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Abstract—Live media streaming has become one of the most
popular applications over the Internet. We have witnessed the
successful deployment of commercial systems with CDN- or peer-
to-peer based engines. While each being effective in certain
aspects, having an all-round scalable, reliable, responsive and
cost-effective solution remains an illusive goal. Moreover, today’s
live streaming services have become highly globalized, with
subscribers from all over the world. Such a globalization makes
user behaviors and demands even more diverse and dynamic,
further challenging state-of-the-art system designs.

The emergence ofcloud computinghowever sheds new lights
into this dilemma. Leveraging the elastic resource provisioning
from cloud, we present CALMS (Cloud-Assisted Live Media
Streaming), a generic framework that facilitates a migration to
the cloud. CALMS adaptively leases and adjusts cloud server
resources in a fine granularity to accommodate temporal and
spatial dynamics of demands from live streaming users. We
present optimal solutions to deal with cloud servers with diverse
capacities and lease prices, as well as the potential latencies in
initiating and terminating leases in real world cloud platforms.
Our solution well accommodates location heterogeneity, mitigat-
ing the impact from user globalization. It also enables seamless
migration for existing streaming systems, e.g., peer-to-peer, and
fully explores their potentials. Simulations with data traces from
both cloud service providers (Amazon EC2 and SpotCloud) and
live streaming service provider (PPTV) demonstrate that CALMS
effectively mitigates the overall system deployment costsand yet
provides users with satisfactory streaming latency and rate.

Index Terms—Live media streaming, migration, cloud comput-
ing, user/demand globalization.

I. I NTRODUCTION

I N the past decade, live media streaming has become one
of the most popular applications over the Internet [14][6].

We have witnessed a number of successful commercial de-
ployments with CDN (Content Delivery Network)- or peer-
to-peer based engines. The former achieves high availability
and short startup latencies, but suffers from excessive costs for
deploying dedicated servers. This is particularly severe if the
user demand fluctuates significantly and the servers have to
be over-provisioned for peak loads. The peer-to-peer solution
generally incurs lower deployment cost and is more scalable,
but the reliability and hence service quality can hardly be
guaranteed. There have also been efforts toward synergiz-
ing dedicated servers with peer-to-peer [7]. Unfortunately,
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Fig. 1:An illustration of the user demand distributions and variations
of a popular live media streaming system (PPTV) on its two typical
channels (CCTV3 and DragonBall) during one day.

having an all-round scalable, reliable, responsive, and cost-
effectiveness solution remains an illusive goal.

To make it even worse, today’s live streaming applications
have become highly globalized, with subscribers from all over
the world. Such a globalization makes user behaviors and
demands even more diverse and dynamic. For illustration, we
examine the user demand distribution of PPTV1, one of the
most popular live media streaming systems in China with
multi-million users from a trace analysis [22][27]. Fig. 1
shows the results of two representative channels (CCTV3 and
DragonBall) during one day2. It is easy to see that although
PPTV is from China, it has attracted users from all over the
world, and the peak time therefore shifts from region to region,
depending on the timezone. For example, on the CCTV3
channel, the peak time of North America is around 20:00,
while for Asian users, it is around 8:00. During the period
of 12:00 to 20:00, the Asian users have very low demands
while the European users generate most of their demands
and the North American users also have moderate demands.
Similar observations can also be found from the DragonBall
channel, despite that the streaming contents delivered on the
two channels are completely different. The impact of such
globalized demand turbulence has yet to be addressed in
existing systems that largely focus on regional services only.

The emergence ofcloud computinghowever sheds new
lights into this dilemma. A cloud platform offers reliable,
elastic and cost-effective resource provisioning, which has
been dramatically changing the way of enabling scalable and
dynamic network services [11][3][20][5]. There have been
studies on demand-driven resource provision [24][13][26][28];
there have been also initial attempts leveraging cloud service
to support VoD (Video-on-Demand) applications, from both
industry (e.g. Netflix) [16] and academia [25][9][12]. Live

1www.pptv.com – formerly known as PPLive.
2For ease of comparison, the user demands are normalized by the corre-

sponding maximum demand of each day.
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Fig. 2: An overview of CALMS.

media streaming however has more stringent playback delay
constraints with content being updated in realtime. The larger,
dynamic, and non-uniform client population further aggravates
the problem, calling for new solutions toward a successful
migration to the cloud.

In this paper, we present CALMS (Cloud-Assisted Live
Media Streaming), a generic framework that facilitates a cost-
effective migration to the cloud. CALMS adaptively leases
and adjusts cloud servers in a fine granularity to accommodate
temporal and spatial dynamics of user demands. We present
optimal solutions to deal with cloud servers with diverse
capacities and lease prices, as well as the potential latencies in
initiating and terminating leases in real world cloud platforms.
Our solution well accommodates location diversity, mitigating
the impact from user globalization. It also enables seamless
migration for existing streaming systems, e.g., peer-to-peer,
and fully explores their potentials. We further develop a
set of practical solutions for dynamic adjustment of lease
schedules, smart user redirection, and cloud server organiza-
tion. To understand the performance of CALMS, extensive
simulations have been carried out with real data traces from
both cloud service providers (Amazon EC2 and SpotCloud)
and live media streaming service provider (PPTV). The results
demonstrate that the proposed CALMS effectively mitigates
the overall system deployment costs and yet provides users
with satisfactory streaming latency and rate.

