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Abstract—A communication scenario where a source commu-
nicates with a destination over a directed layered relay network
is considered. Each relay performs analog network coding where
it scales and forwards the signals received at its input. In this
scenario, we address the question: What portion of the maximum
end-to-end achievable rate can be maintained if only a fraction
of relay nodes available at each layer are used?

We consider, in particular, the Gaussian diamond network
and a class of symmetric layered networks. For these networks
we provide upper bounds on additive and multiplicative gaps
between the optimal analog network coding performance when
all N relays in each layer are used and when only k such
relays are are used, k < N (network simplification). We show
that asymptotically (in source power), the additive gap increases
at most logarithmically with ratio N/k and the number of
layers, and the corresponding multiplicative gap increases at
most linearly with ratio N/k and is independent of the number
of layers in the layered network. To the best of our knowledge,
this work offers the first characterization of the performance of
network simplification in general layered amplify-and-forward
relay networks. Further, unlike most of the current approxima-
tion results that attempt to bound optimal rates either within
an additive gap or a multiplicative gap, our results suggest a
new rate approximation scheme that allows for the simultaneous
computation of additive and multiplicative gaps.

I. INTRODUCTION

Analog network coding (ANC) extends to multihop wire-
less networks the idea of linear network coding [1], where
an intermediate node sends out a linear combination of its
incoming packets. In a wireless network, signals transmitted
simultaneously by multiple sources add in the air. Thus,
each node receives at its input a noisy sum of these signals,
i.e. a linear combination of the received signals and noise.
A communication scheme wherein each relay node merely
amplifies and forwards this noisy sum is referred to as analog
network coding [2], [3].

The rates achievable with ANC in layered relay networks
is analyzed in [3], [4]. In [3], the achievable rate is computed
under two assumptions: (A) each relay node scales the received
signal to the maximum extent subject to its transmit power
constraint, (B) the nodes in all L layers operate in the high-
SNR regime. It is shown that the rate achieved under these
assumptions approaches network capacity asymptotically (in
source power). In [4] it is shown that even in the scenarios
where the nodes in at most one layer do not satisfy these as-
sumptions, achievable rates still approach the network capacity
as the source power increases.

However, each relay node amplifying its received signal to
the upper bound of its transmit power constraint results in

suboptimal end-to-end performance of analog network coding
in general, as we show in [5], [6] and was also previously
indicated in [7]. Further, even in low-SNR regimes amplify-
and-forward (AF) relaying can be capacity-achieving relay
strategy in some scenarios, [8]. Therefore, we are concerned
with characterizing the performance of analog network coding
in general layered networks, without the above two assump-
tions on input signal scaling factors and received SNRs.

Analyzing the performance of analog network coding with-
out such assumptions however, results in a computationally
intractable problem in general [4], [5]. Therefore, to compute
the maximum achievable ANC rate in general communication
scenarios, in [5] we establish a result that significantly reduces
the computational complexity of this problem. Further in [6],
we propose a greedy scheme to bound from below the optimal
rate achievable with analog network coding in general layered
networks. For a large class of symmetric layered networks,
these two results allow us to exactly compute the optimal ANC
rates that cannot be computed using existing approaches based
on assumptions (A) and (B). Further for general layered relay
networks, these results lead to a tighter approximation of the
optimal ANC rates in a computationally efficient manner.

This paper introduces another approach to reduce the com-
putational complexity of approximating the maximum achiev-
able ANC rate in general layered networks. The proposed
approach is based on the notion of network simplification,
introduced in [9] to characterize fraction of the capacity of
the Gaussian N -relay diamond network when only k out of
N available relay nodes are used. Previously, in cooperative
communication literature [10]–[12], network simplification is
used in AF relay networks to characterize achievable rates.
However, such prior work used network simplification in a
restricted sense (selecting the best single relay node among N
relays) and considered simple network topologies (the source
communicating with the destination via a single relay node).
In contrast, we provide the optimal ANC rate characterization
in much general communication scenarios where any k out of
N relay nodes in a layer are used (k < N ) and the source
communicates with the destination over L of layers of relay
nodes (L ≥ 1). In this sense, to the best of our knowledge, this
is the first work to characterize the performance of network
simplification in such general layered AF relay networks.

