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ABSTRACT
We study the carbon footprint optimization (CFO) of a heavy-duty
e-truck traveling from an origin to a destination across a national
highway network subject to a hard deadline, by optimizing path
planning, speed planning, and intermediary charging planning.
Such a CFO problem is essential for carbon-friendly e-truck oper-
ations. However, it is notoriously challenging to solve due to (i)
the hard deadline constraint, (ii) positive battery state-of-charge
constraints, (iii) non-convex carbon footprint objective, and (iv)
enormous geographical and temporal charging options with di-
verse carbon intensity. Indeed, we show that the CFO problem is
NP-hard. As a key contribution, we show that under practical set-
tings it is equivalent to finding a generalized restricted shortest path
on a stage-expanded graph, which extends the original transporta-
tion graph to model charging options. Compared to alternative
approaches, our formulation incurs low model complexity and re-
veals a problem structure useful for algorithm design. We exploit
the insights to develop an efficient dual-subgradient algorithm that
always converges. As another major contribution, we prove that (i)
each iteration only incurs polynomial-time complexity, albeit it re-
quires solving an integer charging planning problem optimally, and
(ii) the algorithm generates optimal results if a condition is met and
solutions with bounded optimality loss otherwise. Extensive simu-
lations based on real-world traces show that our scheme reduces
up to 28% carbon footprint compared to baseline alternatives. The
results also demonstrate that e-truck reduces 56% carbon footprint
than internal combustion engine trucks.
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• Applied computing→ Transportation; • Information sys-
tems→ Spatial-temporal systems.
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Figure 1: Spatial-temporal diversity of the carbon inten-
sity (kg/kWh) in the US [2]. The whole country is divided
to 13 regions. Each region includes one or multiple states.
Carbon intensity is only provided for individual regions [2],
thus one uniform color for all the states in a region.

Coal Natural gas Petroleum Renewable
Carbon Intensity (kg/kWh) 1.02 0.39 0.91 0
Total emission (tons) 7.86 ×108 6.35 ×108 1.6 ×107 0
Electricity (kWh) 7.73 ×1011 1.62×1012 1.75 ×1010 7.92 × 1011

Table 1: U.S electricity generation and resulting CO2 emis-
sions by major type of source in 2020 [20, Tab. 7.2a, Tab. 11.6]
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1 INTRODUCTION
In the United States, heavy-duty trucks deliver more than 10 billion
tons of freight in 2021, representing 72.2% of total domestic tonnage
shipped. 80.4% of the nation’s freight bills are from trucking which
amounts to 875 billion US dollars [5]. Despite their importance
for the economy, heavy-duty trucks are a major source of Carbon
Dioxide (CO2) emission, which is tied to climate change. With only
4% of the total vehicle population, heavy-duty trucks produce 25%
of the CO2 emitted in the transportation sector, accounting for 8.8%
of the total carbon emissions in the US [17]. To fight climate change,
it is critical to de-carbonize the trucking industry.

Electrification of heavy-duty trucks is a promising endeavor with
multi-facet benefits, including lower noise disturbance, better ac-
celeration performance, better energy efficiency, and most notably,
zero tailpipe emissions [11] with great potential to de-carbonize the
trucking industry. However, while e-trucks do not generate direct
CO2 emission during the operation, charging e-trucks incurs posi-
tive carbon footprint, i.e., the CO2 emission during the production
of electricity to be consumed by the e-truck. It is thus essential to
evaluate the carbon footprint of e-trucks in contrast to the tailpipe
emission for ICE trucks [54].
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Speed Planning Path Planning Deadline Constraint Charging Planning Truck Type Objective
RSP [30, 34, 38] ✗ ✓ ✓ N/A ICE Path cost
E2T2 [18, 36, 52, 54] ✓ ✓ ✓ N/A ICE Energy/Emission
many, e.g., [31] ✓ ✗ ✗ N/A ICE Energy
many, e.g., [46] ✓ ✓ ✗ ✓ Electric/Hybrid Time/Energy
many, e.g., [53] ✓ ✗ ✓ ✗ Electric Energy
This work ✓ ✓ ✓ ✓ Electric Carbon footprint

Table 2: Model comparison between this work and the existing work for truck operations.

In this paper, we study the carbon footprint optimization (CFO)
of a heavy-duty e-truck traveling from an origin to a destination
across a national highway network subject to a hard deadline, by
exploring the complete design space of path planning, speed plan-
ning, and intermediary charging planning. Such a CFO problem
is central to maximizing the environmental benefit brought by e-
trucks. However, it is notoriously challenging to solve due to the
following.

The hard deadline constraint. Transportation deadline is a com-
mon requirement in the trucking industry. In fact, timely delivery
is not only necessary for perishable goods such as food [4], it is also
commonly adapted in service-level agreements to guarantee deliv-
ery delay [3]. Moreover, transportation tasks on online platforms
(e.g., Uber Freight [25]) are often associated with pickup/delivery
time requirements, from which an end-to-end delivery deadline
can be computed. Meanwhile, very often, considering deadline con-
straints can turn an easy problem, e.g., finding the fastest path
between the origin and a destination, into an NP-hard counter-
part [18].

Positive battery State of Charge (SoC) constraints. Range anxiety
is a common issue for e-trucks due to their limited capacity. Careful
planning to prevent battery depletion for an e-truck is thus nec-
essary during the transportation task. However, this requirement
adds strong couplings to the traveling decisions between successive
road segments, thus largely complicating the problem.

Non-convex carbon footprint objective. We consider an e-truck
incurs the carbon footprint objective during intermediary charg-
ing. End-use electricity often has a mix of different sources (e.g.,
coal, natural gas, petroleum, and renewable). Different sources have
different carbon intensities (i.e., carbon footprint per unit electric-
ity, unit: kg/kWh); see Tab. 1 for examples. Among those sources,
renewable have notable zero carbon intensity and thus is an eco-
friendly type of source. Meanwhile, renewable generation has a
large variation in time and locations, resulting in spatial-temporal
diversity of carbon intensity of electricity; see Fig. 1 for an illus-
tration. The diverse carbon intensity, along with the nonlinear
charging characteristics of the battery, makes the carbon footprint
objective non-convex and challenging to deal with.

Enormous geographical and temporal charging options. Due to
the fluctuating nature of the renewable, carbon intensity varies
largely in both location and time. Jointly with path planning and
speed planning, charging planning determines where and when
to charge, how much to charge with diverse carbon intensity in
different locations and time. The design space is combinatorial

in nature, with enormous options to consider, making the CFO
problem uniquely challenging to solve.

Indeed, the CFO problem is more complicated and challenging
than those in related studies for ICE truck and EV driving optimiza-
tion and existing approaches are not directly applicable; see Sec. 2
for more discussions. In this paper, we carry out a comprehensive
study of the problem and make the following contributions:
▷We conduct the first study on carbon footprint optimization

(CFO). We show that the problem is NP-hard. We then show that
under practical settings, the CFO problem is equivalent to finding
a generalized restricted shortest path on a stage-expanded graph,
which extends the original transportation graph to incorporate
charging options. Compared to alternative approaches, our novel
formulation incurs low model complexity and reveals a problem
structure useful for algorithm design.
▷We then exploit the structured insights from the formulation

to develop an efficient dual-subgradient algorithm that always con-
verges. We show that in our approach, each iteration only incurs
polynomial-time complexity in graph size, albeit it requires solving
an integer charging planning problem optimally. We then further
derive a condition under which our algorithm produces an optimal
solution and a posterior performance bound when the condition is
not satisfied.
▷We carry out extensive numerical experiments using real-world

traces over the US highway network to show the effectiveness of
our approach in practice. The results show that our scheme reduces
up to 28% carbon footprint as compared to a fastest-path alternative.
We conduct a comparison between e-trucks and ICE trucks on their
environmental impact. The results show that an e-truck achieves
56% carbon reduction compared to its ICE counterpart.

Due to the space limitation, all proofs are included in the techni-
cal report [48].

