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Abstract— We present a new family of maximal-distance sepa-
rable (MDS) array codes which can tolerate five disk failures. The
encoding is based on bit-wise exclusive OR (XOR) and bit-wise
cyclic shifts, and hence is amenable to practical implementation.
Efficient repair method for correcting up to two disk failures
is also given. The proposed coding scheme provides a larger
spectrum of parameters, with comparable encoding and repairing
complexities in compare with existing MDS array codes, such as
the row-diagonal parity (RDP) code and the EVENODD code.

Index Terms—Array code, RAID, efficient repairing.

I. INTRODUCTION

Array codes are error-correcting codes with application to

storage systems such as Redundant Arrays of Inexpensive

Disks (RAID) architectures [1]. A binary array code consists

of arrays of size m × n, with each element of an array

storing one bit. Among the n columns, k columns store the

information bits and r columns store the parity-check bits

(n = r + k). The m bits in a column are stored in the same

data disk, or storage node. When a storage node fails, the

corresponding column of the array code is considered to be

an erasure. If the array code can tolerate any r disk erasures,

then it is called a Maximum-Distance Separable (MDS) array

code. In other words, in an MDS array code, the information

bits can be recovered from any k columns.

There are quite a lot of existing constructions of MDS array

codes [2]–[10]. Most of them are designed to correct two

or three disk erasures. For example, the row-diagonal parity

(RDP) code [2] and the EVENODD code [3] can tolerate any

two disk erasures. MDS array codes such as the generalized

EVENODD [6], STAR [7], Triple-Star [8] and generalized

RDP [9] can tolerate any three erasures.

The Blaum-Roth (BR) code [11], the Blaum-Bruck-Vardy

(BBV) code [4], and the Rabin-like code [10] are examples
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of array codes which can tolerate r ≥ 4 disk erasures.

Both BR and BBV codes are based on the arithmetic of

the polynomials modulo a specific polynomial Mp(x) :=
xp−1 + xp−2 + · · · + x + 1, which is irreducible over the

binary field under certain technical condition. Encoding and

decoding can be done by simple bit-wise cyclic shifts and

XOR operations on the columns. It is proved in [11] that the

BR is MDS for all admissible parameters, and in [4] that

the BBV code is MDS for r ≤ 8 for all but finitely many

admissible parameters. The Rabin-like code in [10] is an MDS

array code that is based on circular permutation matrices and

can tolerate four or more concurrent failures.

In this paper we give a new class of array codes, and

prove that it is MDS for r ≤ 5, i.e., it can tolerate up to 5

disk failures. Like the BR and BBV codes, the encoding and

decoding of the new class of MDS array codes require simple

bit-wise cyclic shifts and XOR operations. But unlike the BR

and BBV codes, arithmetic of polynomials modulo xp − 1 is

used instead. Since in practice it is more likely to have single

or double disk failures instead of five disk failures, we give an

efficient method for repairing one and two disk failures. We

also compare the encoding and repairing complexity of RDP,

EVENODD, BBV code, Rabin-like code and the proposed

array code.

Another related work can be found in [12], which proposes

a framework of designing codes employing XOR and bit-wise

cyclic shifts. In this paper, we focus on a specific encoding

matrix.

II. PRELIMINARIES

A. Generalized Vandermonde Matrix

For i = 1, 2, . . . , k and variables a1, . . . , ak, a generalized

Vandermonde matrix is a matrix in the form

Vi(a1, . . . , ak) :=











1 a1 · · · ai−1
1 ai+1

1 · · · ak1
1 a2 · · · ai−1

2 ai+1
2 · · · ak2

...
...

. . .
...

...
. . .

...

1 ak · · · ai−1
k ai+1

k · · · akk











.

When i = k, the generalized Vandermonde matrix reduces to

the usual Vandermonde matrix.



Theorem 1. For i = 1, 2, . . . , k, the determinant of the

generalized Vandermonde matrix Vi(a1, . . . , ak) is given by

detVi(a1, . . . , ak) = σk−i(a1, . . . , ak) detVk(a1, . . . , ak),

where σh(a1, a2, · · · , ak) denotes the h-th elementary sym-

metric polynomials

σh(a1, a2, . . . , ak) :=
∑

1≤ji<j2<···<jh≤k

aj1aj2 · · ·ajh .

