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Abstract— In distributed storage systems, regenerating codes
can achieve the optimal tradeoff between storage capacity and
repair bandwidth. However, a critical drawback of existing regen-
erating codes in general is the high coding and repair complexity,
since the coding and repair processes involve expensive multipli-
cation operations in finite field. In this paper, we present a design
framework of regenerating codes which employ binary addition
and bit-wise cyclic shift as the elemental operations, named
BASIC regenerating codes. The proposed BASIC regenerating
codes can be regarded as a concatenation coding scheme with the
outer code being a binary parity-check code, and the inner code
being a regenerating code utilizing the binary parity-check code
as the alphabet. We show that the proposed functional-repair
BASIC regenerating codes can achieve the fundamental tradeoff
curve between the storage and repair bandwidth asymptotically
of functional-repair regenerating codes with less computational
complexity. Furthermore, we demonstrate that the existing exact-
repair product-matrix construction of regenerating codes can
be modified to exact-repair BASIC product-matrix regenerating
codes with much less encoding, repair and decoding complexity
from theoretical analysis, and with less encoding time, repair
time and decoding time from the implementation results.

Index Terms—Regenerating codes, distributed storage systems,
low complexity, binary parity-check code.

I. INTRODUCTION

Distributed storage systems achieve high reliability by stor-
ing the data redundantly in many connected unreliable storage
nodes. Maximum-distance-separable (MDS) codes such as
Reed-Solomon (RS) codes is one common approach to provide
redundancy. With an (n, k) RS code, a data file is encoded and
stored across n nodes such that a data collector can retrieve
the original data file from any k nodes.

Upon the failure of a node, we need to regenerate the data
stored in the failed node in order to maintain the same level of
reliability. Dimakis et al. in [2] formulated the repair problem
and proposed the regenerating codes (RGC) with the aim
of efficient repair of the failed node. In the pioneer work
in [2], a data file with B symbols over the finite field F2w

is encoded into nα symbols and distributed to n nodes, with
each node storing α symbols such that the original data file
can be recovered from any k nodes. When a node is failed, a
new node is created and downloads β symbols from each of
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d surviving nodes. The total number of symbols downloaded
from the surviving nodes during the repair process is coined
the repair bandwidth.

Two main versions of repair are introduced in [2]: exact
repair and functional repair. In exact repair, the symbols
stored in the failed node are exactly reproduced in the new
node. In functional repair, the requirement is relaxed: the new
node may contain different symbols from that in the failed
node as long as the repaired system maintains the (n, k)
recovery property that any k nodes are sufficient in decoding
the original data file. It is shown in [2] that, the minimization
of repair bandwidth for functional repair is closely related
to the single-source multi-cast problem in network coding
theory. After formulating the problem using an information
flow graph, a fundamental tradeoff between the amount of
storage per node and the repair bandwidth is established as
follows,

B ≤
k∑
i=1

min{(d− i+ 1)β, α}. (1)

If we fix the parameter B, there is a tradeoff between storage α
and repair bandwidth β. The two extreme points in this trade-
off are termed the minimum storage regeneration (MSR) and
minimum bandwidth regeneration (MBR) points respectively.
The MSR point corresponds to

αMSR =
B

k
, βMSR =

B

k(d− k + 1)
,

and the MBR point corresponds to

αMBR =
2dB

k(2d− k + 1)
, βMBR =

2B

k(2d− k + 1)
.

The problem of exact-repair RGC was investigated in [3]–
[6], all of which address either the MBR case or the MSR case.
The paper [7] presents the optimal explicit constructions of
MBR codes for all feasible values of parameters k ≤ d ≤ n−1
and MSR codes for the parameters 2k− 2 ≤ d ≤ n− 1, using
the product-matrix framework. The concept of uncoded repair
was originally introduced in [6]. RGC with uncoded repair
does not require any arithmetic operation during the repair
process; a helper node merely reads out the symbols from the
memory and sends them to the new node. This minimizes the
computational complexity of repair. Some explicit construc-
tions of RGC at the MBR point with uncoded repair can be
found in [3], [6]. It is shown in [5] that it is not possible to
construct the uncoded repair MBR codes when d 6= n − 1
for exact repair. At the MSR point, uncoded repair RGC for



functional repair is discussed in [8], [9]. However, the code
parameters considered in [8], [9] are restricted to k = 2 and
k = n− 2.

Recently, zigzag code [4] was constructed on the MSR
point to achieve the optimal exact repair. The code parameters
considered in [4] are relaxed to n ≥ k + 2 and d = n− 1, at
a cost of a very high level of sub-symbolization. The reason
is that zigzag code is a vector-linear code, while the codes
in [7]–[9] are scalar-linear codes. Although the problem of
determining the rate region for exact-repair RGC in general
remains open, some recent results can be found in [10], [11].

In [12], existence of linear network codes achieving all
points on the fundamental tradeoff curve for functional-repair
RGC is shown. The construction relies on arithmetic of finite
field, and as in the application of linear network code to
single-source multi-cast problem in general, the underlying
finite field must be sufficiently large. However, multiplication
and division in finite field are costly to implement in software
or hardware. In the literature of coding for disk arrays, the
computational complexity is reduced by replacing finite field
arithmetic by simple bit-wise operations. For example, in [13],
MDS code with a convolutional code as alphabet is introduced
by Piret and Krol. In [14], Blaum and Roth proposed a
construction of array codes based on the ring of polynomials
with binary coefficients modulo 1 + z + · · ·+ zp−1 for some
prime number p. Similar approach was considered by Xiao et
al. in [15].

The objective of this paper is to introduce another class of
RGC which enables coding and repair by XOR and bit-wise
cyclic-shift. The new class of codes is called BASIC (Binary
Addition and Shift Implementable Cyclic-convolutional) re-
generating codes. The reduction on computational complexity
is made possible by replacing the finite field multiplications
in RGC by bit-wise cyclic-shifts, and replacing the base field
by a ring with cyclic structure.

Similar methodology in reducing computational complexity
in network coding problems can be found in [16]–[18]. In
[16], “permute-and-add” linear network codes are proposed
with local encoding matrix being a permutation matrix. For
such network codes, the encoding operation is equivalent to
first permuting the incoming symbols and then summing the
permuted symbols. Although the authors in [17], [18] only
considered the encoding process, the essential ideas behind
“rotate-and-add” network codes and BASIC codes are the
same. In more detail, “rotate-and-add” network codes first
append one zero bit for each m − 1 bits to form a packet,
shift the received packets and then sum them. BASIC codes
first append the parity-check bit for each m−1 bits to form a
packet, do some shifts for the formulated packets and then
sum the shifted packets. We do not need to store the last
bit for BASIC codes, as we can compute it, which is the
summation of the first m− 1 bits, when necessary. However,
all the m bits of a packet in “rotate-and-add” network codes
should be stored or transmitted. More generally, network codes
over rings are discussed in [19]. Compared with the existing
low complexity network codes in [16]–[18], this paper mainly

has three contributions, which are summarized as follows:

1) We propose a new framework of linear codes with the
binary parity-check code as the alphabet, named BASIC
codes.

2) We give a general construction of functional-repair
BASIC-RGC and show that the presented functional-
repair BASIC-RGC can achieve all the benefits of
functional-repair RGC asymptotically with less com-
plexity in coding and repair processes. As there is an
additional 1 bit per m− 1 bits in the storage and repair
bandwidth, this is what “asymptotic” means. The con-
structed functional-repair BASIC-RGC are existential.

3) We show that the existing exact-repair RGC can be
modified to exact-repair BASIC-RGC. An efficient de-
coding method with LU factorization of Vandermonde
matrix is proposed to show that exact-repair BASIC-
RGC have much less complexity in encoding, repair and
decoding processes. Although in this paper we only give
the conversion of the product-matrix construction in [7],
all the constructed exact-repair RGC in [3], [4], [6], [7]
can be converted to the exact-repair BASIC-RGC.

This paper is organized as follows. A motivating example
that illustrates the main ideas is given in Section II. After
reviewing some facts on binary cyclic codes in Section III, we
propose the design framework of BASIC codes and show that
we can operate arbitrarily close to the fundamental tradeoff
curve between storage and repair bandwidth by functional-
repair BASIC-RGC in Section IV. In Section V, we show
how the exact-repair product-matrix RGC in [7] are adapted
to exact-repair BASIC-RGC. In Section VI, we compare the
computational complexity with functional-repair RGC over
finite field. The computational complexity of exact-repair
BASIC product-matrix RGC as well as the product-matrix
RGC over finite field in [7] is also evaluated in Section VI.
Some results of the implementation of BASIC product-matrix
RGC and product-matrix RGC over finite field are shown in
Section VII. The last section concludes this paper.

II. A MOTIVATING EXAMPLE

The following example of storage code illustrates the main
ideas. Suppose that we want to store some information bits to
four storage nodes, such that we can recover the information
bits from any two nodes. The information bits are divided into
groups of 4(m−1) bits, for some positive and odd integer m.
Each group of 4(m − 1) bits is called a data chunk. As the
data chunks are processed in the same manner, we focus on
one data chunk.

We divide the 4(m − 1) information bits into four equal
parts and represent each of them by si,0, si,1, · · · , si,m−2, for
i = 1, 2, 3, 4. We append the parity-check bit

si,m−1 :=

m−2∑
j=0

si,j

for the m−1 information bits si,0, si,1, · · · , si,m−2, and denote
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Fig. 1: An example of storage code for four nodes. When node
1 fails, the bits sent to the new node are shown as the labels
of the edges.

them as the vector

si := (si,0, si,1, · · · , si,m−2, si,m−1).

The summation si + sj of two vectors si and sj is defined as

si + sj := (si,0 + sj,0, si,1 + sj,1, · · · , si,m−1 + sj,m−1).