2 RELATEDWORK
Energy-Efficient Timely Transportation (E2T2). E2T2 aims to
find a path and its associated speed profile from an origin to a desti-
nation with minimum energy consumption, while satisfying a hard
deadline [18, 36, 52]. It generalizes the NP-hard Restricted Shortest
Path (RSP) [30, 34, 38] problem by introducing an additional design
space of speed planing. E2T2 problem is first proposed in [18] and
also shown to be NP-hard. E2T2 is then generalized to the scenario
with multiple pickup/delivery locations with time windows in [36].
Another extension of E2T2 has been studied in [52], where the
driver can strategically wait at the rest area for better traffic condi-
tion. However, all these studies above are for conventional internal
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Figure 2: An example of charging function Φ, and the cor-
responding SoC difference function 𝜙 . The initial SoC is
𝛽𝑣 = 0.67. After charging for 20 minutes, the increment of
SoC 𝜙 (𝑡𝑐 , 𝛽𝑖 ) = 0.25. The two dashed lines represent charging
functions for different charging schemes.

combustion engine (ICE) trucks. In this work, we study the problem
for electric trucks with a new objective of minimizing the carbon
footprint, imposing unique challenges to the problem due to the
coupling nature of the State of Charge (SoC) constraints. See Tab. 2
for a comparison of our work with related studies.

Path and Speed Planning for Electric Vehicle has long been
an active research area. Path planning for EVs involves negative
edge weights due to the regenerative system. Many variants of the
RSP problem have been proposed for EVs by minimizing the energy
consumption subject to a deadline [16, 37, 45], or by finding the
fastest path subject to the battery capacity limit [6, 51]. However,
all these works only focus on path planning and ignore the design
space of speed planning. More recent works consider both path
planning and speed planning [7, 8, 24, 29, 46]. For example, Baum et
al. [8] seeks to find the fastest path with capacity limit by optimizing
both path planning and speed planning for EVs without charging
stops by the tradeoff function propagating technique. Strehler et
al. [46] give theoretical insights to the path and speed planning
problem for EVs and provide a fully polynomial time-approximation
scheme (FPTAS) for the problem. Overall, all mentioned work and
their approaches either do not apply to the CFO problem or incur
large time complexity in the CFO problem; see also Table 3 and
Sec. 3.3 for a comparison of conceivable approaches.

Variants of Vehicle Routing Problem (VRP). VRP generalizes
the NP-hard traveling salesman problem (TSP), where the operator
has a fleet of vehicles to fulfill the requirement of a set of customers.
The variants of VRP for EV are considered in electric vehicle rout-
ing problem (EVRP) [19, 26, 41, 44]. Some other variants of VRP
consider the environmental impacts of the routing decisions. For
example, the green vehicle routing problem [21] considers VRP
for alternative fuel vehicles. The pollution routing problem [10]
considers minimizing the emission for conventional vehicles. The
electric arc routing problem (eARP) [23] considers minimizing the
total travel time on an energy-indexed graph. As a general obser-
vation, variants of VRP only consider path planning and are very
complex. The existing methods for VRP do not scale to large-scale
network.

3 PROBLEM FORMULATION
3.1 System Model
Transportation Graph and Energy Consumption. We model
the highway system as a directed graph G = (V, E) where V =

V𝑟 ∪V𝑐 is the set of nodes. HereV𝑟 denotes the nodes for real road
segments andV𝑐 denotes the nodes for the charging stations. We
denote E ⊂ V ×V the set of edges. For each road segment 𝑒 ∈ E,
we denote its length by𝐷𝑒 and its minimum (resp. maximum) speed
limit by 𝑅𝑙𝑏𝑒 (resp. 𝑅𝑢𝑏𝑒 ). We define the minimum and maximum
traveling time limit as 𝑡𝑙𝑏𝑒 = 𝐷𝑒/𝑅𝑢𝑏𝑒 and 𝑡𝑢𝑏𝑒 = 𝐷𝑒/𝑅𝑙𝑏𝑒 .

Without loss of generality, we assume homogeneous road condi-
tion on a road segment 𝑒 ∈ E, e.g., the road grade. Given the weight
of an e-truck and the road grade, we model its energy consump-
tion rate over a road segment 𝑒 ∈ E as a convex function of the
traveling speed as justified in [18]: 𝑓𝑒 (𝑟𝑒 ) : [𝑅𝑙𝑏𝑒 , 𝑅𝑢𝑏𝑒 ] → R (unit:
kilowatts), where 𝑟𝑒 is the traveling speed. Note that for e-trucks,
𝑓𝑒 can take negative values over (downhill) road segments because
of regenerative breaking [6]. Because of the convexity of 𝑓𝑒 (·), it
suffices to assume that the e-truck travels on the road segment at
constant speed [18, Lem. 1] with no optimality loss.1 We further
define an energy consumption function for an e-truck to traverse the
road segment 𝑒 as 𝑐𝑒 (𝑡𝑒 ) = 𝑡𝑒 · 𝑓𝑒 (𝐷𝑒/𝑡𝑒 ). We note that 𝑐𝑒 (·) is a
perspective function of 𝑓𝑒 (·) with linear transformation. As such
𝑐𝑒 (𝑡𝑒 ) must be convex in 𝑡𝑒 [12].

E-Truck Charging. For each charging station node 𝑣 ∈ V𝑐 , an
e-truck can make two decisions: wait for 𝑡𝑤 ∈ [𝑡𝑙𝑏𝑤 , 𝑡𝑢𝑏𝑤 ] amount
of time for lower carbon intensity and charge for 𝑡𝑐 ∈ [0, 𝑡𝑢𝑏𝑐 ]
amount of time. Here we use 𝑡𝑙𝑏𝑤 to denote the time overhead for
an e-truck driver to stop and pay bills, etc. We denote the charging
function at 𝑣 ∈ V𝑐 by a concave function Φ𝑣 (𝑡), which represents
the charged SoC from zero after we charge for 𝑡 amount of time.2
Given an initial SoC 𝛽𝑣 we can compute the increment of SoC after
a charging time 𝑡𝑐 as

𝜙𝑣 (𝑡𝑐 , 𝛽𝑣) = Φ𝑣 (Φ−1
𝑣 (𝛽𝑣) + 𝑡𝑐 ) − 𝛽𝑣 . (1)

Here, Φ−1
𝑣 is the inverse function of Φ𝑣 ; see Fig. 2 for an illustration.

There could be multiple charging modes for e-trucks, e.g., fast
charge and regular charge, which correspond to different charging
functions (c.f. Fig. 2). Here, for simplicity, we assume the e-truck
only applies the fast charging scheme at each charging station.
We note that our approach can be easily extended to take multiple
charging schemes into account. For example, we can model different
charging schemes at a charging station by adding multiple charging
nodes 𝑖 ∈ V𝑐 at the same location.

Carbon Intensity and Carbon Footprint. For each charging
station 𝑣 ∈ V𝑐 , we define a continuous carbon intensity function
𝜋𝑣 (𝜏) (unit: kg/kWh) where 𝜏 is the arrival time instant at node
𝑣 . We assume 𝜏0 = 0 at the origin 𝑠 for ease of the presentation.
As illustrated in Fig. 1, the carbon intensity function 𝜋𝑣 (·) largely

1We ignore the acceleration/deceleration stage between road segments, as it usually
occupies a small fraction of time/energy compared with that under the entire road
segment.
2Most e-trucks use lithium-ion batteries, which are often charged with the constant-
current constant voltage (CC-CV) scheme [43]. In the scheme, a battery is first charged
by a constant current, and the SoC increases linearly until ∼80% of the capacity. After
that, a constant voltage is held to avoid overcharging degradation, causing the current
to decrease and the SoC to increase concavely.
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Figure 3: An example of stage-expanded graph with 𝑁 = 2
charging stops. Here, node 𝑏, 𝑐, 𝑒 are charging stations in the
original transportation graph.

varies in locations and time due to the geographical and temporal
variation of the renewable generation. We note that the carbon-
intensity information can be well forecasted at the hourly scale [39].
Given the carbon intensity function 𝜋𝑣 (·), if the e-truck with initial
SoC 𝛽𝑣 starts charging at 𝜏𝑣 at station 𝑣 and charges 𝑡𝑐 time, the
induced carbon footprint is

𝐹𝑣 (𝛽𝑣, 𝑡𝑐 , 𝜏𝑣) =
1
𝜂

∫ 𝑡𝑐

0
𝜋𝑣 (𝜏𝑣 + 𝜉)

𝜕−𝜙𝑣
𝜕𝑡
(𝜉, 𝛽𝑣)𝑑𝜉 . (2)

Here, 0 < 𝜂 ≤ 1 is the charging efficiency of the battery. 𝜕−𝜙𝑣

𝜕𝑡 (𝜉, 𝛽)
is the left partial derivative with respect to 𝑡 , which denotes the
charging rate given the charging time 𝜉 and initial SoC 𝛽 . For
charging at station 𝑣 ∈ V𝑐 , the carbon footprint depends on the
initial SoC 𝛽𝑣 , the charging time 𝑡𝑐 and the arrival time 𝜏𝑣 . It is the
integral of the product of the price function and charging rate and
thus nonlinear and non-convex.

