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Abstract—The problem of maximum rate achievable with
analog network coding for a unicast communication over a
layered relay network with directed links is considered. A relay
node performing analog network coding scales and forwards the
signals received at its input. Recently this problem has been
considered under certain assumptions on per node scaling factor
and received SNR. Previously, we established a result that allows
us to characterize the optimal performance of analog network
coding in network scenarios beyond those that can be analyzed
using the approaches based on such assumptions.

The key contribution of this work is a scheme to greedily
compute a lower bound to the optimal rate achievable with analog
network coding in general layered networks. This scheme allows
for exact computation of the optimal achievable rates in a wider
class of layered networks than those that can be addressed using
existing approaches. For the specific case of the Gaussian N -relay
diamond network, to the best of our knowledge, the proposed
scheme provides the first exact characterization of the optimal
rate achievable with analog network coding. For general layered
networks, our scheme allows us to compute optimal rates within
a “small” gap from the cut-set upper bound asymptotically in
the source power.

I. INTRODUCTION

Analog network coding (ANC) extends to multihop wire-
less networks the idea of linear network coding [1], where
an intermediate node sends out a linear combination of its
incoming packets. In a wireless network, signals transmitted
simultaneously by multiple sources add in the air. Each node
receives a noisy sum of these signals, i.e. a linear combination
of the received signals and noise. A communication scheme
wherein each relay node merely amplifies and forwards this
noisy sum is referred to as analog network coding [2], [3].

The rates achievable with ANC in layered relay networks
is analyzed in [3], [4]. In [3], the achievable rate is computed
under two assumptions: (A) each relay node scales the received
signal to the maximum extent subject to its transmit power
constraint, (B) the nodes in all L layers operate in the high-
SNR regime. It is shown that the rate achieved under these
two assumptions approaches network capacity as the source
power increases. The authors in [4] extend this result to the
scenarios where the nodes in at most one layer do not satisfy
these assumptions and show that achievable rates still approach
the network capacity as the source power increases.

However, requiring each relay node to amplify its received
signal to the upper bound of its transmit power constraint
results in suboptimal end-to-end performance of analog net-
work coding in general, as we show in this paper and was
also previously indicated in [5], [6]. Further, even in low-

SNR regimes amplify-and-forward relaying can be capacity-
achieving relay strategy in some scenarios, [7]. Therefore,
we are concerned with characterizing the performance of
analog network coding in general layered networks, without
the above two assumptions on input signal scaling factors and
received SNRs. However, such a characterization results in a
computationally intractable problem in general, [4], [6].

In [6], we establish that a globally optimal set of scaling
factors for each node, i.e., a choice of relaying strategies that
optimizes end-to-end throughput over all ANC strategies, can
be computed in a layer-by-layer manner. This result allows us
to computationally efficiently characterize exactly the optimal
ANC rate in a large class of layered networks that cannot
be addressed using existing approaches under assumptions
(A) and (B). Further, for general layered relay networks, this
result significantly reduces the computational complexity of
computing a set of non-trivial achievable rates.

However, even layer-by-layer computation of a network-
wide scaling vector that maximizes the end-to-end ANC rate
for general layered networks is a computationally hard prob-
lem [6]. In this paper, we propose a greedy scheme to bound
from below the optimal rate achievable with analog network
coding in general layered networks. The proposed scheme
allows us to exactly compute the optimal ANC rate in a much
wider class of layered networks than those that can be so
addressed using existing approaches, including our approach in
[6]. In particular, for the Gaussian N -relay diamond network
[9], the proposed scheme allows us to exactly compute the
optimal rate achievable with analog network coding. To the
best of our knowledge, this is the first characterization of the
optimal ANC rate for the Gaussian diamond network. Further,
for general layered networks, our scheme allows us to compute
the optimal rates within a “small” gap from the cut-set upper
bound asymptotically in the source power.

In this paper, we provide the summary of our work. We have
omitted most proofs or give only brief outlines. The details can
be found in our arXiv submission [10].