In this storage code, we store 2m bits in each node. Nodes
1 and 2 are called information nodes, and each node stores the
2m bits of two vectors. The redundant bits are represented by

ci = (ci,0, ci,1, · · · , ci,m−2, ci,m−1)

for i = 1, 2, 3, 4, which are stored in two redundant nodes,
nodes 3 and 4. Node 3 stores

c1,j := s1,j + s3,j and c2,j := s2,j + s4,j⊕m1,

for j = 0, 1, . . . ,m− 1. The symbol “⊕m” in the above line
stands for addition modulo m. For j = 0, 1, . . . ,m − 1, the
redundant bits

c3,j := s1,j + s3,j⊕m1 and c4,j := s2,j + s4,j ,

are stored in node 4. An example for m = 5 is illustrated
in Fig. 1. We note that the redundant bits in nodes 3 and 4
are computed by either adding the bits of two vectors, or by
adding the bits of one vector and a cyclically shifted version
of bits of another vector.

We claim that we can recover all the information bits from
any two nodes. From node 1 and node 2, we can obtain the
information bits directly. We can verify that the information
bits can be obtained from any one of the information nodes
and any one of the redundant nodes. Finally, suppose that we
want to decode the information bits from node 3 and node 4.
In the following, we show how to decode the information bits
of vectors s1 and s3 from redundant bits c1,j , c3,j for j =
0, 1, . . . ,m− 1. The decoding method for information bits of
vectors s2 and s4 is similar. We can recover s3,0 by computing
(m−3)/2∑
`=0

c1,2`⊕m1+c3,2`⊕m1 = s3,1+s3,2+· · ·+s3,m−1 = s3,0.

Once the value of s3,0 is known, we can get s1,0 by c1,0 +
s3,0 = s1,0, and get s3,1 by c3,0 + s1,0 = s3,1. The remaining
information bits can be decoded iteratively. This proves the
claim.

Suppose that node 1 fails, and we want to repair it by
downloading one vector from each of the surviving nodes.
The repair process of m = 5 is shown in Fig. 1. We define a
right cyclic-shift of si as

zsi := (si,m−1, si,0, · · · , si,m−3, si,m−2).

Node 2 sends the summation of two vectors s3 + s4 to the
new node. Node 3 shifts the second vector to the right by
one bit, adds to the first vector, and sends the resulting vector
s1 +zs2 +s3 +s4 to the new node. Likewise, node 4 adds the
second vector and a right cyclic-shift of the first vector, and
sends the summation zs1 + s2 + s3 + s4 to the new node. The
new node can obtain two vectors s1 + zs2 and zs1 + s2 by
subtracting the vector s3 + s4 from the receiving two vectors
of node 3 and node 4 respectively. It is sufficient to recover
the vectors s1 and s2 from

s1,0 + s2,4, s1,1 + s2,0, s1,2 + s2,1, s1,3 + s2,2, s1,4 + s2,3,

s1,0 + s2,1, s1,1 + s2,2, s1,2 + s2,3, s1,3 + s2,4, s1,4 + s2,0.

We can recover s2,3 by computing

(s1,0 + s2,4) + (s1,0 + s2,1) + (s1,1 + s2,0) + (s1,1 + s2,2)

=s2,4 + s2,1 + s2,0 + s2,2

=s2,3.

The remaining bits of s1 and zs2 can be decoded iteratively.
If node 2 fails, it can be repaired in a similar manner.

If a redundant node fails, suppose node 3 fails without loss
of generality, we can alternately treat node 3 and node 1 as the
information nodes, and treat nodes 2 and 4 as the redundant
nodes. The bits of node 3 can also be repaired in an analogous
manner.

The assumption that the parameter m to be an odd integer
is essential. If m is an even integer and if we flip all the
information bits si,j from 1 to 0 or from 0 to 1, for i =
1, 2, 3, 4 and j = 0, 1, . . . ,m− 2, then the content of node 3
and node 4 will not change. The mapping from the information
bits in nodes 1 and 2 to the redundancy bits in nodes 3 and 4
is a two-to-one map in this case. So there is no way to recover
the information bits from nodes 3 and 4.

We remark that
1) If the last bit si,m−1 or ci,m−1 is stored, then the storage-

bandwidth tradeoff is not optimal, but the accessed/read
bits are the same as the transmitted bits.

2) If the last bit si,m−1 or ci,m−1 is not stored, then the
storage-bandwidth is optimal, all the bits need to be read,
and the transmitted bits need to be computed from them.

III. MATHEMATICAL FRAMEWORK OF BASIC CODES

In this section, we will introduce the necessary algebra and
mathematical framework of BASIC codes.



A. Binary Cyclic Code

In this subsection we review some facts on binary cyclic
codes [20, Chapters 7]. Let m be a positive odd number and
let Rm be the ring

Rm := F2[z]/(1 + zm). (2)

The element of Rm will be referred to as polynomial in
the sequel. The vector (a0, a1, . . . , am−1) ∈ Fm2 is the
codeword corresponding to the polynomial

∑m−1
i=0 aiz

i. The
indeterminate z represents the cyclic-right-shift operator on
the codeword. A binary cyclic code of length m is a subset
of Rm closed under addition and multiplication by z.

In this paper, we consider the simple parity-check code,
Cm, which consists of polynomials in Rm with even number
of non-zero coefficients,

Cm = {a(z)(1 + z) : a(z) ∈ Rm}. (3)

The dimension of Cm over F2 is m − 1, and the check
polynomial of Cm is h(z) := 1 + z + · · · + zm−1. We can
check that the multiplication of h(z) and any polynomial in
Cm is zero. For a polynomial c(z) =

∑m−1
i=0 ciz

i in Cm, we
call c0, c1, . . . , cm−2 as the first m−1 bits of polynomial c(z)
and cm−1 as the parity-check bit of c0, c1, . . . , cm−2, as we
have cm−1 =

∑m−2
i=0 ci.

B. Design Framework of BASIC Code

Let ν be a positive integer, BASIC code is defined as a
subspace of Cνm, i.e., anRm-linear code with the binary parity-
check code Cm as the alphabet. Given an odd number m and
positive integers κ and ν such that κ ≤ ν, the encoding of
a BASIC is a mapping from F(m−1)κ

2 to Cνm, specified by a
κ × ν generator matrix G over Rm. The encoding can be
performed in two steps. Firstly, we divide the (m − 1)κ bits
into κ groups, with each group containing m − 1 bits. To
each group of bits, we append a parity-check bit and form a
polynomial in Cm. We put the resulting polynomials together
and form a κ-tuple w = (s1(z), s2(z), . . . , sκ(z)) ∈ Cκm. The
codeword in the BASIC code corresponding to the (m− 1)κ
input bits is obtained by multiplying wG.

Henceforth, we will call a polynomial in Cm a source packet
or a data packet. A component in wG will be called a coded
packet. A coded packet is thus an Rm-linear combination of
the κ data packets, with elements from Rm as the coefficients.

Remarks: There is an alternate description of BASIC codes
in terms of group algebra and module. The ring Rm defined
in (2) is isomorphic to the group algebra F2Zm, where Zm is
the cyclic group of size m, and the ring Cm defined in (3)
is isomorphic to a subring of F2Zm. A BASIC code is a
submodule of the free F2Zm-module Cnm. A BASIC code
can be regarded as a quasi-cyclic code (See e.g. [21], [22]).
Nonetheless, the quasi-cyclic codes considered in [21], [22]
are submodules of the free F2Zm-module (F2Zm)m, and the
objective is to maximize the the minimum distance as a code
of length mn over a base field. In this paper, BASIC codes
are considered a code of length n over the alphabet Cm.

Example: The code in the previous section is an example
of BASIC code with parameters m = 5, κ = 4 and ν = 8. The
four data packets are si(z) =

∑4
j=0 si,jz

j , for i = 1, 2, 3, 4,
and the generator matrix is

G =


1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 0 1 0 1 0 zm−1 0
0 0 0 1 0 zm−1 0 1

 .

C. Erasure Decoding

A collection of κ coded packets is said to be an information
set, or decodable, if we can recover the source packets from
these κ coded packets. In this subsection, we give a necessary
and sufficient condition for decodability. To this end, we
introduce some notations. A polynomial f(z) in Rm is called
Cm-invertible if we can find a polynomial f̃(z) ∈ Rm such
that f(z)f̃(z) is equal to either 1 or 1 + h(z). For a subset
I ⊆ {1, 2, . . . , ν} with |I| = κ, we let GI be the κ × κ
submatrix of G obtained by retaining the columns indexed
by I.

Theorem 1. Let I ⊆ {1, 2, . . . , ν} be an index set with
cardinality κ. The coded packets indexed by I are decodable
if det(GI) is Cm-invertible.

Proof. Let s1(z), . . . , sκ(z) be the data packets, and
p1(z), . . . , pκ(z) be the coded packets indexed by I,

(p1(z), . . . , pκ(z)) = (s1(z), . . . , sκ(z)) ·GI .

Suppose that the determinant of GI is Cm-invertible. Let
δ(z) be a polynomial in Rm such that δ(z) det(GI) is equal
to 1 or 1 + h(z). We can recover the data packets from the
coded packets by

(p1(z), . . . , pκ(z)) · adj(GI) · δ(z)
= (s1(z), . . . , sκ(z)) ·GI · adj(GI) · δ(z)
= (s1(z), . . . , sκ(z)) · det(GI) · δ(z)
= (s1(z), . . . , sκ(z)),

where adj(GI) denotes the adjoint of GI [23, p.20]. In the
last step, we have used the fact that si(z)(1 + h(z)) = si(z)
if si(z) ∈ Cm.

We next give a criterion for checking whether a polynomial
in Rm is Cm-invertible. Let f1(z), f2(z), . . . , fL(z) be the
prime factorization of the check polynomial h(z) over F2. The
irreducible polynomials f1(z) to fL(z) are distinct as they are
divisors of 1 + zm and m is an odd number. We recall that in
a general commutative ring R with identity, an element u ∈ R
is called a unit if we can find an element ũ ∈ R such that uũ
is equal to the identity element in R.

Theorem 2. Suppose that f1(z), f2(z), . . . , fL(z) are the
irreducible factors of the check polynomial h(z). Let a(z) be
a polynomial in Rm. The followings are equivalent:

1) a(z) is Cm-invertible.



2) a(z) mod h(z) is a unit in F2[z]/(h(z)).
3) a(z) mod f`(z) is a unit in F2[z]/(f`(z)) for all ` =

1, 2, . . . , L.