3.2 Carbon Footprint Optimization Problem
We study the problem of minimizing the carbon footprint of an
e-truck traveling from the origin 𝑠 ∈ V to the destination 𝑑 ∈ V ,
subject to the hard deadline𝑇 and the SoC constraints. We consider
that the e-truck with initial SoC 𝛽0 and battery capacity 𝐵 can
take at most 𝑁 charging stops during the trip. We assume 𝑁 is
a given parameter to our problem. In practice, it is reasonable to
limit the number of charging stops in a trip for a good experience.
The number is usually small, e.g., 3 or 4 for a 1500-mile e-truck
transportation. In our simulation, we set the number of charging
stops to be no more than eight.

A Stage-Expanded Graph. One of the challenges for formulat-
ing the CFO problem is the lack of the arrival time information and
the arrival SoC information in the original transportation graph
G. Those information are essential for objective evaluation in the
charging planning. To incorporate those information and mitigate
this challenge, we consider a stage-expanded graph, which extends
the original transportation graph to model the charging decisions.

In particular, we consider a stage-expanded graph G𝑠 = (V𝑠 , E𝑠 )
with 𝑁 + 1 stages. HereV𝑠 contains 𝑁 + 1 copies of original node,
i.e., V𝑠 =

{
𝑣𝑖 : 𝑣 ∈ V, 𝑖 ∈ {1, ..., 𝑁 + 1}

}
. The edge set E𝑠 keeps

the original edges with additional connection between the same
charging stations and destinations for two adjacent stages. That is,

E𝑠 =
{
(𝑢𝑖 , 𝑣𝑖 ) : (𝑢, 𝑣) ∈ E, 𝑖 ∈ {1, ..., 𝑁 + 1}

}
∪

{
(𝑣𝑖 , 𝑣𝑖+1) : 𝑣 ∈ V𝑐 ∪ {𝑑} , 𝑖 ∈ {1, ..., 𝑁 }

}
.

When an e-truck at stage 𝑖 decides to charge at a charging station
𝑣 ∈ V𝑐 , we model it travels through a virtual stage transition
edge (𝑣𝑖 , 𝑣𝑖+1). At each stage, the e-truck travels towards the next
charging station (or the destination), then wait and charge at the
charging station and enter the next stage or stop at the destination.
Note that the e-truck can charge less than 𝑁 times, arrive the
destination at stage 𝑖 < 𝑁 + 1 and then travel across stages through
virtual edges between destinations and arrive the final stage. We
provide an illustration in Fig. 3.

As we shall see in the following, the stage-expanded graph natu-
rally incorporates the information of the arrival time and the arrival
SoC, making it easier to model the charging decisions. We shall also
discuss the benefits of such a stage-expanded graph and compare
it conceivable alternatives later in Sec. 3.3 after we formulate the
CFO problem.

Path and Charging Station Selection. A path in the stage-
expanded graph consists of 𝑁 + 1 subpaths connecting the source,
no more than 𝑁 charging stations and the destination. We use
binary variables to represent the choice of charging stops at each
stage and road segments in each subpath.

In particular, for each charging station 𝑣 ∈ V𝑐 , we define a binary
charging station selection variable 𝑦𝑖𝑣 ∈ {0, 1} and 𝑦𝑖𝑣 = 1 means
we want to choose charging station 𝑣 as our 𝑖-th charging stop. For
each subpath 𝑖 ∈ {1, ..., 𝑁 + 1} and road segment 𝑒 ∈ E, we define
a binary path selection variable 𝑥𝑖𝑒 ∈ {0, 1} and 𝑥𝑖𝑒 = 1 means we
want to travel through road segment 𝑒 for 𝑖-th subpath. For ease
of presentation, we stack the variables ®𝑥𝑖 = {𝑥𝑖𝑒 }𝑒∈E , ®𝑥 = {®𝑥𝑖 }𝑁+1

𝑖=1
and ®𝑦𝑖 = {𝑦𝑖𝑒 }𝑒∈E , ®𝑦 = {®𝑦𝑖 }𝑁+1

𝑖=1 . We define the feasible set of ( ®𝑥, ®𝑦)
as follows:

P =

{
( ®𝑥, ®𝑦) | 𝑥𝑖𝑒 ∈ {0, 1} , ∀𝑒 ∈ E, 𝑖 ∈ {1, ..., 𝑁 + 1} (3a)

𝑦𝑖𝑣 ∈ {0, 1} ,∀𝑣 ∈ V, 𝑖 ∈ {0, ..., 𝑁 + 1} (3b)∑︁
𝑒∈Out(𝑣)

𝑥𝑖𝑒 −
∑︁

𝑒∈In(𝑣)
𝑥𝑖𝑒 = 𝑦

𝑖−1
𝑣 − 𝑦𝑖𝑣, ∀𝑣 ∈ V, 𝑖 ∈ {1, ..., 𝑁 + 1}

(3c)∑︁
𝑣∈V

𝑦𝑖𝑣 = 1,
∑︁
𝑣∈Ṽ𝑐

𝑦𝑖𝑣 = 1, ∀𝑖 ∈ {0, 1, ..., 𝑁 + 1} (3d)

𝑦0
𝑠 = 1, 𝑦𝑁+1

𝑑
= 1

}
. (3e)

Here, Ṽ𝑐 = V𝑐 ∪ {𝑠, 𝑑}. Out(𝑣) and In(𝑣) are the set of outgoing
and incoming edges of node 𝑣 , respectively. Constraint (3c) is the
flow conservation requirement for each subpath. Constraint (3d)
ensures that only one charging station is selected for each stage.
Constraint (3e) defines that boundary case at the origin 𝑠 and the
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destination 𝑑 . We remark that P also covers path with charging
stops less than 𝑁 as we can choose the same charging stops at
adjacent stages.

Speed and Charging Planning. We then define the decision
variables for speed planning and charging planning. For each sub-
path 𝑖 and road road segment 𝑒 , we denote the traveling time as 𝑡𝑖𝑒 .
We also denote by 𝑡𝑖,𝑣𝑤 , 𝑡𝑖,𝑣𝑐 the waiting and charging time for charg-
ing station 𝑣 as 𝑖-th charging stop. We also stack the variables as ®𝑡𝑖 ={
𝑡𝑖𝑒

}
𝑒∈E , ®𝑡𝑖𝑤 =

{
𝑡𝑖,𝑣𝑤

}
𝑣∈Ṽ𝑐

, ®𝑡𝑖𝑐 =

{
𝑡𝑖,𝑣𝑐

}
𝑣∈Ṽ𝑐

, ®𝑡 =
{(®𝑡𝑖 , ®𝑡𝑖𝑤 , ®𝑡𝑖𝑐 )}𝑁+1𝑖=0 .

The corresponding feasible set is given by

T =

{
®𝑡 | 𝑡𝑖𝑒 ∈ [𝑡𝑙𝑏𝑒 , 𝑡𝑢𝑏𝑒 ],∀𝑒 ∈ E, 𝑖 ∈ {1, ..., 𝑁 + 1} , (4a)

𝑡𝑖,𝑣𝑤 ∈ [𝑡𝑙𝑏𝑤 , 𝑡𝑢𝑏𝑤 ], 𝑡
𝑖,𝑣
𝑐 ∈ [0, 𝑡𝑢𝑏𝑐 ],∀𝑣 ∈ Ṽ𝑐 , 𝑖 ∈ {1, ..., 𝑁 } ,

(4b)

𝑡0𝑤 = 𝑡0𝑐 = 0,
}
. (4c)

Time Constraints. We denote 𝜏𝑖𝑣 the moment of an e-truck
entering the charging station 𝑣 at 𝑖-th stop. It enables us to allocate
the total allowed travel time𝑇 to the subpath at each stage. We also
stack the variable as ®𝜏 =

{
𝜏𝑖𝑣

}
𝑣∈Ṽ𝑐 ,𝑖∈{0,...𝑁+1} and its feasible set

is given by

T𝜏 =

{
®𝜏 | 𝜏𝑖𝑣 ∈ [0,𝑇 ],∀𝑣 ∈ Ṽ𝑐 , 𝑖 ∈ {0, ..., 𝑁 + 1}

}
. (5)

We consider the constraint that the traveling time and charging
time are within the scheduled time window for 𝑖-th subpath, 𝑖 ∈
{1, ..., 𝑁 + 1}:

𝛿𝜏𝑖 ( ®𝑥, ®𝑦, ®𝑡, ®𝜏) =
∑︁
𝑒∈E

𝑥𝑖𝑒𝑡
𝑖
𝑒 +

∑︁
𝑣∈V𝑐

𝑦𝑖−1
𝑣

(
𝑡𝑖−1,𝑣
𝑤 + 𝑡𝑖−1,𝑣

𝑐

)
−

∑︁
𝑣∈V𝑐

(
𝑦𝑖𝑣𝜏

𝑖
𝑣 − 𝑦𝑖−1

𝑣 𝜏𝑖−1
𝑣

)
≤ 0.