Organization: In Section II we introduce a general wireless
layered relay network model and formulate the problem of
maximum rate achievable with ANC in such a network. Sec-
tion III addresses the problem of maximum ANC rate achiev-
able in the Gaussian N -relay diamond network and shows that
a greedy scheme optimally solves this problem. In Section IV
we first generalize this greedy scheme to characterize the
optimal performance for a specific subnetwork of general
layered network. We then construct a scheme to bound from
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Fig. 1. Layered network with 3 relay layers between source s and destination
t. Each layer contains two relay nodes.

below the optimal performance of ANC in general layered
networks. Section V illustrates that this scheme leads to exact
computation of the optimal ANC rate in a specific class of
symmetric layered networks and tight characterization of the
optimal rate in the general layered networks asymptotically in
the source power. Section VI concludes the paper.

II. SYSTEM MODEL

Consider a (L + 2)-layer wireless network with directed
links1. Source s is at layer ‘0’, destination t is at layer
‘L + 1’, and the relay nodes from set R are arranged in L
layers between them. The lth layer contains nl relay nodes,∑L
l=1 nl = |R|. An instance of such a network is given in

Figure 1. Each node is assumed to have a single antenna and
operate in full-duplex mode.

At instant n, the channel output at node i, i ∈ R ∪ {t}, is

yi[n] =
∑

j∈N (i)

hjixj [n] + zi[n], −∞ < n <∞, (1)

where xj [n] is the channel input of node j in neighbor set
N (i) of node i. In (1), hji is a real number representing
the channel gain along the link from node j to node i. It is
assumed to be fixed (for example, as in a single realization of
a fading process) and known throughout the network. Source
symbols xs[n],−∞ < n < ∞, are i.i.d. Gaussian random
variables with zero mean and variance Ps that satisfy an
average source power constraint, xs[n] ∼ N (0, Ps). Further,
{zi[n]} is a sequence (in n) of i.i.d. Gaussian random variables
with zi[n] ∼ N (0, σ2). We assume that zi are independent of
the input signal and of each other. We also assume that the ith

relay’s transmit power is constrained as:

E[x2i [n]] ≤ Pi, −∞ < n <∞ (2)

In analog network coding each relay node amplifies and
forwards the noisy signal sum received at its input. More
precisely, relay node i at instant n + 1 transmits the scaled
version of yi[n], its input at time instant n, as follows

xi[n+ 1] = βiyi[n], 0 ≤ β2
i ≤ β2

i,max = Pi/PR,i, (3)

1The layered networks with bidirectional links can be addressed with the
signal subtraction notion we introduced in [8]. However, for the ease of
presentation we do not discuss such networks in this paper.

where PR,i is the received power at node i and choice of
scaling factor βi satisfies the power constraint (2).

In the class of layered networks shown in Figure 1 where
the nodes in a layer communicate only with the nodes in the
next immediate layer, all copies of a source signal and a noise
symbol introduced at a node, traveling along different paths,
arrive at the destination with the same respective time delays.
Therefore, the outputs of the source-destination channel are
free of intersymbol interference. This simplifies the relation
between input and output of the channel and allows us to omit
the time-index while denoting the input and output signals.

Using (1) and (3), the input-output channel between the
source and destination can be written as

yt =

[ ∑
(i1,...,iL)∈Ks

hs,i1βi1hi1,i2 . . . βiLhiL,t

]
xs (4)

+

L∑
l=1

nl∑
j=1

[ ∑
(i1,...,iL−l+1)∈Klj

βi1hi1,i2 . . . βiL−l+1
hiL−l+1,t

]
zlj+zt,

where Ks is the set of L-tuples of node indices corresponding
to all paths from source s to destination t with path delay L.
Similarly, Klj is the set of L − l + 1-tuples of node indices
corresponding to all paths from the jth relay of the lth layer
to destination t with path delay L− l + 1.