Proof. (1) ⇔ (2). Define f0(z) be the polynomial 1 + z. By
the Chinese remainder theorem, the ring Rm is isomorphic to
the direct sum

R′m := F2[z]/(f0(z))⊕ F2[z]/(h(z)).

Indeed, the mapping φ : Rm → R′m defined by

a(z) 7→ (a(z) mod 1 + z, a(z) mod h(z)),

and the mapping φ′ : R′m → Rm defined by

(a0(z), a1(z)) 7→ h(z)a0(z) + (1 + h(z))a1(z) mod 1 + zm

are inverse of each other. Suppose that a(z) mod h(z) is a
unit in F2[z]/(h(z)), i.e., suppose that there is a polynomial
d(z) such that φ(a(z)d(z)) = (a, 1), where a is either 0 or
1. Hence a(z)d(z) is equal to either φ′((0, 1)) = 1 + h(z) or
φ′((1, 1)) = 1. This proves that a(z) is Cm-invertible.

Conversely, suppose that a(z) is Cm-invertible. There is a
polynomial ã(z) ∈ Rm such that a(z)ã(z) is equal to 1 or
1+h(z). If we apply the mapping φ to a(z)ã(z), then we have
φ(a(z)ã(z)) = (a, 1), for some a ∈ F2. Therefore a(z) mod
h(z) is a unit.

(2) ⇔ (3). Using the fact that h(z) can be factorized into
f1(z)f2(z) · · · fL(z), the equivalence between the second and
third conditions in the theorem can be shown by another
application of Chinese remainder theorem.

Corollary 3. Consider a BASIC code with κ × ν generator
matrix G. For any subset I ⊆ {1, 2, . . . , ν} of size κ such that
I corresponds to the packets residing in κ nodes, the coded
packets indexed by I are decodable if and only if det(GI) is
Cm-invertible.

Proof. We have already shown the “if” part in Theorem 1.
In the reverse direction, suppose that det(GI) is not Cm-
invertible. Using the same notation as in Theorem 2, we
have det(GI) = 0 mod f`0(z) for some `0 ∈ {1, 2, . . . , L}.
If we reduce the matrix GI modulo f`0(z) entry-wise,
the resulting matrix is singular as a matrix over the fi-
nite field F2[z]/(f`0(z)). We can find a non-zero vector
ā = (ā1(z), . . . , āκ(z), with each component belonging to
F2[z]/(f`0(z)), such that āGI mod f`0(z) is the zero vector.
For j = 1, 2, . . . , κ, choose aj(z) ∈ Cm such that

aj(z) =

{
āj(z) mod f`(z) for ` = `0

0 mod f`(z) for ` 6= `0.

If we take aj(z)’s as the source packets, then ν-tuple obtained
by (a1(z), a2(z), . . . , aκ(z))GI is the zero ν-tuple. The en-
coding map is not injective and therefore the coded packets
indexed by I are not decodable.

Example (continued): The polynomial 1 + z5 can be
factorized as a product of f0(z) = 1 + z and f1(z) =
1 + z + z2 + z3 + z4. We can check that the four coded

packets in any two nodes are decodable. For instance, for
nodes 3 and 4, the index set is I = {5, 6, 7, 8}, the determinant
det(GI) = 1 + z3 is not divisible by f1(z). Indeed, 1 + z3 is
C5-invertible because

(1 + z3)(z3 + z4) = z + z2 + z3 + z4 = 1 + h(z).

Some remarks on implementation are in order. In software
implementation, we can implement a cyclic-shift by using
pointer. We store the m bits consecutively in the memory, and
use a pointer to store the beginning address of the packet. A
cyclic-shift can be done by modifying the pointer only, without
modifying the packet itself. We can also modify BASIC
codes and replace bit-wise cyclic-shift by byte-wise cyclic-
shift, which is more amenable to software implementation. In
hardware implementation, a cyclic-shift can easily be done by
having the bits cyclically shifted in a shift register.

A remark on multiplication in Rm is in order. For any
polynomial a(z) in the ring Rm and ∀b(z) ∈ Cm, we have
that a(z)b(z) = (a(z) + h(z))b(z). If the number of non-zero
terms of a(z) is larger than (m− 1)/2, then we can compute
(a(z)+h(z))b(z) instead of a(z)b(z) and the number of non-
zero terms is less than or equal to (m − 1)/2. So we will
assume that the number of non-zero terms of a(z) is less than
or equal to (m − 1)/2, when we evaluate the computational
complexity of BASIC codes.

IV. FUNCTIONAL-REPAIR BASIC REGENERATING CODES

In the rest of this paper, we consider BASIC regenerating
codes (BASIC-RGC), which is defined as a class of BASIC
codes such that the parameters n, k, d, α, β achieve the optimal
tradeoff curve in (1) or asymptotically. Exact-repair BASIC-
RGC will be given in the next section. First, we review the
general construction of functional-repair RGC over finite field.

A. Functional-Repair RGC over Finite Field

The data file is divided into B data symbols and stored
across n nodes with each node storing α coded symbols in
F2w , such that the data file can be recovered by connecting to
any k nodes. Each coded symbol is a linear combination of
the B data symbols in F2w . The coefficients of the linear com-
bination form the global encoding vector of the corresponding
coded symbol.

In repair process, a new node is created and replaces the
failed node, and connects to an arbitrary set of d of the
remaining nodes. The storage nodes which participate in the
repair process are also called the helpers. Each of the helper
node transmits β symbols to the new node, and each of these
symbols is a linear combination of the α symbols stored
in the node. The coefficients of the linear combination are
called local encoding coefficients of the corresponding symbol
downloaded to repair the failure. Then the new node generates
α new symbols, with each new symbol created by doing a
linear combination of the receiving dβ symbols. The process
is termed as repair process and the total amount of dβ data
downloaded in a repair process is called repair bandwidth.
Note that the α symbols stored in the new node need not be



the same of the failures, as long as the (n, k) recovery property
that any k nodes are sufficient in decoding the original file
should be maintained, after each repair.

A major result in the field of RGC is that the parameters of
a regenerating code must necessarily satisfy the inequality in
(1). The general construction of functional-repair RGC over
finite field that achieve the optimal tradeoff in (1) is presented
in [12] by Wu. It is shown that the functional-repair RGC can
be constructed over a finite field whose size is independent of
how many failures/repairs can happen. The proof is established
in [12] by first formulating the existence condition as a product
of multivariate polynomials, then showing each polynomial is
non-zero, and finally applying the Schwartz-Zippel lemma (see
e.g. [24, p. 224]).

Lemma 4 (Schwartz-Zippel). Let F be a finite field and S
be a subset of elements in F. Let f be a non-zero multivari-
ate polynomial in F[X1, X2, . . . , XN ] of degree e. Then the
polynomial f has at most e|S|N−1 roots in SN .

The key concept used in the repair process is the information
flow graph, which represents the evolution of information flow
as node join and leave. To ensure the (n, k) recovery property
after each repair, the author in [12] characterized a capacitated
data collector with a length-n characteristic vector h that
indicates the allowed access capacities from the storage nodes,
here data collector corresponding to one request to reconstruct
the original data. The entry of h refers to the information that
the data collector can get from the storage node.

For i = 1, 2, . . . , k, let τi be defined as τi := min{(d −
i + 1)β, α}, and for i = k + 1, k + 2, . . . , n, let τi = 0.
Define H as the set of vectors of length n, whose components
are non-negative integers, which are majorized by the vector
(τ1, τ2, . . . , τn). The main result in [12] is summarized in the
following theorem.

Theorem 5. Let F2w be a finite field whose size is greater
than

B ·max
{(nα

B

)
, 2|H|

}
. (4)

Then, there exists a functional-repair regenerating code de-
fined in F2w that achieves the optimal tradeoff point in (1).

B. Functional-Repair BASIC-RGC

We assume that a data file contains B(m− 1) bits, for the
ease of presentation. In the encoding process, the data file is
divided into B groups. Each group of m−1 bits is encoded to
a codeword of the binary parity-check code Cm. We let s1(z),
s2(z), . . . , sB(z) ∈ Cm be the resulting codewords. We call
these B codewords the data packets or source packets.

We store α coded packets in each node. Each coded packet
is an Rm-linear combination of the B data packets, with the
corresponding global encoding vector. When we choose the
global encoding vectors, the (n, k) recovery property should
be satisfied. When a node fails, we connect to an arbitrary set
of d helper nodes and download β coded packets from each
helper node.

The repair process of functional-repair BASIC-RGC, which
is different from functional-repair RGC over finite field, is
stated as follows. Each of the d helper nodes transmits β
packets to the new node, and each of these packets is an Rm-
linear combination of the α encoded packets in the memory.
The local encoding coefficients are polynomials in Rm. Upon
receiving the dβ packets from the helpers, the new node
computes and stores α packets. Each packet stored in the new
node is an Rm-linear combination of the dβ received packets,
with coefficients being polynomials in Rm. The computations
required during the repair process are just cyclic shifts and
binary additions. The global encoding vectors of the new
packets are also computed and stored. We want to show that
by choosing the values of local encoding coefficients to be
polynomials in Rm, we can maintain the (n, k) recovery
property.

We can prove this by modifying the argument in [12] on the
existence of RGC over finite field, and invoking a Schwartz-
Zippel lemma over a specific ring Cm.

Let g(X1, X2, . . . , XN ) be a non-zero multivariate polyno-
mial in Rm[X1, X2, . . . , XN ], with coefficients in the ring
Rm. For ` ∈ {1, 2, . . . , N}, let r` ∈ Rm, we define
the N -tuple (r1, r2, . . . , rN ) as Cm-root of the polynomial
g(X1, X2, . . . , XN ), if the value g(r1, r2, . . . , rN ) in the ring
Rm is not Cm-invertible.

Lemma 6 (Schwartz-Zippel lemma over the ring Cm). Sup-
pose that f1(z), f2(z), . . . , fL(z) are the irreducible factors
of the check polynomial h(z). Let S be a subset of Rm such
that the function θ` : S → F2[z]/f`(z), defined as

θ`(a(z)) := a(z) mod f`(z),

is injective ∀` = 1, 2, . . . , L, where a(z) can assume any value
in S. Then the polynomial g(X1, X2, . . . , XN ) has at most
L · e · |S|N−1 Cm-roots in SN , where e is the degree of the
polynomial g(X1, X2, . . . , XN ).