(6)

Here, the first two terms are the traveling time on 𝑖-th subpath
and the spent time for (𝑖 − 1)-th stop. The third term is the total
scheduled time duration between (𝑖 − 1)-th stop and 𝑖-th stop.

SoC Constraints. It is complicated to keep track of the SoC at
each road segment. In practice, we see that the regenerative braking
only contributes a small fraction of energy to the e-truck [47]. With
such a practical observation, we show that with a small reservation
requirement at the SoC when entering a charging stop at a stage, it
is sufficient to guarantee the positive SoC in the entire subpath at
that stage.

In particular, we denote by 𝛽𝑖𝑣 the SoC entering charging station
𝑣 at 𝑖-th stop. We stack the variable as ®𝛽 =

{
𝛽𝑖𝑣

}
𝑣∈Ṽ𝑐 ,𝑖∈{0,...𝑁+1} ,

and its feasible set is given by

S𝛼 =

{
®𝛽 | 𝛽𝑖𝑣 ∈ [𝛼𝐵, 𝐵],∀𝑣 ∈ Ṽ𝑐 , 𝑖 ∈ {0, ..., 𝑁 + 1} , 𝛽0

𝑠 = 𝛽0

}
. (7)

Here, 𝛼 ∈ [0, 1) denotes the ratio of a conservative lower bound
for SoC when an e-truck entering a charging station. We consider
the initial SoC at the source as 𝛽0.

We define the SoC constraint that the e-truck does not run out
of battery when entering 𝑖-th stop:

𝛿
𝛽

𝑖
( ®𝑥, ®𝑦, ®𝑡, ®𝛽) =

∑︁
𝑒∈E

𝑥𝑖𝑒𝑐𝑒 (𝑡𝑖𝑒 ) +
∑︁
𝑣∈V𝑐

𝑦𝑖𝑣𝛽
𝑖
𝑣

−
∑︁
𝑣∈V𝑐

𝑦𝑖−1
𝑣

(
𝛽𝑖−1
𝑣 + 𝜙𝑣 (𝛽𝑖−1

𝑣 , 𝑡𝑖−1,𝑣
𝑐 )

)
≤ 0.

(8)

Here, the first term is the total energy consumption for 𝑖-th subpath,
the second term is the SoC when the e-truck enters the 𝑖-th stop,
the third term is the SoC when the e-truck leaves the (𝑖 − 1)-th
stop.

We show that a small 𝛼 is sufficient to ensure SoC feasibility dur-
ing a subpath, as along as the harvested energy due to regenerative
brake is relatively small.

Lemma 3.1. Let an e-truck travels along a subpath with 𝑛 road
segments to a charging stop, along with its energy consumption on
each road segment [𝑐1, ..., 𝑐𝑛]. If the harvested energy is relatively
small and satisfies

1
2

𝑛∑︁
𝑖=1
( |𝑐𝑖 | − 𝑐𝑖 ) ≤

𝛼

2(1 − 𝛼)

𝑛∑︁
𝑖=1

𝑐𝑖 , (9)

then the SoC at the charging stop being no less than 𝛼 · 𝐵 implies that
the e-truck always has a non-negative SoC during this subpath.

Note that the harvested energy (i.e., left hand side of (9)) for an e-
truck traveling across national highway system is indeed small [47].
Because the maximum permissible grade along the US highway is
no larger than 6% [28], there is little energy that can be harvested.
Meanwhile, our simulation in Sec. 5 shows that 𝛼 = 0.05 is sufficient
to ensure non-negative SoC for most of the instances in our simu-
lation. Moreover, it also shows that it incurs a small performance
gap by comparing it with a lower bound where 𝛼 is set as zero.

Problem Formulation. To this end, we are ready to formulate
the Carbon Footprint Optimization (CFO) problem as follows:

CFO : min
𝑁∑︁
𝑖=1

∑︁
𝑣∈V𝑐

𝑦𝑖𝑣𝐹𝑣 (𝑡
𝑖,𝑣
𝑐 , 𝑡𝑖,𝑣𝑤 , 𝛽

𝑖
𝑣, 𝜏

𝑖
𝑣) (10a)

s.t. 𝛿𝜏𝑖 ( ®𝑥, ®𝑦, ®𝑡, ®𝜏) ≤ 0, ∀𝑖 ∈ {1, ..., 𝑁 + 1} (10b)

𝛿
𝛽

𝑖
( ®𝑥, ®𝑦, ®𝑡, ®𝛽) ≤ 0, ∀𝑖 ∈ {1, ..., 𝑁 + 1} (10c)

var. ( ®𝑥, ®𝑦) ∈ P, ®𝛽 ∈ S𝛼 , ®𝜏 ∈ T𝜏 , ®𝑡 ∈ T . (10d)

Here, we aim to minimize the carbon footprint objective (10a).
Constraint (10b) is the time scheduling constraint for each subpath.
Constraints (10c) is the SoC constraints for each subpath.

We give the hardness result of the problem in the follow theorem.
Theorem 3.2. CFO is NP-hard.

The NP-hardness of the CFO problem comes from the fact that a
special case of the CFO problem is PASO problem [18] that considers
the path planning and speed planning for energy-efficient timely
transportation with ICE trucks.
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Graph Model in Formulation Problem Model Complexity Algorithm Complexity Optimality

Original graph MIP 𝑂 ( |V| + |E|) Branch and bound Exponential to
|V| and |E | Optimal

Battery-expanded graph MILP† 𝑂 (𝐵/𝜖 ( |V| + |E|)) Branch and cut Exponential to
|V|, |E |, and 𝐵/𝜖 𝑂 (𝜖) to optimal

Time-expanded and
battery-expanded graph Shortest Path

(
(𝑇 · 𝐵)/𝜖2) ( |V| + |E|) Bellman-Ford Polynomial to

|V|, |E |,𝑇 /𝜖 and 𝐵/𝜖 𝑂 (𝜖) to optimal

Our stage-expanded graph Generalized RSP‡ 𝑂
(
𝑁 ( |E | + |V|)

)
Dual subgradient Polynomial to

|V|, |E |, and 𝑁 Posterior bound

† : Provided that the carbon intensity function is approximated by a piecewise linear function. ‡ : RSP stands for restricted shortest path.
Message 1: Compared with battery-expanded graphs, our stage-expanded graph has a low model complexity because th number of stages 𝑁 ≤ 10 in practice.
Message 2: Compared with MIP formulations, our formulation reveals an elegant problem structure that leads to an efficient algorithm with favorable performance.

1

2

2

Table 3: Comparison of conceivable problem modelings, formulations, and algorithms for the CFO problem.

3.3 Remark on Challenges and Novelty
We first remark on four outstanding challenges of the CFO prob-
lem, after which we discuss the novelty of our formulation and its
significance for tackling those challenges.
Remark on Challenges. The first challenge comes from optimal
path planning and speed planning under the hard deadline con-
straint, which already makes the problem NP-hard. This challenge
exists in both the CFO problem and the E2T2 problem for ICE trucks,
e.g., [18]. The following three challenges are unique to e-truck and
CFO.

The second challenge is the positive battery SoC requirement
for each road segment, which adds strong couplings to the problem.
One of the conventional ways is to explicitly define variables and
constraints on each road segment (c.f., EVRP [41]) and obtain a
large Mixed-Integer Programming (MIP). However, the resulting
MIP is still challenging to solve because general-purpose methods
usually do not scale well on MIP. We mitigate this challenge in our
formulation with a key observation (Lemma 3.1) that it is sufficient
to restrict the SoC only when entering each charging stop (and the
destination) by a conservative lower bound, i.e., (8). As reported in
Sec. 5, such simplification only incurs a small performance loss.

The third challenge comes from the non-convex objective, which
is unique to the CFO problem. The objective is time-varying and
highly non-convex with respect to 𝜏 due to the fluctuating nature
of renewable. Large-scale non-convex problems are in general chal-
lenging to solve. Our problem formulation reveals an elegant prob-
lem structure that allows us to decompose the large non-convex
problem into a number of significantly less-complex subproblems,
which can be efficiently solved by global optimization tools, as we
will show in Sec. 4.