For example, we have

detV2(a1,a2, a3) = σ1(a1, a2, a3) · detV3(a1, a2, a3)

= (a1 + a2 + a3)(a3 − a2)(a3 − a1)(a2 − a1).

A proof of Theorem 1 can be found in [13].

B. Erdős-Heilbronn Conjecture on Restricted Sum Sets

Let Zp = {0, 1, . . . , p − 1} denote the residues of integers

modulo p. For any subset S of Zp, the 2-fold restricted sum

set of S, denoted by 2∧S, is defined as the set

2∧S := {s1 + s2 mod p : s1, s2 are distinct elements in S}.

For example, for p = 11 and S = {1, 4, 5, 8}, the restricted

sum set 2∧S is equal to {1, 2, 5, 6, 9}. The Erdős-Heilbronn

conjecture states that the size of a restricted sum set cannot

be too small.

Theorem 2. For any subset S of Zp, we have

|2∧S| ≥ min{p, 2|S| − 3},

where |S| denotes the cardinality of set S and p is a prime.

The Erdős-Heilbronn conjecture was proved by Dias da

Silva and Hamidoune [14]. An alternate algebraic proof can

be found in [15].

III. CONSTRUCTION

In this section, we show how our proposed new MDS array

code is constructed. Let k and r be positive integers and

p be a prime larger than or equal to max{k, r}. The array

code to be constructed has p − 1 rows and k + r columns.

The first k columns store the information bits and are called

the information columns. The remaining r columns store the

parity-check bits and are called the parity columns. We label

the rows from 0 to p − 2, the information columns from

0 to k − 1, and the parity columns from 0 to r − 1. For

i = 0, 1, . . . , p−2 and j = 0, 1, . . . , k−1, we let si,j denote the

i-th bit in the j-th information column. For i = 0, 1, . . . , p−2
and j = 0, 1, . . . , r − 1, we let ci,j denote the i-th bit in the

j-th parity column.

We define the following short-hand notations:

sp−1,j := s0,j + s1,j + · · ·+ sp−2,j ,

for j = 0, 1, . . . , k−1. We call sp−1,j the column parity-check

bit associated with the j-th column.

Remark: We do not store the column parity-check bits in

the data disk. It is present only for notational convenience.

Definition. We define an array code C(k, r, p) by specifying

the parity-check bits,

ci,j =
k−1
∑

`=0

s〈i−j`〉p,` (1)

for i = 0, 1, . . . , p − 2 and j = 0, 1, . . . , r − 1, where 〈x〉p
denotes the remainder of x when we divide x by p, i.e., 〈x〉p
is the unique integers in {0, 1, . . . , p− 1} such that x− 〈x〉p
is divisible by p. The addition is the XOR operation.

The first parity column is called the row parity column, as

a parity-check bit in the row parity column is the XOR of the

k information bits in the corresponding row, i.e.,

ci,0 = si,0 + si,1 + · · ·+ si,k−1,

for i = 0, 1, . . . , p−2. The other r−1 parity columns are called

the diagonal parity columns. The integer j can be interpreted

as the “slope” of the associated parity column. Table I gives

an example of the array code C(4, 3, 5).
In the following, we give an equivalent algebraic descrip-

tion, which will be useful in proving the MDS property. For

j = 0, 1, . . . , r − 1, we define

cp−1,j := c0,j + c1,j + · · ·+ cp−2,j,

which is referred to as column parity-check bit associat-

ed to the j-th parity column. It is convenient to append

an auxiliary row, consisting only of the parity-check bits

sp−1,0, . . . , sp−1,k−1, cp−1,0, . . . , cp−1,r−1, at the bottom of

the array,














s0,0 · · · s0,k−1 c0,0 · · · c0,r−1

s1,0 · · · s1,k−1 c1,0 · · · c1,r−1

...
...

...
...

. . .
...

sp−2,0 · · · sp−2,k−1 cp−2,0 · · · cp−2,r−1

sp−1,0 · · · sp−1,k−1 cp−1,0 · · · cp−1,r−1















.