We show that in the Gaussian N -relay diamond network and
a class of symmetric layered networks, network simplification
allows us to maintain achievable rates within small additive
and multiplicative gaps of the maximum ANC rate achievable
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Fig. 1. Layered network with 3 relay layers between source s and destination
t. Each layer contains two relay nodes.

when all relays in every layer are used. Along with our
previous results in [5], [6], where we establish that analog
network coding is a capacity achieving strategy in some
communication scenarios, the results in this paper establish
that in those scenarios using fewer nodes in each layer, we
can still maintain achievable rates within small additive and
multiplicative gaps to the capacity. Further our results indicate
that in general layered networks, the maximum achievable
ANC rate can be tightly approximated with much lower
computational complexity than with existing schemes.

In this paper we provide the summary of our work. We have
omitted most proofs or give only brief outlines. The details can
be found in our arXiv submission [13].

Organization: In Section II we introduce a general wireless
layered relay network model and formulate the problem of
maximum rate achievable with ANC in such a network. Sec-
tion III addresses the performance of network simplification in
the Gaussian N -relay diamond network and computes additive
and multiplicative gaps between the maximum ANC rates
achievable when N and k (k < N), relays are used. In Sec-
tion IV we consider a class of symmetric layered networks and
compute additive and multiplicative gaps between the optimal
ANC rates obtained with and without network simplification.
Section V concludes the paper.

II. SYSTEM MODEL

Consider a (L + 2)-layer wireless network with directed
links1. Source s is at layer ‘0’, destination t is at layer
‘L + 1’, and the relay nodes from set R are arranged in L
layers between them. The lth layer contains nl relay nodes,∑L
l=1 nl = |R|. An instance of such a network is given in

Figure 1. Each node is assumed to have a single antenna and
operate in full-duplex mode.

At instant n, the channel output at node i, i ∈ R ∪ {t}, is

yi[n] =
∑

j∈N (i)

hjixj [n] + zi[n], −∞ < n <∞, (1)

where xj [n] is the channel input of node j in neighbor set
N (i) of node i. In (1), hji is a real number representing
the channel gain along the link from node j to node i. It is

1The layered networks with bidirectional links can be addressed with the
signal subtraction notion we introduced in [14]. However, for the ease of
presentation we do not discuss such networks in this paper.

assumed to be fixed (for example, as in a single realization of
a fading process) and known throughout the network. Source
symbols xs[n],−∞ < n < ∞, are i.i.d. Gaussian random
variables with zero mean and variance Ps that satisfy an
average source power constraint, xs[n] ∼ N (0, Ps). Further,
{zi[n]} is a sequence (in n) of i.i.d. Gaussian random variables
with zi[n] ∼ N (0, σ2). We assume that zi are independent of
the input signal and of each other. We also assume that the ith

relay’s transmit power is constrained as:

E[x2i [n]] ≤ Pi, −∞ < n <∞ (2)

In analog network coding each relay node amplifies and
forwards the noisy signal sum received at its input. More
precisely, relay node i, i ∈ R, at instant n + 1 transmits the
scaled version of yi[n], its input at time instant n, as follows

xi[n+ 1] = βiyi[n], 0 ≤ β2
i ≤ β2

i,max = Pi/PR,i, (3)

where PR,i is the received power at node i and choice of
scaling factor βi satisfies the power constraint (2).

In the class of layered networks shown in Figure 1 where
the nodes in a layer communicate only with the nodes in
the next immediate layer, all copies of a source signal and
a noise symbol introduced at a node, traveling along different
paths, arrive at the destination with the same respective time
delays. Therefore, the output of the source-destination channel
is free of intersymbol interference. This simplifies the relation
between input and output of the channel and allows us to omit
the time-index while denoting the input and output signals.

Using (1) and (3), the input-output channel between source
s and destination t in a layered network can be written as

yt = hsxs +

L∑
l=1

nl∑
j=1

hljzlj + zt, (4)

where modified channel gains hs and hlj are defined in [5],
where we also illustrate the derivation of the source-destination
channel expression in (4) for a specific layered network.

Problem Formulation: For a given network-wide scaling
vector β = (βli)1≤l≤L,1≤i≤nl

, the achievable rate for the
channel in (4) with i.i.d. Gaussian input is ([3]–[5]):

I(Ps,β) = (1/2) log
(
1 + SNRt

)
, (5)

where SNRt, the signal-to-noise ratio at destination t is:

SNRt =
Ps
σ2

h2s

1 +
∑L
l=1

∑nl

j=1 h
2
lj

(6)

The maximum ANC rate IANC(Ps) achievable in a given
layered network with i.i.d. Gaussian input is defined as the
maximum of I(Ps,β) over all feasible β subject to per relay
transmit power constraint (3). In other words:

IANC(Ps)
def
= max

β:0≤β2
li≤β

2
li,max

I(Ps,β) (7)

Given the monotonicity of the log(·) function, we have

βopt = argmax
β:0≤β2

li≤β
2
li,max

I(Ps,β) = argmax
β:0≤β2

li≤β
2
li,max

SNRt (8)



Therefore in the rest of this paper, we concern ourselves
mostly with maximizing the received SNRs.