The last challenge comes from enormous geographical and tem-
poral charging options with diverse carbon intensity. The charging
station selection configuration space has a combinatorial nature.
A straightforward search over locations results in an exponential
runtime with respect to 𝑁 . To tackle this challenge, our formula-
tion extends the transportation graph to a stage-expanded graph to
model charging options. This extension significantly reduces the

searching space to a polynomial number and allows us to system-
atically search charging stations with constraint-respect costs via
Lagrangian relaxation.
Remark on Novelty. Overall, those four challenges make the
CFO problem notoriously challenging to solve. In the following, we
remark the novelty of our approach by comparing our approach
with several conceivable alternatives that are applicable to the CFO
problem. We summarize the comparison in Tab. 3.

The first direction of alternatives (c.f., the first row and the second
row in Tab. 3) resorts to directly formulate the CFO problem as a
Mixed Integer Program (MIP) and solve it with general-purpose
methods (e.g., branch and bound). However, the resulting MIP is
still challenging to solve. The general-purpose methods usually do
not scale well to large problems as they do not carefully explore
the problem structure.

The second direction of alternative expands the graph with dis-
cretized state 𝛽 and 𝜏 (c.f. the third row in Tab. 3). Once the expanded
graph is constructed, the CFO problem can be transformed to a
shortest path problem on the expanded graph. However, the graph
is (𝑇 · 𝐵)/𝜖2 times of the original graph, making the approach fail
to scale to large networks with favorable accuracy.

In contrast, our formulation in (10) enjoys the benefits for the
both worlds. It has a low-complexity stage-expanded graph model,
which does not involve discretizing the time or SoC. Moreover,
the formulation reveals an elegant problem structure for effective
algorithm design. In the next section, we shall exploit the under-
standing and design an efficient dual-subgradient method that has
good theoretical and empirical performance.

4 AN EFFICIENT ALGORITHMWITH
PERFORMANCE GUARANTEE

In this section, we develop an efficient dual-subgradient algorithm
for solving the CFO problem with performance guarantee, by ex-
ploring the structural insights of the formulation in (10).

4.1 The Dual Problem
We obtain a partially-relaxed dual problem of CFO in (10) by re-
laxing the constraints (10b) and (10c) with dual variable 𝜆𝜏

𝑖
and 𝜆𝛽

𝑖
,
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respectively. The Lagrangian function is given by

𝐿( ®𝑥, ®𝑦, ®𝑡, ®𝛽, ®𝜏, ®𝜆) =
𝑁∑︁
𝑖=1

∑︁
𝑣∈V𝑐

𝐹𝑣 (𝑡𝑖,𝑣𝑐 , 𝑡𝑖,𝑣𝑤 , 𝛽
𝑖
𝑣, 𝜏

𝑖
𝑣)

+
𝑁+1∑︁
𝑖=1

𝜆𝜏𝑖 𝛿
𝜏
𝑖 ( ®𝑥, ®𝑦, ®𝑡, ®𝜏) +

𝑁+1∑︁
𝑖=1

𝜆
𝛽

𝑖
𝛿
𝛽

𝑖
( ®𝑥, ®𝑦, ®𝑡, ®𝛽),

where ®𝜆 = ( ®𝜆𝛽 , ®𝜆𝜏 ). The corresponding dual problem is given by

max
®𝜆≥0

𝐷 ( ®𝜆) = max
®𝜆≥0

min
( ®𝑥, ®𝑦) ∈P,

®𝛽∈S𝛼 ,®𝜏∈T𝜏 ,®𝑡 ∈T

𝐿( ®𝑥, ®𝑦, ®𝑡, ®𝛽, ®𝜏, ®𝜆) . (11)

Given ®𝜆, we observe the problem of 𝐷 ( ®𝜆) is a two-level problem
where the inner level consists of a number of small subproblems
and the outer level is a combinatorial problem over the feasible set
P. That is,

𝐷 ( ®𝜆) = 𝐷1 ( ®𝜆) + min
( ®𝑥, ®𝑦) ∈P

(
𝑁+1∑︁
𝑖=1

∑︁
𝑒∈E

𝑥𝑖𝑒 min
𝑡𝑖𝑒 ∈[𝑡𝑙𝑏𝑒 ,𝑡𝑢𝑏𝑒 ]

𝑔𝑖𝑒 ( ®𝜆, 𝑡𝑖𝑒 )︸                   ︷︷                   ︸
speed planning

(12a)

+
𝑁∑︁
𝑖=1

∑︁
𝑣∈V𝑐

𝑦𝑖𝑣 min
𝑡
𝑖,𝑣
𝑐 ∈[0,𝑡𝑢𝑏𝑐 ],𝑡𝑖,𝑣𝑤 ∈[𝑡𝑙𝑏𝑤 ,𝑡𝑢𝑏𝑤 ],
𝛽𝑖𝑣 ∈[𝛽𝑙𝑏 ,𝐵 ],𝜏𝑖𝑣 ∈[0,𝑇 ]

ℎ𝑖𝑣 ( ®𝜆, 𝑡
𝑖,𝑣
𝑐 , 𝑡𝑖,𝑣𝑤 , 𝛽

𝑖
𝑣, 𝜏

𝑖
𝑣)

︸                                                    ︷︷                                                    ︸
charging planning

)
,

(12b)

where 𝐷1 ( ®𝜆) = −𝜆𝜏𝑁+1𝑇 − 𝛽0𝜆
𝛽

1 is a constant for any given ®𝜆 and

𝑔𝑖𝑒 ( ®𝜆, 𝑡𝑖𝑒 ) = 𝜆𝜏𝑖 𝑡
𝑖
𝑒 + 𝜆

𝛽

𝑖
𝑐𝑒 (𝑡𝑖𝑒 ) (13)

represents the trade-off between the traveling time 𝑡𝑖𝑒 and the en-
ergy consumption 𝑐𝑒 (𝑡𝑖𝑒 ) for each road segment 𝑒 ∈ E. The function

ℎ𝑖𝑣 ( ®𝜆, 𝑡
𝑖,𝑣
𝑐 , 𝑡𝑖,𝑣𝑤 , 𝛽

𝑖
𝑣, 𝜏

𝑖
𝑣) = 𝐹𝑣 (𝑡

𝑖,𝑣
𝑐 , 𝑡𝑖,𝑣𝑤 , 𝛽

𝑖
𝑣, 𝜏

𝑖
𝑣) + 𝜆𝜏𝑖+1

(
𝑡𝑖,𝑣𝑤 + 𝑡𝑖,𝑣𝑐

)
(14a)

+
(
𝜆𝜏𝑖+1 − 𝜆

𝜏
𝑖

)
𝜏𝑖𝑣 +

(
𝜆
𝛽

𝑖
− 𝜆𝛽

𝑖+1

)
𝛽𝑖𝑣 − 𝜆

𝛽

𝑖+1𝜙𝑣
(
𝛽𝑖𝑣, 𝑡

𝑖,𝑣
𝑐

)
(14b)

represents the trade-off between the objective and the constraints.
Next, we define

𝑤𝑖𝑒 ( ®𝜆) = min
𝑡𝑖𝑒 ∈[𝑡𝑙𝑏𝑒 ,𝑡𝑢𝑏𝑒 ]

𝑔𝑖𝑒 ( ®𝜆, 𝑡𝑖𝑒 ), (15a)

𝜎𝑖𝑣 ( ®𝜆) = min
𝑡
𝑖,𝑣
𝑐 ∈[0,𝑡𝑢𝑏𝑐 ],𝑡𝑖,𝑣𝑤 ∈[𝑡𝑙𝑏𝑤 ,𝑡𝑢𝑏𝑤 ],
𝛽𝑖𝑣 ∈[𝛼𝐵,𝐵 ],𝜏𝑖𝑣 ∈[0,𝑇 ]

ℎ𝑖𝑣 ( ®𝜆, 𝑡
𝑖,𝑣
𝑐 , 𝑡𝑖,𝑣𝑤 , 𝛽

𝑖
𝑣, 𝜏

𝑖
𝑣) . (15b)

Here,𝑤𝑖𝑒 ( ®𝜆) can be computed by solving a single-variable convex
optimization problem because 𝑔𝑖𝑒 ( ®𝜆, 𝑡𝑖𝑒 ) is convex with respect to
𝑡𝑖𝑒 . The computation of 𝜎𝑖𝑣 ( ®𝜆) requires more effort, where we need
to solve a 4-variable non-convex optimization problem over box
constraints. Fortunately, the dimension of the subproblem (15b) is
fixed. Therefore, we can obtain 𝜎 ( ®𝜆) in 𝑂 (𝑀4/𝜖4

1 ) with a Branch
and Bound (BnB) scheme [13]. Here 𝑀 = max{𝑡𝑢𝑏𝑐 , 𝑡𝑢𝑏𝑤 , 𝐵,𝑇 } is the
diameter of the box constraint in subproblem (15b) and 𝜖1 is the
accuracy.