Proof. Note that the ring Cm is isomorphic to F2(z)/h(z)
by the Chinese remainder theorem. Furthermore, the ring
F2(z)/h(z) is isomorphic to the direct sum of the finite fields
F2(z)/f`(z), for ` = 1, 2, . . . , L. As θ` is injective, we have
that the set {θ`(a(z)) : a(z) ∈ S} is a subset of the field
F2(z)/f`(z) with cardinality |S|, ` = 1, 2, . . . , L.

For ` = 1, 2, . . . , L, let g`(X1, X2, . . . , XN ) be the
polynomial of g(X1, X2, . . . , XN ) with coefficients of
g(X1, X2, . . . , XN ) reduced modulo f`(z). Let < be the set
of Cm-roots of the polynomial g(X1, X2, . . . , XN ) in SN and
let <` be a subset of SN such that

g`(θ`(a1(z)), θ`(a2(z)), . . . , θ`(aN (z))) = 0

in the field F2[z]/f`(z), ∀(a1(z), a2(z), . . . , aN (z)) ∈ <` and



` = 1, 2, . . . , L. We have

|<| = |<1

⋃
<2

⋃
· · ·
⋃
<L|

≤
L∑
`=1

|<`|

≤ L · e|S|N−1,

where in the last inequality, we use the result of Lemma 4.

In [12], the existence of RGC over a finite field is proved
by showing that we can choose the local encoding coefficient
such that a collection of determinants are all evaluated to
be non-zero. In the case of BASIC-RGC, we want to re-
strict the local encoding coefficients to be polynomials in
S , and the collection of determinants are evaluated to be
non-zero in several finite fields. Note that, when we choose
the polynomials for the set S , the mapping θ` defined in
Lemma 6 should be injective, ∀` = 1, 2, . . . , L. The cardinality
of S thus can not exceed the size of the smallest field
in {F2(z)/f1(z),F2(z)/f2(z), · · · ,F2(z)/fL(z)}. With these
modification, the requirement on the cardinality of S is stated
in the next theorem.

Theorem 7. Let n, k, d, α and β be fixed system parameters
of a distributed storage system. Let m be an odd number, and
f1(z)f2(z) · · · fL(z) be the prime factorization of the check
polynomial h(z) over F2. If we can find a subset S of Rm
such that (i) the mapping θ` defined in Lemma 6 is injective,
∀` = 1, 2, . . . , L, and (ii) if |S| is larger than

L ·B ·max
{(nα

B

)
, 2|H|

}
, (5)

then there exists a functional-repair BASIC-RGC, which sup-
ports the file size

B =

k∑
i=1

min{(d− i+ 1)β, α},

with local encoding coefficients drawn from the subset S.

Proof. The proof is essentially the same as in [12]. The encod-
ing coefficients in global encoding vector when we initialize
the storage system are polynomials in Rm. While the local
encoding coefficients in each repair process are polynomials
in the set S such that a collection of sets of k packets are
decodable. For each set of k packets in this collection, we
need to guarantee that the decodability by invoking Theorem 1
in the previous section. In the application of Lemma 6, the
requirement about the set S, which is stated in Lemma 6
should be satisfied.

In the proof of the existence of functional-repair RGC over
a finite field in [12], the local encoding coefficients are chosen
in the field. They evaluate a set of polynomials to be non-zero
over the finite field, and show that if the field size is larger
than the value given in (4), then there exists a regenerating
code defined in the field. For functional-repair BASIC-RGC,
we need to evaluate the same set of polynomials to be non-
zero simultaneously over L fields rather than one field, and

the local coefficients are limited in the set S. Thus, the value
of |S| should be greater than the value in (5).

Theorem 7 says that when the cardinality of S is larger than
(5), the proposed BASIC-RGC can achieve all the points on the
optimal tradeoff curve between storage and repair bandwidth
asymptotically. Note that the coding scheme proposed in this
paper has an additional 1 bit per m− 1 bits, and this leads to
a slight increase in storage and repair bandwidth by a factor
of m/(m− 1), this is what “asymptotically” means. The key
difference of BASIC-RGC presented in this paper and other
RGC in the literature is that, the packets in BASIC-RGC
assume values in Cm, and the local encoding coefficients are
polynomials in S.

We may choose the parameter m to be a prime number such
that 2 is primitive in Fm. In this case, the polynomial 1 +
zm is factorized as a product of two irreducible polynomials,
namely, 1 + z and the check polynomial h(z) = 1 + z+ · · ·+
zm−1. Under the Artin’s conjecture on primitive roots, there
are infinitely many such prime number m [25]. In this case,
we can let the set S to be the polynomials in Rm with non-
zero term less than or equal to (m − 1)/2, and |S| = 2m−1.
We can check that the function θ1 : S → F2(z)/h(z), defined
as

θ1(a(z)) := a(z) mod h(z),

is injective, for any polynomial a(z) in S. The following
Corollary is a direct result of Theorem 7.

Corollary 8. Let m be a prime number such that 2 is primitive
in Fm. There exists a functional-repair BASIC-RGC for a file
of size

m− 1

m

k∑
i=1

min{(d− i+ 1)β, α},

if

m > log2

(
B ·max

{(nα
B

)
, 2|H|

})
+ 1. (6)

Note that there is one additional bit per m−1 bits, because
we store the parity-check bit. However, the parity-check bit is
not necessary to be stored in practical system, as pointed out
in Section II. So, there are two types in BASIC-RGC, first one
is with the last bit being stored that can achieve the optimal
trade-off asymptotically, another is with the last bit not being
stored that has more computation and can achieve the optimal
trade-off. For the second type of BASIC-RGC, we can say that
functional-repair BASIC-RGC can exactly achieve the optimal
trade-off curve in (1). We choose the first type for functional-
repair BASIC-RGC only for the ease of presentation, there
is no essential difference for the two types. While for exact-
repair BASIC-RGC, we do not store the parity-check bit, but
we need to compute it in the repair process and decoding
process.

V. EXACT-REPAIR BASIC REGENERATING CODES

In exact-repair RGC, a failed node is replaced by a new node
that stores exactly the same data as was stored in the failed



node. Constructing exact-repair RGC is more difficult than
constructing functional-repair RGC, and all the constructions
in [3]–[7] for exact-repair RGC have been focused on the MSR
point and MBR point. A general explicit construction of exact-
repair MBR codes for all feasible values of n, k, d and exact-
repair MSR codes for all n, k, d ≤ 2k − 2 is firstly presented
in [7]. The construction is of a product-matrix nature that is
shown to significantly simplify operation of the distributed
storage network.

In this section, we first briefly describe the product-matrix
construction of exact-repair RGC. Then, we give the conver-
sion of product-matrix RGC in [7] to BASIC product-matrix
RGC.

A. Product-Matrix Construction of Regenerating Codes

As the product-matrix construction is based on a finite field,
throughout this subsection, we consider all symbols to belong
to F2w . A regenerating code is represented by the product ΨM
of an n×d encoding matrix Ψ and an d×α message matrix M.
The entries of Ψ are elements of F2w and are independent of
the message symbols. The matrix M is filled by the B message
symbols, with some submatrices of M being symmetric. The
i-th row of Ψ is referred to as the encoding vector ψi of node
i. For i = 1, 2, . . . , n, node i stores the i-th row of ΨM.

The data collector can obtain kα symbols from any k stor-
age nodes. There is a requirement when we choose the value
of the encoding matrix Ψ, to maintain the (n, k) recovery
property.

Assume node f fails, a new node replacing the failed node
connects to any d helper nodes. Each helper node sends the
inner product of the α symbols stored in it with the encoding
vector ψf , to the new node. The new node thus receives the
product matrix ΨrepairMψf , where Ψrepair is the submatrix
of Ψ consisting of the encoding vectors of the d helper nodes.
From this it turns out that we can recover the failed symbols
exactly, if the matrix Ψrepair is invertible and the message
matrix M satisfies some properties.

B. Product-Matrix Construction of BASIC-RGC

If we replace the symbol of product-matrix RGC over a
finite field by a codeword of binary parity-check code Cm, then
the corresponding codes are BASIC product-matrix RGC.

Let s1(z), s2(z), . . . , sB(z) be the B source packets, which
are codewords of the binary parity-check code Cm. The entries
of the encoding matrix Ψ are fixed polynomials in Rm and
independent of the source packets. The entries of M are the
source packets. Unlike functional-repair BASIC-RGC, we do
not store the parity-check bits for BASIC product-matrix RGC.
Therefore, our BASIC product-matrix RGC codes can achieve
the optimal MSR point and MBR point, not asymptotically.

1) BASIC Product-Matrix MSR Code: In the following, we
construct the BASIC-PM (product-matrix) MSR code for d =
2k − 2. As in [7], the construction can be extended naturally
to d ≥ 2k − 2, but we will only discuss the primary case for

d = 2k − 2, α = k − 1, B = kα = k(k − 1).

Divide the data file into B parts, each of m − 1 bits, and
generate B source packets in Cm by appending a parity-check
bit for each part. Divide each of the B source packets into two
equal groups. For each group, create a (k− 1)× (k− 1) sym-
metric matrix by filling the upper-triangular part of the matrix
by the k(k− 1)/2 source packets in the group, and obtain the
lower-triangular part by reflection. Let the symmetric matrix
obtained from group j be denoted by Sj , for j = 1, 2, and let
M be the d× (k − 1) matrix

M =

[
S1

S2

]
.

Define the encoding matrix Ψ to be a n × d Vandermonde
matrix, with the i-th row defined as

ψti :=
[
1 zi−1 z2(i−1) · · · z(d−1)(i−1)

]
, (7)

for i = 1, 2, . . . , n. The i-th node stores the first m − 1 bits
of each α = k − 1 packets in ψtiM.