The remainder of this paper proceeds as follows: Section II
presents an overview of the framework. In Section III, we
first investigate the basic problem of leasing cloud service
and provide an optimal solution, which is then extended
by integrating locality-awareness and user assistance. The
implementation issues and further optimization are discussed
in Section IV. We evaluate CALMS by trace-driven simula-
tions in Section V. Section VI further discusses some open
issues. Finally, Section VII concludes the paper and discusses
potential future directions.

II. CLOUD-ASSISTEDL IVE MEDIA STREAMING

(CALMS): AN OVERVIEW

Our CALMS intends to provide a generic framework that
facilitates the migration of existing live media streamingser-
vices to a cloud-assisted solution. Fig. 2 shows an illustration
of CALMS, which is divided into two layers, namely,Cloud
Layer and User Layer. The Cloud Layer consists of the live

media source and dynamically leased cloud servers. Upon re-
ceiving a user’s subscription request, the Cloud Layer redirects
this user to a properly selected cloud server. Such a re-direction
is transparent to the user, i.e., the Cloud Layer is deemed asa
single source server from a user’s perspective. Since the user
demands change over time, which are also location-dependent,
the Cloud Layer accordingly dynamically adjusts the amount
and location distribution of the leased servers. Intuitively, it
leases more server resources upon demand increase during
peak times, and terminates leases upon decrease.

There are however a number of critical theoretical and
practical issues to be addressed in this generic CALMS
framework. First, the cloud servers have diverse capacities
and lease prices; the lease duration is not infinitesimally
short, either, e.g.1 hour for Amazon EC2. As such, when
being leased, the server and the pricing cannot be simply
terminated at anytime. In addition, for a newly leased server,
the configuration and boot up takes time, too, e.g., about1-
10 minutes for EC2 mainly depending on the used Operating
System. Though the cloud services are improving, given the
hardware, software, and network limits, such latencies can
hardly be avoided in the near future. Therefore, CALMS must
well predict when to lease a new servers to meet the ever-
changing demands and when to terminate a server to minimize
the lease costs. These problems are further complicated given
the global heterogeneous distributions of the cloud servers and
that of the user demands.

Note that we do not assume any particular implementation
of the User Layer in this study. They can be individual users
purely relying on the Cloud Layer, or served by peer-to-peeror
a CDN infrastructure, but seeking for extra assistance fromthe
Cloud Layer during load surges. In other words, our CALMS
framework can smoothly migrate diverse existing live stream-
ing systems. Also, we will explore the potential assistance
from user peers in our study by investigating general solutions
that well complement existing system designs, taking into
account different issues on user dynamics such as user churn,
user mobility and identifying good potential user helpers.

III. F RAMEWORK DESIGN AND SOLUTION

In this section, we discuss the detailed design issues and
their solutions for migrating the live media streaming appli-
cation to the cloud service. Our discussions first start from
modeling the basic form of the leasing cloud service problem,
and then extend to integrate with locality-awareness and
user-assistance, respectively. We will also present centralized
algorithms that yield optimized solutions for addressing these
issues, which will further motivate the practical solutions for
implementation and optimization in next section.

A. Basic Problem: Leasing Cloud Service

Denote the set of cloud servers that can be leased from
the cloud service providers asC = {c1, c2, · · · , cm}. In
practice, most cloud providers have a minimum unit time
for the duration of leasing a server (e.g.1 hour for Amazon
EC2) and when being leased, a cloud server must spend some
time in setup and initialization before ready to use. We use
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Dm to denote this required minimum unit duration andTs as
the latency for preparing the cloud server. For simplicity,we
assume there is always a cloud server directly connecting to
the live media source to act as the live media server and use
c0 to denote it. LetR be the rate of the live media streaming.
We assume that there is a demand forecast algorithm (such as
the algorithms proposed in [17]) to predict the demand in the
next periodT , where the demand may contain the estimated
online population of users, their distributions at different areas
or ISPs, and other type of information. At current stage,
we only consider the online population of users and denote
it as P(t) for a given time t (t ≤ T ). The discussions
for utilizing other forecasted demand information will be
deferred to later subsections. Define a cloud service lease
schedule asS = {(x1, t1, d1), (x2, t2, d2), · · · , (xk, tk, dk)}
(t1 ≤ t2 ≤ · · · ≤ tk ≤ T ), where a tuple(xi, ti, di) (xi ∈ C,
di > 0 and di mod Dm = 0 for i = 1, 2, · · · , k) means at
time ti, we start to lease cloud serverxi for the durationdi.
Our problem is thus to find a proper cloud lease scheduleS,
subjecting to the following constraints:
(1) Service Availability Constraint:

∀(xi, ti, di) ∈ S, if ∃(xj , tj , dj) ∈ S andxi = xj ,

then [ti, ti + di) ∩ [tj , tj + dj) = ∅ ;

(2) Streaming Quality Constraint:

∀Ts ≤ t ≤ T ,

U(c0)+
∑

(xi,ti,di)∈S

(

U(xi)−R
)

·I[
t∈[ti+Ts,ti+di)

] ≥ R ·P(t) ;

where U(·) is the upload capacity andI[·] is the indicator
function. The service availability constraint asks that atany
given time, a cloud server can only appear in one schedule.
And the streaming quality constraint asks that at any given
time t, the streaming rate demands ofP(t) users have to be
satisfied. Our objective is thus to minimize the lease costs:

Cl(c0) +
∑

(xi,ti,di)∈S

Cl(xi) · di + Cb(R ·
∑

t≤T

P(t)) ,

whereCl(·) andCb(·) are the costs for leasing a cloud server
and out-cloud bandwidth usage, respectively3. As the first and
last part can not be reduced, we focus on minimizing the
middle part of the total costs, which we denote asCostlease:

Costlease =
∑

(xi,ti,di)∈S

Cl(xi) · di .