In [5] we discussed the computational complexity of exactly
solving the problem in (7) or the one in (8). Further, we
also introduced a key result [5, Lemma 2] that reduces the
computational complexity of the problem of computing βopt
by computing it layer-by-layer as a solution of a cascade
of subproblems. However, each of these subproblems itself
is computationally hard for general network scenarios as it
involves maximizing the ratio of posynomials [15], [16], which
is known to be computationally intractable in general [16].
Therefore in this paper, based on the notion of network
simplification [9], we introduce an approach to reduce the
computational complexity of solving each of these subprob-
lems exponentially by selecting a subset of kl relays among
the set of nl relays in the lth layer. The proposed scheme
in conjunction with [5, Lemma 2] leads to further reduction
in the complexity of approximating the solution of (7) while
still maintaining achievable rates within small additive and
multiplicative gaps from the optimal performance obtained
without network simplification.

In the following, we first motivate this approach by approx-
imating the maximum achievable ANC rate for the Gaussian
N -relay diamond networks, and then discuss its performance
for a class of symmetric layered networks.

III. ANALOG NETWORK CODING IN THE DIAMOND
NETWORK: PERFORMANCE OF NETWORK SIMPLIFICATION

The diamond network, as in Figure 2, can be considered as
a layered network with only one layer of relay nodes. Then
using the definitions of modified channels gains and (6), the
SNR at destination t for any scaling vector β is

SNRt =
Ps
σ2

(
∑N
i=1 hsiβihit)

2

1 +
∑N
i=1 β

2
i h

2
it

(9)

Therefore, using (7) the problem of computing the maxi-
mum ANC rate for this network can be formulated as

max
β2≤β2

max

SNRt, (10)

where β = (β1, . . . , βN ) and βmax = (β1,max . . . , βN,max)
with β2

i,max = Pi/(h
2
siPs + σ2), i ∈ N ,N = {1, . . . , N}.

In [17] it is observed that at high rate (or high SNR in
the present setting) we should be able to approximate the
maximum achievable rate within an additive gap and at low
rate (or low SNR) we should be able to do so within a
multiplicative gap. In this paper, we are particularly concerned
with the variation of the destination SNR with the source
power. Therefore for the ease of presentation, we compute
the additive gap for large Ps (high-SNR regime) and the
multiplicative gap for small Ps (low-SNR regime).

Let RN = (1/2) log(1 + SNRoptt,N ) denote the optimal
end-to-end ANC rate achieved by using all N relays in the
diamond network. Similarly, let Rk = (1/2) log(1+SNRoptt,k )
denote the optimal end-to-end ANC rate achieved by using
the rate-optimal k-subset of N available relays in the diamond

s t
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Fig. 2. A diamond network with N relay nodes.

network. Our first main result in Lemma 1 provides the upper-
bounds on additive gap RN − Rk and multiplicative gap
RN/Rk, for such networks.

Lemma 1: For the Gaussian N -relay diamond network, the
additive gap (in high-SNR regime) and the multiplicative gap
(in low-SNR regime) between the optimal performance of
analog network coding obtained with and without network
simplification is bounded from above, respectively, as

(for Ps →∞)RN −Rk ≤
1

2 ln 2
min{2 ln(N/k) + lnα1,

2(HN−1 −Hk−1) + (N − k) lnα1}

(for Ps → 0)
RN
Rk
≤ N

k
α2

(
1 +

γ

k

)
,

where parameters α1 and α2 characterize the asymmetry in
the network and in general α1, α2 ≥ 1, and

α1 =
(h2si,maxhit,max)

2

(h2si,minhit,min)
2
,

α2 =
(hsi,maxhit,max)

2

(hsi,minhit,min)2
h2si,max + σ2

h2si,min + σ2
,

γ =
1

(βmaxi,maxhit,max)
2
,

and Hn is Harmonic number, limn→∞Hn ∼ lnn + γ and γ
is Euler-Mascheroni constant [18].