Let Φ be the n× α Vandermonde matrix such that the i-th
row is

φti :=
[
1 zi−1 z2(i−1) · · · z(α−1)(i−1)

]
, (8)

for i = 1, 2, . . . , n, and let Λ be the n × n diagonal matrix
with diagonal elements equal to 1, zα, . . . , zα(n−1). We have
that Ψ =

[
Φ ΛΦ

]
. There is a requirement when we choose

the value of m if we want to maintain the (n, k) recovery
property that is both any d rows of Ψ and any α rows of
Φ are linear independent over Rm, i.e., the determinants of
any d× d submatrices of Ψ and any α× α submatrices of Φ
are Cm-invertible. The requirement can be met by checking the
condition of decodability given in Theorem 2 and Corollary 3.

Lemma 9. Let Ψ be the encoding matrix, which is composed
by the encoding vector given in (7). If n − 1 is strictly less
than all divisors of m which are not equal to 1, then the
determinants of any d × d submatrices of Ψ and any ` × `
submatrices of Φ are Cm-invertible, for 1 ≤ ` < α.

Proof. Note that both the matrices Ψ and Φ are Vandermonde
matrices. Therefore, we only need to consider the matrix Ψ.
For any d distinct rows of Ψ indexed by i1, i2, · · · , id between
1 to n, the corresponding encoding vectors ψti1 ,ψ

t
i2 , · · · ,ψ

t
id

form a non-singular d × d Vandermonde matrix. So the
determinant is∏

j<`

(z`−1 + zj−1), for j, ` ∈ {i1, i2, · · · , id}. (9)

Let f1(z)f2(z) · · · fL(z) be the prime factorization of the
check polynomial h(z) over F2. Suppose that the above de-
terminant is Cm-invertible, then by Theorem 2, zj−1 +z`−1 is
a unit in F2[z]/fi(z), ∀i ∈ {1, 2, · · · , L} and 1 ≤ j < ` ≤ n.
This is equivalent to the condition that 1 + za is a unit
in F2[z]/fi(z), i.e., za is not congruent to 1 mod fi(z),
∀i ∈ {1, 2, · · · , L} and 1 ≤ a ≤ n − 1. Note that fi(z) is a
factor of 1 + zm. If 1 + za is divisible by fi(z), then a must
be a divisor of m. As n − 1 is strictly less than all divisors
of m which are not equal to 1, we thus have that 1 + za is



not divisible by fi(z), ∀i ∈ {1, 2, · · · , L} and 1 ≤ a ≤ n− 1,
and then the determinant in (9) is Cm-invertible.

The protocol of repairing a failed node is the same as in [7],
except that we are now working over Rm instead of a finite
field. The following two theorems summarize the exact-repair
and data reconstruction properties of BASIC-PM MSR code.

Theorem 10. Suppose that the parameter m satisfies the
requirement in Lemma 9, and suppose there is a failed node.
We can repair the α packets in the failed node by downloading
the first m − 1 bits of one packet each from any d = 2k − 2
of the remaining nodes.

Proof. We assume that the node f fails and the α packets in
node f are ψtfM, where ψtf is the encoding vector of node
f . The new node which is created to replace the failed node
and connects to any d helper nodes h1, h2, . . . , hd. The helper
node hj first appends a parity-check bit for each m−1 bits to
formulate the α packets ψthjM and then computes a packet
ψthjMφf and sends the first m − 1 bits of packet ψthjMφf
to the new node. The new node thus obtains the first m − 1
bits of each d packets ΨrepairMφf from the d helper nodes,
where

Ψrepair =


ψth1

ψth2

...
ψthd

 .
By Lemma 9, the square matrix Ψrepair is Cm-invertible.

Therefore, the new node can first compute the parity-check bit
for each received packet and then compute d packets Mφf ,
i.e., S1φf and S2φf . As S1 and S2 are symmetric matrices,
the new node thus can obtain φtfS1 and φtfS2. Then the new
node can compute

φtfS1 + zα(f−1)φtfS2.

One can check that the above α packets are precisely the
packets stored in the failed node.

Theorem 11. In BASIC-PM MSR code, we can reconstruct
all the B source packets by connecting to any k nodes, if the
parameter m satisfies the requirement in Lemma 9.

Proof. For an arbitrary set {`i|i = 1, 2, . . . , k} of k nodes,
we let Ψk, Φk and Λk be the submatrix of Ψ, Φ and Λ with
rows indexed by {`i|i = 1, 2, . . . , k} respectively. We obtain
the packets ΨkM =

[
ΦkS1 + ΛkΦkS2

]
by appending the

parity-check bits for the packets in the k nodes and then get[
ΦkS1Φtk + ΛkΦkS2Φtk

]
by multiplying ΨkM and Φtk. For notation simplicity, let
two matrices P and Q to denote ΦkS1Φtk and ΦkS2Φtk
respectively. The matrices P and Q are symmetric, as S1 and
S2 are symmetric.

In the following, we will show how to recover S1 and S2

from the matrix P + ΛkQ. The i-th row and the j-th column

entry of matrix P + ΛkQ is

Pi,j + zα(`i−1)Qi,j , (10)

while the j-th row and the i-th column entry is

Pj,i + zα(`j−1)Qj,i = Pi,j + zα(`j−1)Qi,j , (11)

the above equation follows from the symmetry of P and
Q. Therefore, we can compute Pi,j and Qi,j for i 6= j.
Let’s first consider the matrix P . Up to now, all the non-
diagonal elements of P are known. The elements in the i-th
row (excluding the diagonal element) are given by

φt`iS1

[
φ`1 · · · φ`i−1 φ`i+1 · · · φ`α+1

]
.

Note that the matrix to the right is a Vandermonde matrix and
we can obtain φt`iS1 by Lemma 9.

Therefore, we can computeφ
t
`1
...
φt`α

S1.

The matrix in the above is also a Vandermonde matrix and
we can recover S1 by Lemma 9. Similarly, we can recover
the matrix S2 from the matrix Q.

2) BASIC Product-Matrix MBR Code: We divide the data
file into

B =
k(k + 1)

2
+ k(d− k) (12)

parts, each of size m − 1 bits. Generate B source packets in
Cm by appending the parity-check bit for each B parts. Create
an d× d matrix

M :=

[
S T
Tt 0

]
.

The matrix S is a symmetric k × k matrix obtained by first
filling the upper-triangular part by source packets sj(z), for
j = 1, 2, . . . , k(k+ 1)/2, and then obtain the lower-triangular
part by reflection along the diagonal. The rectangular matrix T
has size k × (d− k), and the entries in T are source packets
sj(z), j = k(k + 1)/2 + 1, . . . , B, listed in some fixed but
arbitrary order. The matrix Tt is the transpose of T and the
matrix 0 is an (d − k) × (d − k) all-zero matrix. For i =
1, 2, . . . , n, let the encoding vector of node i be defined as
in (7). Node i stores the first m− 1 bits of each d packets in
ψtiM.

Similar to the case of MSR code, we need to carefully
choose the value of m. If we want to maintain the (n, k)
recovery property, we need to make sure that the determinants
of any d × d submatrices of Ψ are Cm-invertible. The repair
process and decoding process of BASIC-PM MBR codes are
presented in the following two theorems respectively.

Theorem 12. If m satisfies the requirement in Lemma 9, we
can repair the packets of a failed node by downloading the
first m − 1 bits of one packet from each of any d remaining
nodes.



Proof. The d coded packets stored in the failed node f are
ψtfM. The new node connects to an arbitrary set {hj |j =
1, 2, . . . , d} of d helper nodes. Upon being contacted by the
new node, the helper node hj generates d coded packets
ψthjM and sends the first m−1 bits of each the inner product
ψthjMψf to the new node. The new node thus computes the
d coded packets ΨrepairMψf by appending the parity-check
bit for each received m − 1 bits from the d helper nodes,
where Ψrepair is the square matrix with row consisting by
ψthj for j = 1, 2, . . . , d. By construction, the matrix Ψrepair
is a Vandermonde matrix and the determinant is Cm-invertible
by hypothesis. Thus, the new node recovers Mψf through
multiplication on the left by Ψ−1repair. Since M is symmetric, we
have (Mψf )t = ψfM, and the first m−1 bits of each ψfM
is precisely the data previously stored in the failed node.

Theorem 13. For the constructed BASIC-PM MBR codes with
the requirement in Lemma 9, we can reconstruct the B source
packets from any k nodes.

Proof. For any set of k nodes `1, `2, . . . , `k, we can solve for
T from ΦkT, where

Φk =


1 z`1−1 z2(`1−1) · · · z(k−1)(`1−1)

1 z`2−1 z2(`2−1) · · · z(k−1)(`2−1)

...
...

...
. . .

...
1 z`k−1 z2(`k−1) · · · z(k−1)(`k−1)

 (13)

is a Vandermonde matrix and invertible by Lemma 9. After
subtracting the source packets in T from the first k columns
of ΨkM, where Ψk is the submatrix of Ψ with rows indexed
by {`i|i = 1, 2, . . . , k}, we obtain ΦkS and can solve all the
sources packets in S from ΦkS.

Note that we do not store the parity-check bit, and we
can compute the last parity-check bit when necessary in the
repair process and decoding process, as pointed out in the
repair and decoding processes of BASIC-PM RGC. In the
repair process, the helper node needs to compute the α parity-
check bits to formulate the α polynomials before combining
the coded polynomial, and the new node has to append the
parity-check bit for each of the received m− 1 bits from the
helper nodes. While in the decoding process, the data collector
should first computes the parity-check bits and then solves the
Vandermonde system.

C. Example of BASIC-PM MBR Codes

In the following, we give an example for n = 5, k = 3,
d = 4 and m = 11 of BASIC-PM MBR code. This example
contains all the essential feature of BASIC-PM MBR code.

There are B = 9 source packets s1(z) to s9(z). The matrix

M =


s1(z) s2(z) s3(z) s7(z)
s2(z) s4(z) s5(z) s8(z)
s3(z) s5(z) s6(z) s9(z)
s7(z) s8(z) s9(z) 0



is a symmetric matrix with entries taken from F2[z]/(1+z11).
The encoding vector of node i is

ψti =
[
1 zi−1 z2(i−1) z3(i−1)

]
, (14)

for i = 1, 2, . . . , 5, and node i stores the first 10 bits of
polynomial in ψtiM, namely

s1(z) + zi−1s2(z) + z2(i−1)s3(z) + z3(i−1)s7(z),

s2(z) + zi−1s4(z) + z2(i−1)s5(z) + z3(i−1)s8(z),

s3(z) + zi−1s5(z) + z2(i−1)s6(z) + z3(i−1)s9(z),

s7(z) + zi−1s8(z) + z2(i−1)s9(z).