This problem is challenging as the cloud servers are sched-
uled both along the time dimension and at each time instance,
along the user demand dimension. By exhaustively searching
along both dimensions, the optimal solution can be achieved.
However, simply using a naive searching algorithm can be
quite inefficient as the solution space increases very fast with

3Amazon EC2 had no charges on the traffics into the cloud as wellas
within the cloud during this research was conducted. Yet itsnew policy starts
to charge on the traffics among different AWS regions. Our model and solution
here can be easily adapted to the new policy by adding an extracost on the
traffic of one streaming rate from outside of the region to inside of the region
(except for the region whichc0 is in) for each used AWS region.

the combination of both dimensions.
To this end, we proposed an enhanced DFS algorithm,

which can skip most parts of the solution space and find
the optimal solution efficiently. The proposed algorithm is
summarized in Fig. 3. To improve the search efficiency, we
first sort the cloud servers inC by the ascendant order of
the lease cost per unit upload bandwidth (line1). This allows
the servers with cheaper upload bandwidth being explored
first and near-optimal solutions can then be quickly found.
With such solutions, we can further cut other search branches
with equal or higher costs (line7) and greatly reduce the
search space for the optimal solution. In addition, we use
leaseT ime[c] to denote the remained lease time of serverc
and leaseT ime[c] > 0 means that serverc is leased. Since a
newly leased server needsTs for preparation, our algorithm
makes decisions in advance ofTs, i.e., attime we lease a new
serverc so that it can start to provide the service attime+Ts.
Similarly, for a serverc to be renewable attime, leaseT ime[c]
must be equal toTs, so that after we decide to renew it attime,
it will continue providing the service attime+ Ts.

We use variablerenew to distinguish whether the currently
consideredk-th server is renewed or newly leased (line11-
12). When all renewable servers have been considered, we also
check if any new server needs to be leased (line13). If so, we
will resetk andrenew to further explore the branch (line14).
Every time a serverck is selected (line17-18), it will be leased
for the time ofDm, i.e., leaseT ime[ck] is increased byDm.
Load[time+Ts] to Load[time+Ts+Dm] (or Load[time+
Dm], depending on whetherck is renewed or newly leased)
will be reduced byU(ck)−R. After that, the algorithm checks
if any other server needs to be leased or can be renewed (line
19). If not, time will be increased (by∆time) to another
position where a server can be renewed or new servers need to
be leased. Then bothk andrenew will be reset accordingly.
leastT ime will also be updated by subtracting∆time for
leased servers.

When a search branch is cut off or fully explored, the
search will revert to its previous status (line25-27), where the
previous{k, time, renew, leastT ime} will be be popped up
from Stack with Load andCost being calculated oppositely
to line 18. When the search finishes, the optimal cloud lease
scheduleS will be generated and returned (line29-30), where
a tuple (ci, ti, Dm) will be created and added intoS for a
serverci newly leased atti, and anotherDm will be added to
the tuple’s lease duration if it is renewed afterwards. We then
have the following theorem.

Theorem 1:The algorithm proposed in Fig. 3 returns the
optimal cloud lease schedule for the basic problem.

Proof: If without cutting branches, our solution will
search exhaustively and return the optimal schedule. The proof
thus can be done by showing that cutting branches (line7) do
not miss the optimal schedule, sinceCost is a lower bound of
those schedules whose search paths contain the current search
branch. A more detailed proof can be found in [21].

B. Integrating with Locality-Awareness

As the users may be from various locations or time zones
over the world, registering to different ISPs and in different
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areas, a further optimization to the basic problem is thus to
integrate with the locality-awareness, i.e., to maximize the
number of users that connect to the local cloud servers. By
achieving this, the delay between users and cloud servers
can be effectively reduced, which is often a crucial factor
for live media streaming. Another advantage is that such
locality-awareness can also help to reduce the cross-boundary
traffic (e.g. cross-ISP traffic), which is especially important
when considering user assistance as discussed in the following
subsections. To this end, we use an abstract notation “region”
to represent the locality that we care about, which can be
interpreted into different meanings in different contexts(e.g.
an area with some extent of physical closeness or a group of
ASes belonging to one ISP). LetA = {A1, A2, · · · , An} be
the set of regions that the cloud servers and users may be in.
For a cloud serverci, we useci ∈ Aj to denote that it is in
the regionAj . In addition, we further extendP(t) to P(A, t)
to denote the online population of users in regionA at time
t. The basic problem thus can be rewritten as to find a proper
cloud lease scheduleS, subjecting to the service availability
constraint and the following new streaming quality constraint:

∀Ts ≤ t ≤ T ,

U(c0) +
∑

(xi,ti,di)∈S

(

U(xi)−R
)

· I[
t∈[ti+Ts,ti+di)

]

≥ R ·
∑

A∈A

P(A, t) .