We introduce modified channel gains as follows. For all the
paths between source s and destination t define:

hs =
∑

(i1,...,iL)∈Ks

hs,i1βi1hi1,i2 . . . βiLhiL,t (5)

Similarly for all the paths between the jth relay of the lth layer
to destination t with path delay L− l + 1 define:

hlj =
∑

(i1,...,iL−l+1)∈Klj

βi1hi1,i2 . . . βiL−l+1
hiL−l+1,t (6)

In terms of these modified channel gains the source-
destination channel in (4) can be written as:

yt = hsxs +

L∑
l=1

nl∑
j=1

hljzlj + zt (7)

In [6] we illustrate the derivation of the source-destination
channel expression in (7) for a specific layered network in
terms of the modified channel gains introduced above.

Problem Formulation: For a given network-wide scaling
vector β = (βli)1≤l≤L,1≤i≤nl

, the achievable rate for the
channel in (7) with i.i.d. Gaussian input is ([3], [4], [6]):

I(Ps,β) = (1/2) log
(
1 + SNRt

)
, (8)

where SNRt, the signal-to-noise ratio at destination t is:

SNRt =
Ps
σ2

h2s

1 +
∑L
l=1

∑nl

j=1 h
2
lj

(9)

The maximum information-rate IANC(Ps) achievable in a
given layered network with i.i.d. Gaussian input is defined as



the maximum of I(Ps,β) over all feasible β subject to per
relay transmit power constraint (3). In other words:

IANC(Ps)
def
= max

β:0≤β2
li≤β

2
li,max

I(Ps,β) (10)

Given the monotonicity of the log(·) function, we have

βopt = argmax
β:0≤β2

li≤β
2
li,max

I(Ps,β) = argmax
β:0≤β2

li≤β
2
li,max

SNRt (11)

Therefore in the rest of the paper, we concern ourselves mostly
with maximizing the received SNRs.

In [6], we discussed the computational complexity of ex-
actly solving the problem (10) or equivalently the problem
(11). Further, we also introduced a key result [6, Lemma 2]
that reduces the computational complexity of the problem of
computing βopt by computing it layer-by-layer as a solution
of a cascade of subproblems. This result allows us to char-
acterize the optimal end-to-end rate achievable with analog
network coding in communication scenarios that cannot be so
addressed using previous approaches. However, each of these
subproblems itself is computationally hard for general network
scenarios as it involves maximizing the ratio of posynomials
[11], [12], which is known to be computationally intractable
in general [12]. Therefore, in this paper, we introduce a
greedy scheme that optimally solves these subproblems and
consequently the problem (11) for a large class of symmet-
ric layered networks that cannot be addressed with existing
schemes. For general layered networks, the proposed scheme
allows us to tightly bound from below the optimal ANC
performance. However before discussing this scheme, we
motivate it by computing the maximum achievable ANC rate
over the diamond network with N relay nodes.

III. DIAMOND NETWORK: THE OPTIMAL RATE
ACHIEVABLE WITH ANALOG NETWORK CODING

Consider the diamond network of Figure 2. A diamond
network can be considered as a layered network with only
one layer of relay nodes. Then using (5), (6), and (9), the
SNR at destination t for any scaling vector β is

SNRt =
Ps
σ2

(
∑N
i=1 hsiβihit)

2

1 +
∑N
i=1 β

2
i h

2
it

(12)

Using (10), the problem of computing the maximum ANC
rate for this network thus can be formulated as

max
0≤β2≤β2

max

SNRt, (13)

where βmax = (β1,max . . . , βN,max) with β2
i,max =

Pi/(h
2
siPs + σ2), i ∈ N ,N = {1, . . . , N}.

Equating the first-order partial derivatives of the objective
function with respect to βi, i ∈ N , to zero, we get the
following N + 1 conditions for local extrema:∑
i∈N

hsiβihit = 0 (14)

βi =
hsi/hit∑

j∈N\{i} hsjβjhjt

(
1 +

∑
j∈N\{i}

β2
jh

2
it

)
, i ∈ N (15)

s t
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1

Fig. 2. A diamond network with N relay nodes.

Let SNRβiβj
= ∂2SNRt

∂βi∂βj
denote the second-order partial

derivatives of SNRt with respect to βi and βj , i, j ∈ N , and
H(β) denote the determinant of N ×N Hessian matrix.