𝑠

𝑢1 𝑢2

𝑣1 𝑣2

𝑑

SP
1 (𝑠,

𝑢
)

SP 1(𝑠, 𝑣)
𝜎 1𝑢 +

SP 2(𝑢
, 𝑣)

𝜎1
𝑢

𝜎1
𝑣

𝜎
1

𝑣
+ S

P
2 (𝑣
,𝑢
)

𝜎 2
𝑢 + SP 3(𝑢,𝑑 )

𝜎
2
𝑣
+ S
P
3 (𝑣,

𝑑
)

Figure 4: An example of the extended graph with 𝑁 = 2. In
the original graph, we have two charging stations 𝑢 and 𝑣 .

Solving the Outer Level Problem. After solving the inner level
subproblems (15a) and (15b), the dual function can be written as
follows:

𝐷 ( ®𝜆) =𝐷1 ( ®𝜆) + min
( ®𝑥, ®𝑦) ∈P

𝑁+1∑︁
𝑖=1

∑︁
𝑒∈E

𝑤𝑖𝑒 ( ®𝜆)𝑥𝑖𝑒 +
𝑁∑︁
𝑖=1

∑︁
𝑣∈V𝑐

𝜎𝑖𝑣 ( ®𝜆)𝑦𝑖𝑣 . (16)

The problem in (16), at first glance, is an integer linear program (ILP)
which is in general challenging to solve. However, after exploring
the problem structure, we can see that each charging station 𝑣 is
associated with a cost 𝜎𝑖𝑣 if it is the 𝑖-th charging stop, and each
road segment 𝑒 is with a cost 𝑤𝑖𝑒 if it is in 𝑖-th subpath. Our goal
is to find 𝑁 charging stops and 𝑁 + 1 subpaths with the minimum
total cost. We observe that given any charging station selection,
optimal subpaths can be determined by the shortest paths. Corre-
spondingly, we can construct an extended graph consisting of 𝑁
layers of charging stations with cost 𝜎𝑖𝑣 and edges between any
two nodes in the consecutive layers with weight determined by the
shortest paths. We can then find the optimal charge stop selection
by the shortest path on the extended charging station graph. This
idea leads to a novel two-level shortest path algorithm.

In particular, we construct an extended graph G𝑒𝑥 = (V𝑒𝑥 , E𝑒𝑥 ),
where the node set V𝑒𝑥 contains 𝑠, 𝑑 and 𝑁 copies of charging
stations, i.e.,

V𝑒𝑥 = {𝑠, 𝑑} ∪
{
𝑣𝑖 |𝑣 ∈ V𝑐 , 𝑖 ∈ {1, ..., 𝑁 }

}
. (17)

For each 𝑢, 𝑣 ∈ V𝑐 and 𝑖 ∈ {1, ..., 𝑁 }, we construct an edge between
𝑢𝑖 and 𝑣𝑖+1 with cost𝜎𝑖𝑢 ( ®𝜆)+𝑆𝑃𝑖+1 (𝑢, 𝑣)where 𝑆𝑃𝑖+1 (𝑢, 𝑣) is the cost
of shortest path between (𝑢, 𝑣) on the original graph G with weight
𝑤𝑖+1𝑒 ( ®𝜆). Similarly, we construct edges (𝑠, 𝑣1),∀𝑣 ∈ V𝑐 with weights
𝑆𝑃1 (𝑠, 𝑣) and construct edges (𝑢𝑁 , 𝑑),∀𝑣 ∈ V𝑐 with weights 𝜎𝑁𝑣 +
𝑆𝑃𝑁+1 (𝑢𝑁 , 𝑑). By construction, we have the following lemma:

Lemma 4.1. A shortest path on G𝑒𝑥 corresponds to an optimal
solution to ILP problem in (16).

Hence, we can solve the ILP problem (16) by applying a shortest
path algorithm to the extended graph G𝑒𝑥 with low time complexity.
Overall, given any ®𝜆, we can compute the value of 𝐷 ( ®𝜆) by first
solving a number of subproblems (15a) and (15b) and then solving
the outer problem (16) with shortest algorithms on an extended
graph.
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Algorithm 1 A Dual Subgradient Method

1: Initialization: sol← NULL, ®𝜆[1] ← 0
2: for 𝑘 ← 1 to 𝐾 do
3: Compute sol+ with ®𝜆[𝑘] by solving problem (12)
4: if 𝛿𝛽

𝑖
[𝑘] = 0 and 𝛿𝜏

𝑖
[𝑘] = 0,∀𝑖 ∈ {1, ..., 𝑁 + 1} then

5: return sol← sol+
6: if 𝛿𝛽

𝑖
[𝑘] ≤ 0 and 𝛿𝜏

𝑖
[𝑘] ≤ 0,∀𝑖 ∈ {1, ..., 𝑁 + 1} and sol+

has less objective then
7: sol← sol+
8: Compute ®𝜆[𝑘 + 1] according to (18).
9: return sol

4.2 A Dual Subgradient Algorithm
We use the dual subgradient method to iteratively update the dual
variable ®𝜆. In particular, we denote by ®𝜆[𝑘] the dual variable at 𝑘-th
iteration. Then we update the dual variable as follows:

𝜆
𝛽

𝑖
[𝑘 + 1] =

(
𝜆
𝛽

𝑖
[𝑘] + 𝜃𝑘 𝛿

𝛽

𝑖

(
®𝑥∗ [𝑘], ®𝑦∗ [𝑘], ®𝑡∗ [𝑘], ®𝛽∗ [𝑘]

)
︸                                  ︷︷                                  ︸

𝛿
𝛽

𝑖
[𝑘 ]

)
+
, (18a)

𝜆𝜏𝑖 [𝑘 + 1] =
(
𝜆𝜏𝑖 [𝑘] + 𝜃𝑘 𝛿

𝜏
𝑖

(
®𝑥∗ [𝑘], ®𝑦∗ [𝑘], ®𝑡∗ [𝑘], ®𝜏∗ [𝑘]

)︸                                 ︷︷                                 ︸
𝛿𝜏
𝑖
[𝑘 ]

)
+
. (18b)

Here, ®𝑥∗ [𝑘], ®𝑦∗ [𝑘], ®𝑡∗ [𝑘], ®𝛽∗ [𝑘], ®𝜏∗ [𝑘] are the solutions of the com-
puted from the subproblems (16), (15a), and (15b) with ®𝜆[𝑘]. The
values 𝛿𝛽

𝑖
[𝑘] and 𝛿𝜏

𝑖
[𝑘] are thus the corresponding subgradients of

𝐷 ( ®𝜆) for each components. The notation (𝑎)+ denotes max{0, 𝑎}.
The step size at 𝑘-th iteration is denoted as 𝜃𝑘 .

The overall algorithm is summarized in Algorithm 1. From a
high-level perspective, the dual variables ®𝜆 can be interpreted as
the price for the scheduled deadline and SoC. For example, a higher
𝜆
𝛽

𝑖
gives more weight on the constraint 𝛿𝛽

𝑖
and has multiple effects.

First, it gives more weight for the energy cost in (13), thus resulting
in a larger traveling time in the edge subproblem (15a). Meanwhile,
a higher 𝜆𝛽

𝑖
results in a lower scheduled SoC 𝛽𝑖𝑣 at 𝑖-th stop but

a higher 𝛽𝑖−1
𝑣 and more charging time 𝑡𝑖,𝑣𝑐 at (𝑖 − 1)-th stop. It

means that a higher 𝜆𝛽
𝑖

results in a larger difference of scheduled
𝑆𝑜𝐶 between charging stops (𝑖 − 1) and 𝑖 . A similar interpretation
applies to the dual variable 𝜆𝜏

𝑖
. Overall, Alg. 1 seeks to find a solution

that balances the objective and the constraint cost and adjusts the
dual variable via the subgradient direction.

4.3 Performance Analysis
In this subsection, as one of the key contributions, we show that (i)
our algorithm always converges with a rate of𝑂 (1/

√
𝐾) where 𝐾 is

the number of iteration, (ii) each iteration only incurs polynomial-
time complexity in graph size, and (iii) it generates optimal results
if a condition is met and solutions with bounded loss otherwise.
Convergence Rate. Similar to standard subgradient methods [14],
algorithm 1 also converges to dual optimal value at a rate of𝑂 (1/

√
𝐾).