Our objective is now to minimize the lease costs:

Costlease =
∑

(xi,ti,di)∈S

Cl(xi) · di ,

as well as maximize the locality, which is defined as:

Locality =
1

R ·
∑

t≤T

∑

A∈A

P(A, t)
·
∑

t≤T

∑

A∈A

min

(

R · P(A, t),

∑

(xi,ti,di)∈S

U(xi) · I[
t∈[ti+Ts,ti+di),xi∈A

]

)

.

These two objectives may contradict with each other, as
leasing more servers in each region improves the locality but
also raises the lease cost. We adopt the following linear com-
bination form to align them together with different weights:

p ·
Costlease
Costmax

+ q · (1 − Locality) ,

where p and q are two parameters that can assign different
weights to the two goals. Assuming that the demand estimation
is upper bounded over time durationT , Costmax is thus
the minimum lease costs of the case where the demand is
constantly set to be the maximum demand withinT . As
Locality is a ratio of the intra-region streaming traffic over
the total streaming traffic,(1− Locality) is thus the ratio of
the cross-region traffic over the total traffic, which shouldalso
be minimized likeCostlease. To make the lease cost part also
a ratio ranged between[0, 1], we further divideCostlease by
Costmax and then use parametersp andq to linearly combine

Algorithm OptimalCloudLeaseSchedule()
1: SortC by ascendant order ofCl(·)

/

U(·);
2: for ∀c ∈ C, leaseT ime[c]← 0; end for
3: for ∀t ≤ T , Load[t]← R · P(t)− U(c0); end for
4: SetStack empty;k ← 0; time← 0; Cost← 0;
5: renew← false; Cost∗ ←∞; SetStack∗ empty;
6: do
7: if Cost ≥ Cost∗, goto 25;
8: else if time+ Ts > T ,
9: Cost∗ ← Cost; Stack∗ ← Stack; goto 25;
10: end if
11: k ← k + 1;
12: if k ≤ |C| and

(

(!renew and
leaseT ime[ck] > 0) or (renew and
leaseT ime[ck] 6= Ts)

)

, continue;
13: else if renew and k > |C|+ 1 and

Load[time+ Ts] > 0,
14: k ← 0; renew← false; continue;
15: else if (!renew and k > |C|) or (renew and

k > |C|+ 1), goto 25;
16: end if
17: Push{k, time, renew, leastT ime} in Stack;
18: UpdateLoad, leaseT ime andCost;
19: if Load[time+ Ts] ≤ 0 and (!renew or

k = |C|+ 1),
20: Increasetime until time+ Ts > T or

∃c ∈ C, leaseT ime[c]−∆time = Ts or
Load[time+ Ts] > 0;

21: k ← 0; UpdateleaseT ime by ∆time;
22: renew← if ∃c ∈ C, leaseT ime[c] = Ts;
23: end if
24: continue;
25: if Stack is not empty,
26: PopStack; UpdateLoad andCost;
27: end if
28: while Stack is not empty;
29: Generate optimal cloud lease scheduleS from Stack∗;
30: return S;

Fig. 3: Algorithm to compute the optimal cloud lease schedule.

the two parts together. This new problem can also be solved by
the algorithm proposed in Fig. 3, with some proper but simple
modifications. We defer the detailed discussion to the next
subsection with the consideration of exploring user resources.

C. Exploring User Resources

It is known that peer-to-peer streaming is highly scalable
through exploring user contributed resources. However, ina
pure peer-to-peer system, users may join or leave at their
own wills, and their available upload bandwidth may vary
significantly from time to time and from user to user. Even if
the aggregate user contributed upload bandwidth is equal toor
greater than the total demand, a pure peer-to-peer design may
still suffer from content bottlenecks [15], where users have
upload bandwidth but no expected streaming content available
for sharing. An extreme is a flashcrowd; that is, during a peak
time, many fresh users join the system with a vast amount of
ready-to-share upload bandwidth but no content available.

Our CALMS could also benefit from such readily available
resources in the User Layer, and yet it can elegantly mitigate
the aforementioned problems. To this end, we introduce a
group of parameters (α, β), which we call asuser assistance
index. Both of the two parameters range from0 to 1. α deter-
mines the ratio of the user contributed upload bandwidth that
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can be effectively used to assist the live streaming.β denotes
the minimum ratio of cloud servers to be reserved to deal with
the content bottleneck (since the cloud servers always havethe
updated streaming content to share). The full version of our
problem thus can be written as to find a proper cloud lease
scheduleS, subjecting to the service availability constraint
and the following updated streaming quality constraint that
considers both locality and user resources:

∀Ts ≤ t ≤ T ,

U(c0) +
∑

(xi,ti,di)∈S

(

U(xi)−R
)

· I[
t∈[ti+Ts,ti+di)

]

+min

(

α ·
∑

A∈A

B(A, t),
(

1− β
)

·R ·
∑

A∈A

P(A, t)

)

≥ R ·
∑

A∈A

P(A, t) ;

whereB(A, t) is the aggregate user upload bandwidth in region
A at time t. Our objective is still to minimize

p ·
Costlease
Costmax

+ q · (1 − Locality) ,

while with the user-assistance taken into account, the locality
measure is now calculated as

Locality =
1

R ·
∑

t≤T

∑

A∈A

P(A, t)
·
∑

t≤T

∑

A∈A

min

(

R · P(A, t),

∑

(xi,ti,di)∈S

U(xi) · I[
t∈[ti+Ts,ti+di),xi∈A

]

+min
(

α · B(A, t), (1 − β) ·R · P(A, t)
)

)

,

so as to maximize the traffics from local users/servers, thus
reducing the latency and improving the overall performance.