First, consider the set of stationary points Sβ = {β :
β satisfies (14)}. For all points in Sβ we can prove that

SNRβ1β1 > 0

H(β) = 0

Therefore, the second partial derivative test to determine if the
points in Sβ are local minimum, maximum, or saddle points
fails. However, we can establish that for every β ∈ Sβ, the
following set of conditions holds

∂SNRt
∂βi

∣∣∣∣
β+δ

< 0, if
∑
i∈N

hsihitδi < 0, (16)

∂SNRt
∂βi

∣∣∣∣
β+δ

> 0, if
∑
i∈N

hsihitδi > 0, (17)

H(β) > 0, if
∑
i∈N

hsihitδi < 0, (18)

H(β) > 0, if
∑
i∈N

hsihitδi > 0, (19)

for all δ = (δ1, . . . , δN ) → 0. In other words, (16) and
(17) imply that the slope of the function changes sign at∑
i∈N hsihitδi = 0, and (18) and (19) imply that the

convexity of the function, however, does not change at∑
i∈N hsihitδi = 0. Therefore, together these imply that (14)

leads to a local minimum of the objective function.
Next, consider the set of points defined by (15). For all such

points we can prove that

SNRβ1β1 < 0

H(β) > 0

Therefore, from the second partial derivative test the objec-
tive function attains its local maximum at the set of points
characterized by (15) above. However, no real solution of
the simultaneous system of equations in (15) exists. In other
words, no solution of (13) exists where all relay nodes transmit
strictly below their respective transmit power constraints.

The above discussion implies that all points satisfying (14)
lead to the global minimum of the objective function in (13)
and the global maximum of the objective function occurs at



one of the N hyperplanes (of dimension N − 1) defined by
βk = βk,max, k ∈ N . Next we identify this hyperplane and
characterize the corresponding optimal solution.

Consider the system of simultaneous equations in (15) on
the (N − 1)-dimensional hyperplane defined by βk = βk,max.

βi =
hsi
hit

1 + β2
k,maxh

2
kt +

∑
j∈N\{i,k} β

2
jh

2
jt

hskβk,maxhkt +
∑
j∈N\{i,k} hsjβjhjt

, i ∈ N \ {k}

(20)
Solving this system of equations results in the following set
of optimal solutions for βi on hyperplane βk = βk,max:

βki =
hsi
hit

1 + β2
k,maxh

2
kt

hskβk,maxhkt
, i ∈ N \ {k} (21)

However, the optimal scaling factors in (21) for N−1 nodes
are computed without considering the upper bound βi,max on
each βi, i ∈ N \ {k}. Therefore, taking into consideration the
upper bound on the scaling factor for each node, the modified
solution is computed as per the following lemma.

Lemma 1: The optimal scaling vector βkopt =
(βk1,opt, . . . , β

k
N,opt) on βk = βk,max hyperplane such

that each component scaling factor satisfies the corresponding
upper bound on its maximum value, is given as

βki,opt =


βi,max, i ∈ Sk

hsi
hit

1 +
∑
j∈Sk β2

j,maxh
2
jt∑

j∈Sk hsjβj,maxhjt
, i 6∈ Sk,

where Sk is the set of nodes such that on hyperplane βk =
βk,max, the optimal value of the scaling factor of a node is
saturated to its corresponding upper bound, Sk = {k} ∪ {i :
βki ≥ βi,max, i ∈ N \ {k}}.

Proof: Following the argument similar to the one used
to prove the global extrema properties of (14) and (15), we
can prove that on the βk = βk,max hyperplane, the SNRt
achieves its global minimum at a hyperplane defined by∑

i∈N\{k}

hsiβihit = 0

and its global maximum at the points defined by βki in (21).
Let Mk denote the set of nodes for which βki computed in

(21) is at least equal to the corresponding upper bound βi,max
on the maximum value of the scaling factor, i.e. Mk = {i :
βki ≥ βi,max, i ∈ N \ {k}}. For all such βki , i ∈ Mk, after
proving that ∂SNRt