Theorem 4.2. Let 𝐷∗ be the optimal dual objective and let 𝐷𝐾
be the maximum dual value over 𝐾 iterations in algorithm 1. With
constant step size 𝜃𝑘 = 1√

𝐾
, we have, for some constant 𝐶 ,

𝐷∗ − 𝐷𝐾 ≤
𝐶
√
𝐾
. (19)

It shows that a constant step size 𝜃𝑘 = 1/
√
𝐾 is sufficient to

achieve a convergence rate of𝑂 (1/
√
𝐾). However, one may achieve

better empirical convergence by adaptively updating the step sizes [9].
Besides, another improvement can be achieved by modifying the
subgradient directions [15].
Time Complexity. We summarize the time complexity analysis
of Alg. 1 in the following Proposition.

Proposition 4.3. The time complexity per iteration of Alg. 1 is

𝑂

(
(𝑁 + 1) |V𝑐 | |V||E | + 𝑁 |V𝑐 |

𝑀4

𝜖4
1

)
(20)

, where𝑀 =

{
𝑡𝑢𝑏𝑐 , 𝑡𝑢𝑏𝑤 , 𝐵,𝑇

}
and 𝜖1 is the required accuracy for solving

the subproblems (15b)

Proposition 4.3 states that at each iteration , Alg. 1 incurs only
polynomial time complexity in graph size, albeit it requires solving
the ILP subproblem in (15b) optimally. Meanwhile, Theorem 4.2
guarantees that Alg. 1 converges to a solution with accuracy 𝜖0
in 𝑂 (1/𝜖2

0 ) iterations. We can derive the total time complexity of
Alg. 1 by combining Proposition 4.3 and Theorem 4.2.
Optimality Gap. Note that in the dual subgradient method, a
convergence to dual optimal does not imply a convergence to the
primal optimal as there might be a duality gap. To this end, we
provide the following bound on the optimality gap.

Theorem 4.4. Let OPT be the optimal objective to the problem
in (10). If Alg. 1 produces a feasible solution updated at iteration 𝑘
with objective ALG, then the optimality gap is bounded by

𝐴𝐿𝐺 −𝑂𝑃𝑇 ≤ −
𝑁+1∑︁
𝑖=1

(
𝜆
𝛽

𝑖
[𝑘]𝛿𝛽

𝑖
[𝑘] + 𝜆𝜏𝑖 [𝑘]𝛿

𝜏
𝑖 [𝑘]

)
. (21)

The posterior bound (21) simply comes from the weak duality.
Meanwhile, we can compute it at each iteration in Alg. 1 and use it
for early termination upon certain accuracy. Moreover, Theorem 4.4
also provides an optimality condition of the produced solution by
the following corollary.

Corollary 4.5. If Alg. 1 returns a feasible solution in line 5, then
the solution is optimal.

Note that Theorem 4.4 requires Alg.1 to produce a feasible solu-
tion, which is not guaranteed in dual-based methods. In the case
where Alg.1 does not find a feasible solution, we re-optimize the
speed planning and charging planning with the given path in the
last iteration of Alg. 1 and try to recover a feasible primal solu-
tion. As seen in Sec. 5, this recovery scheme always finds a feasible
solution.

5 NUMERICAL EXPERIMENTS
In this section, we evaluate the performance of our algorithm by
simulations using real-world traces over the US highway network.
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FAST
CARBON
ENERGY

Carbon
footprint (kg)

Energy
(kWh)

Distance
(miles)

Time
(hours)

FAST 1022.0 1633.7 919.9 19.3
ENERGY 637.3 1239.7 879.8 24.0
CARBON 413.6 1487.5 946.9 24.0

Figure 5: The illustration of carbon-optimized and energy-
optimized solutions from Dallas, TX to Carmel, IN. In the
figure, the shaded area represents the period of charging
process.

Our objectives are (i) to study the behavior of the carbon-optimized
solutions. (ii) to study the performance of the proposed approach
as compare to baselines and the impact of path planning, speed
planning, charging planning, respectively; (iii) to study the impact
of conservative ratio𝛼 ; (iv) to compare the carbon footprint between
electric trucks and ICE trucks, and study the environmental benefit
of electric trucks.

5.1 Experiment Setup
Transportation network. We collect the highway network data from
the Map-based Educational Tools for Algorithm Learning (METAL)
project [49]. The constructed network consists of 84, 504 nodes and
178, 238 directed edges. We collect the real-time road speed data
from HERE map [40]. The grade of each road segment is derived
from the elevations of its end nodes provided by the Shuttle Radar
Topography Mission (SRTM) [22] project. We also pre-process the
road network and merge the adjacent road segments with similar
grades with tolerance 0.5% to reduce the computational complexity.

Energy consumption model. We use the simulator FASTSim [27]
to collect the energy consumption data with driving speed (from 10
mph to 70 mph with a step of 0.2 mph) at different grades (from −6%
to 6% with a step of 0.25%)3. Then we fit the energy consumption
3We note that the maximum grade allowed for the inter-state highway is a 6-meter
difference in elevation every 100 meters road length in the United States [28].

Origin Destination Distance
(miles)

Value
(billion USD)

Los Angeles CA Columbus OH 1977 17.725
Los Angeles CA Dallas-Fort Worth TX 1240 12.247
Los Angeles CA Chicago IL 1745 11.293
Los Angeles CA Nashville TN 1780 10.718
Los Angeles CA Houston TX 1373 7.837

Table 4: Five popular origin-destination pairs from Los An-
geles.

data with cubic polynomial functions. We use the parameters of
Tesla Semi [50] for the electric truck model with the battery capacity
𝐵 = 1, 000 kWh and the total weight of 36 tons. We assume the
e-truck is fully charged at the origin, i.e., 𝛽0 = 𝐵.

Origin-destination pair. We collect origin-destination pairs from
the Freight Analysis Framework (FAF) [33]. We select 500 origin-
destination pairs with distances longer than 800 miles. Those pairs
represent 950 billion dollars of freight by trucks in 2017. Tab. 4
illustrates a subset of the selected origin-destination pairs in the
US starting from Los Angeles.

Charging station data. We collect the location data of charging
stations from the OpenStreetMap (OSM) [42] and add each location
to the nearest road segment in the constructed graph. The collected
data yields 2, 555 charging stations. We approximate the charging
functions with a piecewise linear function using six break points at
0%, 80%, 85%, 90%, 95%, 100% SoC [6]. The resulting charging func-
tion can charge the studied electric truck from 0% to 80% in 48
minutes. See Fig.2 for an illustration. We collect the electricity gen-
eration data from Energy Information Administration (EIA) [20]
and obtain a piecewise linear carbon intensity function 𝜋 (·) for
each charging station (See Fig. 1).

In the simulation, we implement and compare the following
conceivable alternatives.
▷ CARBON: our carbon footprint minimizing approach.
▷ ENERGY: our approach with the objective of minimizing en-

ergy consumption by setting the carbon intensity function 𝜋 (·) ≡ 1.
▷ FAST: our approach with the objective of minimizing total

travel and charging time by changing the objective and following
the similar dualization procedure in Sec. 4.
▷ FAST-S: the same path of FAST with the speed planning.
▷ FAST-SC: the same path of FAST with the speed planning and

charge planning.

5.2 Behavior of Carbon-Optimized Solution
We first study a transportation task from Dallas, TX to Carmel,
IN. We compare the solution of FAST, CARBON and ENERGY and
present them in Fig. 5. We observe that CARBON tends to "follow
the sun and go with the wind" to charge the electricity with the low
carbon intensity and achieves a 59.6% carbon reduction as compared
to FAST and 35.2% as compared to ENERGY. To achieve such a large
carbon reduction, CARBON charge a small amount of energy at
the first and the third charging station to ensure the sufficient
SoC on road while charge more at the second charging station
for lower carbon footprint. Meanwhile, the detour to the greener
charging station leads to a slightly longer total distance and slightly
more energy consumption as compared to the energy-optimized

9
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Figure 6: Simulation results for 500 instances. The carbon (energy) reduction is also computed with respect to FAST.

solution. We find similar observations in the next subsection where
we conduct the simulation over all 500 origin-destinations.