Let Rp denote the quotient ring F2[x]/(x
p + 1). An el-

ement in Rp can be represented by a polynomial of the

form a0 + a1x + · · · + ap−1x
p−1, with coefficients drawn

from the binary field F2. Addition is the usual term-wise

addition, and multiplication is performed modulo xp + 1. In

Rp, multiplication by x can be interpreted as a cyclic shift.

For j = 0, 1, . . . , k−1, we represents the p−2 information bit

s0,j, . . . , sp−2,j stored in column j, together with the parity

check bit sp−1,j , by a polynomial

sj(x) := s0,j + s1,jx+ · · ·+ sp−2,jx
p−2 + sp−1,jx

p−1 (2)

in Rp. Also, we represent the bits in the j-th parity column

by the polynomial

cj(x) := c0,j + c1,jx+ · · ·+ cp−2,jx
p−2 + cp−1,jx

p−1. (3)

If we can represent the bits stored in the array code by a

codeword of length k + r,

[s0(x), · · · , sk−1(x), c0(x), · · · , cr−1(x)], (4)



TABLE I: Encoding of array code C(4, 3, 5).

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6

s0,0 s0,1 s0,2 s0,3 c0,0 = s0,0 + s0,1 + s0,2 + s0,3 c0,1 = s0,0 +

3∑

i=0

si,1 + s3,2 + s2,3 c0,2 = s0,0 + s3,1 + s1,2 +

3∑

i=0

si,3

s1,0 s1,1 s1,2 s1,3 c1,0 = s1,0 + s1,1 + s1,2 + s1,3 c1,1 = s1,0 + s0,1 +

3∑

i=0

si,2 + s3,3 c1,2 = s1,0 +

3∑

i=0

si,1 + s2,2 + s0,3

s2,0 s2,1 s2,2 s2,3 c2,0 = s2,0 + s2,1 + s2,2 + s2,3 c2,1 = s2,0 + s1,1 + s0,2 +

3∑

i=0

si,3 c2,2 = s2,0 + s0,1 + s3,2 + s1,3

s3,0 s3,1 s3,2 s3,3 c3,0 = s3,0 + s3,1 + s3,2 + s3,3 c3,1 = s3,0 + s2,1 + s1,2 + s0,3 c3,2 = s3,0 + s1,1 +

3∑

i=0

si,2 + s2,3

then the encoding can be performed by taking the product

[s0(x), s1(x), · · · , sk−1(x)] ·G,

with arithmetic performed in Rp, where G is the k× (k+ r)
generator matrix

G =











1 0 · · · 0 1 1 · · · 1
0 1 · · · 0 1 x · · · xr−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 1 xk−1 · · · x(r−1)(k−1)











.

The first k columns of G form the k× k identity matrix, and

the last r columns form a rectangular Vandermonde matrix.

The encoding procedure can be described in terms of

polynomials as follows. Given k(p − 1) information bits,

we append k parity-check bits and form the message vector

[s0(x), s1(x), · · · , sk−1(x)], with each component belonging

to the ring Rp. After obtaining the vector in (4), we store the

coefficients of the terms in the polynomials of degrees 0 to

p−2. The proposed array code can be considered as puncturing

a systematic linear code over the ring Rp.

IV. PROOF OF THE MDS PROPERTY

As in the construction of BR and BBV code, we will choose

the prime p such that the multiplication order of 2 mod p is

equal to p− 1, i.e., 2i 6≡ 1 mod p for i = 1, 2, . . . , p− 2 and

2p−1 ≡ 1 mod p. The reason for restricting to this class of

prime p is that xp +1 can be factorized as a product of x+1
and

Mp(x) := xp−1 + xp−2 + · · ·+ x+ 1,

which is irreducible over F2. By the Chinese Remainder

Theorem, the ring Rp = F2[x]/(x
p + 1) is isomorphic to the

direct sum of F2[x]/(x + 1) and F2[x]/(Mp(x)). Indeed, we

can set up an isomorphism

θ : Rp → F2[x]/(x+ 1)⊕ F2[x]/(Mp(x))

by defining

θ(f) := (f mod x+ 1, f mod Mp(x)).

It is easy to check that θ is a ring homomorphism. The

mapping θ is a bijection, because it has an inverse function

φ(a, b) given by

φ(a, b) := a · (x+ 1) + b · e(x) mod xp + 1,

where e(x) := 1 +Mp(x) = x + x2 + · · ·+ xp−1. It can be

checked that the composition φ ◦ θ is the identity map of Rp.