∂βi

∣∣
βi,max

≥ 0, we set βki = βi,max and
update Sk as follows: Sk = Sk ∪Mk. As βki computed in
(21) for a node i 6∈ Sk may no longer be optimal after the
above re-assignment of βki , we need to solve the following
system of N − |Sk| = N − |Mk| − 1 simultaneous equations
with i ∈ N \ Sk:

βi =
hsi
hit

1 +
∑
j∈Sk

β2
j,maxh

2
jt +

∑
j 6∈Sk∪{i}

β2
jh

2
jt∑

j∈Sk

hsjβj,maxhjt +
∑

j 6∈Sk∪{i}
hsjβjhjt

, (22)

Solving this system of equations results in

βki,opt =
hsi
hit

1 +
∑
j∈Sk β2

j,maxh
2
jt∑

j∈Sk hsjβj,maxhjt
, i 6∈ Sk (23)

Some of the recomputed scaling factors βki,opt, i 6∈ Sk, may
violate the corresponding upper bound on their maximum
value. Such nodes are added to set Sk, thus updating it.
Then, the system of equations in (22) is solved again for the
updated set Sk. This iterative process continues until none of
the recomputed βi in (23) violates its corresponding upper
bound. Note that this process always halts with Sk ⊆ N and
βki < βi,max, i ∈ N \ Sk.

Using Lemma 1, for each of the N hyperplanes, defined as
βk = βk,max, k ∈ N , we can compute βkopt, the set of scaling
factors for all nodes at which SNRt attains its maximum on
βk = βk,max hyperplane. Then the hyperplane at which SNRt
attains its global maximum is identified as follows:

Proposition 1: SNRt attains its global maximum at the
hyperplane corresponding to node k?, where

k? = argmax
k∈N

SNRt(β
k
opt)

Combining Proposition 1 and Lemma 1, we can characterize
the scaling vector βopt that solves the problem (13) as follows.

Theorem 1: A network-wide scaling vector βopt =
(βopt1 , . . . , βoptN ) that maximizes SNRt for a diamond network
with the relay nodes performing ANC is given as

βopti =


βi,max, i ∈ Sk

?

,

hsi
hit

1 +
∑

j∈Sk?

β2
j,maxh

2
jt∑

j∈Sk?

hsjβj,maxhjt
, i 6∈ Sk

?

,

where k? = argmaxj∈N SNRt(β
j
opt) and Sk

?

= {k?} ∪ {i :
βk

?

i ≥ βi,max, i ∈ N \ {k?}}.
Based on our approach in this section to compute the

optimal ANC rate in the Gaussian diamond networks, in the
next section we introduce a greedy scheme to bound from
below the maximum end-to-end rate achievable with analog
network coding in the general layered networks.

IV. GENERAL LAYERED NETWORKS: A GREEDY SCHEME
TO LOWER BOUND THE MAXIMUM ANC RATE

In a general layered network with L layers of relay nodes,
consider layer l, 1 ≤ l ≤ L, and a node in the next l + 1st

layer, denoted as tl+1 or with a little abuse of notation as t.
This scenario is depicted in Figure 3. For this subnetwork we
have for any scaling vector β

SNRt =
Ps(
∑N
i=1 siβihit)

2

E(zt +
∑N
i=1 ziβihit)

2
(24)

Using (10) the problem of computing the maximum ANC
rate for this subnetwork can be formulated as

max
0≤β2≤β2

max

SNRt, (25)



t

h1t

hNt

hitisixs + zi

1
s1xs + z1

N

sNxs + zN

Fig. 3. A subnetwork of general layered network with L relay layers,
depicting lth layer with N relay nodes and a node in the l + 1st layer. The
received signal component at node i, 1 ≤ i ≤ N , in the lth layer is denoted as
sixs, where xs is the source symbol and the corresponding noise component
is denoted as zi.

where β = (β1, . . . , βN ) and βmax = (β1,max . . . , βN,max)
with β2

i,max = Pi/E(sixs + zi)
2, i ∈ N ,N = {1, . . . , N}.