To address this problem, some modifications need to be
applied to the algorithm proposed in Fig. 3. First,Load now
needs to have a second dimension to distinguish the demands
from different regions and when initialized (line3), it needs
to further subtract the user contributed upload bandwidth.In
addition, theCost computation (line18 and26) now needs to
integrate with the locality, where for a time instancet ≥ time
(which means that new cloud servers still may be leased for
this time instance), we useR · P(A, t) to approximate the
locality in a regionA, so that the computedCost still keeps
to be a lower bound and the optimality of the cloud lease
schedule returned by the algorithm can thus be achieved. We
omit more details here due to the space limitation, which can
be found in [21]. We then have the following corollary.

Corollary 1: The modified algorithm returns the optimal
cloud lease schedule with the consideration of both locality
and user resources.

IV. M IGRATION IMPLEMENTATION AND OPTIMIZATION

Previous section addresses the major design problems for
CALMS. However, in practice, there still remain some issues
that need to be considered carefully. First, the user demandand
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2 3
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Fig. 4: Illustration of Cloud Layer organization.

capacity may not be forecasted precisely, where the accuracy
often degrades as the predication time gets more forward
than the current time. This renders that a statically computed
optimal cloud lease schedule for a long period may become
less useful due to the prediction error. Another issue is how
to organize the leased servers in the Cloud Layer. Since
they may be from different regions, a careless organization
may introduce unnecessary cross-boundary and cross-region
traffics and also degrade the performance. Similar situation
also happens to the User Layer, where users need to be
carefully organized to enable assistances among each other
as well as enforce locality and good QoS. In this section, we
present our solutions to address these issues.

A. Cloud Layer Organization and Evolution

As the Cloud Layer is the core part of the CALMS
framework, its organization is thus very important to the
performance of the migrated live media streaming application.
As the tree structure is well known for its efficiency for
organization, in our implementation, we adopt a tree structure
for the Cloud Layer. In particular, we let serverc0 be the
root of the tree and in charge of the whole Cloud Layer. The
servers in the interior part of the tree relay the live streaming
content to other servers to amplify the upload capacity. Andthe
remaining servers in outskirts then transmit the live streaming
content to the User Layer.

Since the leased cloud servers may be from different re-
gions, naively organizing servers into a tree may still cause
poor performance. Fig. 4 shows an example, where each circle
denotes a cloud server and the number inside denotes the
region that the server belongs to. In this figure, there are3
cloud servers of2 unit upload capacities leased from each of
the regions of1 to 3, which are expected to provide similar
upload capacities to each region. By a naive organization
shown on the left part, the upload capacities provided by cloud
servers to each region is0, 4 and6, which is greatly different
from the expectation; while by handling carefully as shown on
the right part, the upload capacities for each region becomes
3, 3 and4. In addition, by the naive organization, to arrive at
the User Layer, the live media streaming traffics must cross
at least one region boundary and may cross as many as3
region boundaries; while the carefully handled organization
can effectively reduce such cross-boundary traffics.

To deal with these issues, we let serverc0 select and keep
tracking a root server for each region from the leased servers.
When a cloud server is newly leased, it will first be redirected
to the root server in the same region, and the root server will
be responsible to help the newly leased server join the subtree
rooted at itself. If a region currently has no root server, server
c0 will temporarily take the role until a server from that region
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is leased. And if a root server is stopped due to the decreased
demand in its region, the root server will select another server
in the same region from its descendants to take its role. If
no such server exists, serverc0 will take the role temporarily.
In addition, the root server of each region will also help to
optimize the server organization within its region, such as
allocating the servers with higher upload capacities closer to
itself as well as moving a server to a new parent closer to the
root server than the current parent, so that the height of the
subtree rooted at the root server can be minimized.

Through our simulation results in Section V, we observe this
design, combined with the locality-aware scheduling proposed
in the previous section, can substantially reduce the cross-
boundary traffic as compared to a straightforward approach
without locality-awareness.

B. User Layer Organization and Evolution

The main task of the User Layer organization is to enforce
locality and good QoS as well as enable user-assistance. When
a user joins the live media streaming session, it will first be
redirected to the root server at the same region if there is
available upload capacity within that region, otherwise the
user will be redirected to the root server of other region with
available upload capacity. The root server then decides where
the user should go next. If there is available upload capacity
directly from the servers in the region, the user will then be
redirected to the server that can provide the upload capacity.
If not, the user will be redirected to a server that contains
information about users that can provide the upload capacity.
This server will then randomly choose some users with enough
aggregate upload capacities and send their IPs to the newly
joined user. The user will then add these users as neighbors
and exchange the live media streaming content with them by
a peer-to-peer protocol.