As x+ 1 and Mp(x) are irreducible polynomials in F2[x],
the rings Rp is isomorphic to the direct sum of two finite fields

F2 and F2p−1 . By construction, the polynomial sj(x) satisfies

sj(x) ≡ 0 mod x + 1 for all j = 0, 1, . . . , k − 1. Hence, the

residue modulo x + 1 of each component in (4) is equal to

0. The first components of θ(sj(x))’s and θ(cj(x))’s are all

equal to zero. So, we are effectively working over the finite

field F2p−1 .

Theorem 3. If the determinant of any k × k sub-matrix of

G, after reduction modulo Mp(x), is a nonzero polynomial in

F2[x]/(Mp(x)), then C(k, r, p) satisfies the MDS property.

Proof: Let A be any k × k sub-matrix of the generator

matrix G, and Ā be the matrix obtained by reducing each

entry of A mod Mp(x). By the Chinese Remainder Theorem,

Ā can be regarded as a matrix over finite field F2p−1 . Since

the determinant of Ā is non-zero, we can find the inverse of

Ā. Let φ(0, Ā−1) denote the matrix we obtain after applying

the function φ(0, ·) to each entry of Ā
−1. Then the matrix

product Ā−1 ·A, with arithmetic carried out in Rp, is equal

to the k × k identity matrix. The source information symbols

can be recovered by multiplication by Ā
−1.

Theorem 3 can be re-formulated as follows.

Theorem 4. Let P be the k × r sub-matrix consisting of the

right-most r columns in the generator matrix G, i.e.,

P :=











1 1 · · · 1
1 x · · · xr−1

...
...

. . .
...

1 xk−1 · · · x(r−1)(k−1)











. (5)

The array code C(k, r, p) is MDS if for all m =
1, 2, . . . ,min{k, r}, the determinant of each m×m sub-matrix

of P, regarded as a polynomial in F2[x], is not divisible by

xp + 1.

The next Theorem proves that the proposed array code

C(k, r, p) satisfies the MDS property for 1 ≤ r ≤ 5.

Theorem 5. Let p > 5 be a prime such that the multiplicative

order of 2 mod p is equal to p − 1. For 1 ≤ k ≤ p and 1 ≤
r ≤ 5, the array code C(k, r, p) satisfies the MDS property.



Proof: It suffices to prove the theorem for r = 5. By

Theorem 4, we need to prove that for ` = 1, 2, . . . , 5, the

determinant of each sub-matrix of P in (5) of size ` × ` is

not divisible by xp + 1 in F2[x]. The determinant of an `× `
sub-matrix of P can be written as

∣

∣

∣

∣

∣

∣

∣

∣

∣

xi1j1 xi1j2 · · · xi1j`

xi2j1 xi2j2 · · · xi1j`

...
...

. . .
...

xi`j1 xi`j2 · · · xi`j`

∣

∣

∣

∣

∣

∣

∣

∣

∣

with 0 ≤ i1 < · · · < i` ≤ k − 1 and 0 ≤ j1 < · · · < j` ≤ 4.

By factoring out powers of x, it is sufficient to show that the

determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 xi1(j2−j1) · · · xi1(j`−j1)

1 xi2(j2−j1) · · · xi2(j`−j1)

...
...

. . .
...

1 xi`(j2−j1) · · · xi`(j`−j1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6)

is not divisible by xp + 1 in the polynomial ring F2[x].
When ` = 1, the determinant of size 1 × 1 in (6) is equal

to 1, and hence cannot be divisible by xp + 1. For the 2 × 2
case, the determinant in (6) is equal to xi2(j2−j1)+xi1(j2−j1).

It is reduced to 0 in F2[z]/(x
p + 1) if and only if

i2(j2 − j1) ≡ i1(j2 − j1) mod p. (7)

Since j2 − j1 is strictly smaller than p, the condition in (7)

implies that i1 = i2, which contradicts the fact that i1 < i2.