Each of the coded packets can be obtained by cyclic-right-
shifting and adding the source packets appropriately.

Suppose that a data collector connects to nodes 1, 2 and 3.
We can first add the parity-check bit for each packet and then
solve for s7(z), s8(z) and s9(z) from s7(z) + s8(z) + s9(z)

s7(z) + zs8(z) + z2s9(z)
s7(z) + z2s8(z) + z4s9(z)

 =

1 1 1
1 z z2

1 z2 z4

s7(z)
s8(z)
s9(z)

 .
As the above encoding matrix is invertible by Lemma 9, we
can thus decode s1(z) to s6(z) from1 1 1

1 z z2

1 z2 z4

s1(z) s2(z) s3(z)
s2(z) s4(z) s5(z)
s3(z) s5(z) s6(z)

 .
Suppose node 5 fails and we want to regenerate it from node

1, 2, 3 and 4. After computing the parity-check bits for the
packets in node 1, 2, 3 and 4, the first 10 bits of each the coded
packet ψtiMψ5 are sent from helper node i to the new node.
The new node can thus compute the packets as follows, by
appending the parity-check bit for each of the m− 1 received
bits. 

1 1 1 1
1 z z2 z3

1 z2 z6 z8

1 z3 z6 z9

 ·M ·ψ5.

Since the matrix on the left is invertible by the result in
Lemma 9, we can compute M ·ψ5, as M is symmetric, this
is exactly equal to the content of the failed node.

The repair of other nodes can be done similarly. During
the repair process of a failed node, each of the helper nodes
cyclic-shifts the four packets in their memory according to
the encoding vector of the failed node, and then add the
shifted version. Each bit transmitted from the helping nodes
is obtained by merely XORing four bits.

Although we only give the conversion of the product-matrix
construction in [7], it is easy to check that we can convert all
the exact-repair RGC in [3], [4], [6].

VI. COMPUTATIONAL COMPLEXITY

In this section, we compare computational complexity of
BASIC-RGC and RGC over finite field, both for functional-
repair and exact-repair. In the following, we first present the
polynomial representation of finite field to give an accurate



complexity of RGC over finite field. Then we demonstrate that
the coding and repair computational complexity of functional-
repair BASIC-RGC is less than that of functional-repair RGC
over finite field. For exact-repair BASIC-PM RGC, we show
that the coding and repair complexity is much less than
that of RGC-PM over finite field, by employing the LU
decomposition of Vandermonde matrix.

A. Polynomial Representation of Finite Field

We represent the finite field of size 2w as the quotient ring
F2[z]/(g(z)) for an irreducible polynomial g(z) of degree w,
and use a polynomial basis to represent field element. Addition
is bit-wise XOR and multiplication in the field is multiplication
modulo g(z). Generally, a multiplication in the field F2w takes
O(w2) bit operations. (See e.g. [26, Chp. 11].)

There is a wide range of multiplication methods whose
efficiency and level of sophistication increase with the size of
operands. The easiest field multiplication in current software
implementation is typically performed by using pre-calculated
lookup tables for the full multiplication result [27], which
requires a table of size 2w × 2w × w bits. Therefore, this
method is only suitable for small field (w ≤ 8), due to the
limitation of memory. Another approach to perform a modular
multiplication is to compute the product first and then reduce
it independently. This is especially effective for large fields
where it is worth using advanced multiplication techniques,
such as Karatsuba-Ofman algorithm (KOA) [28], [29] and Fast
Fourier Transform (FFT) [30]–[32]. The field multiplication
complexity in F2w may be improved to O(wlog2 3) using KOA.
The most efficient FFT algorithm was proposed in [32], which
has a multiplication complexity of O(w log2 w). Moreover, all
the advanced multiplication techniques are also suitable for the
multiplication of the binary cyclic codes, and the multiplica-
tion complexity of binary cyclic codes can also reduced to
O(mlog2 3) using KOA and O(m log2m) by FFT algorithm
in [32]. Although our binary cyclic codes has the same order
of field multiplication complexity, if we apply an advanced
multiplication technique for both of them, there is no need to
transform the frequency domain to time domain to compute
the reduction for binary cyclic codes. So, for fair comparison,
we implement the finite field multiplication by first computing
the product and then reducing the irreducible polynomial, do
not employ the advanced multiplication techniques.

Define the number of non-zero terms of polynomial f(z)
as the weight of f(z), which is denoted as ||f(z)||0. For the
multiplication of a(z)b(z) over F2[z]/(g(z)), we first compute
the product of c(z) := a(z)b(z) over the ring F2[z],

c(z) = a0b(z) + a1zb(z) + · · ·+ aw−1z
w−1b(z),

where c(z) =
∑2w−2
i=0 ciz

i. The product of a(z) and b(z) takes
at most w2 XORs, and the average number of XORs is thus
0.5w2. Then, we reduce the polynomial c(z) by g(z),

1) If deg c(z) ≥ w, let ` = deg c(z).
2) Remove the term c`z

` of c(z), and add c`(g(z) −

zw)z`−w to c(z),

c(z) =

`−1∑
i=0

ciz
i + (g(z)− zw)(c`z

`−w).

3) Repeat the above until deg c(z) < w.
As the degree deg c(z) is at most 2w − 2, and after each
iteration in the above, deg c(z) is decreased by at least one.
So we need to go through the iteration at most w − 1 times.
In each iteration, we need to replace the term and update the
polynomial c(z), which takes ||g(z)||0 XORs. Therefore, the
average number of XORs of the field multiplication a(z)b(z)
is at most

µw, where µ = 0.5w + ||g(z)||0. (15)

For two polynomials a(z), b(z) in the ring Rm, the multi-
plication is simply the convolutional product of the coefficient
vectors:

a(z)b(z) =
m−1∑
`=0

( ∑
i⊕mj=`

aibj

)
z`,

where the symbol “⊕m” in the above stands for addition
modulo m. Since ||a(z)||0 ≤ (m − 1)/2 (see the remark
at the end of Subsection III-C), the number of XORs of the
multiplication in Rm is thus at most (m− 1)m/2. Therefore,
the multiplication complexity over the ring Rm is much
less than that of field multiplication, for m − 1 = w. The
essential reason is that the multiplication a(z)b(z) over Rm
is a summing of at most (m− 1)/2 cyclic-shifted versions of
b(z), while the field multiplication not only needs to compute
(m−1)/2 shifted versions of b(z) on average, but also modulo
the irreducible polynomial g(z).

B. Computational Complexity of Functional-Repair BASIC-
RGC and RGC over Finite Field

For the purpose of easy presentation, we only consider the
primary case of MSR code, i.e., the parameters B, α and β
are set to B = k(d− k + 1), α = d− k + 1 and β = 1. The
parameter m is chosen to be a prime number such that 2 is
primitive in Fm and the inequality (6) holds.

1) BASIC-RGC: For the ease of comparison, we normalize
the complexity by the file size. We separate the repair com-
plexity into the number of XORs required in a helper node
and the number of XORs required in the new node, which are
called repair complexity in helper node and repair complexity
in new node respectively.

Theorem 14. Let m be a prime number such that 2 is primitive
in Fm, and let the set S to be the polynomials in Rm with
number of non-zero term less than or equal to (m−1)/2. The
normalized encoding complexity, repair complexity in helper
node, repair complexity in new node and decoding complexity
of functional-repair BASIC-RGC are at most nαm

2 , βm2k , dβm2k
and Bm

2 respectively.

Proof. Encode. Without loss of generality we assume that the
data file contains B(m − 1) = kα(m − 1) bits. The data



file is divided into B parts, each of m − 1 bits. We first
append the parity-check bits after each m − 1 bits to obtain
B codewords in Cm. The calculation of the B parity-check
bits requires B(m− 2) XORs. There are n storage nodes and
each node stores α coded packets, with each coded packet
being a Rm-linear combination of the B source packets.
The complexity of computing one coded packet is directly
proportional to the number of terms in the coefficients, and
in the worst case, there are (m − 1)/2 terms in each of
them, see the remark at the end of Subsection III-C. The
computational complexity of calculating one coded packet is
thus at most Bm(m − 1)/2 XORs. Hence the total number
of XORs in encoding is B(m − 2) + nαBm(m − 1)/2.
The normalized computational complexity of encoding is
(B(m− 2) + nαBm(m− 1)/2)/(B(m− 1)) ≈ nαm/2.

Repair. Each helper node generates β coded packets, with
each coded packet by aRm-linear combination of α packets in
its memory. As the local encoding coefficients are polynomials
in S, i.e., the polynomials with non-zero term less than or
equal to (m− 1)/2. The total number of XORs in generating
one packet to be sent to the new node is at most αm(m−1)/2.
The normalized repair complexity in helper node is at most
βm/2k. The new node generates α coded packets, each of
them is obtained by combining the dβ received packets. The
required number of XORs is at most αdβm(m − 1)/2. The
normalized repair complexity in new node is dβm/2k.

Decode. A data collector recovers the data file by lin-
early combining kα coded packets. The coefficients in the
linear combination are polynomial in Rm and are obtained
by solving some system of linear equations. We ignore the
computational complexity in calculating these coefficients as
it is negligible asymptotically when the file size is large.
The number of XORs in recovering one source packet is at
most kαm(m−1)/2. The normalized decoding complexity is
therefore at most (Bkαm(m−1)/2)/(B(m−1)) = Bm

2 .

2) RGC Over Finite Field: Consider functional-repair RGC
over the field F2w such that

w > log2

(
B ·max

{(nα
B

)
, 2|H|

})
. (16)

As the upper bounds of m + 1 and w are the same from
the inequalities in (6) and (16), we let m = w − 1, for fair
comparison.