Following a sequence of arguments similar to those used
to establish Theorem 1 for diamond networks, we can char-
acterize the scaling vector for the nodes in the lth layer that
optimally solve problem (25) for the subnetwork under con-
sideration. Note that in this subnetwork the noises at different
nodes in a relay layer are correlated unlike the independent
noises at relay nodes in a diamond network as in Figure 2.
This explains the difference between the SNR expression in
(24) and the one in (12) for the diamond network, and results
in more complex analysis in the present case.

Lemma 2: A scaling vector βopt = (βopt1 , . . . , βoptN ) that
maximizes SNRt for any subnetwork, as in Figure 3, of
the general layered network with the relay nodes in lth layer
performing analog network coding is given as

βopti =


βi,max, i ∈ Sk

?

,

si + siE
( ∑
j∈Sk?

zjβj,maxhjt
)2 − αjγj

hit(αjEz2i /σ2 − siγj)
, i 6∈ Sk

?

,

where k? = argmax{βj :j∈N} SNRt(β
j), Sk

?

= {k?} ∪ {i :
βk

?

i ≥ βi,max, i ∈ N \ {k?}}, and βj = (βj1, . . . , β
j
N ) with

βji =


βj,max, i = j

si + {siEz2j /σ2 − sjE(zizj)/σ2}β2
j,maxh

2
jt

hit{sjEz2i /σ2 − siE(zizj)/σ2}βj,maxhjt
, i 6= j,

αj =
∑
j∈Sk?

sjβj,maxhjt, (signal component at t)

γj =
∑
j∈Sk?

βj,maxhjtE(zizj)/σ2, (noise component at t)

Note that Lemma 2 reduces to Theorem 1 when the noise
components at the relay nodes are independent.

Using Lemma 2, we can compute βl+1,j
l,opt , the scaling vector

for the nodes in the lth layer that maximizes the received SNR
for node j, 1 ≤ j ≤ nl+1, in the l + 1st layer. Among these
nl+1 scaling vectors for the nodes in the lth layer, let βlowl

denote the one that solves the following problem

βlowl = argmax
βl+1,j

l,opt

1≤j≤nl+1

nl+1∏
k=1

(1 + SNRl+1,k(β
l+1,j
l,opt )) (26)

The following corollary of Lemma 2 in [6] establishes that
among nl+1 such scaling vectors, the scaling vector charac-
terized by βlowl computes the tightest lower bound for the
optimal value of the objective function in (11).

Corollary 1 ([6], Lemma 2): Consider two scaling vectors
βl and β̂l for the nodes in layer l. If

∏nl+1

k=1 (1+SNRk)
∣∣
βl
>∏nl+1

k=1 (1 + SNRk)
∣∣
β̂l

, then SNRt(βl) > SNRt(β̂l).
Computing βlowl as above for each layer l, 1 ≤ l ≤ L, in

conjunction with Corollary 1 allows us to construct a network-
wide scaling vector βlow = (βlow1 , . . . ,βlowL ) to compute a
lower bound2 to the optimal solution of (10). Formally, for a
given layered network, βlow is constructed as follows.

Proposition 2: Consider a layered relay network of L +
2 layers, with source s in layer ‘0’, destination t in layer
‘L + 1’, and L layers of relay nodes between them. The lth

layer contains nl nodes, n0 = nL+1 = 1. A network-wide
scaling vector βlow = (βlow1 , . . . ,βlowL ) that provides a lower
bound to the optimal solution of (10) for this network, can be
computed recursively for 1 ≤ l ≤ L as

βlowl = argmax
βl+1,j

l,opt

1≤j≤nl+1

nl+1∏
k=1

(1+SNRl+1,k(β
low
1 , . . . ,βlowl−1,β

l+1,j
l,opt ))

Here βlowl = (βlowl1 , . . . , βlowlnl
) is the vector of scaling factors

for the nodes in the lth layer and βl+1,j
l,opt (computed using

Lemma 2) is the scaling vector for the nodes in the lth layer
that maximizes the received SNR for node j, 1 ≤ j ≤ nl+1,
in layer l + 1.

In the next section we analyze the performance of the greedy
scheme of Proposition 2 in the context of both a special class
of layered networks and the general layered networks.