For the 3× 3 case, consider the determinant
∣

∣

∣

∣

∣

∣

1 xaα xaβ

1 xbα xbβ

1 xcα xcβ

∣

∣

∣

∣

∣

∣

as an element in F2[x]/(x
p +1), with 0 ≤ a < b < c ≤ k− 1

and 1 ≤ α < β ≤ 4. If the above 3 × 3 determinant is equal

to zero in F2[x]/(x
p + 1), then the following six terms

xaα+bβ , xbα+aβ , xaα+cβ , xcα+aβ , xbα+cβ and xcα+bβ

can be divided into 3 pairs such that the exponents in each

pair are congruent modulo p. Consider the exponent of the

first term. If aα+ bβ is congruent to bα+ aβ, then we have

(a− b)α ≡ (a− b)β mod p.

Since a < b < p, this implies that α = β, contradicting the

fact that α and β are distinct. If aα + bβ is congruent to

aα + cβ, then we can deduce that b = c, contradicting the

assumption that b and c are distinct. Similarly, if aα + bβ is

congruent to cα+ bβ, then it contradicts the assumption that

a and c are distinct.

By the same argument, cα + aβ cannot be congruent to

aα+ cβ, cα+ bβ nor bα+ aβ mod p. Also, bα+ cβ cannot

be congruent to aα + cβ, cα + bβ nor bα + aβ mod p. We

can re-arrange the six terms in the determinant as

(xaα+bβ + xcα+aβ + xbα+cβ) + (xaα+cβ + xcα+bβ + xbα+aβ)

None of the terms in the first parenthesis is equal to any term

in the second parenthesis if the exponents are reduced mod

p, and vice versa. Therefore the 3× 3 determinant cannot be

equal to zero in F2[z]/(x
p + 1).

For the case of ` = 4, we consider the following 4 × 4
determinant ∣

∣

∣

∣

∣

∣

∣

∣

1 xaα xaβ xaγ

1 xbα xbβ xbγ

1 xcα xcβ xcγ

1 xdα xdβ xdγ

∣

∣

∣

∣

∣

∣

∣

∣

,

with 0 ≤ a < b < c < d ≤ k − 1 and 1 ≤ α < β < γ ≤ 4.

This is the determinant of a generalized Vandermonde matrix,

and by Theorem 1, it is equal to

σi(x
a, xb, xc, xd)(xb − xa)(xc − xa)(xd − xa)

· (xc − xb)(xd − xb)(xd − xa),

with i equal to 0, 1, 2, 3, or 4. Since the values of a, b,
c and d are distinct and less than p, the factors (xb − xa),
(xc−xa), (xd−xa) etc. may be divisible by x+1 but not by

Mp(x). Hence, it is sufficient to prove that σi(x
a, xb, xc, xd)

are not divisible by xp + 1, for i = 0, 1, . . . , 4. It is obvious

that σ0(x
a, xb, xc, xd) = 1 is not divisible by xp + 1 and

σ1(x
a, xb, xc, xd) = xa + xb + xc + xd is not divisible by

xp + 1 if p > 5. For i = 2, the exponents of the terms in

σ2(x
a, xb, xc, xd) = xa+b+xa+c+xa+d+xb+c+xb+d+xc+d

are precisely the elements in the restricted sum set

2∧{a, b, c, d} mod p. By the Erdős-Heilbronn conjecture, there

are at least 2 × 4 − 3 = 5 distinct exponents among the six

terms in σ2(x
a, xb, xc, xd). If σ2(x

a, xb, xc, xd) is equal to 0

in F2[z]/(x
p +1), then there are at most 3 distinct exponents

in σ2(x
a, xb, xc, xd), and it contradicts the Erdős-Heilbronn

conjecture. For i = 3, we also have four terms in

σ3(x
a, xb, xc, xd) = xa+b+d + xb+c+d + xa+c+d + xa+b+c.

All four exponents are distinct because a, b, c and d are distinct

mod p. Hence, there cannot be any cancelation. Finally, for i =
4, σ4(x

a, xb, xc, xd) is a power of x and cannot be divisible

by xp + 1 in F2[x].
When ` = 5, the 5×5 determinant in (6) is the determinant

of a Vandermonde matrix. It cannot be divisible by Mp(x) as

i1, i2, i3, i4 and i5 are all less than p. This proves that the

determinant in (6) is not divisible by xp + 1 in F2[x], and

completes the proof of Theorem 5.