Suppose that the data file contains B(m − 1) bits without
loss of generality. In the encoding process, the file is divided
into B source symbols in F2m−1 , we need to generate nα
coded symbols. Each coded symbol is obtained by taking
an linear combination of the B source symbols over the
field F2m−1 . The computation of such a linear combination
is dominated by B multiplications and B − 1 additions. One
addition in the field takes m−1 XORs, and one multiplication
takes (m−1)µ XORs at most by the equation (15). Therefore,
one coded packet takes B(m− 1)µ+ (B− 1)(m− 1) XORs.
The normalized encoding complexity is at most nαB(m −
1)µ/(B(m − 1)) = nαµ. Likewise, the repair and decoding
complexity of RGC over finite field can be computed.

The comparison of computational complexity is summarized
in Table I. The first row is the performance metric of the
proposed functional-repair BASIC-RGC, and the second row
is the functional-repair RGC using a finite field as alphabet.
The normalized redundancy is defined as the total number of
bits in the storage system divided by the number of bits in the
data file. As we are comparing at the MSR point, the storage
efficiency is nα/B = n/k for RGC over finite field. The
coding scheme proposed in this paper has an additional 1 bit
per m−1 bits, and this leads to a slight increase of normalized
redundancy by a factor of m/(m − 1). Similarly, there is
a factor of m/(m − 1) in the normalized repair bandwidth
of BASIC-RGC. The storage efficiency and normalized repair
bandwidth of the two coding schemes are approximately the
same when m is large. The results of Table I show that the
normalized computational complexity of RGC over finite field
is larger than that of BASIC-RGC, for both coding and repair
processes, if we replace µ by (0.5m+ ||g(z)||0).

Note that the computational complexity in Table I is for
BASIC-RGC which store the parity-check bit. If we do not
store the parity-check bit for functional-repair BASIC-RGC,
we can check that the normalized computational complexity
are the same.

In the above, we consider a class of prime number m
such that 2 is primitive in Fm. For such prime m, the ring
Cm is in fact isomorphic to a finite field of size 2m−1. A
method of fast multiplication in Rm is described in [33],
which shows that multiplication in Rm is approximately twice
as efficient as multiplication in F2m−1 with the polynomial
basis representations.

If L > 1, let f1(z)f2(z) · · · fL(z) be the prime factorization
of h(z) such that deg(f1(z)) ≤ deg(f`(z)) ∀2 ≤ ` ≤ L.
Let the set S be equal to F2[z]/f1(z), we can check that the
function θ` is injective ∀1 ≤ ` ≤ L. According to Theorem 7,
we have

deg(f1(z)) > log2

(
L ·B ·max

{(nα
B

)
, 2|H|

})
. (17)

Note that the repair complexity increases as the weight of
the local encoding coefficients increases, and the decoding
complexity of increases along with the increase of m, where
m − 1 ≥ Ldeg(f1(z)). As the weight of local encoding
coefficient is less than or equal to deg(f1(z)), so the repair
complexity is much less than that of functional-repair RGC
over finite field, while the decoding complexity may be larger
than that of functional-repair RGC over finite field.

C. Computational Complexity of Exact-Repair BASIC-PM
RGC

We estimate the computational complexity of encoding,
repair and decoding, in terms of the number of XORs for
exact-repair BASIC-PM RGC and RGC-PM over finite field
in this section. Since the derivations of the complexity of the
BASIC-PM MSR and MBR are similar, we will only consider
the MBR case. Let m be a positive odd number such that n−1
is strictly less than all divisors of m which are not equal to 1.



TABLE I: Comparison of functional-repair.

Normalized Normalized repair Encoding Repair complexity Repair complexity Decoding
redundancy bandwidth complexity in helper node in new node complexity

BASIC-RGC m
m−1

· n
k

m
m−1

· d
kα

nαm
2

βm
2k

dβm
2k

kαm
2

RGC n
k

d
kα

nαµ dβµ
2k

dβµ
2k

kαµ

1) Decoding Method with LU Factorization of Vander-
monde Matrix: In the following, we first give a fast decoding
method using an LU factorization of the Vandermonde matrix,
and then evaluate the computational complexity for BASIC-
PM MBR codes. Expressing a matrix as a product of a lower
triangular matrix L and an upper triangular matrix U is called
an LU factorization. We first review some results on the LU
factorization of the Vandermonde matrix.

Given a vector a = (a0, a1, . . . , aν), we define the square
Vandermonde matrix

Vν = Vν(a) :=


1 a0 · · · aν0
1 a1 · · · aν1
...

...
. . .

...
1 aν · · · aνν


with the second column equals to a. Using symmetric func-
tions and linear algebra, the author in [34] proved the result on
the LU factorization of the Vandermonde matrix, and further
simplified the L matrix and U matrix into 1-banded matrices.

Theorem 15. [34] The Vandermonde matrix Vν can be
factorized into ν 1-lower banded matrices L(1)

ν , L
(2)
ν , · · · , L(ν)

ν

and ν 1-upper banded matrices U (1)
ν , U

(2)
ν , · · · , U (ν)

ν such that

Vν = L(1)
ν L(2)

ν · · ·L(ν)
ν U (ν)

ν · · ·U (2)
ν U (1)

ν , (18)

where the i-th row and the j-th column entry L`ν(i, j) and
U `ν(i, j) of the banded matrix are as follows,

L`ν(i, j) =


1 if j = i, i ≤ ν − `

or i = j + 1, i ≥ ν − `+ 1,

aj − aν−` if i = j, i > ν − `,
0 otherwise,

U `ν(i, j) =


1 if j = i,

ai−ν+` if j = i+ 1, j ≥ ν − `+ 1,

0 otherwise,

for 0 ≤ i, j ≤ ν and 1 ≤ ` ≤ ν.

All the entries of L(i)
ν and U (i)

ν are either 0, 1, ai, or ai−aj ,
i > j. A proof of Theorem 15 can be found in [34].

Given a (ν + 1) × (ν + 1) Vandermonde matrix Vν and
b = (b0, b1, . . . , bν)t, we can solve the linear system Vνx = b
by solving

L(1)
ν L(2)

ν · · ·L(ν)
ν U (ν)

ν · · ·U (2)
ν U (1)

ν x = b.

We call the method by solving the above equation as LU
method. According to Theorem 15, we are dealing with 1-
banded triangular matrices which can be solved directly by

forward or backward substitution without using the Gaussian
elimination process. We can count that solving the 1-lower
banded matrix L

(`)
ν system takes ` divisions and ` additions.

Similarly, solving the 1-upper banded matrix U (`)
ν system takes

` divisions and ` additions.
2) Computational Complexity of BASIC-PM MBR Codes:

In the following, we evaluate the encoding, repair and de-
coding complexity of BASIC-PM MBR codes. We need the
following lemma about how to compute the data packet s(z)
from (1 + zb)s(z) = c(z) for s(z), c(z) ∈ Cm.

Lemma 16. Given the equation (1 + zb)s(z) = c(z), where b
is a positive integer such that (b,m) = 1 and s(z), c(z) ∈ Cm,
we can represent a coefficient sm−b of s(z) as

sm−b = cb + c3b + c5b + · · ·+ c(m−2)b,

where s(z) =
∑m−1
i=0 siz

i and c(z) =
∑m−1
i=0 ciz

i.

Proof. We can check that in the ring Rm,

cb + c3b + · · ·+ c(m−2)b + sm−b

=s0 + sb + s2b + · · ·+ s(m−2)b + s(m−1)b

=s0 + s1 + s2 + · · ·+ sm−2 + sm−1

=0.

In the equations above, the indices are taken modulo m. The
second last equality follows from the fact that `b 6= 0 mod m
for (b,m) = 1 and 1 ≤ ` ≤ m− 1.

The other coefficients of s(z) can be computed recursively
by

cm−b` = sm−b` + sm−b`−b

for ` = 1, 2, . . . ,m−1. Thus, there are 3m−5
2 XORs involved

in the solving s(z) from (1 + zb)s(z) = c(z).
Recall that we do not store the parity-check bit for BASIC-

PM RGC, and BASIC-PM MBR codes can exactly achieve
the optimal MBR point. The normalized computational com-
plexity is stated in the following theorem.

Theorem 17. Let m be a positive odd number such that n−1
is strictly less than all divisors of m which are not equal to
1. For i = 1, 2, . . . , n, the encoding vector of node i is[

1 zi−1 z2(i−1) · · · z(d−1)(i−1)
]
.

If we use the LU method to decode the linear systems in the
repair and decoding processes, the normalized encoding com-
plexity, repair complexity in helper node, repair complexity in
new node and decoding complexity of BASIC-PM MBR codes



are 2nα2

k(2d−k+1) , 4d
k(2d−k+1) , 3.5d2−1.5d

k(2d−k+1) and k(kd−k2+4.5d−3k)
(2d−k+1)

respectively.

Proof. When we employ the LU method to solve a linear
system in the repair and decoding processes of BASIC-PM
MBR, the variable ai is replaced by a power of z for i =

0, 1, . . . , n. In the process of solving the matrix L(`)
ν system for

` = 1, 2, . . . , ν, we need to calculate ν(ν+1)
2 divisions by factor

of the form 1 + zb, and ν(ν+1)
2 additions. So, the computation

of solving the matrix L
(`)
ν system for ` = 1, 2, . . . , ν is

no larger than 5ν(ν+1)m
4 XORs by Lemma 16, and solving

the matrix U
(`)
ν system takes ν(ν+1)

2 additions, i.e., ν(ν+1)m
2

XORs. Therefore, the total computation of the LU method
with operations over Rm is at most 7

4ν(ν + 1)m XORs.
Assume that the data file contains B(m − 1) bits, where

B is given in (12). First, we generate B source packets by
encoding each group of m − 1 bits to a codeword of Cm,
which takes B(m− 2) XORs. Each node stores α = d coded
packets. As the encoding coefficients are powers of z, we
have that each coded packet is computed by adding α shifted
versions of source packets, which takes αm XORs. Therefore,
the encoding complexity is B(m−2)+nα2m and the encoding
complexity normalized by the file size is 2nα2

k(2d−k+1) .
In the repair process, each nodes first computes the parity-

check bits to get d packets and then sends one coded packet
by adding the d shifted packets. The number of XORs of
computing the d parity-check bits and adding the d packets in
each node are d(m− 2) and dm respectively. The normalized
repair complexity in helper node is 4d

k(2d−k+1) . The new node
first needs to add a parity-check bit for each received m − 1
bits to obtain d coded packets, which takes d(m− 2) XORs.
Then the new node computes a d×d linear system that can be
solved using the LU method, with 7

4d(d−1)m XORs involved.
The normalized repair complexity in new node is

d(m− 2) + 1.75d(d− 1)m

B(m− 1)
≈ 3.5d2 − 1.5d

k(2d− k + 1)
.