To enforce good QoS and handle the content bottleneck
problem that may exist, when a server randomly picks users
for the newly joined user, only those with high playback
buffer levels will be selected and sent out by the server. In
addition, we also let a user with high upload capacity to
preempt a user that directly downloads from a server but with
low upload capacity. And when the playback buffer level of
a user becomes low, either due to user dynamics or network
bandwidth fluctuation, the user will request more neighbors
from its server to maintain good live streaming quality.

To track such user information at the Cloud Layer while
keeping good scalability, we adopt a hierarchical structure

that is naturally provided by the tree organization. We let
the last server that the user has been redirected to keep the
full information of that user. Such information will then be
aggregated and reported to this server’s parent. This process
will continue on level by level until reaching the root server at
that region. The root server of each region will then aggregate
and report the user information directly to serverc0. By this
means, when a user is being redirected, the current server that
issues the redirection can then choose the next stop for the
user based on the collected user information.

To deal with user dynamics, each user will periodically
report its updated information to its server. The server will
also check whether the user has left if a report has not been
received recently. And when a server needs to be stopped due
to the decreased demands from its region, it will first redirect
all its users one by one to serverc0 to redo the join process,
then stop and leave the Cloud Layer.

C. Dynamic Lease Scheduling

In practice, the user demand and capacity forecast may
be inaccurate, and such inaccurate may cause a statically
computed cloud lease schedule for a long future period be-
comes less useful or even invalid. To overcome this problem,
we use dynamic lease scheduling instead for the migration
implementation. In particular, with the collected aggregation
information (such as current total user demand and total
upload capacity) from each region, serverc0 will dynamically
recompute the cloud lease schedule in the following two cases:

Case 1: If current user demands are greater than the
prediction or current user upload capacities are less than the
prediction, serverc0 will dynamically recalculate the cloud
lease schedule with the updated information and then lease
additional cloud servers by the new schedule.

Case 2: If a cloud server has been leased for the multiple
times ofDm (i.e., if necessary, the cloud server can now be
stopped without introducing further delay and cost), server
c0 will check if current user demands in that region are less
than the half of current upload capacities even with this server
stopped. If so, it will stop this server to reduce costs and
recompute the cloud lease schedule accordingly.

In addition, due to the content bottleneck issue, sometimes
the QoS perceived at users may degrade even the total upload
capacity is still greater than the total user demand. To make
the Cloud Layer responsive to such situations, we also collect
the playback buffer level of each user when tracking other
information. Serverc0 will then check the minimum buffer
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Fig. 9: Lease costs of different
approaches.
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Fig. 11: Cross-region traffics of
different approaches.

Max−Central Max−CDN CALMS P2P−Locality
0

50

100

150

Approach

P
la

yb
ac

k 
D

is
co

nt
in

ui
ty

 (
se

c.
/h

ou
r)

 

 
CCTV3
DragonBall

Fig. 12: Playback discontinuity
of different approaches.

level of the users who have already started playing the media
streaming. If the minimum level is below a threshold, which
indicates potential content bottleneck may happen, serverc0
will lease a new server to increase the content availabilityand
recompute a new lease schedule accordingly.

V. PERFORMANCEEVALUATION

We run extensive simulations to evaluate CALMS. The
simulations are conducted on the block level and driven by
real traces and data sets collected from Amazon EC2 and a
popular live media streaming system (PPTV). We first briefly
introduce the collected traces and data sets, and then continue
on to present the methodology as well as the evaluation results.

A. Data Sets and Traces

1) Amazon EC2 Measurement:Our measurement on Ama-
zon EC2 is mainly on the bandwidth distribution between
cloud servers and users. In particular, we first send DNS
requests to the EC2 domains to find the IP addresses of
EC2 servers. The DNS server replies with a list of unique
IP prefixes which are reserved by Amazon for their EC2
instances. Based on this IP list, we further probe these IP
prefixes with ICMP, TCP and UDP packets from different
locations, identifying active instances and then measuring their
bandwidth accordingly. Fig. 5 shows the measured bandwidth
distributions between different cloud servers and users. Other
settings are adopted from previous measurement and evalu-
ation works [4][11][18] and the Amazon EC2 official web
site [2]. A more detailed description can be found in [21].

2) PPTV Traces:PPTV is one of the largest commercial
peer-to-peer live streaming systems to date, attracting over
100, 000 online users during peak times, and is also one of the
mostly examined systems in academia [6][8][27]. Our simu-
lations are based on traces from two of its popular channels,
namely, CCTV3 and DragonBall. These traces are gathered
by an online crawler that continuously collects information
from each channel [22]. Fig. 6 shows the region distribution
of PPTV users in one day’s traces and Fig. 1 shows the user
demands distributions and variations. Other settings about the
live media streaming users are adopted from [6][27].

B. Methodology

With the data sets and traces from Amazon EC2 and PPTV,
we then conduct extensive block level simulations to evaluate
our migration framework. We adopt a typical live media
streaming setting as used in PPTV [6] and CoolStreaming [14].

In particular, we set each data block is of 1-second video and
assume TCP is used for the transmission. The playback buffer
is set to the size enough to hold60 data blocks. The playback
will start when at least30 continuous data blocks are received
at the buffer. For comparison, we implement other three
approaches:Max-Centralstatically provisions servers all from
one region by the maximum user demand in the corresponding
trace, which emulates the solution that uses centralized server
clusters to provide the live media streaming service.Max-CDN
also provisions servers by the maximum user demand, but the
provisioned servers may be selected from different regions
based on the average user demands from each region. This
approach emulates the solution that uses CDNs to provide the
streaming service.P2P-Localityonly uses the serverc0 as the
streaming server and delivers streaming content by peer-to-
peer technology and with locality-awareness, which emulates
the solution for peer-to-peer live media streaming.