Example 1: Consider the Gaussian N -relay diamond net-
work in the symmetric configuration, in which the channel
gains to the relays are equal (hsi = h, i ∈ N ), the channel
gains from the relays are equal (hit = g, i ∈ N ), and in
general h 6= g. Also assume that the transmit power constraint
on each relay is the same, i.e. E[x2i ] ≤ P, i ∈ N . In this
setting β2

i,max = β2 = P/(h2Ps + σ2) and γ = 1/(βg)2.
Also, α1 = α2 = 1. Therefore, using Lemma 1 we obtain the
following upper bounds on additive and multiplicative gaps
between RN and Rk when βg ≥ 1:

RN −Rk ≤
1

ln 2
(HN−1 −Hk−1)

(a)∼ log
N

k
RN
Rk
≤ N

k
(1 + γ/k) ≤ N

k
(1 + γ),

where (a) follows from the asymptotic behavior of Hn.
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Fig. 3. An ECGAL network of L + 2 layers, with source s in layer ‘0’,
destination t in layer ‘L+ 1’, and L relay layers with two nodes each. The
channel gains along all links between adjacent layers are equal.

IV. PERFORMANCE OF NETWORK SIMPLIFICATION IN
GENERAL LAYERED NETWORKS

In this section we analyze the performance of network
simplification in a class of symmetric layered networks with
more than one layer of relays between source and destination
and each relay performing analog network coding on its
input signal. The particular class of symmetric networks we
consider here are defined such that channel gains along all
links between the nodes in two adjacent layers are equal.
This is a generalization of the symmetric diamond network
configuration considered in Example 1 above. We introduced
such networks in [5] and called them “Equal Channel Gains
between Adjacent Layers (ECGAL)” networks. Figure 3 pro-
vides an illustration of such networks.

For the ease of presentation, consider ECGAL networks
where each layer of relay nodes has N relays and all relay
nodes have the same transmit power constraint EX2 ≤ P .

Using Lemma 2 in [5], we can obtain the optimal solutions
βNopt and βkopt of problem (8) for an ECGAL network when
all N relays and when only k, k < N , relays in each layer
are used, respectively. For these optimal network-wide scaling
vectors, we can then compute the corresponding optimal
SNRs at the destination, denoted as SNRoptt,N and SNRoptt,k ,
respectively. The ratio of these optimal SNRs is given as

SNRoptt,N

SNRoptt,k

=

(
N

k

) L∑
l=1

1( l−1∏
j=1

(kβk
j hj)

)2 + k( L∏
l=1

(kβk
l hl)
)2

L∑
l=1

1( l−1∏
j=1

(NβN
j hj)

)2 + N( L∏
l=1

(NβN
l hl)

)2 (11)

Let RN = (1/2) log(1+SNRoptt,N ) denote the optimal end-
to-end ANC rate achieved by using all N relays in every layer
of an ECGAL network. Similarly, let Rk = (1/2) log(1 +
SNRoptt,k ) denote the optimal end-to-end ANC rate achieved
by using any k out of N available relays in every layer of an
ECGAL network. Arguing as in Section III, in the following
we compute the additive gap RN − Rk for large Ps and the
multiplicative gap RN/Rk for small Ps.

Before we discuss the upper-bounds on the additive and
multiplicative gaps for ECGAL networks with arbitrary num-
ber of relay layers, consider the following example where we

compute such bounds for an ECGAL network with two layers
of relay nodes (L = 2) for any N and k.

Example 2: Consider an ECGAL network with two layers
(L = 2) of relay nodes between the source and the destination.
Using (11), we have for this network

SNRoptt,N

SNRoptt,k

=

(
N

k

) 1 +
1

k2h21β
2
1

+
1

k3h21h
2
2β

2
1(β

k
2 )

2

1 +
1

N2h21β
2
1

+
1

N3h21h
2
2β

2
1(β

N
2 )2

Substituting for β1, βN2 , and βk2 results in

(for Ps →∞)
SNRoptt,N

SNRoptt,k

=

(
N

k

)2 1 +
h2
2

kh2
1
+ σ2

k2h2
1P

1 +
h2
2

Nh2
1
+ σ2

N2h2
1P

(for Ps → 0)
SNRoptt,N

SNRoptt,k

=

(
N

k

) 1+ σ2

k2P

(
1
h2
1
+ 1

h2
2
+ σ2

kh2
1h

2
2P

)
1+ σ2

N2P

(
1
h2
1
+ 1

h2
2
+ σ2

Nh2
1h

2
2P

)
These expressions for

SNRopt
t,N

SNRopt
t,k

result in the following upper
bounds on the corresponding additive and multiplicative gaps:

(Ps →∞)RN −Rk ≤
[
log

N

k
+

1

2
log

1 +
h2
2

kh2
1
+ σ2

k2h2
1P

1 +
h2
2

Nh2
1
+ σ2

N2h2
1P

]

(Ps → 0)
RN
Rk
≤
(
N

k

) 1 + σ2

k2P

(
1
h2
1
+ 1

h2
2
+ σ2

kh2
1h

2
2P

)
1 + σ2

N2P

(
1
h2
1
+ 1

h2
2
+ σ2

Nh2
1h

2
2P

)
for two layer ECGAL networks with any N and k.