The decoding process consists of three parts. The first one
is the process of solving the packets in T, and we denote
the complexity as NT. The second part is the process of
subtracting the known packets of T from the other coded
packets, and the complexity is denoted as Nsub. The last one
is to solve the packets in S, and the complexity is denoted as
NS.

For any k nodes `1, `2, . . . , `k, we can first add the parity-
check bits for the packets in the k nodes and then solve the
(d−k)k source packets in T by solving the d−k Vandermonde
systems with the LU method. The complexity of the first part
thus is NT = kd(m−2)+ 7

4 (d−k)k(k−1)m. After subtracting
the k(d − k) source packets from the first k coded packets
for each of the k nodes, and we obtain the k × k symmetric
matrix ΦkS, where Φk is defined in (13). Therefore Nsub =
k2(d− k)(k + 1)m/2.

We can recursively solve the k × (k + 1)/2 source packets
by the LU method as follows.

1) For i = 1, 2, . . . , k − 1.

2) Solve k− i+1 source packets in the ith column of ΦkS
by the LU method.

3) Subtract the first i known source packets from the first
k − i coded packets in the i+ 1-th column of ΦkS.

The computational complexity of calculating the k×(k+1)/2
source packets is

NS =

k−1∑
i=1

7

4
i(i+ 1)m+

k−1∑
i=1

i(k − i)m

=
1

8
(k − 1)k(2k − 1)m+

7

8
(k − 1)km+ (k − 1)k2m/2.

The normalized decoding complexity of BASIC-PM MBR
codes is

NT +Nsub +NS

B(m− 1)
≈ k(kd− k2 + 4.5d− 3k)

(2d− k + 1)
.

When we employ the LU method to solve a k × k linear
system over finite field F2w , the computation is k(k − 1)
multiplications and k(k − 1) additions, i.e., k(k − 1)wµ
XORs. The computational complexity of exact-repair BASIC-
PM MBR code and RGC-PM MBR code with the LU method
is summarized in Table II. We can see that BASIC-PM MBR
code only has 1

µ , 2
µ , 3.5

2µ and 1
µ complexity in encoding,

repair in helper node, repair in new node and decoding of
that of RGC-PM MBR code respectively. In RGC-PM MBR
code over finite field F2w , the parameters have to satisfy
w > log2 n. When the system parameter n is very large, the
computational complexity of BASIC-PM MBR code is thus
much less than that of RGC-PM MBR code, for encoding,
repair and decoding processes.

Consider an example of RGC-PM MBR code over F23 with
n = 5, k = 3, d = 4. According to Table II, we can compute
that BASIC-PM MBR code with the same parameters has
only 22.2% encoding complexity, 37.5% decoding complexity,
66.0% repair complexity in helper node and 38.9% repair
complexity in new node of that of RGC-PM MBR code.

TABLE III: Normalized computation of three operations in
Rm and field F2w .

Operation Rm F2w

a(z) + b(z) 1 1
Solve s(z) from zis(z) 0 µ

Solve s(z) from (zi + zj)s(z) 3m−5
2m

µ

The normalized decoding complexity of BASIC-PM MBR
code is significantly less than that of RGC-PM MBR code,
when we employ the LU method for both of them. The
essential reason is as follows. With the LU method, the
decoding process of both BASIC-PM MBR code and RGC-PM
MBR code can be partitioned to three operations: (1) compute
the addition a(z) + b(z), (2) solve the polynomial s(z) from
zis(z), (3) solve the polynomial s(z) from (zi + zj)s(z). All
the operations of BASIC-PM MBR code are over Rm, while
the operations of RGC-PM MBR code are over the field F2w .
Table III summarizes the normalized computation of the three



TABLE II: Normalized computational complexity of exact-repair with the LU method.

Encoding Repair complexity Repair complexity Decoding
complexity in helper node in new node complexity

BASIC-PM MBR 2nd2

k(2d−k+1)
4d

k(2d−k+1)
3.5d2−1.5d
k(2d−k+1)

k(kd−k2+4.5d−3k)
(2d−k+1)

RGC-PM MBR 2µnd2

k(2d−k+1)
2dµ

k(2d−k+1)
2d2µ

k(2d−k+1)
k(kd−k2+3d−2k)µ

(2d−k+1)

operations. We can efficiently decode the polynomial s(z)
from zis(z) or from (zi + zj)s(z) for 0 ≤ i, 6= j < m in
BASIC-PM MBR code. While the computational complexity
of a finite field multiplication and division is much higher in
polynomial basis representation.

VII. IMPLEMENTATION

In this section, we present the implementation for the
BASIC-PM MBR codes, and evaluate their encoding, decoding
and repair performances in order to validate our theoretical
analysis. The performances of BASIC-PM MBR codes are
measured and compared to RGC-PM MBR codes over finite
field using the publicly available implementation Jerasure 1.2
in [35]. We select the field size of RGC-PM MBR codes to be
28. Note that the encoding matrix of RGC-PM MBR codes is
chosen to be an n × d Cauchy matrix in order to reduce the
computational cost. Our BASIC-PM MBR prototype is written
in C++ on Linux.

For RGC-PM MBR codes over finite field F2w , the data file
is divided into many pieces, each of Bw bits, where B is given
in (12). Each piece is divided into B data symbols with the
same size w bits. The B data symbols in each piece are used
to generate nα coded symbols with encoding matrix being an
n × d Cauchy matrix. The n × d Cauchy matrix over F2w is
converted into a wn × wd binary distribution matrix using a
projection defined by a primitive polynomial of F2w [36]. With
binary distribution matrix, one may create a coded symbol
as the XOR of some data symbols whose corresponding
columns of the binary distribution matrix have ones. Note
that the expensive field multiplication is replaced by binary
addition. So this is a great improvement over standard field
multiplication. For more information about the encoding and
decoding process of Jerasure, we refer the reader to [36].

In our implementation of both codes, the data file is random-
ly generated with 100 MBytes. The file is divided into many
chunks with the same size, and each chunk is partitioned to
B blocks of the same size. For BASIC-PM MBR codes, a
polynomial in Cm corresponds to a block and we fix the block
size to be 4 KBytes, which is the default disk block size in
existing Linux extended file systems. The block size of RGC-
PM MBR codes is also chosen to be 4KBytes. The machine
for testing has an Intel Core i3-4170 3.70GHz double-core
CPU, 8GB RAM and 8GB Hard Disk. It runs Ubuntu 12.04.
Each data point in the graphs that follow is the average of one
thousand runs.

In our experiments of two codes, the parameters are fixed to
d = α = k, n = k+3 and k ranges from 6 to 20. For BASIC-
PM MBR code, we choose value of the parameter m to be

23. It is easy to check that this value satisfies the requirement
in Lemma 9 for the given parameters.
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Fig. 2: The encoding time of BASIC-PM MBR code and RGC-
PM MBR code.

We first evaluate the encoding performance, which is shown
in Fig. 2. It is obvious that as k increases the encoding
time increases, because the amount of data to be encoded is
increased. For all the values of parameter k, the encoding time
of BASIC-PM MBR code is much less than that of RGC-PM
MBR code.
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Fig. 3: The repair time of BASIC-PM MBR code and RGC-
PM MBR code.

The repair time is shown in Fig. 3. We observe that the
repair time of BASIC-PM MBR code increases as k increases
when k is small, while when k ≥ 16, the repair time of
BASIC-PM MBR code is almost the same for different values
of k, because the difference of normalized repair complexity
can be ignored for the cases of k = d. However, the repair time
of RGC-PM MBR code increases along with the parameter
k increase, as the normalized repair complexity is directly
proportional to k. In general, the repair time of RGC-PM MBR



code is larger than that of BASIC-PM MBR code, and the
difference becomes bigger when k becomes bigger.
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Fig. 4: The decoding time of BASIC-PM MBR code and RGC-
PM MBR code.

We now compare the decoding time for the two codes. Here
decoding time is the time of reconstructing the original data
file from any k storage nodes. Fig. 4 shows the decoding time.
Similar to the encoding performance, the decoding time of
both two codes increases with the parameter k increases, as
the normalized decoding complexity increase along with the
parameter k increase. BASIC-PM MBR code can reduce the
decoding time of RGC-PM MBR code for all the evaluated
parameters.

We notice that the advantage of BASIC-PM MBR codes
on encoding/repair/decoding time is not so large as the nor-
malized encoding/repair/decoding complexity, because of two
reasons. First, the encoding/repair/decoding time includes not
only the time of encoding/repair/decoding process, but also
the I/O time. Second, the performance of Jerasure 1.2 in [35]
is improved by choosing the binary distribution matrix which
has the minimum number of ones.

VIII. CONCLUSION

We propose a framework of designing low complexity linear
codes which employ XOR and bit-wise cyclic shifts, which
is called BASIC codes. We give a general construction of
functional-repair BASIC-RGC and show that the presented
functional-repair BASIC-RGC can achieve all the fundamen-
tal tradeoff curve between storage and repair bandwidth of
functional-repair RGC asymptotically with less complexity in
coding and repair. We show that the product-matrix RGC in [7]
can be converted to the exact-repair BASIC-RGC, with only
1
µ encoding complexity, 7.5

4µ repair complexity and 1
µ decoding

complexity. We implement BASIC-PM MBR codes and RGC-
PM MBR codes over finite field based on the Jerasure 1.2 [35],
our experiment results show that the encoding/repair/decoding
time of BASIC-PM MBR codes is less than that of RGC-PM
MBR codes.
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