In addition, we use the following four metrics in our simula-
tion: Lease costsis the costs for leasing cloud servers, which
represents the major concern from the live media streaming
service providers;Cross-region trafficis the amount of traffic
that crosses different regions. This metric shows the locality-
awareness of an approach and is also an indicator to the
general performance as lower cross-region traffic means that
users are closer to their servers and the Cloud Layer are well
organized;Playback discontinuityis the average duration that
a user may experience discontinued playback per hour, which
is mainly caused by that the streaming data packets fail to
arrive at a user before its playback deadline;Startup latency
is the latency taken by a user between its requesting to join
the session and receiving enough data to start playback.

C. Impacts of Different Parameter Settings

We first conduct simulations to investigate the impacts of
different parameter settings. Fig. 7 demonstrates how the lease
cost and cross-region traffic change with differentp/q values.
For ease of comparison, the results are normalized by the
corresponding minimum values. Whenp/q is small (≤ 10−2),
the cross-region traffic is minimized while introducing the
highest lease costs. On the other hand, whenp/q grows large
(≥ 102), it results in the minimum lease cost but at the
expenses of excessive cross-region traffic. Moreover, within
the region near10−1, both the lease cost and cross-region
traffic stay relatively low. We thus pick up this valuep/q = 0.1
as the default for the remaining evaluations.

We next investigate the impacts of differentα andβ values
on the playback discontinuity. The results are shown in Fig.8.
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It is easy to see that the impact ofβ is more significant
than that of α, while the results are different. Whenα
becomes larger, the playback discontinuity slightly increases,
which matches the definition ofα since more user-assistances
are involved, resulting in that more content bottlenecks may
happen and degrade the playback quality. On the other hand,
the playback discontinuity changes inversely with the value
of β. This also matches the definition ofβ as reserving
more cloud servers to compensate the content bottlenecks will
improve the playback quality. More interestingly, the playback
discontinuity will change more dramatically as either of the
two parameters changes within the region of(0.2, 0.7). We
thus chooseα = 0.2 andβ = 0.7 as the default setting.

D. Performance Observed at Service Providers

With the default parameter setting, we then conduct simu-
lations to see how CALMS performs with both CCTV3 and
DragonBall traces. Fig. 9 shows the lease costs of different
approaches. For ease of comparison, the lease costs in each
trace are normalized by the corresponding cost of the Max-
Central approach. It is not surprising that P2P-Locality has the
lowest costs. At the same time, our CALMS also has much
lower lease costs, achieving33.5%-45.1% of the Max-Central
approach and30.5%-39.6% of the Max-CDN approach, re-
spectively. Another observation is that the lease costs in the
DragonBall trace are generally higher than those in the CCTV3
trace. This is because the content provided in the DragonBall
channel attracts much more Asian user demands than those
from the other regions and the lease prices of Amazon EC2 in
Asia are relatively higher, which further verifies the locality-
awareness of both the Max-CDN and CALMS approaches.
Since Amazon EC2 also charges for the data traffic transferred
out of the cloud boundary, we also examine the total costs of
different approaches, which is shown in Fig. 10. It is easy to
see that even with the data transfer costs, CALMS can still
reduce a great amount of the total costs by roughly28%-30%,
which further demonstrates the effectiveness of migratingthe
live media streaming application to the cloud service.

Fig. 11 shows the cross-region traffics generated by different
approaches, which are also normalized by the corresponding
cross-region traffic of the Max-Central approach. As the Max-
CDN, CALMS and P2P-Locality approaches are all locality-
aware, it is thus not surprising that their cross-region traffics
are much lower than that of the Max-Central approach. Yet
an interesting thing is that the cross-region traffics of the
three approaches in the DragonBall trace are much lower

than those in the CCTV3 trace. This is also because the
DragonBall channel attracts much more Asian user demands
than from the other regions, which allows the server/peer
selections to be more dedicated in Asia and results in more
intra-region traffics instead of cross-region traffics. Also, by
comparing among the three approaches, we can find that
by both dynamically provisioning enough cloud servers and
exploiting user-assistance, CALMS can actually achieve a
balance of the locality provided by either mechanism, always
avoid the worst case – having the highest cross-region traffic,
and stays close to the best one.

E. QoS Perceived by Users

Previous subsection has shown that migrating the live media
streaming application to the cloud service can achieve good
performance as observed at the service providers. Next we go
on to explore possible benefits that may be brought to users.

We first investigate the playback discontinuity, which is
shown in Fig. 12. We can see that CALMS performs similar
to both Max- approaches and achieves very low playback
discontinuity. On the other hand, due to the peer dynamics
and content bottlenecks, P2P-Locality suffers relativelyhigh
playback discontinuity with the average as many as over120
seconds per hour. To better understand the QoS perceived by
each user, we also draw the CDF of the playback discontinuity
for both CALMS and P2P-Locality in Fig. 13. It is clear to
see that for P2P-Locality, some users may suffer playback
discontinuity up to near800 seconds per hour, which means
that these users cannot watch the live media for more than
20% of the time. On the other hand, by provisioning enough
cloud servers to provide both upload contents and capacities,
CALMS significantly reduces the worst case playback discon-
tinuity to around1 minute and affords more than95% of the
users to enjoy zero playback discontinuity.

