look-ahead window size is small,
which matches with our intuition.

5.5 Impacts of System Parameters
Purpose: Microgrids may employ different types of local

generators with diverse operational constraints (such ramp-
ing up/down limits and minimum on/off times) and heat
recovery efficiencies. It is then important to understand the
impact on cost reduction due to these parameters. In this
experiment, we study the cost reduction provided by our of-
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Figure 13: Cost reduction as functions of generator parameters.

fline and online algorithms under different settings of Rup,
Rdw , Ton, Toff and η.

Observations: Fig. 13a and 13b show the impact of
ramp limit and minimum on/off time, respectively, on the
performance of the algorithms. Note that for simplicity we
always set Rup = Rdw and Ton = Toff . As we can see in Fig.
13a, with Rup and Rdw of about 40% of the maximum capac-
ity, CHASE obtains nearly all of the cost reduction benefits,
compared with RHC which needs 70% of the maximum ca-
pacity. Meanwhile, it can be seen from Fig. 13b that Ton

and Toff do not have much impact on the performance. This
suggests that it is more valuable to invest in generators with
fast ramping up/down capability than those with small min-
imum on/off periods. From Fig. 13c and 13d, we observe
that generators with large η save much more cost during
the winter because of the high heat demand. This suggests
that in areas with large heat demand, such as Alaska and
Washington, the heat recovery efficiency ratio is a critical
parameter when investing CHP generators.

5.6 How Much Local Generation is Enough
Thus far, we assumed that the microgrid had the ability

to supply all energy demand from local power generation in
every time-slot. In practice, local generators can be quite
expensive. Hence, an important question is how much in-
vestment should a microgrid operator makes (in terms of
the installed local generator capacity) in order to obtain the
maximum cost benefit. More specifically, we vary the num-
ber of CHP generators from 1 to 10 and plot the correspond-
ing cost reductions of algorithms in Fig. 10. Interestingly,
our results show that provisioning local generation to pro-
duce 60% of the peak demand is sufficient to obtain nearly
all of the cost reduction benefits. Further, with just 50%
local generation capacity we can achieve about 90% of the
maximum cost reduction. The intuitive reason is that most
of the time demands are significantly lower than their peaks.

6. RELATED WORK
Energy generation scheduling is a classical problem in

power systems and involves two aspects, namely Unit Com-
mitment (UC) and Economic Dispatching (ED). UC opti-
mizes the startup and shutdown schedule of power gener-
ations to meet the forecasted demand over a short period,
whereas ED allocates the system demand and spinning re-
serve capacity among operating units at each specific hour



of operation without considering startup and shutdown of
power generators.

For large power systems, UC involves scheduling of a large
number gigantic power plants of several hundred if not thou-
sands of megawatts with heterogeneous operating constraints
and logistics behind each action [34]. The problem is very
challenging to solve and has been shown to be NP-Complete
in general3 [16]. Sophisticated approaches proposed in the
literature for solving UC include mixed integer program-
ming [10], dynamic programming [35], and stochastic pro-
gramming [37]. There have also been investigations on UC
with high renewable energy penetration [38], based on over-
provisioning approach. After UC determines the on/off sta-
tus of generators, ED computes their output levels by solving
a nonlinear optimization problem using various heuristics
without altering the on/off status of generators [14]. There
is also recent interest in involving CHP generators in ED
to satisfy both electricity and heat demand simultaneously
[17]. See comprehensive surveys on UC in [34] and on ED
in [14].

However, these studies assume the demand and energy
supply (or their distributions) in the entire time horizon are
known a prior. As such, the schemes are not readily ap-
plicable to microgrid scenarios where accurate prediction of
small-scale demand and wind power generation is difficult
to obtain due to limited management resources and their
unpredictable nature [42].

Several recent works have started to study energy gener-
ation strategies for microgrids. For example, the authors in
[18] develop a linear programming based cost minimization
approach for UC in microgrids. [19] considers the fuel con-
sumption rate minimization in microgrids and advocates to
build ICT infrastructure in microgrids. [24, 26] discuss the
energy scheduling problems in data centers, whose models
are similar with ours. The difference between these works
and ours is that they assume the demand and energy sup-
ply are given beforehand, and ours does not rely on input
prediction.

Online optimization and algorithm design is an estab-
lished approach in optimizing the performance of various
computer systems with minimum knowledge of inputs [8,
32]. Recently, it has found new applications in data centers
[15, 9, 39, 25, 28, 29]. To the best of our knowledge, our
work is the first to study the competitive online algorithms
for energy generation in microgrids with intermittent energy
sources and co-generation. The authors in [31] apply online
convex optimization framework [43] to design ED algorithms
for microgrids. However, the ED problem does not take into
account the startup cost. In contrast, our work jointly con-
sider UC and ED in microgrids with co-generation. Further-
more, the two works adopt different frameworks and provide
online algorithms with different types of performance guar-
antee.

7. CONCLUSION
In this paper, we study online algorithms for the micro-

grid generation scheduling problem with intermittent renew-
able energy sources and co-generation, with the goal of max-
imizing the cost-savings with local generation. Based on

3We note that fMCMP in (3a)-(3d) is an instance of UC,
and that UC is NP-hard in general does not imply that the
instance fMCMP is also NP-hard.

insights from the structure of the offline optimal solution,
we propose a class of competitive online algorithms, called
CHASE that track the offline optimal in an online fashion.
Under typical settings, we show that CHASE achieves the
best competitive ratio of all deterministic online algorithms,
and the ratio is no larger than a small constant 3. We also
extend our algorithms to intelligently leverage on limited
prediction of the future, such as near-term demand or wind
forecast. By extensive empirical evaluations using real-world
traces, we show that our proposed algorithms can achieve
near offline-optimal performance.

There are a number of interesting directions for future
work. First, energy storage systems (e.g., large-capacity
battery) have been proposed as an alternate approach to
reduce energy generation cost (during peak hours) and to in-
tegrate renewable energy sources. It would be interesting to
study whether our proposed microgrid control strategies can
be combined with energy storage systems to further reduce
generation cost. However, current energy storage systems
can be very expensive. Hence, it is critical to study whether
the combined control strategy can reduce sufficient cost with
limited amount of energy storage. Second, it remains an
open issue whether CHASE can achieve the best competitive
ratios in general cases (e.g., in the slow-responding case).
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