From the proof of Theorem 5, we have the following

corollary.

Corollary 6. If 2 is a primitive element in finite field Fp and

p ≥ 5, then C(k, r, p) satisfies the MDS property for r ≤ 4.

V. EFFICIENT REPAIR FOR ONE OR TWO INFORMATION

COLUMNS

We have shown in Theorem 5 that we can decode the

information bits in C(k, r, p) if there are r disk failures, for

r ≤ 5. If one of the information column is erased, we want to

recover it as efficient as possible. This is called the repair



problem. The straightforward method is to read all of the

remaining information bits and the row parity bits to recover

the erased bits. For example, if disk 0 of C(4, 3, 5) fails, one

can read s0,1, s0,2, s0,3 and c0,0 and compute the sum to

recover s0,0, need to read 16 bits to recover disk 0. This

method is not optimal in terms of the number of disk reads.

By utilizing the row parity bits and the diagonal parity bits,

we can repair the first column by reading 12 bits. Recall from

Table I that c31 = s3,0 + s2,1 + s1,2 + s0,3, and c22 = s2,0 +
s0,1 + s3,2 + s1,3. We can recover the first column by reading

s0,1, s1,1 and s2,1 in disk 1, s0,2, s1,2 and s3,2 in disk 2, s0,3,

s1,3 in disk 3, and the parity bits c0,0, c1,0, c3,1 and c2,2. The

lost bits can be decoded by

s0,0 = s0,1 + s0,2 + s0,3 + c0,0,

s1,0 = s1,1 + s1,2 + s1,3 + c1,0,

s2,0 = s0,1 + s3,2 + s1,3 + c2,2,

s3,0 = s2,1 + s1,2 + s0,3 + c3,1.

The repair of other information column can be done similarly.

In the remainder of this section, we give an efficient method

which can recover two erased information columns, by access

the remaining k − 2 information columns and any 2 parity

columns. We need the following lemma about the inverse of

a binomial 1 + xb in F2[x]/(Mp(x)).

Lemma 7. For 0 < b ≤ p − 1, the multiplicative inverse of

1 + xb in F2[x]/(Mp(x)) is

(p−1)/2
∑

i=1

x(2i−1)b = xb + x3b + · · ·+ x(p−2)b.

Proof: We can check that in the field the F2[x]/(Mp(x)),

(1 + xb)(xb + x3b + · · ·+ x(p−2)b)

= xb + x2b + x3b + x4b + · · ·+ x(p−2)b + x(p−1)b

= x+ x2 + x3 + x4 + · · ·+ xp−2 + xp−1

≡ 1 mod Mp(x).

The second last equality follows from the fact that in the finite

field Fp, multiplication by b is an injective function mapping

non-zero elements to non-zero elements.

Let j < ` be integers between 0 and k − 1. Suppose that

information columns j and ` are erased. We want to recover

the lost data bits in columns j and ` by reading columns i,
for i ∈ {0, 1, . . . , k− 1} \ {j, `}, and parity columns a and b,
for 0 ≤ a < b ≤ r − 1.

The accessed bits are represented by polynomials si(x) and

ca(x) =

k−1
∑

ν=0

xaνsν(x) and cb(x) =

k−1
∑

ν=0

xbνsν(x).

Let fa(x) and fb(x) be the polynomials by subtracting the

known values of si(x), for i ∈ {0, 1, . . . , k− 1} \ {j, `}, from

ca(x) and cb(x), respectively. We can repair the two erasures

by solving the following system of linear equations
[

xaj xa`

xbj xb`

] [

sj(x)
s`(x)

]

=

[

fa(x)
fb(x)

]

.

The entries of the matrices are regarded as elements in the

ring Rp. The determinant of the above matrix is

xaj+b` + xa`+bj = xa`+bj(1 + x(b−a)(j−`)).

If the polynomial 1+x(b−a)(j−`) is regarded as an element in

F2[x]/Mp(x), by Lemma 7, its multiplicative inverse is equal

to
(p−1)/2
∑

µ=1

x(2µ−1)(b−a)(j−`).