Besides watching live media fluently, a user also prefers
to short waiting time before the live media can start to play.
Fig. 14 shows the startup latency of different approaches. Due
to the delay of being redirected to other servers and filling up
the playback buffers, both Max- approaches have the startup
latency of about2 seconds. CALMS, by provisioning enough
cloud servers with upload contents and capacities, can also
achieve a similar startup latency. On the other hand, the startup
latency of P2P-Locality is almost of doubled length of the
other three approaches due to the long latency for identifying
enough peers with both the live media streaming contents and
available upload capacities.
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Fig. 17:Lease costs of different
approaches by SpotCloud.
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Fig. 18: Cross-region traffics
of different approaches by Spot-
Cloud.
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Fig. 19: Playback discontinuity
of different approaches by Spot-
Cloud.
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Fig. 20: Startup latency of dif-
ferent approaches by SpotCloud.

VI. FURTHER DISCUSSIONS

As this paper focuses on providing fundamental understand-
ings on migrating the live media streaming to the cloud,
we only provide basic schemes in Section IV to handle the
inaccuracies in the user demand/capacity forecast. It is yet
interesting to explore the impact of the forecast accuracy on
the performance. Based on our preliminary simulations and
analysis, it can be briefly summarized in several folds. First,
if the user demand is overestimated, the cross-region traffic
and the QoS perceived by users are not affected, while the
lease cost increases. If the demand is underestimated, boththe
lease cost and QoS may drop and the cross-region traffic may
increase. On the other hand, if the user capacity is underesti-
mated, both the cross-region traffic and QoS are not affected,
while the lease cost may increase. And if overestimated, it may
degrade the QoS, increase the cross-region traffic, and reduce
the lease cost. In CALMS, the capacity forecast inaccuracy is
partially overcome by carefully settingα andβ, where lowα
value or highβ value can reduce the framework’s dependence
on the user capacities but may introduce extra lease cost.
For the demand forecast error, we believe that to the overall
performance, overestimation is better than underestimation.
This suggests that one may map the demand forecast problem
to the classic ski-rental problem [10] and apply the simple
break-even online algorithm. We omit more details here due
to the space limitation, which can be found in [21]. Our
preliminary results show as long as the decisions of different
approaches are made by the same demand forecast algorithm
with only overestimation errors, CALMS can still achieve the
similar performance as shown in the last section.

Another open issue is that recently increasing attentions
from both industries and academia have been attracted by a
new type of cloud platform featured as allowing the users to
contribute/sell their own idle computing resources and build
their own cloud services. It is thus interesting to investigate the
potential of this type of platform to migrate the live streaming
application. To this end, we select a typical example, the
Enomaly’s SpotCloud [19][23], to run simulations with the
measured information shown in Figs. 15 and 16. The results
are shown in Figs. 17-20, where the lease cost and cross-
region traffic are normalized by those values of the Max-
Central approach on Amazon EC2. Besides the superiority of
our CALMS solution, we find two interesting observations
comparing to the results on Amazon EC2: First, the lease cost
of this new type of platform is very low and generally less than
10% of Amazon EC2. This is because this new platform dis-

tributes the maintenance cost to the server’s contributor/seller,
greatly reducing the lease cost of each server. The other
observation is that in this new type of platform, although
the server contributor/sellers are highly geo-distributed (e.g.
8 countries for SpotCloud in Fig. 15), the aggregate server
capacities may not be as strong as the datacenter clouds (if
there is one) in the same region. This explains why the cross-
region traffic by SpotCloud is much higher than Amazon EC2.
These observations motivate a possible hybrid design to use
both types of cloud platforms to provide the live streaming
application, where the datacenter clouds as the backbone to
enforce enough server capacities and good performance, with
the servers contributed/sold by others from this new type of
platform as edge servers to further reduce the lease costs.

VII. C ONCLUSION AND FUTURE WORK

This paper presented CALMS, a generic framework that
facilitates migrating live media streaming to a cloud plat-
form. Being the very first paper towards this direction, we
strived to offer fundamental understandings on the practical
feasibility and theoretical constraints in the migration.We
first modeled the basic problem of leasing cloud services to
support time-varying user demands and developed an optimal
algorithm. We then extended our solution to integrate locality-
awareness and user-assistance, alleviating the impact from
the service globalization. We further designed a series of
practical solutions for both cloud and user layer organization
and optimization, as well as dynamic lease scheduling that
accommodates inaccuracy in demand and capacity forecast.
Extensive simulations driven by traces from both cloud service
providers (Amazon EC2 and SpotCloud) as well as live media
streaming service provider (PPTV) demonstrated the cost-
effectiveness and superior streaming quality of CALMS, even
with highly dynamic and globalized demands.

We are currently conducting more simulations to evaluate
and improve CALMS with data sets and traces from other
cloud providers and live media streaming providers. We expect
to develop a prototype for further verification and evaluation.
We are also interested in exploring other open issues such as
designing better user demand/capacity forecast mechanisms
and extending CALMS to other type of cloud platform, e.g.,
Amazon CloudFront [1], a cloud-based CDN platform.
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