However, for general ECGAL networks it is analytically
hard to compute such upper-bounds on the additive and mul-
tiplicative gaps between the optimal end-to-end performances
with and without network simplification for arbitrary N and
k. Therefore, in the following we analyze the scaling behavior
of such upper bounds with large N and k.

Consider the asymptotic behavior of
SNRopt

t,N

SNRopt
t,k

with Ps. We
have for large N and k:

(Ps →∞)

l∏
i=1

(βNi )2 =
P/(h2sPs)

N2(l−1)∏l−1
i=1 h

2
i

, 1 ≤ l ≤ L (12)

l∏
i=1

(βki )
2 =

P/(h2sPs)

k2(l−1)
∏l−1
i=1 h

2
i

, 1 ≤ l ≤ L

(Ps → 0)

l∏
i=1

(βNi )2 =
P/σ2

N2(l−1)−1∏l−1
i=1 h

2
i

, 1 ≤ l ≤ L (13)

l∏
i=1

(βki )
2 =

P/σ2

k2(l−1)−1
∏l−1
i=1 h

2
i

, 1 ≤ l ≤ L

Then, from (11)-(13) we obtain for large N and k:

(Ps →∞)
SNRoptt,N

SNRoptt,k

∼
(
N

k

)2[
1 + a

(
1

k
− 1

N

)]
, (14)

(Ps → 0)
SNRoptt,N

SNRoptt,k

∼
(
N

k

)[
1 + b

(
1

k2
− 1

N2

)]
, (15)



where a = h2L
∑L−1
i=1 1/h2i and b = σ2

P (1/h21 + 1/h2L).
Let RN denote the asymptotic (in N ) value of RN . Simi-

larly, let Rk denote the asymptotic (in k) value of Rk. Then,
using (14) and (15), the asymptotic behavior of the addi-
tive and multiplicative gaps is characterized in the following
lemma that is the second main result of this paper.

Lemma 2: For ECGAL networks, the asymptotic (in N and
k) additive and multiplicative gaps between the optimal ANC
performance obtained with and without network simplification
are bounded from above, respectively, as

RN −Rk ≤
{
log

N

k
+

1

2
log

[
1 + a

(
1

k
− 1

N

)]}
≤
[
log

N

k
+

1

2
log(1 + a)

]
,

RN

Rk
≤
(
N

k

)[
1 + b

(
1

k2
− 1

N2

)]
≤
(
N

k

)
(1 + b),

where a = h2L
∑L−1
i=1 1/h2i and b = σ2

P (1/h21 + 1/h2L) are
constants depending on the system parameters.

Remark 1: The bounds in Lemma 2 imply that asymptoti-
cally the additive gap increases at most logarithmically with
the number of layers in the network and the multiplicative
gap is independent of the number of layers. These results are
in agreement with the corresponding results obtained for the
diamond network (with a single relay layer) in Section III. For
instance, for the network in Example 1, using the results of
this section we obtain

RN −Rk ≤ log
N

k
RN

Rk
≤ N

k

(
1 +

σ2

Pg2

)
,

with L = 1, a = 0 and h1 = g. These bounds coincide exactly
with the corresponding asymptotic (in N and k) upper-bounds
in Example 1. This indicates that the bounds in Lemma 2 are
actually asymptotically tight for the diamond network.

Remark 2: The bounds in Lemma 2 are obtained for general
network configurations, without any restriction on channel
gains and number of layers. Therefore for any specific network
configuration, these bounds are in general loose compared to
the bounds obtained from the first principles for such networks.
For instance, for the networks in Examples 1 and 2, Lemma 2
provides bounds that are looser than the corresponding bounds
obtained for any N and k in these examples.

V. CONCLUSION AND FUTURE WORK

Computing the maximum end-to-end ANC rate in general
layered relay networks is an important but computational
intractable problem. We introduce an approach based on the
notion of network simplification to approximate the optimal
ANC rate within small additive and multiplicative gaps in the

Gaussian N -relay diamond network and a class of symmetric
layered networks while simultaneously reducing the compu-
tational complexity of solving this problem. To the best of
our knowledge, this work provides the first characterization of
the performance of network simplification in general layered
AF networks. Also, our results suggest a new approach to
approximate the optimal ANC rates while allowing for the
computation of the additive and multiplicative gaps simulta-
neously. In future, we plan to extend this work to general
layered networks.
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