V. ILLUSTRATION

We first demonstrate that the greedy scheme of Proposi-
tion 2 allows us to exactly compute the optimal ANC rate for
a broad class of layered networks. Then, we give an example
to show that for the general layered networks, the proposed
scheme leads to the optimal rates within a small gap from the
cut-set upper bound asymptotically in the source power.

2Clearly, choosing βlow
l as in (26) for each layer l may lead, in general, to

some performance loss at each layer as βlow
l may not be the optimal vector

[6, Lemma 2] of the scaling factors for the nodes in layer l that solves

argmax
β2
l
≤β2

l,max

nl+1∏
k=1

(1 + SNRk)

The cumulative effect of this performance loss at each layer is that the end-
to-end ANC rate computed at βlow may not lead to the optimal solution of
problem (10). However, our results in the next section show that for a large
class of layered networks there is no loss in the optimality and for other
layered networks, the loss is small asymptotically in the network parameters.
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Fig. 4. General layered network with 2 relay layers between source s and
destination t. Each layer contains two relay nodes.

Example 1 (A class of exactly solvable layered networks):
Let us consider a class of symmetric layered networks where
the channel gains along all outgoing links from a node are
equal. An instance of such a network is obtained from the
network in Figure 4 when hs1 = hs2, h13 = h14, and
h23 = h24. An implication of this property of the channel
gains is that the received SNRs at every node in a layer
are equal: SNRl,j = SNRl, 1 ≤ j ≤ nl, 1 ≤ l ≤ L. In
this case, for each layer l, 1 ≤ l ≤ L, βlowl computed in
Proposition 2 is equal to the optimal βoptl computed in [6,
Lemma 2]. Therefore, βlow is the optimal solution of problem
(11) for this class of networks.

Consider an instance of the network in Figure 4 when hs1 =
hs2 = h0, h13 = h14 = h1, and h23 = h24 = h2. Such
an instance belongs to the class of symmetric networks we
are concerned with in this example. Using Proposition 2, the
optimal solution of problem (11) for this instance is:

βopt =

(
β1,max,

1 + β2
1,maxh

2
1

h2β1,maxh1
, β3,max, β4,max

)
, where

β2
1,max =

P1

h20Ps + σ2

β2
3,max =

P3

S2Ps + Z2σ2
, β2

4,max =
P4

S2Ps + Z2σ2

S = h0(β1,opth1 + β2,opth2), Z
2 = 1 + β2

1,opth
2
1 + β2

2,opth
2
2

and we assume that P1h
2
1 > P2h

2
2.

Example 2 (General layered networks): Let us consider
the layered network of Figure 4. We compute a lower bound
to the optimal ANC rate for this network using the greedy
scheme in Proposition 2 and compare it with the MAC upper
bound in Figure 5. We observe that in this case the ANC rate
achieved with the greedy scheme of Proposition 2 approaches
the capacity within one bit when Ps > 100.

VI. CONCLUSION AND FUTURE WORK

We consider the problem of maximum rate achievable
with analog network coding in general layered networks.
Previously, this problem has been considered under certain
assumptions on per node scaling factor and received SNR
as without these assumptions the problem was presumed to
be intractable. The key contribution of this work is a greedy
scheme to exactly compute the optimal rates in a wider class
of layered networks than those that can be addressed using
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Fig. 5. Comparison of the ANC rate achievable with the scheme in
Proposition 2 with the MAC upper bound for the layered network in Figure 4
with P1 = P2 = P3 = P4 = 10, h14 = h24 = 2 and all other channel
gains are equal to 10. Also plotted is the ANC rate when the scaling factors
for all relay nodes are set to their respective upper-bounds.

prior approaches. In particular, using the proposed scheme for
the Gaussian N -relay diamond network, to the best of our
knowledge, we provide the first exact characterization of the
optimal rate achievable with analog network coding. Further,
for general layered networks, our scheme allows us to compute
optimal rates within a “small” gap of the cut-set upper bound
asymptotically in the source power. In the future, we plan to
extend this work to non-layered networks, and to construct the
optimal distributed relay schemes.
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