Hence, we can solve for

[

sj(x)
s`(x)

]

by

x−(a`+bj)
(

(p−1)/2
∑

µ=1

x(2µ−1)(b−a)(j−`)
)

[

xb` xa`

xbj xaj

] [

fa(x)
fb(x)

]

.

We note that xb`fa(x) + xa`fb(x) can be computed by cycli-

cally shifting fa(x) and fb(x) to the right by b` and a`, respec-

tively, and adding the resulting polynomials. Multiplication by

x−(a`+bj) is simply cyclically shifting to the left by a` + bj.

Adding the parity-check bit to formulate the polynomials

ca(x) and cb(x) takes 2(p− 2) XORs, and computing fa(x)
and fb(x) involves 2(k− 2)p XORs. The number of XORs of

solving sj(x) and s`(x) is ((p− 1)/2− 1) + 2(p− 1). Thus,

we obtain the total number of XORs of repairing two erased

information columns is 2(k − 2)p+ (9p− 15)/2.

VI. PERFORMANCE COMPARISON

In this section, we evaluate the encoding/repairing com-

plexity for the proposed C(k, r, p) as well as the other very

important MDS array codes. We determine the normalized

encoding complexity as the ratio of the average number of

XORs needed to construct single parity column to the number

of information bits, and normalized repairing complexity as the

ratio of the average number of XORs needed to reconstruct the

data file after two information columns failure to the number

of information bits.

A. Encoding Complexity

In the p− 1×n array of C(k, r, p), there are k information

columns, and k−1 XORs are required to reduce the k informa-

tion bits per row to the row parity column. The row parity thus

requires (k−1)(p−1) XORs. Each diagonal column contains a

total of p−1 diagonal parity bits, requiring k−1+p−1 XORs

to reduce one diagonal parity bit and k − 1 XORs to reduce

each of the other p − 2 diagonal parity bits. Therefore, one

diagonal parity column requires (k−1+p−1)+(k−1)(p−2)
XORs. The total number of XORs required for construction r
parities are (k−1)(p−1)+((k+p−2)+(k−1)(p−2))(r−1),
and the normalized encoding complexity is rk−1

rk . The normal-

ized encoding complexity of RDP, EVENODD and BBV are

1− 1
p−1 , 1− 1

2(p−2) [2] and 2− 1
r − 2(r−1)

rp respectively.
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The normalized encoding complexity of C(k, r, p), RDP,

EVENODD, BBV and Rabin-Like are summarized in Fig.1

(r = 2) and Fig.2 (r = 4), which show that the normalized

encoding complexity of C(k, r, p), RDP and EVENODD are

all asymptotically equal to one. While the encoding complexity

of the BBV code and Rabin-Like code are 2 asymptotically

and 2.5 respectively.

B. Repairing Complexity

In C(k, r, p), the total number of XORs of computing the

lost two information columns is 2(k−2)p+ 9p
2 − 15

2 , while the

number is 2(p− 1)(p− 2) in RDP [2] and the reconstruction

algorithm described in the EVENODD paper [3] requires

more XORs. The repairing algorithms for two information

columns failure in STAR [7] and Triple-Star [8] are the same

as that in EVENODD, the repairing algorithm of extension

RDP [9] is the same as RDP. For fair comparison, we let

k = p − 1 in C(k, r, p), we can thus have the normalized

repairing complexity of C(k, r, p) and RDP are 2p2−3.5p−1.5
(p−1)2

and
2(p−2)
p−1 respectively, which are roughly the same when p

is large.

VII. DISCUSSIONS

The number of information column in some existing MDS

array codes [2]–[4], [6], [7], [9] is usually restricted to k = p−
1 or k = p, where p is a prime. The proposed MDS array code

C(k, r, p) relaxes this restriction by allowing the parameter

k to be any positive integer between 2 and p. The efficient

encoding and repairing methods presented in this paper show

that the encoding and repairing cost of C(k, r, p) are almost the

same as in some existing MDS arry codes such as RDP and

EVENODD. The new construction C(k, r, p) is more flexible

as it provides more choices in code parameters.

In the proof of the MDS property, we use a powerful the-

orem in additive number theory, namely the Erdős-Heilbronn

conjecture. To the best knowledge of the authors, this approach

is novel. We believe that this approach is useful and can be

further developed to the design of other MDS array codes.
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