5.3 Comparison with Baselines
We then conduct simulations on 500 origin destination pairs. For
each pair, we denote by 𝑇𝑓 the total travel time of FAST and set
deadlines from 1.1𝑇𝑓 to 1.5𝑇𝑓 . We call the ratio between the dead-
line and 𝑇𝑓 the delay factor. The start time is set to 4 PM, Jan 1st,
2022. We set the number of charging stops 𝑁 of CARBON and
ENERGY the same as FAST. In these typical settings, the number
of charging stops is no more than eight. We set the ratio of conser-
vative lower bound 𝛼 = 0.05. CARBON produces feasible solutions
for 96% of all instances. For infeasible solutions, we increase 𝛼 un-
til it produces a feasible solution. A maximum value of 𝛼 = 0.12
guarantees CARBON to produce feasible solutions for all instances.

We show the simulation results in Fig. 6. All the results are
mean values over 500 origin-destination pairs and the error bars
represent the standard deviations. Fig. 6(a) and Fig. 6(b) give the the
carbon (resp. energy) reduction of different baselines as compared
to FAST. We observe that as the deadline gets relaxed, the carbon
(and energy) reduction of all the baselines increases. Moreover,
different components of the design space contribute differently into
such reduction as we shall discuss in the following.
Benefit of Carbon-Optimized Solution. We first compare CAR-
BON and ENERGY. As shown in Fig. 6(a), while the carbon foot-
print of both approaches decrease as the deadline increases, CAR-
BON benefits more from the relaxed deadline and achieves higher
carbon reduction. In particular, , CARBON achieves 19% carbon
reduction as compared to FAST baseline under the typical setting
when the delay factor is 1.2 and up to 28% when the delay factor
is 1.5. Meanwhile, as compared to its energy-efficient counterpart
ENERGY, CARBON achieves 9% carbon reduction when the delay
factor is 1.2 and 13% when the delay factor is 1.5. This difference
mainly comes from the fact that minimizing energy simply ignores
the temporal diversity of the renewable and loses part of the opti-
mization space. Therefore, minimizing energy consumption does
not necessarily lead to a minimum carbon footprint. It is essential to
consider the carbon footprint objective when studying the environ-
mental impact of e-trucks. Meanwhile, we also observe from Fig. 6(b)
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Figure 7: Impact of conservative ratio 𝛼 .

that the difference of energy reduction between CARBON and EN-
ERGY is less than 3%. This means that a carbon-efficient route is
also energy-efficient.
Impact of Speed Planning. We then investigate FAST-S to study
the impact of speed planning. When the delay factor is 1.2. FAST-
S saves 15% carbon footprint and 12% energy as compared to FAST.
As compared to ENERGY, FAST-S saves 3% additional carbon foot-
print. This additional saving comes from the fact that the optimized
speed plan re-schedules the travel time of each stage such that the
e-truck charges greener electricity at each stage.
Impact of Charging Planning. We then compare FAST-S and
FAST-SC to study the impact of charging planning. We observe
that when the delay factor is 1.2, FAST-SC saves 2.5% additional
carbon footprint as compared to FAST-S because FAST-SC takes the
advantage of charging planning such that the e-truck can wait for
the lower carbon intensity.
Impact of Path Planning. We then compare FAST-SC and CAR-
BON to study the impact of path planning. We observe that when
the delay factor is 1.2, CARBON saves 2% additional carbon foot-
print as compared to FAST-SC because e-truck can select greener
charging stations with path planning.

5.4 Impact of Conservative Ratio 𝛼
In this subsection, we study the impact of the conservative ratio
𝛼 . We run CARBON on 500 origin-destination pairs for 𝛼 ranging
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Delay Factor 1.1 1.2 1.3 1.4 1.5
ENERGY 50.8% 51.4% 52.4% 53.6% 54.1%
CARBON 54.7% 55.9% 57.1% 58.3% 59.2%

Table 5: Average carbon reduction with respect to ICE truck
over 500 origin-destination pairs.

from 0.0 to 0.12. For each 𝛼 , we check the SoC at each road segment
of the solutions and report the percentage of solutions violating
positive SoC among all 500 origin-destination pairs. In addition,
we notice that CFO with 𝛼 = 0 (named CFO0) provides a lower
bound to theCFOwith positive SoC constraints at all road segments
but no reservation requirement. We thus define performance loss
of CARBON with CFO as its relative error with respect to the
CARBON with CFO0, i.e.,

Performance Loss = 𝐴𝐿𝐺𝛼 −𝐴𝐿𝐺0
𝐴𝐿𝐺0

,

where 𝐴𝐿𝐺𝛼 is the objective value of solutions by CARBON for
CFO. The results are presented in Fig. 7. We observe that when
𝛼 = 0, there are 26% of infeasible solutions while a small increment
of 𝛼 leads to a large feasibility improvement, e.g., 𝛼 = 0.02 with
12% of infeasible solutions. We observe that 𝛼 = 0.12 is sufficient to
guarantee feasibility for all 500 origin-destination pairs. Meanwhile,
we observe the performance loss introduced by 𝛼 grows almost
linearly with respect to 𝛼 . In a typical selection when 𝛼 = 0.06, 96%
of solutions are feasible while the performance loss is only 3.3%.
In the most conservative case when 𝛼 = 0.12 that guarantees the
feasibility of all the solutions, the performance loss is 6.7%. Thus,
by introducing the conservative ratio 𝛼 , we significantly simplify
the coupling SoC constraint while ensuring feasibility with minor
performance loss.

5.5 Comparison with ICE Trucks
In this subsection, we study the environmental benefits of elec-
tric trucks as compared to ICE trucks. We use the parameters of
Kenworth T800 trailer [35] for the ICE truck model with the same
total weight of 36 tons. For the ICE truck, we compute the energy-
efficient path plan and speed plan by the dual-based method in [18].
We use the CO2 factor value of diesel from EIA [1] to transform
the fuel consumption of the ICE truck to its direct carbon emission.
The data suggest that if an ICE truck is powered by diesel, it will
produce 9.88 kg CO2 per gallon, or equivalently 0.25 kg CO2 emis-
sion per kWh. The simulation results are presented in Tab. 5. We
observe that the e-truck saves 55.9% carbon as compared to the ICE
truck under a delay factor 1.2.

There are several factors that contribute to such carbon reduc-
tion. First, e-trucks consume less energy due to the high efficiency
of electric motors and the regenerative braking system. Second,
with the increasing integration of renewable generations for e-truck
charging, the carbon footprint of an electric truck reduces. Third,
our joint optimization of path planning, speed planning and charg-
ing planning leads an e-truck to charge clean electricity with low
carbon intensity. Overall, these factors together lead to a significant
reduction of the carbon footprint of the electric truck as compared
to the ICE truck.

6 DISCUSSION
Battery Degradation. The modeling and prediction of battery
degradation is in general difficult and still an active research area [32].
Among many factors that affects the battery degradation, the most
relevant ones for the transportation tasks are charge or discharge
rate and the depth of discharge (DoD) [43]. A high charge rate or
a high DoD may accelerate the battery degradation. To prolong
the battery lifetime, we can add a battery degradation cost in the
objective. We can model different charging mode by adding multi-
ple charging stations at the same location, where a charging mode
with the higher rate incur higher degradation cost. To prevent large
DoD, we can also add a degradation cost if the arrival SoC is lower
than certain value.
Dynamic Traffic Condition. In the real world, the traffic condi-
tions can be time-varying. To adapt variable traffic conditions in our
formulation, we can incorporate the phase-based traffic model [52]
into our stage-expanded graph, where the traffic condition is ap-
proximately static at each phase. Then we can treat the combination
of the stage and the traffic phase as the new stage and apply our
approach.
Applications Beyond CFO. We remark that our approach has
applications beyond this paper. For example, it is also applicable to
general routing problem for electric/ICE vehicles with energy con-
sumption and monetary objective. Our approach is also applicable
to the subproblem for electric vehicle routing problem (EVRP) in a
branch-price-and-cut framework [19].

7 CONCLUSION
In this paper, we present the first study in the literature on the
Carbon Footprint Optimization (CFO) problem of a heavy-duty e-
truck traveling from an origin to a destination across a national
highway network subject to a hard deadline, by optimizing path
planning, speed planning, and intermediary charging planning. We
show that the problem is NP-hard and under practical settings it is
equivalent to finding a generalized RSP on a novel stage-expanded
graph, which extends the original transportation graph to model
charging options. Our problem formulation incurs low model com-
plexity and reveals a problem structure that leads us to an efficient
dual-subgradient algorithm with a strong performance guarantee.
Extensive simulation results over the US national highway network
show that our solutions reduce up to 28% carbon footprint com-
pared to the baseline alternatives. The results also demonstrate the
carbon efficiency of e-trucks over ICE trucks.
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